linux/drivers/md/raid1.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS         \
  41        ((1L << MD_HAS_JOURNAL) |       \
  42         (1L << MD_JOURNAL_CLEAN) |     \
  43         (1L << MD_HAS_PPL) |           \
  44         (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define raid1_log(md, fmt, args...)                             \
  50        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  51
  52#include "raid1-10.c"
  53
  54#define START(node) ((node)->start)
  55#define LAST(node) ((node)->last)
  56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  57                     START, LAST, static inline, raid1_rb);
  58
  59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  60                                struct serial_info *si, int idx)
  61{
  62        unsigned long flags;
  63        int ret = 0;
  64        sector_t lo = r1_bio->sector;
  65        sector_t hi = lo + r1_bio->sectors;
  66        struct serial_in_rdev *serial = &rdev->serial[idx];
  67
  68        spin_lock_irqsave(&serial->serial_lock, flags);
  69        /* collision happened */
  70        if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  71                ret = -EBUSY;
  72        else {
  73                si->start = lo;
  74                si->last = hi;
  75                raid1_rb_insert(si, &serial->serial_rb);
  76        }
  77        spin_unlock_irqrestore(&serial->serial_lock, flags);
  78
  79        return ret;
  80}
  81
  82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  83{
  84        struct mddev *mddev = rdev->mddev;
  85        struct serial_info *si;
  86        int idx = sector_to_idx(r1_bio->sector);
  87        struct serial_in_rdev *serial = &rdev->serial[idx];
  88
  89        if (WARN_ON(!mddev->serial_info_pool))
  90                return;
  91        si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  92        wait_event(serial->serial_io_wait,
  93                   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  94}
  95
  96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  97{
  98        struct serial_info *si;
  99        unsigned long flags;
 100        int found = 0;
 101        struct mddev *mddev = rdev->mddev;
 102        int idx = sector_to_idx(lo);
 103        struct serial_in_rdev *serial = &rdev->serial[idx];
 104
 105        spin_lock_irqsave(&serial->serial_lock, flags);
 106        for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 107             si; si = raid1_rb_iter_next(si, lo, hi)) {
 108                if (si->start == lo && si->last == hi) {
 109                        raid1_rb_remove(si, &serial->serial_rb);
 110                        mempool_free(si, mddev->serial_info_pool);
 111                        found = 1;
 112                        break;
 113                }
 114        }
 115        if (!found)
 116                WARN(1, "The write IO is not recorded for serialization\n");
 117        spin_unlock_irqrestore(&serial->serial_lock, flags);
 118        wake_up(&serial->serial_io_wait);
 119}
 120
 121/*
 122 * for resync bio, r1bio pointer can be retrieved from the per-bio
 123 * 'struct resync_pages'.
 124 */
 125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 126{
 127        return get_resync_pages(bio)->raid_bio;
 128}
 129
 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 131{
 132        struct pool_info *pi = data;
 133        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 134
 135        /* allocate a r1bio with room for raid_disks entries in the bios array */
 136        return kzalloc(size, gfp_flags);
 137}
 138
 139#define RESYNC_DEPTH 32
 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 145
 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 147{
 148        struct pool_info *pi = data;
 149        struct r1bio *r1_bio;
 150        struct bio *bio;
 151        int need_pages;
 152        int j;
 153        struct resync_pages *rps;
 154
 155        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 156        if (!r1_bio)
 157                return NULL;
 158
 159        rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 160                            gfp_flags);
 161        if (!rps)
 162                goto out_free_r1bio;
 163
 164        /*
 165         * Allocate bios : 1 for reading, n-1 for writing
 166         */
 167        for (j = pi->raid_disks ; j-- ; ) {
 168                bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 169                if (!bio)
 170                        goto out_free_bio;
 171                bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 172                r1_bio->bios[j] = bio;
 173        }
 174        /*
 175         * Allocate RESYNC_PAGES data pages and attach them to
 176         * the first bio.
 177         * If this is a user-requested check/repair, allocate
 178         * RESYNC_PAGES for each bio.
 179         */
 180        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 181                need_pages = pi->raid_disks;
 182        else
 183                need_pages = 1;
 184        for (j = 0; j < pi->raid_disks; j++) {
 185                struct resync_pages *rp = &rps[j];
 186
 187                bio = r1_bio->bios[j];
 188
 189                if (j < need_pages) {
 190                        if (resync_alloc_pages(rp, gfp_flags))
 191                                goto out_free_pages;
 192                } else {
 193                        memcpy(rp, &rps[0], sizeof(*rp));
 194                        resync_get_all_pages(rp);
 195                }
 196
 197                rp->raid_bio = r1_bio;
 198                bio->bi_private = rp;
 199        }
 200
 201        r1_bio->master_bio = NULL;
 202
 203        return r1_bio;
 204
 205out_free_pages:
 206        while (--j >= 0)
 207                resync_free_pages(&rps[j]);
 208
 209out_free_bio:
 210        while (++j < pi->raid_disks) {
 211                bio_uninit(r1_bio->bios[j]);
 212                kfree(r1_bio->bios[j]);
 213        }
 214        kfree(rps);
 215
 216out_free_r1bio:
 217        rbio_pool_free(r1_bio, data);
 218        return NULL;
 219}
 220
 221static void r1buf_pool_free(void *__r1_bio, void *data)
 222{
 223        struct pool_info *pi = data;
 224        int i;
 225        struct r1bio *r1bio = __r1_bio;
 226        struct resync_pages *rp = NULL;
 227
 228        for (i = pi->raid_disks; i--; ) {
 229                rp = get_resync_pages(r1bio->bios[i]);
 230                resync_free_pages(rp);
 231                bio_uninit(r1bio->bios[i]);
 232                kfree(r1bio->bios[i]);
 233        }
 234
 235        /* resync pages array stored in the 1st bio's .bi_private */
 236        kfree(rp);
 237
 238        rbio_pool_free(r1bio, data);
 239}
 240
 241static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 242{
 243        int i;
 244
 245        for (i = 0; i < conf->raid_disks * 2; i++) {
 246                struct bio **bio = r1_bio->bios + i;
 247                if (!BIO_SPECIAL(*bio))
 248                        bio_put(*bio);
 249                *bio = NULL;
 250        }
 251}
 252
 253static void free_r1bio(struct r1bio *r1_bio)
 254{
 255        struct r1conf *conf = r1_bio->mddev->private;
 256
 257        put_all_bios(conf, r1_bio);
 258        mempool_free(r1_bio, &conf->r1bio_pool);
 259}
 260
 261static void put_buf(struct r1bio *r1_bio)
 262{
 263        struct r1conf *conf = r1_bio->mddev->private;
 264        sector_t sect = r1_bio->sector;
 265        int i;
 266
 267        for (i = 0; i < conf->raid_disks * 2; i++) {
 268                struct bio *bio = r1_bio->bios[i];
 269                if (bio->bi_end_io)
 270                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 271        }
 272
 273        mempool_free(r1_bio, &conf->r1buf_pool);
 274
 275        lower_barrier(conf, sect);
 276}
 277
 278static void reschedule_retry(struct r1bio *r1_bio)
 279{
 280        unsigned long flags;
 281        struct mddev *mddev = r1_bio->mddev;
 282        struct r1conf *conf = mddev->private;
 283        int idx;
 284
 285        idx = sector_to_idx(r1_bio->sector);
 286        spin_lock_irqsave(&conf->device_lock, flags);
 287        list_add(&r1_bio->retry_list, &conf->retry_list);
 288        atomic_inc(&conf->nr_queued[idx]);
 289        spin_unlock_irqrestore(&conf->device_lock, flags);
 290
 291        wake_up(&conf->wait_barrier);
 292        md_wakeup_thread(mddev->thread);
 293}
 294
 295/*
 296 * raid_end_bio_io() is called when we have finished servicing a mirrored
 297 * operation and are ready to return a success/failure code to the buffer
 298 * cache layer.
 299 */
 300static void call_bio_endio(struct r1bio *r1_bio)
 301{
 302        struct bio *bio = r1_bio->master_bio;
 303
 304        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 305                bio->bi_status = BLK_STS_IOERR;
 306
 307        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 308                bio_end_io_acct(bio, r1_bio->start_time);
 309        bio_endio(bio);
 310}
 311
 312static void raid_end_bio_io(struct r1bio *r1_bio)
 313{
 314        struct bio *bio = r1_bio->master_bio;
 315        struct r1conf *conf = r1_bio->mddev->private;
 316
 317        /* if nobody has done the final endio yet, do it now */
 318        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 319                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 320                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 321                         (unsigned long long) bio->bi_iter.bi_sector,
 322                         (unsigned long long) bio_end_sector(bio) - 1);
 323
 324                call_bio_endio(r1_bio);
 325        }
 326        /*
 327         * Wake up any possible resync thread that waits for the device
 328         * to go idle.  All I/Os, even write-behind writes, are done.
 329         */
 330        allow_barrier(conf, r1_bio->sector);
 331
 332        free_r1bio(r1_bio);
 333}
 334
 335/*
 336 * Update disk head position estimator based on IRQ completion info.
 337 */
 338static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 339{
 340        struct r1conf *conf = r1_bio->mddev->private;
 341
 342        conf->mirrors[disk].head_position =
 343                r1_bio->sector + (r1_bio->sectors);
 344}
 345
 346/*
 347 * Find the disk number which triggered given bio
 348 */
 349static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 350{
 351        int mirror;
 352        struct r1conf *conf = r1_bio->mddev->private;
 353        int raid_disks = conf->raid_disks;
 354
 355        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 356                if (r1_bio->bios[mirror] == bio)
 357                        break;
 358
 359        BUG_ON(mirror == raid_disks * 2);
 360        update_head_pos(mirror, r1_bio);
 361
 362        return mirror;
 363}
 364
 365static void raid1_end_read_request(struct bio *bio)
 366{
 367        int uptodate = !bio->bi_status;
 368        struct r1bio *r1_bio = bio->bi_private;
 369        struct r1conf *conf = r1_bio->mddev->private;
 370        struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 371
 372        /*
 373         * this branch is our 'one mirror IO has finished' event handler:
 374         */
 375        update_head_pos(r1_bio->read_disk, r1_bio);
 376
 377        if (uptodate)
 378                set_bit(R1BIO_Uptodate, &r1_bio->state);
 379        else if (test_bit(FailFast, &rdev->flags) &&
 380                 test_bit(R1BIO_FailFast, &r1_bio->state))
 381                /* This was a fail-fast read so we definitely
 382                 * want to retry */
 383                ;
 384        else {
 385                /* If all other devices have failed, we want to return
 386                 * the error upwards rather than fail the last device.
 387                 * Here we redefine "uptodate" to mean "Don't want to retry"
 388                 */
 389                unsigned long flags;
 390                spin_lock_irqsave(&conf->device_lock, flags);
 391                if (r1_bio->mddev->degraded == conf->raid_disks ||
 392                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 393                     test_bit(In_sync, &rdev->flags)))
 394                        uptodate = 1;
 395                spin_unlock_irqrestore(&conf->device_lock, flags);
 396        }
 397
 398        if (uptodate) {
 399                raid_end_bio_io(r1_bio);
 400                rdev_dec_pending(rdev, conf->mddev);
 401        } else {
 402                /*
 403                 * oops, read error:
 404                 */
 405                pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 406                                   mdname(conf->mddev),
 407                                   rdev->bdev,
 408                                   (unsigned long long)r1_bio->sector);
 409                set_bit(R1BIO_ReadError, &r1_bio->state);
 410                reschedule_retry(r1_bio);
 411                /* don't drop the reference on read_disk yet */
 412        }
 413}
 414
 415static void close_write(struct r1bio *r1_bio)
 416{
 417        /* it really is the end of this request */
 418        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 419                bio_free_pages(r1_bio->behind_master_bio);
 420                bio_put(r1_bio->behind_master_bio);
 421                r1_bio->behind_master_bio = NULL;
 422        }
 423        /* clear the bitmap if all writes complete successfully */
 424        md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 425                           r1_bio->sectors,
 426                           !test_bit(R1BIO_Degraded, &r1_bio->state),
 427                           test_bit(R1BIO_BehindIO, &r1_bio->state));
 428        md_write_end(r1_bio->mddev);
 429}
 430
 431static void r1_bio_write_done(struct r1bio *r1_bio)
 432{
 433        if (!atomic_dec_and_test(&r1_bio->remaining))
 434                return;
 435
 436        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 437                reschedule_retry(r1_bio);
 438        else {
 439                close_write(r1_bio);
 440                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 441                        reschedule_retry(r1_bio);
 442                else
 443                        raid_end_bio_io(r1_bio);
 444        }
 445}
 446
 447static void raid1_end_write_request(struct bio *bio)
 448{
 449        struct r1bio *r1_bio = bio->bi_private;
 450        int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 451        struct r1conf *conf = r1_bio->mddev->private;
 452        struct bio *to_put = NULL;
 453        int mirror = find_bio_disk(r1_bio, bio);
 454        struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 455        bool discard_error;
 456        sector_t lo = r1_bio->sector;
 457        sector_t hi = r1_bio->sector + r1_bio->sectors;
 458
 459        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 460
 461        /*
 462         * 'one mirror IO has finished' event handler:
 463         */
 464        if (bio->bi_status && !discard_error) {
 465                set_bit(WriteErrorSeen, &rdev->flags);
 466                if (!test_and_set_bit(WantReplacement, &rdev->flags))
 467                        set_bit(MD_RECOVERY_NEEDED, &
 468                                conf->mddev->recovery);
 469
 470                if (test_bit(FailFast, &rdev->flags) &&
 471                    (bio->bi_opf & MD_FAILFAST) &&
 472                    /* We never try FailFast to WriteMostly devices */
 473                    !test_bit(WriteMostly, &rdev->flags)) {
 474                        md_error(r1_bio->mddev, rdev);
 475                }
 476
 477                /*
 478                 * When the device is faulty, it is not necessary to
 479                 * handle write error.
 480                 */
 481                if (!test_bit(Faulty, &rdev->flags))
 482                        set_bit(R1BIO_WriteError, &r1_bio->state);
 483                else {
 484                        /* Fail the request */
 485                        set_bit(R1BIO_Degraded, &r1_bio->state);
 486                        /* Finished with this branch */
 487                        r1_bio->bios[mirror] = NULL;
 488                        to_put = bio;
 489                }
 490        } else {
 491                /*
 492                 * Set R1BIO_Uptodate in our master bio, so that we
 493                 * will return a good error code for to the higher
 494                 * levels even if IO on some other mirrored buffer
 495                 * fails.
