linux/drivers/media/i2c/tda1997x.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018 Gateworks Corporation
   4 */
   5#include <linux/delay.h>
   6#include <linux/hdmi.h>
   7#include <linux/i2c.h>
   8#include <linux/init.h>
   9#include <linux/interrupt.h>
  10#include <linux/kernel.h>
  11#include <linux/module.h>
  12#include <linux/of_graph.h>
  13#include <linux/platform_device.h>
  14#include <linux/regulator/consumer.h>
  15#include <linux/types.h>
  16#include <linux/v4l2-dv-timings.h>
  17#include <linux/videodev2.h>
  18
  19#include <media/v4l2-ctrls.h>
  20#include <media/v4l2-device.h>
  21#include <media/v4l2-dv-timings.h>
  22#include <media/v4l2-event.h>
  23#include <media/v4l2-fwnode.h>
  24#include <media/i2c/tda1997x.h>
  25
  26#include <sound/core.h>
  27#include <sound/pcm.h>
  28#include <sound/pcm_params.h>
  29#include <sound/soc.h>
  30
  31#include <dt-bindings/media/tda1997x.h>
  32
  33#include "tda1997x_regs.h"
  34
  35#define TDA1997X_MBUS_CODES     5
  36
  37/* debug level */
  38static int debug;
  39module_param(debug, int, 0644);
  40MODULE_PARM_DESC(debug, "debug level (0-2)");
  41
  42/* Audio formats */
  43static const char * const audtype_names[] = {
  44        "PCM",                  /* PCM Samples */
  45        "HBR",                  /* High Bit Rate Audio */
  46        "OBA",                  /* One-Bit Audio */
  47        "DST"                   /* Direct Stream Transfer */
  48};
  49
  50/* Audio output port formats */
  51enum audfmt_types {
  52        AUDFMT_TYPE_DISABLED = 0,
  53        AUDFMT_TYPE_I2S,
  54        AUDFMT_TYPE_SPDIF,
  55};
  56static const char * const audfmt_names[] = {
  57        "Disabled",
  58        "I2S",
  59        "SPDIF",
  60};
  61
  62/* Video input formats */
  63static const char * const hdmi_colorspace_names[] = {
  64        "RGB", "YUV422", "YUV444", "YUV420", "", "", "", "",
  65};
  66static const char * const hdmi_colorimetry_names[] = {
  67        "", "ITU601", "ITU709", "Extended",
  68};
  69static const char * const v4l2_quantization_names[] = {
  70        "Default",
  71        "Full Range (0-255)",
  72        "Limited Range (16-235)",
  73};
  74
  75/* Video output port formats */
  76static const char * const vidfmt_names[] = {
  77        "RGB444/YUV444",        /* RGB/YUV444 16bit data bus, 8bpp */
  78        "YUV422 semi-planar",   /* YUV422 16bit data base, 8bpp */
  79        "YUV422 CCIR656",       /* BT656 (YUV 8bpp 2 clock per pixel) */
  80        "Invalid",
  81};
  82
  83/*
  84 * Colorspace conversion matrices
  85 */
  86struct color_matrix_coefs {
  87        const char *name;
  88        /* Input offsets */
  89        s16 offint1;
  90        s16 offint2;
  91        s16 offint3;
  92        /* Coeficients */
  93        s16 p11coef;
  94        s16 p12coef;
  95        s16 p13coef;
  96        s16 p21coef;
  97        s16 p22coef;
  98        s16 p23coef;
  99        s16 p31coef;
 100        s16 p32coef;
 101        s16 p33coef;
 102        /* Output offsets */
 103        s16 offout1;
 104        s16 offout2;
 105        s16 offout3;
 106};
 107
 108enum {
 109        ITU709_RGBFULL,
 110        ITU601_RGBFULL,
 111        RGBLIMITED_RGBFULL,
 112        RGBLIMITED_ITU601,
 113        RGBLIMITED_ITU709,
 114        RGBFULL_ITU601,
 115        RGBFULL_ITU709,
 116};
 117
 118/* NB: 4096 is 1.0 using fixed point numbers */
 119static const struct color_matrix_coefs conv_matrix[] = {
 120        {
 121                "YUV709 -> RGB full",
 122                 -256, -2048,  -2048,
 123                 4769, -2183,   -873,
 124                 4769,  7343,      0,
 125                 4769,     0,   8652,
 126                    0,     0,      0,
 127        },
 128        {
 129                "YUV601 -> RGB full",
 130                 -256, -2048,  -2048,
 131                 4769, -3330,  -1602,
 132                 4769,  6538,      0,
 133                 4769,     0,   8264,
 134                  256,   256,    256,
 135        },
 136        {
 137                "RGB limited -> RGB full",
 138                 -256,  -256,   -256,
 139                    0,  4769,      0,