 496                 *
 497                 * The 'master' represents the composite IO operation
 498                 * to user-side. So if something waits for IO, then it
 499                 * will wait for the 'master' bio.
 500                 */
 501                sector_t first_bad;
 502                int bad_sectors;
 503
 504                r1_bio->bios[mirror] = NULL;
 505                to_put = bio;
 506                /*
 507                 * Do not set R1BIO_Uptodate if the current device is
 508                 * rebuilding or Faulty. This is because we cannot use
 509                 * such device for properly reading the data back (we could
 510                 * potentially use it, if the current write would have felt
 511                 * before rdev->recovery_offset, but for simplicity we don't
 512                 * check this here.
 513                 */
 514                if (test_bit(In_sync, &rdev->flags) &&
 515                    !test_bit(Faulty, &rdev->flags))
 516                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 517
 518                /* Maybe we can clear some bad blocks. */
 519                if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 520                                &first_bad, &bad_sectors) && !discard_error) {
 521                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 522                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 523                }
 524        }
 525
 526        if (behind) {
 527                if (test_bit(CollisionCheck, &rdev->flags))
 528                        remove_serial(rdev, lo, hi);
 529                if (test_bit(WriteMostly, &rdev->flags))
 530                        atomic_dec(&r1_bio->behind_remaining);
 531
 532                /*
 533                 * In behind mode, we ACK the master bio once the I/O
 534                 * has safely reached all non-writemostly
 535                 * disks. Setting the Returned bit ensures that this
 536                 * gets done only once -- we don't ever want to return
 537                 * -EIO here, instead we'll wait
 538                 */
 539                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 540                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 541                        /* Maybe we can return now */
 542                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 543                                struct bio *mbio = r1_bio->master_bio;
 544                                pr_debug("raid1: behind end write sectors"
 545                                         " %llu-%llu\n",
 546                                         (unsigned long long) mbio->bi_iter.bi_sector,
 547                                         (unsigned long long) bio_end_sector(mbio) - 1);
 548                                call_bio_endio(r1_bio);
 549                        }
 550                }
 551        } else if (rdev->mddev->serialize_policy)
 552                remove_serial(rdev, lo, hi);
 553        if (r1_bio->bios[mirror] == NULL)
 554                rdev_dec_pending(rdev, conf->mddev);
 555
 556        /*
 557         * Let's see if all mirrored write operations have finished
 558         * already.
 559         */
 560        r1_bio_write_done(r1_bio);
 561
 562        if (to_put)
 563                bio_put(to_put);
 564}
 565
 566static sector_t align_to_barrier_unit_end(sector_t start_sector,
 567                                          sector_t sectors)
 568{
 569        sector_t len;
 570
 571        WARN_ON(sectors == 0);
 572        /*
 573         * len is the number of sectors from start_sector to end of the
 574         * barrier unit which start_sector belongs to.
 575         */
 576        len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 577              start_sector;
 578
 579        if (len > sectors)
 580                len = sectors;
 581
 582        return len;
 583}
 584
 585/*
 586 * This routine returns the disk from which the requested read should
 587 * be done. There is a per-array 'next expected sequential IO' sector
 588 * number - if this matches on the next IO then we use the last disk.
 589 * There is also a per-disk 'last know head position' sector that is
 590 * maintained from IRQ contexts, both the normal and the resync IO
 591 * completion handlers update this position correctly. If there is no
 592 * perfect sequential match then we pick the disk whose head is closest.
 593 *
 594 * If there are 2 mirrors in the same 2 devices, performance degrades
 595 * because position is mirror, not device based.
 596 *
 597 * The rdev for the device selected will have nr_pending incremented.
 598 */
 599static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 600{
 601        const sector_t this_sector = r1_bio->sector;
 602        int sectors;
 603        int best_good_sectors;
 604        int best_disk, best_dist_disk, best_pending_disk;
 605        int has_nonrot_disk;
 606        int disk;
 607        sector_t best_dist;
 608        unsigned int min_pending;
 609        struct md_rdev *rdev;
 610        int choose_first;
 611        int choose_next_idle;
 612
 613        rcu_read_lock();
 614        /*
 615         * Check if we can balance. We can balance on the whole
 616         * device if no resync is going on, or below the resync window.
 617         * We take the first readable disk when above the resync window.
 618         */
 619 retry:
 620        sectors = r1_bio->sectors;
 621        best_disk = -1;
 622        best_dist_disk = -1;
 623        best_dist = MaxSector;
 624        best_pending_disk = -1;
 625        min_pending = UINT_MAX;
 626        best_good_sectors = 0;
 627        has_nonrot_disk = 0;
 628        choose_next_idle = 0;
 629        clear_bit(R1BIO_FailFast, &r1_bio->state);
 630
 631        if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 632            (mddev_is_clustered(conf->mddev) &&
 633            md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 634                    this_sector + sectors)))
 635                choose_first = 1;
 636        else
 637                choose_first = 0;
 638
 639        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 640                sector_t dist;
 641                sector_t first_bad;
 642                int bad_sectors;
 643                unsigned int pending;
 644                bool nonrot;
 645
 646                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 647                if (r1_bio->bios[disk] == IO_BLOCKED
 648                    || rdev == NULL
 649                    || test_bit(Faulty, &rdev->flags))
 650                        continue;
 651                if (!test_bit(In_sync, &rdev->flags) &&
 652                    rdev->recovery_offset < this_sector + sectors)
 653                        continue;
 654                if (test_bit(WriteMostly, &rdev->flags)) {
 655                        /* Don't balance among write-mostly, just
 656                         * use the first as a last resort */
 657                        if (best_dist_disk < 0) {
 658                                if (is_badblock(rdev, this_sector, sectors,
 659                                                &first_bad, &bad_sectors)) {
 660                                        if (first_bad <= this_sector)
 661                                                /* Cannot use this */
 662                                                continue;
 663                                        best_good_sectors = first_bad - this_sector;
 664                                } else
 665                                        best_good_sectors = sectors;
 666                                best_dist_disk = disk;
 667                                best_pending_disk = disk;
 668                        }
 669                        continue;
 670                }
 671                /* This is a reasonable device to use.  It might
 672                 * even be best.
 673                 */
 674                if (is_badblock(rdev, this_sector, sectors,
 675                                &first_bad, &bad_sectors)) {
 676                        if (best_dist < MaxSector)
 677                                /* already have a better device */
 678                                continue;
 679                        if (first_bad <= this_sector) {
 680                                /* cannot read here. If this is the 'primary'
 681                                 * device, then we must not read beyond
 682                                 * bad_sectors from another device..
 683                                 */
 684                                bad_sectors -= (this_sector - first_bad);
 685                                if (choose_first && sectors > bad_sectors)
 686                                        sectors = bad_sectors;
 687                                if (best_good_sectors > sectors)
 688                                        best_good_sectors = sectors;
 689
 690                        } else {
 691                                sector_t good_sectors = first_bad - this_sector;
 692                                if (good_sectors > best_good_sectors) {
 693                                        best_good_sectors = good_sectors;
 694                                        best_disk = disk;
 695                                }
 696                                if (choose_first)
 697                                        break;
 698                        }
 699                        continue;
 700                } else {
 701                        if ((sectors > best_good_sectors) && (best_disk >= 0))
 702                                best_disk = -1;
 703                        best_good_sectors = sectors;
 704                }
 705
 706                if (best_disk >= 0)
 707                        /* At least two disks to choose from so failfast is OK */
 708                        set_bit(R1BIO_FailFast, &r1_bio->state);
 709
 710                nonrot = bdev_nonrot(rdev->bdev);
 711                has_nonrot_disk |= nonrot;
 712                pending = atomic_read(&rdev->nr_pending);
 713                dist = abs(this_sector - conf->mirrors[disk].head_position);
 714                if (choose_first) {
 715                        best_disk = disk;
 716                        break;
 717                }
 718                /* Don't change to another disk for sequential reads */
 719                if (conf->mirrors[disk].next_seq_sect == this_sector
 720                    || dist == 0) {
 721                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 722                        struct raid1_info *mirror = &conf->mirrors[disk];
 723
 724                        best_disk = disk;
 725                        /*
 726                         * If buffered sequential IO size exceeds optimal
 727                         * iosize, check if there is idle disk. If yes, choose
 728                         * the idle disk. read_balance could already choose an
 729                         * idle disk before noticing it's a sequential IO in
 730                         * this disk. This doesn't matter because this disk
 731                         * will idle, next time it will be utilized after the
 732                         * first disk has IO size exceeds optimal iosize. In
 733                         * this way, iosize of the first disk will be optimal
 734                         * iosize at least. iosize of the second disk might be
 735                         * small, but not a big deal since when the second disk
 736                         * starts IO, the first disk is likely still busy.
 737                         */
 738                        if (nonrot && opt_iosize > 0 &&
 739                            mirror->seq_start != MaxSector &&
 740                            mirror->next_seq_sect > opt_iosize &&
 741                            mirror->next_seq_sect - opt_iosize >=
 742                            mirror->seq_start) {
 743                                choose_next_idle = 1;
 744                                continue;
 745                        }
 746                        break;
 747                }
 748
 749                if (choose_next_idle)
 750                        continue;
 751
 752                if (min_pending > pending) {
 753                        min_pending = pending;
 754                        best_pending_disk = disk;
 755                }
 756
 757                if (dist < best_dist) {
 758                        best_dist = dist;
 759                        best_dist_disk = disk;
 760                }
 761        }
 762
 763        /*
 764         * If all disks are rotational, choose the closest disk. If any disk is
 765         * non-rotational, choose the disk with less pending request even the
 766         * disk is rotational, which might/might not be optimal for raids with
 767         * mixed ratation/non-rotational disks depending on workload.
 768         */
 769        if (best_disk == -1) {
 770                if (has_nonrot_disk || min_pending == 0)
 771                        best_disk = best_pending_disk;
 772                else
 773                        best_disk = best_dist_disk;
 774        }
 775
 776        if (best_disk >= 0) {
 777                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 778                if (!rdev)
 779                        goto retry;
 780                atomic_inc(&rdev->nr_pending);
 781                sectors = best_good_sectors;
 782
 783                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 784                        conf->mirrors[best_disk].seq_start = this_sector;
 785
 786                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 787        }
 788        rcu_read_unlock();
 789        *max_sectors = sectors;
 790
 791        return best_disk;
 792}
 793
 794static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 795{
 796        /* flush any pending bitmap writes to disk before proceeding w/ I/O */
 797        md_bitmap_unplug(conf->mddev->bitmap);
 798        wake_up(&conf->wait_barrier);
 799
 800        while (bio) { /* submit pending writes */
 801                struct bio *next = bio->bi_next;
 802                struct md_rdev *rdev = (void *)bio->bi_bdev;
 803                bio->bi_next = NULL;
 804                bio_set_dev(bio, rdev->bdev);
 805                if (test_bit(Faulty, &rdev->flags)) {
 806                        bio_io_error(bio);
 807                } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 808                                    !bdev_max_discard_sectors(bio->bi_bdev)))
 809                        /* Just ignore it */
 810                        bio_endio(bio);
 811                else
 812                        submit_bio_noacct(bio);
 813                bio = next;
 814                cond_resched();
 815        }
 816}
 817
 818static void flush_pending_writes(struct r1conf *conf)
 819{
 820        /* Any writes that have been queued but are awaiting
 821         * bitmap updates get flushed here.
 822         */
 823        spin_lock_irq(&conf->device_lock);
 824
 825        if (conf->pending_bio_list.head) {
 826                struct blk_plug plug;
 827                struct bio *bio;
 828
 829                bio = bio_list_get(&conf->pending_bio_list);
 830                spin_unlock_irq(&conf->device_lock);
 831
 832                /*
 833                 * As this is called in a wait_event() loop (see freeze_array),
 834                 * current->state might be TASK_UNINTERRUPTIBLE which will
 835                 * cause a warning when we prepare to wait again.  As it is
 836                 * rare that this path is taken, it is perfectly safe to force
 837                 * us to go around the wait_event() loop again, so the warning
 838                 * is a false-positive.  Silence the warning by resetting
 839                 * thread state
 840                 */
 841                __set_current_state(TASK_RUNNING);
 842                blk_start_plug(&plug);
 843                flush_bio_list(conf, bio);
 844                blk_finish_plug(&plug);
 845        } else
 846                spin_unlock_irq(&conf->device_lock);
 847}
 848
 849/* Barriers....
 850 * Sometimes we need to suspend IO while we do something else,
 851 * either some resync/recovery, or reconfigure the array.
 852 * To do this we raise a 'barrier'.
 853 * The 'barrier' is a counter that can be raised multiple times
 854 * to count how many activities are happening which preclude
 855 * normal IO.
 856 * We can only raise the barrier if there is no pending IO.
 857 * i.e. if nr_pending == 0.
 858 * We choose only to raise the barrier if no-one is waiting for the
 859 * barrier to go down.  This means that as soon as an IO request
 860 * is ready, no other operations which require a barrier will start
 861 * until the IO request has had a chance.
 862 *
 863 * So: regular IO calls 'wait_barrier'.  When that returns there
 864 *    is no backgroup IO happening,  It must arrange to call
 865 *    allow_barrier when it has finished its IO.
 866 * backgroup IO calls must call raise_barrier.  Once that returns
 867 *    there is no normal IO happeing.  It must arrange to call
 868 *    lower_barrier when the particular background IO completes.
 869 *
 870 * If resync/recovery is interrupted, returns -EINTR;
 871 * Otherwise, returns 0.
 872 */
 873static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 874{
 875        int idx = sector_to_idx(sector_nr);
 876
 877        spin_lock_irq(&conf->resync_lock);
 878
 879        /* Wait until no block IO is waiting */
 880        wait_event_lock_irq(conf->wait_barrier,
 881                            !atomic_read(&conf->nr_waiting[idx]),
 882                            conf->resync_lock);
 883
 884        /* block any new IO from starting */
 885        atomic_inc(&conf->barrier[idx]);
 886        /*
 887         * In raise_barrier() we firstly increase conf->barrier[idx] then
 888         * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 889         * increase conf->nr_pending[idx] then check conf->barrier[idx].
 890         * A memory barrier here to make sure conf->nr_pending[idx] won't
 891         * be fetched before conf->barrier[idx] is increased. Otherwise
 892         * there will be a race between raise_barrier() and _wait_barrier().
 893         */
 894        smp_mb__after_atomic();
 895
 896        /* For these conditions we must wait:
 897         * A: while the array is in frozen state
 898         * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 899         *    existing in corresponding I/O barrier bucket.
 900         * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 901         *    max resync count which allowed on current I/O barrier bucket.
 902         */
 903        wait_event_lock_irq(conf->wait_barrier,
 904                            (!conf->array_frozen &&
 905                             !atomic_read(&conf->nr_pending[idx]) &&
 906                             atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 907                                test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 908                            conf->resync_lock);
 909
 910        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 911                atomic_dec(&conf->barrier[idx]);
 912                spin_unlock_irq(&conf->resync_lock);
 913                wake_up(&conf->wait_barrier);
 914                return -EINTR;
 915        }
 916
 917        atomic_inc(&conf->nr_sync_pending);
 918        spin_unlock_irq(&conf->resync_lock);
 919
 920        return 0;
 921}
 922
 923static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 924{
 925        int idx = sector_to_idx(sector_nr);
 926
 927        BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 928
 929        atomic_dec(&conf->barrier[idx]);
 930        atomic_dec(&conf->nr_sync_pending);
 931        wake_up(&conf->wait_barrier);
 932}
 933
 934static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
 935{
 936        bool ret = true;
 937
 938        /*
 939         * We need to increase conf->nr_pending[idx] very early here,
 940         * then raise_barrier() can be blocked when it waits for
 941         * conf->nr_pending[idx] to be 0. Then we can avoid holding
 942         * conf->resync_lock when there is no barrier raised in same
 943         * barrier unit bucket. Also if the array is frozen, I/O
 944         * should be blocked until array is unfrozen.
 945         */
 946        atomic_inc(&conf->nr_pending[idx]);
 947        /*
 948         * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 949         * check conf->barrier[idx]. In raise_barrier() we firstly increase
 950         * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 951         * barrier is necessary here to make sure conf->barrier[idx] won't be
 952         * fetched before conf->nr_pending[idx] is increased. Otherwise there
 953         * will be a race between _wait_barrier() and raise_barrier().
 954         */
 955        smp_mb__after_atomic();
 956
 957        /*
 958         * Don't worry about checking two atomic_t variables at same time
 959         * here. If during we check conf->barrier[idx], the array is
 960         * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 961         * 0, it is safe to return and make the I/O continue. Because the
 962         * array is frozen, all I/O returned here will eventually complete
 963         * or be queued, no race will happen. See code comment in
 964         * frozen_array().
 965         */
 966        if (!READ_ONCE(conf->array_frozen) &&
 967            !atomic_read(&conf->barrier[idx]))
 968                return ret;
 969
 970        /*
 971         * After holding conf->resync_lock, conf->nr_pending[idx]
 972         * should be decreased before waiting for barrier to drop.
 973         * Otherwise, we may encounter a race condition because
 974         * raise_barrer() might be waiting for conf->nr_pending[idx]
 975         * to be 0 at same time.
 976         */
 977        spin_lock_irq(&conf->resync_lock);
 978        atomic_inc(&conf->nr_waiting[idx]);
 979        atomic_dec(&conf->nr_pending[idx]);
 980        /*
 981         * In case freeze_array() is waiting for
 982         * get_unqueued_pending() == extra
 983         */
 984        wake_up(&conf->wait_barrier);
 985        /* Wait for the barrier in same barrier unit bucket to drop. */
 986
 987        /* Return false when nowait flag is set */
 988        if (nowait) {
 989                ret = false;
 990        } else {
 991                wait_event_lock_irq(conf->wait_barrier,
 992                                !conf->array_frozen &&
 993                                !atomic_read(&conf->barrier[idx]),
 994                                conf->resync_lock);
 995                atomic_inc(&conf->nr_pending[idx]);
 996        }
 997
 998        atomic_dec(&conf->nr_waiting[idx]);
 999        spin_unlock_irq(&conf->resync_lock);
1000        return ret;
1001}
1002
1003static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1004{
1005        int idx = sector_to_idx(sector_nr);
1006        bool ret = true;
1007
1008        /*
1009         * Very similar to _wait_barrier(). The difference is, for read
1010         * I/O we don't need wait for sync I/O, but if the whole array
1011         * is frozen, the read I/O still has to wait until the array is
1012         * unfrozen. Since there is no ordering requirement with
1013         * conf->barrier[idx] here, memory barrier is unnecessary as well.
1014         */
1015        atomic_inc(&conf->nr_pending[idx]);
1016
1017        if (!READ_ONCE(conf->array_frozen))
1018                return ret;
1019
1020        spin_lock_irq(&conf->resync_lock);
1021        atomic_inc(&conf->nr_waiting[idx]);
1022        atomic_dec(&conf->nr_pending[idx]);
1023        /*
1024         * In case freeze_array() is waiting for
1025         * get_unqueued_pending() == extra
1026         */
1027        wake_up(&conf->wait_barrier);
1028        /* Wait for array to be unfrozen */
1029
1030        /* Return false when nowait flag is set */
1031        if (nowait) {
1032                /* Return false when nowait flag is set */
1033                ret = false;
1034        } else {
1035                wait_event_lock_irq(conf->wait_barrier,
1036                                !conf->array_frozen,
1037                                conf->resync_lock);
1038                atomic_inc(&conf->nr_pending[idx]);
1039        }
1040
1041        atomic_dec(&conf->nr_waiting[idx]);
1042        spin_unlock_irq(&conf->resync_lock);
1043        return ret;
1044}
1045
1046static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1047{
1048        int idx = sector_to_idx(sector_nr);
1049
1050        return _wait_barrier(conf, idx, nowait);
1051}
1052
1053static void _allow_barrier(struct r1conf *conf, int idx)
1054{
1055        atomic_dec(&conf->nr_pending[idx]);
1056        wake_up(&conf->wait_barrier);
1057}
1058
1059static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1060{
1061        int idx = sector_to_idx(sector_nr);
1062
1063        _allow_barrier(conf, idx);
1064}
1065
1066/* conf->resync_lock should be held */
1067static int get_unqueued_pending(struct r1conf *conf)
1068{
1069        int idx, ret;
1070
1071        ret = atomic_read(&conf->nr_sync_pending);
1072        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1073                ret += atomic_read(&conf->nr_pending[idx]) -
1074                        atomic_read(&conf->nr_queued[idx]);
1075
1076        return ret;
1077}
1078
1079static void freeze_array(struct r1conf *conf, int extra)
1080{
1081        /* Stop sync I/O and normal I/O and wait for everything to
1082         * go quiet.
1083         * This is called in two situations:
1084         * 1) management command handlers (reshape, remove disk, quiesce).
1085         * 2) one normal I/O request failed.
1086
1087         * After array_frozen is set to 1, new sync IO will be blocked at
1088         * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1089         * or wait_read_barrier(). The flying I/Os will either complete or be
1090         * queued. When everything goes quite, there are only queued I/Os left.
1091
1092         * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1093         * barrier bucket index which this I/O request hits. When all sync and
1094         * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1095         * of all conf->nr_queued[]. But normal I/O failure is an exception,
1096         * in handle_read_error(), we may call freeze_array() before trying to
1097         * fix the read error. In this case, the error read I/O is not queued,
1098         * so get_unqueued_pending() == 1.
1099         *
1100         * Therefore before this function returns, we need to wait until
1101         * get_unqueued_pendings(conf) gets equal to extra. For
1102         * normal I/O context, extra is 1, in rested situations extra is 0.
1103         */
1104        spin_lock_irq(&conf->resync_lock);
1105        conf->array_frozen = 1;
1106        raid1_log(conf->mddev, "wait freeze");
1107        wait_event_lock_irq_cmd(
1108                conf->wait_barrier,
1109                get_unqueued_pending(conf) == extra,
1110                conf->resync_lock,
1111                flush_pending_writes(conf));
1112        spin_unlock_irq(&conf->resync_lock);
1113}
1114static void unfreeze_array(struct r1conf *conf)
1115{
1116        /* reverse the effect of the freeze */
1117        spin_lock_irq(&conf->resync_lock);
1118        conf->array_frozen = 0;
1119        spin_unlock_irq(&conf->resync_lock);
1120        wake_up(&conf->wait_barrier);
1121}
1122
1123static void alloc_behind_master_bio(struct r1bio *r1_bio,
1124                                           struct bio *bio)
1125{
1126        int size = bio->bi_iter.bi_size;
1127        unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1128        int i = 0;
1129        struct bio *behind_bio = NULL;
1130
1131        behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1132                                      &r1_bio->mddev->bio_set);
1133        if (!behind_bio)
1134                return;
1135
1136        /* discard op, we don't support writezero/writesame yet */
1137        if (!bio_has_data(bio)) {
1138                behind_bio->bi_iter.bi_size = size;
1139                goto skip_copy;
1140        }
1141
1142        while (i < vcnt && size) {
1143                struct page *page;
1144                int len = min_t(int, PAGE_SIZE, size);
1145
1146                page = alloc_page(GFP_NOIO);
1147                if (unlikely(!page))
1148                        goto free_pages;
1149
1150                bio_add_page(behind_bio, page, len, 0);
1151
1152                size -= len;
1153                i++;
1154        }
1155
1156        bio_copy_data(behind_bio, bio);
1157skip_copy:
1158        r1_bio->behind_master_bio = behind_bio;
1159        set_bit(R1BIO_BehindIO, &r1_bio->state);
1160
1161        return;
1162
1163free_pages:
1164        pr_debug("%dB behind alloc failed, doing sync I/O\n",
1165                 bio->bi_iter.bi_size);
1166        bio_free_pages(behind_bio);
1167        bio_put(behind_bio);
1168}
1169
1170static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1171{
1172        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1173                                                  cb);
1174        struct mddev *mddev = plug->cb.data;
1175        struct r1conf *conf = mddev->private;
1176        struct bio *bio;
1177
1178        if (from_schedule || current->bio_list) {
1179                spin_lock_irq(&conf->device_lock);
1180                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1181                spin_unlock_irq(&conf->device_lock);
1182                wake_up(&conf->wait_barrier);
1183                md_wakeup_thread(mddev->thread);
1184                kfree(plug);
1185                return;
1186        }
1187
1188        /* we aren't scheduling, so we can do the write-out directly. */
1189        bio = bio_list_get(&plug->pending);
1190        flush_bio_list(conf, bio);
1191        kfree(plug);
1192}
1193
1194static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1195{
1196        r1_bio->master_bio = bio;
1197        r1_bio->sectors = bio_sectors(bio);
1198        r1_bio->state = 0;
1199        r1_bio->mddev = mddev;
1200        r1_bio->sector = bio->bi_iter.bi_sector;
1201}
1202
1203static inline struct r1bio *
1204alloc_r1bio(struct mddev *mddev, struct bio *bio)
1205{
1206        struct r1conf *conf = mddev->private;
1207        struct r1bio *r1_bio;
1208
1209        r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1210        /* Ensure no bio records IO_BLOCKED */
1211        memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1212        init_r1bio(r1_bio, mddev, bio);
1213        return r1_bio;
1214}
1215
1216static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1217                               int max_read_sectors, struct r1bio *r1_bio)
1218{
1219        struct r1conf *conf = mddev->private;
1220        struct raid1_info *mirror;
1221        struct bio *read_bio;
1222        struct bitmap *bitmap = mddev->bitmap;
1223        const int op = bio_op(bio);
1224        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1225        int max_sectors;
1226        int rdisk;
1227        bool r1bio_existed = !!r1_bio;
1228        char b[BDEVNAME_SIZE];
1229
1230        /*
1231         * If r1_bio is set, we are blocking the raid1d thread
1232         * so there is a tiny risk of deadlock.  So ask for
1233         * emergency memory if needed.
1234         */
1235        gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1236
1237        if (r1bio_existed) {
1238                /* Need to get the block device name carefully */
1239                struct md_rdev *rdev;
1240                rcu_read_lock();
1241                rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1242                if (rdev)
1243                        bdevname(rdev->bdev, b);
1244                else
1245                        strcpy(b, "???");
1246                rcu_read_unlock();
1247        }
1248
1249        /*
1250         * Still need barrier for READ in case that whole
1251         * array is frozen.
1252         */
1253        if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1254                                bio->bi_opf & REQ_NOWAIT)) {
1255                bio_wouldblock_error(bio);
1256                return;
1257        }
1258
1259        if (!r1_bio)
1260                r1_bio = alloc_r1bio(mddev, bio);
1261        else
1262                init_r1bio(r1_bio, mddev, bio);
1263        r1_bio->sectors = max_read_sectors;
1264
1265        /*
1266         * make_request() can abort the operation when read-ahead is being
1267         * used and no empty request is available.
1268         */
1269        rdisk = read_balance(conf, r1_bio, &max_sectors);
1270
1271        if (rdisk < 0) {
1272                /* couldn't find anywhere to read from */
1273                if (r1bio_existed) {
1274                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1275                                            mdname(mddev),
1276                                            b,
1277                                            (unsigned long long)r1_bio->sector);
1278                }
1279                raid_end_bio_io(r1_bio);
1280                return;
1281        }
1282        mirror = conf->mirrors + rdisk;
1283
1284        if (r1bio_existed)
1285                pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1286                                    mdname(mddev),
1287                                    (unsigned long long)r1_bio->sector,
1288                                    mirror->rdev->bdev);
1289
1290        if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1291            bitmap) {
1292                /*
1293                 * Reading from a write-mostly device must take care not to
1294                 * over-take any writes that are 'behind'
1295                 */
1296                raid1_log(mddev, "wait behind writes");
1297                wait_event(bitmap->behind_wait,
1298                           atomic_read(&bitmap->behind_writes) == 0);
1299        }
1300
1301        if (max_sectors < bio_sectors(bio)) {
1302                struct bio *split = bio_split(bio, max_sectors,
1303                                              gfp, &conf->bio_split);
1304                bio_chain(split, bio);
1305                submit_bio_noacct(bio);
1306                bio = split;
1307                r1_bio->master_bio = bio;
1308                r1_bio->sectors = max_sectors;
1309        }
1310
1311        r1_bio->read_disk = rdisk;
1312
1313        if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1314                r1_bio->start_time = bio_start_io_acct(bio);
1315
1316        read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1317                                   &mddev->bio_set);
1318
1319        r1_bio->bios[rdisk] = read_bio;
1320
1321        read_bio->bi_iter.bi_sector = r1_bio->sector +
1322                mirror->rdev->data_offset;
1323        read_bio->bi_end_io = raid1_end_read_request;
1324        bio_set_op_attrs(read_bio, op, do_sync);
1325        if (test_bit(FailFast, &mirror->rdev->flags) &&
1326            test_bit(R1BIO_FailFast, &r1_bio->state))
1327                read_bio->bi_opf |= MD_FAILFAST;
1328        read_bio->bi_private = r1_bio;
1329
1330        if (mddev->gendisk)
1331                trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1332                                      r1_bio->sector);
1333
1334        submit_bio_noacct(read_bio);
1335}
1336
1337static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1338                                int max_write_sectors)
1339{
1340        struct r1conf *conf = mddev->private;
1341        struct r1bio *r1_bio;
1342        int i, disks;
1343        struct bitmap *bitmap = mddev->bitmap;
1344        unsigned long flags;
1345        struct md_rdev *blocked_rdev;
1346        struct blk_plug_cb *cb;
1347        struct raid1_plug_cb *plug = NULL;
1348        int first_clone;
1349        int max_sectors;
1350        bool write_behind = false;
1351
1352        if (mddev_is_clustered(mddev) &&
1353             md_cluster_ops->area_resyncing(mddev, WRITE,
1354                     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1355
1356                DEFINE_WAIT(w);
1357                if (bio->bi_opf & REQ_NOWAIT) {
1358                        bio_wouldblock_error(bio);
1359                        return;
1360                }
1361                for (;;) {
1362                        prepare_to_wait(&conf->wait_barrier,
1363                                        &w, TASK_IDLE);
1364                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1365                                                        bio->bi_iter.bi_sector,
1366                                                        bio_end_sector(bio)))
1367                                break;
1368                        schedule();
1369                }
1370                finish_wait(&conf->wait_barrier, &w);
1371        }
1372
1373        /*
1374         * Register the new request and wait if the reconstruction
1375         * thread has put up a bar for new requests.
1376         * Continue immediately if no resync is active currently.
1377         */
1378        if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1379                                bio->bi_opf & REQ_NOWAIT)) {
1380                bio_wouldblock_error(bio);
1381                return;
1382        }
1383
1384        r1_bio = alloc_r1bio(mddev, bio);
1385        r1_bio->sectors = max_write_sectors;
1386
1387        /* first select target devices under rcu_lock and
1388         * inc refcount on their rdev.  Record them by setting
1389         * bios[x] to bio
1390         * If there are known/acknowledged bad blocks on any device on
1391         * which we have seen a write error, we want to avoid writing those
1392         * blocks.
1393         * This potentially requires several writes to write around
1394         * the bad blocks.  Each set of writes gets it's own r1bio
1395         * with a set of bios attached.
1396         */
1397
1398        disks = conf->raid_disks * 2;
1399 retry_write:
1400        blocked_rdev = NULL;
1401        rcu_read_lock();
1402        max_sectors = r1_bio->sectors;
1403        for (i = 0;  i < disks; i++) {
1404                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1405
1406                /*
1407                 * The write-behind io is only attempted on drives marked as
1408                 * write-mostly, which means we could allocate write behind
1409                 * bio later.
1410                 */
1411                if (rdev && test_bit(WriteMostly, &rdev->flags))
1412                        write_behind = true;
1413
1414                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1415                        atomic_inc(&rdev->nr_pending);
1416                        blocked_rdev = rdev;
1417                        break;
1418                }
1419                r1_bio->bios[i] = NULL;
1420                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1421                        if (i < conf->raid_disks)
1422                                set_bit(R1BIO_Degraded, &r1_bio->state);
1423                        continue;
1424                }
1425
1426                atomic_inc(&rdev->nr_pending);
1427                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1428                        sector_t first_bad;
1429                        int bad_sectors;
1430                        int is_bad;
1431
1432                        is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1433                                             &first_bad, &bad_sectors);
1434                        if (is_bad < 0) {
1435                                /* mustn't write here until the bad block is
1436                                 * acknowledged*/
1437                                set_bit(BlockedBadBlocks, &rdev->flags);
1438                                blocked_rdev = rdev;
1439                                break;
1440                        }
1441                        if (is_bad && first_bad <= r1_bio->sector) {
1442                                /* Cannot write here at all */
1443                                bad_sectors -= (r1_bio->sector - first_bad);
1444                                if (bad_sectors < max_sectors)
1445                                        /* mustn't write more than bad_sectors
1446                                         * to other devices yet
1447                                         */
1448                                        max_sectors = bad_sectors;
1449                                rdev_dec_pending(rdev, mddev);
1450                                /* We don't set R1BIO_Degraded as that
1451                                 * only applies if the disk is
1452                                 * missing, so it might be re-added,
1453                                 * and we want to know to recover this
1454                                 * chunk.
1455                                 * In this case the device is here,
1456                                 * and the fact that this chunk is not
1457                                 * in-sync is recorded in the bad
1458                                 * block log
1459                                 */
1460                                continue;
1461                        }
1462                        if (is_bad) {
1463                                int good_sectors = first_bad - r1_bio->sector;
1464                                if (good_sectors < max_sectors)
1465                                        max_sectors = good_sectors;
1466                        }
1467                }
1468                r1_bio->bios[i] = bio;
1469        }
1470        rcu_read_unlock();
1471
1472        if (unlikely(blocked_rdev)) {
1473                /* Wait for this device to become unblocked */
1474                int j;
1475
1476                for (j = 0; j < i; j++)
1477                        if (r1_bio->bios[j])
1478                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1479                r1_bio->state = 0;
1480                allow_barrier(conf, bio->bi_iter.bi_sector);
1481
1482                if (bio->bi_opf & REQ_NOWAIT) {
1483                        bio_wouldblock_error(bio);
1484                        return;
1485                }
1486                raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1487                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1488                wait_barrier(conf, bio->bi_iter.bi_sector, false);
1489                goto retry_write;
1490        }
1491
1492        /*
1493         * When using a bitmap, we may call alloc_behind_master_bio below.
1494         * alloc_behind_master_bio allocates a copy of the data payload a page
1495         * at a time and thus needs a new bio that can fit the whole payload
1496         * this bio in page sized chunks.
1497         */
1498        if (write_behind && bitmap)
1499                max_sectors = min_t(int, max_sectors,
1500                                    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1501        if (max_sectors < bio_sectors(bio)) {
1502                struct bio *split = bio_split(bio, max_sectors,
1503                                              GFP_NOIO, &conf->bio_split);
1504                bio_chain(split, bio);
1505                submit_bio_noacct(bio);
1506                bio = split;
1507                r1_bio->master_bio = bio;
1508                r1_bio->sectors = max_sectors;
1509        }
1510
1511        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1512                r1_bio->start_time = bio_start_io_acct(bio);
1513        atomic_set(&r1_bio->remaining, 1);
1514        atomic_set(&r1_bio->behind_remaining, 0);
1515
1516        first_clone = 1;
1517
1518        for (i = 0; i < disks; i++) {
1519                struct bio *mbio = NULL;
1520                struct md_rdev *rdev = conf->mirrors[i].rdev;
1521                if (!r1_bio->bios[i])
1522                        continue;
1523
1524                if (first_clone) {
1525                        /* do behind I/O ?
1526                         * Not if there are too many, or cannot
1527                         * allocate memory, or a reader on WriteMostly
1528                         * is waiting for behind writes to flush */
1529                        if (bitmap &&
1530                            test_bit(WriteMostly, &rdev->flags) &&
1531                            (atomic_read(&bitmap->behind_writes)
1532                             < mddev->bitmap_info.max_write_behind) &&
1533                            !waitqueue_active(&bitmap->behind_wait)) {
1534                                alloc_behind_master_bio(r1_bio, bio);
1535                        }
1536
1537                        md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1538                                             test_bit(R1BIO_BehindIO, &r1_bio->state));
1539                        first_clone = 0;
1540                }
1541
1542                if (r1_bio->behind_master_bio) {
1543                        mbio = bio_alloc_clone(rdev->bdev,
1544                                               r1_bio->behind_master_bio,
1545                                               GFP_NOIO, &mddev->bio_set);
1546                        if (test_bit(CollisionCheck, &rdev->flags))
1547                                wait_for_serialization(rdev, r1_bio);
1548                        if (test_bit(WriteMostly, &rdev->flags))
1549                                atomic_inc(&r1_bio->behind_remaining);
1550                } else {
1551                        mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1552                                               &mddev->bio_set);
1553
1554                        if (mddev->serialize_policy)
1555                                wait_for_serialization(rdev, r1_bio);
1556                }
1557
1558                r1_bio->bios[i] = mbio;
1559
1560                mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1561                mbio->bi_end_io = raid1_end_write_request;
1562                mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1563                if (test_bit(FailFast, &rdev->flags) &&
1564                    !test_bit(WriteMostly, &rdev->flags) &&
1565                    conf->raid_disks - mddev->degraded > 1)
1566                        mbio->bi_opf |= MD_FAILFAST;
1567                mbio->bi_private = r1_bio;
1568
1569                atomic_inc(&r1_bio->remaining);
1570
1571                if (mddev->gendisk)
1572                        trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1573                                              r1_bio->sector);
1574                /* flush_pending_writes() needs access to the rdev so...*/
1575                mbio->bi_bdev = (void *)rdev;
1576
1577                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1578                if (cb)
1579                        plug = container_of(cb, struct raid1_plug_cb, cb);
1580                else
1581                        plug = NULL;
1582                if (plug) {
1583                        bio_list_add(&plug->pending, mbio);
1584                } else {
1585                        spin_lock_irqsave(&conf->device_lock, flags);
1586                        bio_list_add(&conf->pending_bio_list, mbio);
1587                        spin_unlock_irqrestore(&conf->device_lock, flags);
1588                        md_wakeup_thread(mddev->thread);
1589                }
1590        }
1591
1592        r1_bio_write_done(r1_bio);
1593
1594        /* In case raid1d snuck in to freeze_array */
1595        wake_up(&conf->wait_barrier);
1596}
1597
1598static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1599{
1600        sector_t sectors;
1601
1602        if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1603            && md_flush_request(mddev, bio))
1604                return true;
1605
1606        /*
1607         * There is a limit to the maximum size, but
1608         * the read/write handler might find a lower limit
1609         * due to bad blocks.  To avoid multiple splits,
1610         * we pass the maximum number of sectors down
1611         * and let the lower level perform the split.
1612         */
1613        sectors = align_to_barrier_unit_end(
1614                bio->bi_iter.bi_sector, bio_sectors(bio));
1615
1616        if (bio_data_dir(bio) == READ)
1617                raid1_read_request(mddev, bio, sectors, NULL);
1618        else {
1619                if (!md_write_start(mddev,bio))
1620                        return false;
1621                raid1_write_request(mddev, bio, sectors);
1622        }
1623        return true;
1624}
1625
1626static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1627{
1628        struct r1conf *conf = mddev->private;
1629        int i;
1630
1631        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1632                   conf->raid_disks - mddev->degraded);
1633        rcu_read_lock();
1634        for (i = 0; i < conf->raid_disks; i++) {
1635                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1636                seq_printf(seq, "%s",
1637                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1638        }
1639        rcu_read_unlock();
1640        seq_printf(seq, "]");
1641}
1642
1643/**
1644 * raid1_error() - RAID1 error handler.
1645 * @mddev: affected md device.
1646 * @rdev: member device to fail.
1647 *
1648 * The routine acknowledges &rdev failure and determines new @mddev state.
1649 * If it failed, then:
1650 *      - &MD_BROKEN flag is set in &mddev->flags.
1651 *      - recovery is disabled.
1652 * Otherwise, it must be degraded:
1653 *      - recovery is interrupted.
1654 *      - &mddev->degraded is bumped.
1655 *
1656 * @rdev is marked as &Faulty excluding case when array is failed and
1657 * &mddev->fail_last_dev is off.
1658 */
1659static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1660{
1661        struct r1conf *conf = mddev->private;
1662        unsigned long flags;
1663
1664        spin_lock_irqsave(&conf->device_lock, flags);
1665
1666        if (test_bit(In_sync, &rdev->flags) &&
1667            (conf->raid_disks - mddev->degraded) == 1) {
1668                set_bit(MD_BROKEN, &mddev->flags);
1669
1670                if (!mddev->fail_last_dev) {
1671                        conf->recovery_disabled = mddev->recovery_disabled;
1672                        spin_unlock_irqrestore(&conf->device_lock, flags);
1673                        return;
1674                }
1675        }
1676        set_bit(Blocked, &rdev->flags);
1677        if (test_and_clear_bit(In_sync, &rdev->flags))
1678                mddev->degraded++;
1679        set_bit(Faulty, &rdev->flags);
1680        spin_unlock_irqrestore(&conf->device_lock, flags);
1681        /*
1682         * if recovery is running, make sure it aborts.
1683         */
1684        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1685        set_mask_bits(&mddev->sb_flags, 0,
1686                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1687        pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1688                "md/raid1:%s: Operation continuing on %d devices.\n",
1689                mdname(mddev), rdev->bdev,
1690                mdname(mddev), conf->raid_disks - mddev->degraded);
1691}
1692
1693static void print_conf(struct r1conf *conf)
1694{
1695        int i;
1696
1697        pr_debug("RAID1 conf printout:\n");
1698        if (!conf) {
1699                pr_debug("(!conf)\n");
1700                return;
1701        }
1702        pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1703                 conf->raid_disks);
1704
1705        rcu_read_lock();
1706        for (i = 0; i < conf->raid_disks; i++) {
1707                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1708                if (rdev)
1709                        pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1710                                 i, !test_bit(In_sync, &rdev->flags),
1711                                 !test_bit(Faulty, &rdev->flags),
1712                                 rdev->bdev);
1713        }
1714        rcu_read_unlock();
1715}
1716
1717static void close_sync(struct r1conf *conf)
1718{
1719        int idx;
1720
1721        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1722                _wait_barrier(conf, idx, false);
1723                _allow_barrier(conf, idx);
1724        }
1725
1726        mempool_exit(&conf->r1buf_pool);
1727}
1728
1729static int raid1_spare_active(struct mddev *mddev)
1730{
1731        int i;
1732        struct r1conf *conf = mddev->private;
1733        int count = 0;
1734        unsigned long flags;
1735
1736        /*
1737         * Find all failed disks within the RAID1 configuration
1738         * and mark them readable.
1739         * Called under mddev lock, so rcu protection not needed.
1740         * device_lock used to avoid races with raid1_end_read_request
1741         * which expects 'In_sync' flags and ->degraded to be consistent.
1742         */
1743        spin_lock_irqsave(&conf->device_lock, flags);
1744        for (i = 0; i < conf->raid_disks; i++) {
1745                struct md_rdev *rdev = conf->mirrors[i].rdev;
1746                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1747                if (repl
1748                    && !test_bit(Candidate, &repl->flags)
1749                    && repl->recovery_offset == MaxSector
1750                    && !test_bit(Faulty, &repl->flags)
1751                    && !test_and_set_bit(In_sync, &repl->flags)) {
1752                        /* replacement has just become active */
1753                        if (!rdev ||
1754                            !test_and_clear_bit(In_sync, &rdev->flags))
1755                                count++;
1756                        if (rdev) {
1757                                /* Replaced device not technically
1758                                 * faulty, but we need to be sure
1759                                 * it gets removed and never re-added
1760                                 */
1761                                set_bit(Faulty, &rdev->flags);
1762                                sysfs_notify_dirent_safe(
1763                                        rdev->sysfs_state);
1764                        }
1765                }
1766                if (rdev
1767                    && rdev->recovery_offset == MaxSector
1768                    && !test_bit(Faulty, &rdev->flags)
1769                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1770                        count++;
1771                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1772                }
1773        }
1774        mddev->degraded -= count;
1775        spin_unlock_irqrestore(&conf->device_lock, flags);
1776
1777        print_conf(conf);
1778        return count;
1779}
1780
1781static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1782{
1783        struct r1conf *conf = mddev->private;
1784        int err = -EEXIST;
1785        int mirror = 0;
1786        struct raid1_info *p;
1787        int first = 0;
1788        int last = conf->raid_disks - 1;
1789
1790        if (mddev->recovery_disabled == conf->recovery_disabled)
1791                return -EBUSY;
1792
1793        if (md_integrity_add_rdev(rdev, mddev))
1794                return -ENXIO;
1795
1796        if (rdev->raid_disk >= 0)
1797                first = last = rdev->raid_disk;
1798
1799        /*
1800         * find the disk ... but prefer rdev->saved_raid_disk
1801         * if possible.
1802         */
1803        if (rdev->saved_raid_disk >= 0 &&
1804            rdev->saved_raid_disk >= first &&
1805            rdev->saved_raid_disk < conf->raid_disks &&
1806            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807                first = last = rdev->saved_raid_disk;
1808
1809        for (mirror = first; mirror <= last; mirror++) {
1810                p = conf->mirrors + mirror;
1811                if (!p->rdev) {
1812                        if (mddev->gendisk)
1813                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1814                                                  rdev->data_offset << 9);
1815
1816                        p->head_position = 0;
1817                        rdev->raid_disk = mirror;
1818                        err = 0;
1819                        /* As all devices are equivalent, we don't need a full recovery
1820                         * if this was recently any drive of the array
1821                         */
1822                        if (rdev->saved_raid_disk < 0)
1823                                conf->fullsync = 1;
1824                        rcu_assign_pointer(p->rdev, rdev);
1825                        break;
1826                }
1827                if (test_bit(WantReplacement, &p->rdev->flags) &&
1828                    p[conf->raid_disks].rdev == NULL) {
1829                        /* Add this device as a replacement */
1830                        clear_bit(In_sync, &rdev->flags);
1831                        set_bit(Replacement, &rdev->flags);
1832                        rdev->raid_disk = mirror;
1833                        err = 0;
1834                        conf->fullsync = 1;
1835                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1836                        break;
1837                }
1838        }
1839        print_conf(conf);
1840        return err;
1841}
1842
1843static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1844{
1845        struct r1conf *conf = mddev->private;
1846        int err = 0;
1847        int number = rdev->raid_disk;
1848        struct raid1_info *p = conf->mirrors + number;
1849
1850        if (rdev != p->rdev)
1851                p = conf->mirrors + conf->raid_disks + number;
1852
1853        print_conf(conf);
1854        if (rdev == p->rdev) {
1855                if (test_bit(In_sync, &rdev->flags) ||
1856                    atomic_read(&rdev->nr_pending)) {
1857                        err = -EBUSY;
1858                        goto abort;
1859                }
1860                /* Only remove non-faulty devices if recovery
1861                 * is not possible.
1862                 */
1863                if (!test_bit(Faulty, &rdev->flags) &&
1864                    mddev->recovery_disabled != conf->recovery_disabled &&
1865                    mddev->degraded < conf->raid_disks) {
1866                        err = -EBUSY;
1867                        goto abort;
1868                }
1869                p->rdev = NULL;
1870                if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1871                        synchronize_rcu();
1872                        if (atomic_read(&rdev->nr_pending)) {
1873                                /* lost the race, try later */
1874                                err = -EBUSY;
1875                                p->rdev = rdev;
1876                                goto abort;
1877                        }
1878                }
1879                if (conf->mirrors[conf->raid_disks + number].rdev) {
1880                        /* We just removed a device that is being replaced.
1881                         * Move down the replacement.  We drain all IO before
1882                         * doing this to avoid confusion.
1883                         */
1884                        struct md_rdev *repl =
1885                                conf->mirrors[conf->raid_disks + number].rdev;
1886                        freeze_array(conf, 0);
1887                        if (atomic_read(&repl->nr_pending)) {
1888                                /* It means that some queued IO of retry_list
1889                                 * hold repl. Thus, we cannot set replacement
1890                                 * as NULL, avoiding rdev NULL pointer
1891                                 * dereference in sync_request_write and
1892                                 * handle_write_finished.
1893                                 */
1894                                err = -EBUSY;
1895                                unfreeze_array(conf);
1896                                goto abort;
1897                        }
1898                        clear_bit(Replacement, &repl->flags);
1899                        p->rdev = repl;
1900                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1901                        unfreeze_array(conf);
1902                }
1903
1904                clear_bit(WantReplacement, &rdev->flags);
1905                err = md_integrity_register(mddev);
1906        }
1907abort:
1908
1909        print_conf(conf);
1910        return err;
1911}
1912
1913static void end_sync_read(struct bio *bio)
1914{
1915        struct r1bio *r1_bio = get_resync_r1bio(bio);
1916
1917        update_head_pos(r1_bio->read_disk, r1_bio);
1918
1919        /*
1920         * we have read a block, now it needs to be re-written,
1921         * or re-read if the read failed.
1922         * We don't do much here, just schedule handling by raid1d
1923         */
1924        if (!bio->bi_status)
1925                set_bit(R1BIO_Uptodate, &r1_bio->state);
1926
1927        if (atomic_dec_and_test(&r1_bio->remaining))
1928                reschedule_retry(r1_bio);
1929}
1930
1931static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1932{
1933        sector_t sync_blocks = 0;
1934        sector_t s = r1_bio->sector;
1935        long sectors_to_go = r1_bio->sectors;
1936
1937        /* make sure these bits don't get cleared. */
1938        do {
1939                md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1940                s += sync_blocks;
1941                sectors_to_go -= sync_blocks;
1942        } while (sectors_to_go > 0);
1943}
1944
1945static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1946{
1947        if (atomic_dec_and_test(&r1_bio->remaining)) {
1948                struct mddev *mddev = r1_bio->mddev;
1949                int s = r1_bio->sectors;
1950
1951                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1952                    test_bit(R1BIO_WriteError, &r1_bio->state))
1953                        reschedule_retry(r1_bio);
1954                else {
1955                        put_buf(r1_bio);
1956                        md_done_sync(mddev, s, uptodate);
1957                }
1958        }
1959}
1960
1961static void end_sync_write(struct bio *bio)
1962{
1963        int uptodate = !bio->bi_status;
1964        struct r1bio *r1_bio = get_resync_r1bio(bio);
1965        struct mddev *mddev = r1_bio->mddev;
1966        struct r1conf *conf = mddev->private;
1967        sector_t first_bad;
1968        int bad_sectors;
1969        struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1970
1971        if (!uptodate) {
1972                abort_sync_write(mddev, r1_bio);
1973                set_bit(WriteErrorSeen, &rdev->flags);
1974                if (!test_and_set_bit(WantReplacement, &rdev->flags))
1975                        set_bit(MD_RECOVERY_NEEDED, &
1976                                mddev->recovery);
1977                set_bit(R1BIO_WriteError, &r1_bio->state);
1978        } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1979                               &first_bad, &bad_sectors) &&
1980                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1981                                r1_bio->sector,
1982                                r1_bio->sectors,
1983                                &first_bad, &bad_sectors)
1984                )
1985                set_bit(R1BIO_MadeGood, &r1_bio->state);
1986
1987        put_sync_write_buf(r1_bio, uptodate);
1988}
1989
1990static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1991                            int sectors, struct page *page, int rw)
1992{
1993        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1994                /* success */
1995                return 1;
1996        if (rw == WRITE) {
1997                set_bit(WriteErrorSeen, &rdev->flags);
1998                if (!test_and_set_bit(WantReplacement,
1999                                      &rdev->flags))
2000                        set_bit(MD_RECOVERY_NEEDED, &
2001                                rdev->mddev->recovery);
2002        }
2003        /* need to record an error - either for the block or the device */
2004        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2005                md_error(rdev->mddev, rdev);
2006        return 0;
2007}
2008
2009static int fix_sync_read_error(struct r1bio *r1_bio)
2010{
2011        /* Try some synchronous reads of other devices to get
2012         * good data, much like with normal read errors.  Only
2013         * read into the pages we already have so we don't
2014         * need to re-issue the read request.
2015         * We don't need to freeze the array, because being in an
2016         * active sync request, there is no normal IO, and
2017         * no overlapping syncs.
2018         * We don't need to check is_badblock() again as we
2019         * made sure that anything with a bad block in range
2020         * will have bi_end_io clear.
2021         */
2022        struct mddev *mddev = r1_bio->mddev;
2023        struct r1conf *conf = mddev->private;
2024        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2025        struct page **pages = get_resync_pages(bio)->pages;
2026        sector_t sect = r1_bio->sector;
2027        int sectors = r1_bio->sectors;
2028        int idx = 0;
2029        struct md_rdev *rdev;
2030
2031        rdev = conf->mirrors[r1_bio->read_disk].rdev;
2032        if (test_bit(FailFast, &rdev->flags)) {
2033                /* Don't try recovering from here - just fail it
2034                 * ... unless it is the last working device of course */
2035                md_error(mddev, rdev);
2036                if (test_bit(Faulty, &rdev->flags))
2037                        /* Don't try to read from here, but make sure
2038                         * put_buf does it's thing
2039                         */
2040                        bio->bi_end_io = end_sync_write;
2041        }
2042
2043        while(sectors) {
2044                int s = sectors;
2045                int d = r1_bio->read_disk;
2046                int success = 0;
2047                int start;
2048
2049                if (s > (PAGE_SIZE>>9))
2050                        s = PAGE_SIZE >> 9;
2051                do {
2052                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2053                                /* No rcu protection needed here devices
2054                                 * can only be removed when no resync is
2055                                 * active, and resync is currently active
2056                                 */
2057                                rdev = conf->mirrors[d].rdev;
2058                                if (sync_page_io(rdev, sect, s<<9,
2059                                                 pages[idx],
2060                                                 REQ_OP_READ, 0, false)) {
2061                                        success = 1;
2062                                        break;
2063                                }
2064                        }
2065                        d++;
2066                        if (d == conf->raid_disks * 2)
2067                                d = 0;
2068                } while (!success && d != r1_bio->read_disk);
2069
2070                if (!success) {
2071                        int abort = 0;
2072                        /* Cannot read from anywhere, this block is lost.
2073                         * Record a bad block on each device.  If that doesn't
2074                         * work just disable and interrupt the recovery.
2075                         * Don't fail devices as that won't really help.
2076                         */
2077                        pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2078                                            mdname(mddev), bio->bi_bdev,
2079                                            (unsigned long long)r1_bio->sector);
2080                        for (d = 0; d < conf->raid_disks * 2; d++) {
2081                                rdev = conf->mirrors[d].rdev;
2082                                if (!rdev || test_bit(Faulty, &rdev->flags))
2083                                        continue;
2084                                if (!rdev_set_badblocks(rdev, sect, s, 0))
2085                                        abort = 1;
2086                        }
2087                        if (abort) {
2088                                conf->recovery_disabled =
2089                                        mddev->recovery_disabled;
2090                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2091                                md_done_sync(mddev, r1_bio->sectors, 0);
2092                                put_buf(r1_bio);
2093                                return 0;
2094                        }
2095                        /* Try next page */
2096                        sectors -= s;
2097                        sect += s;
2098                        idx++;
2099                        continue;
2100                }
2101
2102                start = d;
2103                /* write it back and re-read */
2104                while (d != r1_bio->read_disk) {
2105                        if (d == 0)
2106                                d = conf->raid_disks * 2;
2107                        d--;
2108                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2109                                continue;
2110                        rdev = conf->mirrors[d].rdev;
2111                        if (r1_sync_page_io(rdev, sect, s,
2112                                            pages[idx],
2113                                            WRITE) == 0) {
2114                                r1_bio->bios[d]->bi_end_io = NULL;
2115                                rdev_dec_pending(rdev, mddev);
2116                        }
2117                }
2118                d = start;
2119                while (d != r1_bio->read_disk) {
2120                        if (d == 0)
2121                                d = conf->raid_disks * 2;
2122                        d--;
2123                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2124                                continue;
2125                        rdev = conf->mirrors[d].rdev;
2126                        if (r1_sync_page_io(rdev, sect, s,
2127                                            pages[idx],
2128                                            READ) != 0)
2129                                atomic_add(s, &rdev->corrected_errors);
2130                }
2131                sectors -= s;
2132                sect += s;
2133                idx ++;
2134        }
2135        set_bit(R1BIO_Uptodate, &r1_bio->state);
2136        bio->bi_status = 0;
2137        return 1;
2138}
2139
2140static void process_checks(struct r1bio *r1_bio)
2141{
2142        /* We have read all readable devices.  If we haven't
2143         * got the block, then there is no hope left.
2144         * If we have, then we want to do a comparison
2145         * and skip the write if everything is the same.
2146         * If any blocks failed to read, then we need to
2147         * attempt an over-write
2148         */
2149        struct mddev *mddev = r1_bio->mddev;
2150        struct r1conf *conf = mddev->private;
2151        int primary;
2152        int i;
2153        int vcnt;
2154
2155        /* Fix variable parts of all bios */
2156        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2157        for (i = 0; i < conf->raid_disks * 2; i++) {
2158                blk_status_t status;
2159                struct bio *b = r1_bio->bios[i];
2160                struct resync_pages *rp = get_resync_pages(b);
2161                if (b->bi_end_io != end_sync_read)
2162                        continue;
2163                /* fixup the bio for reuse, but preserve errno */
2164                status = b->bi_status;
2165                bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2166                b->bi_status = status;
2167                b->bi_iter.bi_sector = r1_bio->sector +
2168                        conf->mirrors[i].rdev->data_offset;
2169                b->bi_end_io = end_sync_read;
2170                rp->raid_bio = r1_bio;
2171                b->bi_private = rp;
2172
2173                /* initialize bvec table again */
2174                md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2175        }
2176        for (primary = 0; primary < conf->raid_disks * 2; primary++)
2177                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2178                    !r1_bio->bios[primary]->bi_status) {
2179                        r1_bio->bios[primary]->bi_end_io = NULL;
2180                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2181                        break;
2182                }
2183        r1_bio->read_disk = primary;
2184        for (i = 0; i < conf->raid_disks * 2; i++) {
2185                int j = 0;
2186                struct bio *pbio = r1_bio->bios[primary];
2187                struct bio *sbio = r1_bio->bios[i];
2188                blk_status_t status = sbio->bi_status;
2189                struct page **ppages = get_resync_pages(pbio)->pages;
2190                struct page **spages = get_resync_pages(sbio)->pages;
2191                struct bio_vec *bi;
2192                int page_len[RESYNC_PAGES] = { 0 };
2193                struct bvec_iter_all iter_all;
2194
2195                if (sbio->bi_end_io != end_sync_read)
2196                        continue;
2197                /* Now we can 'fixup' the error value */
2198                sbio->bi_status = 0;
2199
2200                bio_for_each_segment_all(bi, sbio, iter_all)
2201                        page_len[j++] = bi->bv_len;
2202
2203                if (!status) {
2204                        for (j = vcnt; j-- ; ) {
2205                                if (memcmp(page_address(ppages[j]),
2206                                           page_address(spages[j]),
2207                                           page_len[j]))
2208                                        break;
2209                        }
2210                } else
2211                        j = 0;
2212                if (j >= 0)
2213                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2214                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2215                              && !status)) {
2216                        /* No need to write to this device. */
2217                        sbio->bi_end_io = NULL;
2218                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2219                        continue;
2220                }
2221
2222                bio_copy_data(sbio, pbio);
2223        }
2224}
2225
2226static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2227{
2228        struct r1conf *conf = mddev->private;
2229        int i;
2230        int disks = conf->raid_disks * 2;
2231        struct bio *wbio;
2232
2233        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2234                /* ouch - failed to read all of that. */
2235                if (!fix_sync_read_error(r1_bio))
2236                        return;
2237
2238        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2239                process_checks(r1_bio);
2240
2241        /*
2242         * schedule writes
2243         */
2244        atomic_set(&r1_bio->remaining, 1);
2245        for (i = 0; i < disks ; i++) {
2246                wbio = r1_bio->bios[i];
2247                if (wbio->bi_end_io == NULL ||
2248                    (wbio->bi_end_io == end_sync_read &&
2249                     (i == r1_bio->read_disk ||
2250                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2251                        continue;
2252                if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2253                        abort_sync_write(mddev, r1_bio);
2254                        continue;
2255                }
2256
2257                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2258                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2259                        wbio->bi_opf |= MD_FAILFAST;
2260
2261                wbio->bi_end_io = end_sync_write;
2262                atomic_inc(&r1_bio->remaining);
2263                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2264
2265                submit_bio_noacct(wbio);
2266        }
2267
2268        put_sync_write_buf(r1_bio, 1);
2269}
2270
2271/*
2272 * This is a kernel thread which:
2273 *
2274 *      1.      Retries failed read operations on working mirrors.
2275 *      2.      Updates the raid superblock when problems encounter.
2276 *      3.      Performs writes following reads for array synchronising.
2277 */
2278
2279static void fix_read_error(struct r1conf *conf, int read_disk,
2280                           sector_t sect, int sectors)
2281{
2282        struct mddev *mddev = conf->mddev;
2283        while(sectors) {
2284                int s = sectors;
2285                int d = read_disk;
2286                int success = 0;
2287                int start;
2288                struct md_rdev *rdev;
2289
2290                if (s > (PAGE_SIZE>>9))
2291                        s = PAGE_SIZE >> 9;
2292
2293                do {
2294                        sector_t first_bad;
2295                        int bad_sectors;
2296
2297                        rcu_read_lock();
2298                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2299                        if (rdev &&
2300                            (test_bit(In_sync, &rdev->flags) ||
2301                             (!test_bit(Faulty, &rdev->flags) &&
2302                              rdev->recovery_offset >= sect + s)) &&
2303                            is_badblock(rdev, sect, s,
2304                                        &first_bad, &bad_sectors) == 0) {
2305                                atomic_inc(&rdev->nr_pending);
2306                                rcu_read_unlock();
2307                                if (sync_page_io(rdev, sect, s<<9,
2308                                         conf->tmppage, REQ_OP_READ, 0, false))
2309                                        success = 1;
2310                                rdev_dec_pending(rdev, mddev);
2311                                if (success)
2312                                        break;
2313                        } else
2314                                rcu_read_unlock();
2315                        d++;
2316                        if (d == conf->raid_disks * 2)
2317                                d = 0;
2318                } while (!success && d != read_disk);
2319
2320                if (!success) {
2321                        /* Cannot read from anywhere - mark it bad */
2322                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2323                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2324                                md_error(mddev, rdev);
2325                        break;
2326                }
2327                /* write it back and re-read */
2328                start = d;
2329                while (d != read_disk) {
2330                        if (d==0)
2331                                d = conf->raid_disks * 2;
2332                        d--;
2333                        rcu_read_lock();
2334                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2335                        if (rdev &&
2336                            !test_bit(Faulty, &rdev->flags)) {
2337                                atomic_inc(&rdev->nr_pending);
2338                                rcu_read_unlock();
2339                                r1_sync_page_io(rdev, sect, s,
2340                                                conf->tmppage, WRITE);
2341                                rdev_dec_pending(rdev, mddev);
2342                        } else
2343                                rcu_read_unlock();
2344                }
2345                d = start;
2346                while (d != read_disk) {
2347                        if (d==0)
2348                                d = conf->raid_disks * 2;
2349                        d--;
2350                        rcu_read_lock();
2351                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2352                        if (rdev &&
2353                            !test_bit(Faulty, &rdev->flags)) {
2354                                atomic_inc(&rdev->nr_pending);
2355                                rcu_read_unlock();
2356                                if (r1_sync_page_io(rdev, sect, s,
2357                                                    conf->tmppage, READ)) {
2358                                        atomic_add(s, &rdev->corrected_errors);
2359                                        pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2360                                                mdname(mddev), s,
2361                                                (unsigned long long)(sect +
2362                                                                     rdev->data_offset),
2363                                                rdev->bdev);
2364                                }
2365                                rdev_dec_pending(rdev, mddev);
2366                        } else
2367                                rcu_read_unlock();
2368                }
2369                sectors -= s;
2370                sect += s;
2371        }
2372}
2373
2374static int narrow_write_error(struct r1bio *r1_bio, int i)
2375{
2376        struct mddev *mddev = r1_bio->mddev;
2377        struct r1conf *conf = mddev->private;
2378        struct md_rdev *rdev = conf->mirrors[i].rdev;
2379
2380        /* bio has the data to be written to device 'i' where
2381         * we just recently had a write error.
2382         * We repeatedly clone the bio and trim down to one block,
2383         * then try the write.  Where the write fails we record
2384         * a bad block.
2385         * It is conceivable that the bio doesn't exactly align with
2386         * blocks.  We must handle this somehow.
2387         *
2388         * We currently own a reference on the rdev.
2389         */
2390
2391        int block_sectors;
2392        sector_t sector;
2393        int sectors;
2394        int sect_to_write = r1_bio->sectors;
2395        int ok = 1;
2396
2397        if (rdev->badblocks.shift < 0)
2398                return 0;
2399
2400        block_sectors = roundup(1 << rdev->badblocks.shift,
2401                                bdev_logical_block_size(rdev->bdev) >> 9);
2402        sector = r1_bio->sector;
2403        sectors = ((sector + block_sectors)
2404                   & ~(sector_t)(block_sectors - 1))
2405                - sector;
2406
2407        while (sect_to_write) {
2408                struct bio *wbio;
2409                if (sectors > sect_to_write)
2410                        sectors = sect_to_write;
2411                /* Write at 'sector' for 'sectors'*/
2412
2413                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2414                        wbio = bio_alloc_clone(rdev->bdev,
2415                                               r1_bio->behind_master_bio,
2416                                               GFP_NOIO, &mddev->bio_set);
2417                } else {
2418                        wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2419                                               GFP_NOIO, &mddev->bio_set);
2420                }
2421
2422                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2423                wbio->bi_iter.bi_sector = r1_bio->sector;
2424                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2425
2426                bio_trim(wbio, sector - r1_bio->sector, sectors);
2427                wbio->bi_iter.bi_sector += rdev->data_offset;
2428
2429                if (submit_bio_wait(wbio) < 0)
2430                        /* failure! */
2431                        ok = rdev_set_badblocks(rdev, sector,
2432                                                sectors, 0)
2433                                && ok;
2434
2435                bio_put(wbio);
2436                sect_to_write -= sectors;
2437                sector += sectors;
2438                sectors = block_sectors;
2439        }
2440        return ok;
2441}
2442
2443static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2444{
2445        int m;
2446        int s = r1_bio->sectors;
2447        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2448                struct md_rdev *rdev = conf->mirrors[m].rdev;
2449                struct bio *bio = r1_bio->bios[m];
2450                if (bio->bi_end_io == NULL)
2451                        continue;
2452                if (!bio->bi_status &&
2453                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2454                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2455                }
2456                if (bio->bi_status &&
2457                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2458                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2459                                md_error(conf->mddev, rdev);
2460                }
2461        }
2462        put_buf(r1_bio);
2463        md_done_sync(conf->mddev, s, 1);
2464}
2465
2466static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2467{
2468        int m, idx;
2469        bool fail = false;
2470
2471        for (m = 0; m < conf->raid_disks * 2 ; m++)
2472                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2473                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2474                        rdev_clear_badblocks(rdev,
2475                                             r1_bio->sector,
2476                                             r1_bio->sectors, 0);
2477                        rdev_dec_pending(rdev, conf->mddev);
2478                } else if (r1_bio->bios[m] != NULL) {
2479                        /* This drive got a write error.  We need to
2480                         * narrow down and record precise write
2481                         * errors.
2482                         */
2483                        fail = true;
2484                        if (!narrow_write_error(r1_bio, m)) {
2485                                md_error(conf->mddev,
2486                                         conf->mirrors[m].rdev);
2487                                /* an I/O failed, we can't clear the bitmap */
2488                                set_bit(R1BIO_Degraded, &r1_bio->state);
2489                        }
2490                        rdev_dec_pending(conf->mirrors[m].rdev,
2491                                         conf->mddev);
2492                }
2493        if (fail) {
2494                spin_lock_irq(&conf->device_lock);
2495                list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2496                idx = sector_to_idx(r1_bio->sector);
2497                atomic_inc(&conf->nr_queued[idx]);
2498                spin_unlock_irq(&conf->device_lock);
2499                /*
2500                 * In case freeze_array() is waiting for condition
2501                 * get_unqueued_pending() == extra to be true.
2502                 */
2503                wake_up(&conf->wait_barrier);
2504                md_wakeup_thread(conf->mddev->thread);
2505        } else {
2506                if (test_bit(R1BIO_WriteError, &r1_bio->state))
2507                        close_write(r1_bio);
2508                raid_end_bio_io(r1_bio);
2509        }
2510}
2511
2512static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2513{
2514        struct mddev *mddev = conf->mddev;
2515        struct bio *bio;
2516        struct md_rdev *rdev;
2517
2518        clear_bit(R1BIO_ReadError, &r1_bio->state);
2519        /* we got a read error. Maybe the drive is bad.  Maybe just
2520         * the block and we can fix it.
2521         * We freeze all other IO, and try reading the block from
2522         * other devices.  When we find one, we re-write
2523         * and check it that fixes the read error.
2524         * This is all done synchronously while the array is
2525         * frozen
2526         */
2527
2528        bio = r1_bio->bios[r1_bio->read_disk];
2529        bio_put(bio);
2530        r1_bio->bios[r1_bio->read_disk] = NULL;
2531
2532        rdev = conf->mirrors[r1_bio->read_disk].rdev;
2533        if (mddev->ro == 0
2534            && !test_bit(FailFast, &rdev->flags)) {
2535                freeze_array(conf, 1);
2536                fix_read_error(conf, r1_bio->read_disk,
2537                               r1_bio->sector, r1_bio->sectors);
2538                unfreeze_array(conf);
2539        } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2540                md_error(mddev, rdev);
2541        } else {
2542                r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2543        }
2544
2545        rdev_dec_pending(rdev, conf->mddev);
2546        allow_barrier(conf, r1_bio->sector);
2547        bio = r1_bio->master_bio;
2548
2549        /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2550        r1_bio->state = 0;
2551        raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2552}
2553
2554static void raid1d(struct md_thread *thread)
2555{
2556        struct mddev *mddev = thread->mddev;
2557        struct r1bio *r1_bio;
2558        unsigned long flags;
2559        struct r1conf *conf = mddev->private;
2560        struct list_head *head = &conf->retry_list;
2561        struct blk_plug plug;
2562        int idx;
2563
2564        md_check_recovery(mddev);
2565
2566        if (!list_empty_careful(&conf->bio_end_io_list) &&
2567            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2568                LIST_HEAD(tmp);
2569                spin_lock_irqsave(&conf->device_lock, flags);
2570                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2571                        list_splice_init(&conf->bio_end_io_list, &tmp);
2572                spin_unlock_irqrestore(&conf->device_lock, flags);
2573                while (!list_empty(&tmp)) {
2574                        r1_bio = list_first_entry(&tmp, struct r1bio,
2575                                                  retry_list);
2576                        list_del(&r1_bio->retry_list);
2577                        idx = sector_to_idx(r1_bio->sector);
2578                        atomic_dec(&conf->nr_queued[idx]);
2579                        if (mddev->degraded)
2580                                set_bit(R1BIO_Degraded, &r1_bio->state);
2581                        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2582                                close_write(r1_bio);
2583                        raid_end_bio_io(r1_bio);
2584                }
2585        }
2586
2587        blk_start_plug(&plug);
2588        for (;;) {
2589
2590                flush_pending_writes(conf);
2591
2592                spin_lock_irqsave(&conf->device_lock, flags);
2593                if (list_empty(head)) {
2594                        spin_unlock_irqrestore(&conf->device_lock, flags);
2595                        break;
2596                }
2597                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2598                list_del(head->prev);
2599                idx = sector_to_idx(r1_bio->sector);
2600                atomic_dec(&conf->nr_queued[idx]);
2601                spin_unlock_irqrestore(&conf->device_lock, flags);
2602
2603                mddev = r1_bio->mddev;
2604                conf = mddev->private;
2605                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2606                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2607                            test_bit(R1BIO_WriteError, &r1_bio->state))
2608                                handle_sync_write_finished(conf, r1_bio);
2609                        else
2610                                sync_request_write(mddev, r1_bio);
2611                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2612                           test_bit(R1BIO_WriteError, &r1_bio->state))
2613                        handle_write_finished(conf, r1_bio);
2614                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2615                        handle_read_error(conf, r1_bio);
2616                else
2617                        WARN_ON_ONCE(1);
2618
2619                cond_resched();
2620                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2621                        md_check_recovery(mddev);
2622        }
2623        blk_finish_plug(&plug);
2624}
2625
2626static int init_resync(struct r1conf *conf)
2627{
2628        int buffs;
2629
2630        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2631        BUG_ON(mempool_initialized(&conf->r1buf_pool));
2632
2633        return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2634                            r1buf_pool_free, conf->poolinfo);
2635}
2636
2637static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2638{
2639        struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2640        struct resync_pages *rps;
2641        struct bio *bio;
2642        int i;
2643
2644        for (i = conf->poolinfo->raid_disks; i--; ) {
2645                bio = r1bio->bios[i];
2646                rps = bio->bi_private;
2647                bio_reset(bio, NULL, 0);
2648                bio->bi_private = rps;
2649        }
2650        r1bio->master_bio = NULL;
2651        return r1bio;
2652}
2653
2654/*
2655 * perform a "sync" on one "block"
2656 *
2657 * We need to make sure that no normal I/O request - particularly write
2658 * requests - conflict with active sync requests.
2659 *
2660 * This is achieved by tracking pending requests and a 'barrier' concept
2661 * that can be installed to exclude normal IO requests.
2662 */
2663
2664static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2665                                   int *skipped)
2666{
2667        struct r1conf *conf = mddev->private;
2668        struct r1bio *r1_bio;
2669        struct bio *bio;
2670        sector_t max_sector, nr_sectors;
2671        int disk = -1;
2672        int i;
2673        int wonly = -1;
2674        int write_targets = 0, read_targets = 0;
2675        sector_t sync_blocks;
2676        int still_degraded = 0;
2677        int good_sectors = RESYNC_SECTORS;
2678        int min_bad = 0; /* number of sectors that are bad in all devices */
2679        int idx = sector_to_idx(sector_nr);
2680        int page_idx = 0;
2681
2682        if (!mempool_initialized(&conf->r1buf_pool))
2683                if (init_resync(conf))
2684                        return 0;
2685
2686        max_sector = mddev->dev_sectors;
2687        if (sector_nr >= max_sector) {
2688                /* If we aborted, we need to abort the
2689                 * sync on the 'current' bitmap chunk (there will
2690                 * only be one in raid1 resync.
2691                 * We can find the current addess in mddev->curr_resync
2692                 */
2693                if (mddev->curr_resync < max_sector) /* aborted */
2694                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2695                                           &sync_blocks, 1);
2696                else /* completed sync */
2697                        conf->fullsync = 0;
2698
2699                md_bitmap_close_sync(mddev->bitmap);
2700                close_sync(conf);
2701
2702                if (mddev_is_clustered(mddev)) {
2703                        conf->cluster_sync_low = 0;
2704                        conf->cluster_sync_high = 0;
2705                }
2706                return 0;
2707        }
2708
2709        if (mddev->bitmap == NULL &&
2710            mddev->recovery_cp == MaxSector &&
2711            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2712            conf->fullsync == 0) {
2713                *skipped = 1;
2714                return max_sector - sector_nr;
2715        }
2716        /* before building a request, check if we can skip these blocks..
2717         * This call the bitmap_start_sync doesn't actually record anything
2718         */
2719        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2720            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2721                /* We can skip this block, and probably several more */
2722                *skipped = 1;
2723                return sync_blocks;
2724        }
2725
2726        /*
2727         * If there is non-resync activity waiting for a turn, then let it
2728         * though before starting on this new sync request.
2729         */
2730        if (atomic_read(&conf->nr_waiting[idx]))
2731                schedule_timeout_uninterruptible(1);
2732
2733        /* we are incrementing sector_nr below. To be safe, we check against
2734         * sector_nr + two times RESYNC_SECTORS
2735         */
2736
2737        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2738                mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2739
2740
2741        if (raise_barrier(conf, sector_nr))
2742                return 0;
2743
2744        r1_bio = raid1_alloc_init_r1buf(conf);
2745
2746        rcu_read_lock();
2747        /*
2748         * If we get a correctably read error during resync or recovery,
2749         * we might want to read from a different device.  So we
2750         * flag all drives that could conceivably be read from for READ,
2751         * and any others (which will be non-In_sync devices) for WRITE.
2752         * If a read fails, we try reading from something else for which READ
2753         * is OK.
2754         */
2755
2756        r1_bio->mddev = mddev;
2757        r1_bio->sector = sector_nr;
2758        r1_bio->state = 0;
2759        set_bit(R1BIO_IsSync, &r1_bio->state);
2760        /* make sure good_sectors won't go across barrier unit boundary */
2761        good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2762
2763        for (i = 0; i < conf->raid_disks * 2; i++) {
2764                struct md_rdev *rdev;
2765                bio = r1_bio->bios[i];
2766
2767                rdev = rcu_dereference(conf->mirrors[i].rdev);
2768                if (rdev == NULL ||
2769                    test_bit(Faulty, &rdev->flags)) {
2770                        if (i < conf->raid_disks)
2771                                still_degraded = 1;
2772                } else if (!test_bit(In_sync, &rdev->flags)) {
2773                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2774                        bio->bi_end_io = end_sync_write;
2775                        write_targets ++;
2776                } else {
2777                        /* may need to read from here */
2778                        sector_t first_bad = MaxSector;
2779                        int bad_sectors;
2780
2781                        if (is_badblock(rdev, sector_nr, good_sectors,
2782                                        &first_bad, &bad_sectors)) {
2783                                if (first_bad > sector_nr)
2784                                        good_sectors = first_bad - sector_nr;
2785                                else {
2786                                        bad_sectors -= (sector_nr - first_bad);
2787                                        if (min_bad == 0 ||
2788                                            min_bad > bad_sectors)
2789                                                min_bad = bad_sectors;
2790                                }
2791                        }
2792                        if (sector_nr < first_bad) {
2793                                if (test_bit(WriteMostly, &rdev->flags)) {
2794                                        if (wonly < 0)
2795                                                wonly = i;
2796                                } else {
2797                                        if (disk < 0)
2798                                                disk = i;
2799                                }
2800                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
2801                                bio->bi_end_io = end_sync_read;
2802                                read_targets++;
2803                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2804                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2805                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2806                                /*
2807                                 * The device is suitable for reading (InSync),
2808                                 * but has bad block(s) here. Let's try to correct them,
2809                                 * if we are doing resync or repair. Otherwise, leave
2810                                 * this device alone for this sync request.
2811                                 */
2812                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2813                                bio->bi_end_io = end_sync_write;
2814                                write_targets++;
2815                        }
2816                }
2817                if (rdev && bio->bi_end_io) {
2818                        atomic_inc(&rdev->nr_pending);
2819                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2820                        bio_set_dev(bio, rdev->bdev);
2821                        if (test_bit(FailFast, &rdev->flags))
2822                                bio->bi_opf |= MD_FAILFAST;
2823                }
2824        }
2825        rcu_read_unlock();
2826        if (disk < 0)
2827                disk = wonly;
2828        r1_bio->read_disk = disk;
2829
2830        if (read_targets == 0 && min_bad > 0) {
2831                /* These sectors are bad on all InSync devices, so we
2832                 * need to mark them bad on all write targets
2833                 */
2834                int ok = 1;
2835                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2836                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2837                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2838                                ok = rdev_set_badblocks(rdev, sector_nr,
2839                                                        min_bad, 0
2840                                        ) && ok;
2841                        }
2842                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2843                *skipped = 1;
2844                put_buf(r1_bio);
2845
2846                if (!ok) {
2847                        /* Cannot record the badblocks, so need to
2848                         * abort the resync.
2849                         * If there are multiple read targets, could just
2850                         * fail the really bad ones ???
2851                         */
2852                        conf->recovery_disabled = mddev->recovery_disabled;
2853                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2854                        return 0;
2855                } else
2856                        return min_bad;
2857
2858        }
2859        if (min_bad > 0 && min_bad < good_sectors) {
2860                /* only resync enough to reach the next bad->good
2861                 * transition */
2862                good_sectors = min_bad;
2863        }
2864
2865        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2866                /* extra read targets are also write targets */
2867                write_targets += read_targets-1;
2868
2869        if (write_targets == 0 || read_targets == 0) {
2870                /* There is nowhere to write, so all non-sync
2871                 * drives must be failed - so we are finished
2872                 */
2873                sector_t rv;
2874                if (min_bad > 0)
2875                        max_sector = sector_nr + min_bad;
2876                rv = max_sector - sector_nr;
2877                *skipped = 1;
2878                put_buf(r1_bio);
2879                return rv;
2880        }
2881
2882        if (max_sector > mddev->resync_max)
2883                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2884        if (max_sector > sector_nr + good_sectors)
2885                max_sector = sector_nr + good_sectors;
2886        nr_sectors = 0;
2887        sync_blocks = 0;
2888        do {
2889                struct page *page;
2890                int len = PAGE_SIZE;
2891                if (sector_nr + (len>>9) > max_sector)
2892                        len = (max_sector - sector_nr) << 9;
2893                if (len == 0)
2894                        break;
2895                if (sync_blocks == 0) {
2896                        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2897                                                  &sync_blocks, still_degraded) &&
2898                            !conf->fullsync &&
2899                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2900                                break;
2901                        if ((len >> 9) > sync_blocks)
2902                                len = sync_blocks<<9;
2903                }
2904
2905                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2906                        struct resync_pages *rp;
2907
2908                        bio = r1_bio->bios[i];
2909                        rp = get_resync_pages(bio);
2910                        if (bio->bi_end_io) {
2911                                page = resync_fetch_page(rp, page_idx);
2912
2913                                /*
2914                                 * won't fail because the vec table is big
2915                                 * enough to hold all these pages
2916                                 */
2917                                bio_add_page(bio, page, len, 0);
2918                        }
2919                }
2920                nr_sectors += len>>9;
2921                sector_nr += len>>9;
2922                sync_blocks -= (len>>9);
2923        } while (++page_idx < RESYNC_PAGES);
2924
2925        r1_bio->sectors = nr_sectors;
2926
2927        if (mddev_is_clustered(mddev) &&
2928                        conf->cluster_sync_high < sector_nr + nr_sectors) {
2929                conf->cluster_sync_low = mddev->curr_resync_completed;
2930                conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2931                /* Send resync message */
2932                md_cluster_ops->resync_info_update(mddev,
2933                                conf->cluster_sync_low,
2934                                conf->cluster_sync_high);
2935        }
2936
2937        /* For a user-requested sync, we read all readable devices and do a
2938         * compare
2939         */
2940        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2941                atomic_set(&r1_bio->remaining, read_targets);
2942                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2943                        bio = r1_bio->bios[i];
2944                        if (bio->bi_end_io == end_sync_read) {
2945                                read_targets--;
2946                                md_sync_acct_bio(bio, nr_sectors);
2947                                if (read_targets == 1)
2948                                        bio->bi_opf &= ~MD_FAILFAST;
2949                                submit_bio_noacct(bio);
2950                        }
2951                }
2952        } else {
2953                atomic_set(&r1_bio->remaining, 1);
2954                bio = r1_bio->bios[r1_bio->read_disk];
2955                md_sync_acct_bio(bio, nr_sectors);
2956                if (read_targets == 1)
2957                        bio->bi_opf &= ~MD_FAILFAST;
2958                submit_bio_noacct(bio);
2959        }
2960        return nr_sectors;
2961}
2962
2963static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2964{
2965        if (sectors)
2966                return sectors;
2967
2968        return mddev->dev_sectors;
2969}
2970
2971static struct r1conf *setup_conf(struct mddev *mddev)
2972{
2973        struct r1conf *conf;
2974        int i;
2975        struct raid1_info *disk;
2976        struct md_rdev *rdev;
2977        int err = -ENOMEM;
2978
2979        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2980        if (!conf)
2981                goto abort;
2982
2983        conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2984                                   sizeof(atomic_t), GFP_KERNEL);
2985        if (!conf->nr_pending)
2986                goto abort;
2987
2988        conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2989                                   sizeof(atomic_t), GFP_KERNEL);
2990        if (!conf->nr_waiting)
2991                goto abort;
2992
2993        conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2994                                  sizeof(atomic_t), GFP_KERNEL);
2995        if (!conf->nr_queued)
2996                goto abort;
2997
2998        conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2999                                sizeof(atomic_t), GFP_KERNEL);
3000        if (!conf->barrier)
3001                goto abort;
3002
3003        conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3004                                            mddev->raid_disks, 2),
3005                                GFP_KERNEL);
3006        if (!conf->mirrors)
3007                goto abort;
3008
3009        conf->tmppage = alloc_page(GFP_KERNEL);
3010        if (!conf->tmppage)
3011                goto abort;
3012
3013        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3014        if (!conf->poolinfo)
3015                goto abort;
3016        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3017        err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3018                           rbio_pool_free, conf->poolinfo);
3019        if (err)
3020                goto abort;
3021
3022        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3023        if (err)
3024                goto abort;
3025
3026        conf->poolinfo->mddev = mddev;
3027
3028        err = -EINVAL;
3029        spin_lock_init(&conf->device_lock);
3030        rdev_for_each(rdev, mddev) {
3031                int disk_idx = rdev->raid_disk;
3032                if (disk_idx >= mddev->raid_disks
3033                    || disk_idx < 0)
3034                        continue;
3035                if (test_bit(Replacement, &rdev->flags))
3036                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
3037                else
3038                        disk = conf->mirrors + disk_idx;
3039
3040                if (disk->rdev)
3041                        goto abort;
3042                disk->rdev = rdev;
3043                disk->head_position = 0;
3044                disk->seq_start = MaxSector;
3045        }
3046        conf->raid_disks = mddev->raid_disks;
3047        conf->mddev = mddev;
3048        INIT_LIST_HEAD(&conf->retry_list);
3049        INIT_LIST_HEAD(&conf->bio_end_io_list);
3050
3051        spin_lock_init(&conf->resync_lock);
3052        init_waitqueue_head(&conf->wait_barrier);
3053
3054        bio_list_init(&conf->pending_bio_list);
3055        conf->recovery_disabled = mddev->recovery_disabled - 1;
3056
3057        err = -EIO;
3058        for (i = 0; i < conf->raid_disks * 2; i++) {
3059
3060                disk = conf->mirrors + i;
3061
3062                if (i < conf->raid_disks &&
3063                    disk[conf->raid_disks].rdev) {
3064                        /* This slot has a replacement. */
3065                        if (!disk->rdev) {
3066                                /* No original, just make the replacement
3067                                 * a recovering spare
3068                                 */
3069                                disk->rdev =
3070                                        disk[conf->raid_disks].rdev;
3071                                disk[conf->raid_disks].rdev = NULL;
3072                        } else if (!test_bit(In_sync, &disk->rdev->flags))
3073                                /* Original is not in_sync - bad */
3074                                goto abort;
3075                }
3076
3077                if (!disk->rdev ||
3078                    !test_bit(In_sync, &disk->rdev->flags)) {
3079                        disk->head_position = 0;
3080                        if (disk->rdev &&
3081                            (disk->rdev->saved_raid_disk < 0))
3082                                conf->fullsync = 1;
3083                }
3084        }
3085
3086        err = -ENOMEM;
3087        conf->thread = md_register_thread(raid1d, mddev, "raid1");
3088        if (!conf->thread)
3089                goto abort;
3090
3091        return conf;
3092
3093 abort:
3094        if (conf) {
3095                mempool_exit(&conf->r1bio_pool);
3096                kfree(conf->mirrors);
3097                safe_put_page(conf->tmppage);
3098                kfree(conf->poolinfo);
3099                kfree(conf->nr_pending);
3100                kfree(conf->nr_waiting);
3101                kfree(conf->nr_queued);
3102                kfree(conf->barrier);
3103                bioset_exit(&conf->bio_split);
3104                kfree(conf);
3105        }
3106        return ERR_PTR(err);
3107}
3108
3109static void raid1_free(struct mddev *mddev, void *priv);
3110static int raid1_run(struct mddev *mddev)
3111{
3112        struct r1conf *conf;
3113        int i;
3114        struct md_rdev *rdev;
3115        int ret;
3116
3117        if (mddev->level != 1) {
3118                pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3119                        mdname(mddev), mddev->level);
3120                return -EIO;
3121        }
3122        if (mddev->reshape_position != MaxSector) {
3123                pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3124                        mdname(mddev));
3125                return -EIO;
3126        }
3127        if (mddev_init_writes_pending(mddev) < 0)
3128                return -ENOMEM;
3129        /*
3130         * copy the already verified devices into our private RAID1
3131         * bookkeeping area. [whatever we allocate in run(),
3132         * should be freed in raid1_free()]
3133         */
3134        if (mddev->private == NULL)
3135                conf = setup_conf(mddev);
3136        else
3137                conf = mddev->private;
3138
3139        if (IS_ERR(conf))
3140                return PTR_ERR(conf);
3141
3142        if (mddev->queue)
3143                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3144
3145        rdev_for_each(rdev, mddev) {
3146                if (!mddev->gendisk)
3147                        continue;
3148                disk_stack_limits(mddev->gendisk, rdev->bdev,
3149                                  rdev->data_offset << 9);
3150        }
3151
3152        mddev->degraded = 0;
3153        for (i = 0; i < conf->raid_disks; i++)
3154                if (conf->mirrors[i].rdev == NULL ||
3155                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3156                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3157                        mddev->degraded++;
3158        /*
3159         * RAID1 needs at least one disk in active
3160         */
3161        if (conf->raid_disks - mddev->degraded < 1) {
3162                ret = -EINVAL;
3163                goto abort;
3164        }
3165
3166        if (conf->raid_disks - mddev->degraded == 1)
3167                mddev->recovery_cp = MaxSector;
3168
3169        if (mddev->recovery_cp != MaxSector)
3170                pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3171                        mdname(mddev));
3172        pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3173                mdname(mddev), mddev->raid_disks - mddev->degraded,
3174                mddev->raid_disks);
3175
3176        /*
3177         * Ok, everything is just fine now
3178         */
3179        mddev->thread = conf->thread;
3180        conf->thread = NULL;
3181        mddev->private = conf;
3182        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3183
3184        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3185
3186        ret = md_integrity_register(mddev);
3187        if (ret) {
3188                md_unregister_thread(&mddev->thread);
3189                goto abort;
3190        }
3191        return 0;
3192
3193abort:
3194        raid1_free(mddev, conf);
3195        return ret;
3196}
3197
3198static void raid1_free(struct mddev *mddev, void *priv)
3199{
3200        struct r1conf *conf = priv;
3201
3202        mempool_exit(&conf->r1bio_pool);
3203        kfree(conf->mirrors);
3204        safe_put_page(conf->tmppage);
3205        kfree(conf->poolinfo);
3206        kfree(conf->nr_pending);
3207        kfree(conf->nr_waiting);
3208        kfree(conf->nr_queued);
3209        kfree(conf->barrier);
3210        bioset_exit(&conf->bio_split);
3211        kfree(conf);
3212}
3213
3214static int raid1_resize(struct mddev *mddev, sector_t sectors)
3215{
3216        /* no resync is happening, and there is enough space
3217         * on all devices, so we can resize.
3218         * We need to make sure resync covers any new space.
3219         * If the array is shrinking we should possibly wait until
3220         * any io in the removed space completes, but it hardly seems
3221         * worth it.
3222         */
3223        sector_t newsize = raid1_size(mddev, sectors, 0);
3224        if (mddev->external_size &&
3225            mddev->array_sectors > newsize)
3226                return -EINVAL;
3227        if (mddev->bitmap) {
3228                int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3229                if (ret)
3230                        return ret;
3231        }
3232        md_set_array_sectors(mddev, newsize);
3233        if (sectors > mddev->dev_sectors &&
3234            mddev->recovery_cp > mddev->dev_sectors) {
3235                mddev->recovery_cp = mddev->dev_sectors;
3236                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3237        }
3238        mddev->dev_sectors = sectors;
3239        mddev->resync_max_sectors = sectors;
3240        return 0;
3241}
3242
3243static int raid1_reshape(struct mddev *mddev)
3244{
3245        /* We need to:
3246         * 1/ resize the r1bio_pool
3247         * 2/ resize conf->mirrors
3248         *
3249         * We allocate a new r1bio_pool if we can.
3250         * Then raise a device barrier and wait until all IO stops.
3251         * Then resize conf->mirrors and swap in the new r1bio pool.
3252         *
3253         * At the same time, we "pack" the devices so that all the missing
3254         * devices have the higher raid_disk numbers.
3255         */
3256        mempool_t newpool, oldpool;
3257        struct pool_info *newpoolinfo;
3258        struct raid1_info *newmirrors;
3259        struct r1conf *conf = mddev->private;
3260        int cnt, raid_disks;
3261        unsigned long flags;
3262        int d, d2;
3263        int ret;
3264
3265        memset(&newpool, 0, sizeof(newpool));
3266        memset(&oldpool, 0, sizeof(oldpool));
3267
3268        /* Cannot change chunk_size, layout, or level */
3269        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3270            mddev->layout != mddev->new_layout ||
3271            mddev->level != mddev->new_level) {
3272                mddev->new_chunk_sectors = mddev->chunk_sectors;
3273                mddev->new_layout = mddev->layout;
3274                mddev->new_level = mddev->level;
3275                return -EINVAL;
3276        }
3277
3278        if (!mddev_is_clustered(mddev))
3279                md_allow_write(mddev);
3280
3281        raid_disks = mddev->raid_disks + mddev->delta_disks;
3282
3283        if (raid_disks < conf->raid_disks) {
3284                cnt=0;
3285                for (d= 0; d < conf->raid_disks; d++)
3286                        if (conf->mirrors[d].rdev)
3287                                cnt++;
3288                if (cnt > raid_disks)
3289                        return -EBUSY;
3290        }
3291
3292        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3293        if (!newpoolinfo)
3294                return -ENOMEM;
3295        newpoolinfo->mddev = mddev;
3296        newpoolinfo->raid_disks = raid_disks * 2;
3297
3298        ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3299                           rbio_pool_free, newpoolinfo);
3300        if (ret) {
3301                kfree(newpoolinfo);
3302                return ret;
3303        }
3304        newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3305                                         raid_disks, 2),
3306                             GFP_KERNEL);
3307        if (!newmirrors) {
3308                kfree(newpoolinfo);
3309                mempool_exit(&newpool);
3310                return -ENOMEM;
3311        }
3312
3313        freeze_array(conf, 0);
3314
3315        /* ok, everything is stopped */
3316        oldpool = conf->r1bio_pool;
3317        conf->r1bio_pool = newpool;
3318
3319        for (d = d2 = 0; d < conf->raid_disks; d++) {
3320                struct md_rdev *rdev = conf->mirrors[d].rdev;
3321                if (rdev && rdev->raid_disk != d2) {
3322                        sysfs_unlink_rdev(mddev, rdev);
3323                        rdev->raid_disk = d2;
3324                        sysfs_unlink_rdev(mddev, rdev);
3325                        if (sysfs_link_rdev(mddev, rdev))
3326                                pr_warn("md/raid1:%s: cannot register rd%d\n",
3327                                        mdname(mddev), rdev->raid_disk);
3328                }
3329                if (rdev)
3330                        newmirrors[d2++].rdev = rdev;
3331        }
3332        kfree(conf->mirrors);
3333        conf->mirrors = newmirrors;
3334        kfree(conf->poolinfo);
3335        conf->poolinfo = newpoolinfo;
3336
3337        spin_lock_irqsave(&conf->device_lock, flags);
3338        mddev->degraded += (raid_disks - conf->raid_disks);
3339        spin_unlock_irqrestore(&conf->device_lock, flags);
3340        conf->raid_disks = mddev->raid_disks = raid_disks;
3341        mddev->delta_disks = 0;
3342
3343        unfreeze_array(conf);
3344
3345        set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3346        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3347        md_wakeup_thread(mddev->thread);
3348
3349        mempool_exit(&oldpool);
3350        return 0;
3351}
3352
3353static void raid1_quiesce(struct mddev *mddev, int quiesce)
3354{
3355        struct r1conf *conf = mddev->private;
3356
3357        if (quiesce)
3358                freeze_array(conf, 0);
3359        else
3360                unfreeze_array(conf);
3361}
3362
3363static void *raid1_takeover(struct mddev *mddev)
3364{
3365        /* raid1 can take over:
3366         *  raid5 with 2 devices, any layout or chunk size
3367         */
3368        if (mddev->level == 5 && mddev->raid_disks == 2) {
3369                struct r1conf *conf;
3370                mddev->new_level = 1;
3371                mddev->new_layout = 0;
3372                mddev->new_chunk_sectors = 0;
3373                conf = setup_conf(mddev);
3374                if (!IS_ERR(conf)) {
3375                        /* Array must appear to be quiesced */
3376                        conf->array_frozen = 1;
3377                        mddev_clear_unsupported_flags(mddev,
3378                                UNSUPPORTED_MDDEV_FLAGS);
3379                }
3380                return conf;
3381        }
3382        return ERR_PTR(-EINVAL);
3383}
3384
3385static struct md_personality raid1_personality =
3386{
3387        .name           = "raid1",
3388        .level          = 1,
3389        .owner          = THIS_MODULE,
3390        .make_request   = raid1_make_request,
3391        .run            = raid1_run,
3392        .free           = raid1_free,
3393        .status         = raid1_status,
3394        .error_handler  = raid1_error,
3395        .hot_add_disk   = raid1_add_disk,
3396        .hot_remove_disk= raid1_remove_disk,
3397        .spare_active   = raid1_spare_active,
3398        .sync_request   = raid1_sync_request,
3399        .resize         = raid1_resize,
3400        .size           = raid1_size,
3401        .check_reshape  = raid1_reshape,
3402        .quiesce        = raid1_quiesce,
3403        .takeover       = raid1_takeover,
3404};
3405
3406static int __init raid_init(void)
3407{
3408        return register_md_personality(&raid1_personality);
3409}
3410
3411static void raid_exit(void)
3412{
3413        unregister_md_personality(&raid1_personality);
3414}
3415
3416module_init(raid_init);
3417module_exit(raid_exit);
3418MODULE_LICENSE("GPL");
3419MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3420MODULE_ALIAS("md-personality-3"); /* RAID1 */
3421MODULE_ALIAS("md-raid1");
3422MODULE_ALIAS("md-level-1");
3423