 140                    0,     0,   4769,
 141                 4769,     0,      0,
 142                    0,     0,      0,
 143        },
 144        {
 145                "RGB limited -> ITU601",
 146                 -256,  -256,   -256,
 147                 2404,  1225,    467,
 148                -1754,  2095,   -341,
 149                -1388,  -707,   2095,
 150                  256,  2048,   2048,
 151        },
 152        {
 153                "RGB limited -> ITU709",
 154                 -256,  -256,   -256,
 155                 2918,   867,    295,
 156                -1894,  2087,   -190,
 157                -1607,  -477,   2087,
 158                  256,  2048,   2048,
 159        },
 160        {
 161                "RGB full -> ITU601",
 162                    0,     0,      0,
 163                 2065,  1052,    401,
 164                -1506,  1799,   -293,
 165                -1192,  -607,   1799,
 166                  256,  2048,   2048,
 167        },
 168        {
 169                "RGB full -> ITU709",
 170                    0,     0,      0,
 171                 2506,   745,    253,
 172                -1627,  1792,   -163,
 173                -1380,  -410,   1792,
 174                  256,  2048,   2048,
 175        },
 176};
 177
 178static const struct v4l2_dv_timings_cap tda1997x_dv_timings_cap = {
 179        .type = V4L2_DV_BT_656_1120,
 180        /* keep this initialization for compatibility with GCC < 4.4.6 */
 181        .reserved = { 0 },
 182
 183        V4L2_INIT_BT_TIMINGS(
 184                640, 1920,                      /* min/max width */
 185                350, 1200,                      /* min/max height */
 186                13000000, 165000000,            /* min/max pixelclock */
 187                /* standards */
 188                V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
 189                        V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
 190                /* capabilities */
 191                V4L2_DV_BT_CAP_INTERLACED | V4L2_DV_BT_CAP_PROGRESSIVE |
 192                        V4L2_DV_BT_CAP_REDUCED_BLANKING |
 193                        V4L2_DV_BT_CAP_CUSTOM
 194        )
 195};
 196
 197/* regulator supplies */
 198static const char * const tda1997x_supply_name[] = {
 199        "DOVDD", /* Digital I/O supply */
 200        "DVDD",  /* Digital Core supply */
 201        "AVDD",  /* Analog supply */
 202};
 203
 204#define TDA1997X_NUM_SUPPLIES ARRAY_SIZE(tda1997x_supply_name)
 205
 206enum tda1997x_type {
 207        TDA19971,
 208        TDA19973,
 209};
 210
 211enum tda1997x_hdmi_pads {
 212        TDA1997X_PAD_SOURCE,
 213        TDA1997X_NUM_PADS,
 214};
 215
 216struct tda1997x_chip_info {
 217        enum tda1997x_type type;
 218        const char *name;
 219};
 220
 221struct tda1997x_state {
 222        const struct tda1997x_chip_info *info;
 223        struct tda1997x_platform_data pdata;
 224        struct i2c_client *client;
 225        struct i2c_client *client_cec;
 226        struct v4l2_subdev sd;
 227        struct regulator_bulk_data supplies[TDA1997X_NUM_SUPPLIES];
 228        struct media_pad pads[TDA1997X_NUM_PADS];
 229        struct mutex lock;
 230        struct mutex page_lock;
 231        char page;
 232
 233        /* detected info from chip */
 234        int chip_revision;
 235        char port_30bit;
 236        char output_2p5;
 237        char tmdsb_clk;
 238        char tmdsb_soc;
 239
 240        /* status info */
 241        char hdmi_status;
 242        char mptrw_in_progress;
 243        char activity_status;
 244        char input_detect[2];
 245
 246        /* video */
 247        struct hdmi_avi_infoframe avi_infoframe;
 248        struct v4l2_hdmi_colorimetry colorimetry;
 249        u32 rgb_quantization_range;
 250        struct v4l2_dv_timings timings;
 251        int fps;
 252        const struct color_matrix_coefs *conv;
 253        u32 mbus_codes[TDA1997X_MBUS_CODES];    /* available modes */
 254        u32 mbus_code;          /* current mode */
 255        u8 vid_fmt;
 256
 257        /* controls */
 258        struct v4l2_ctrl_handler hdl;
 259        struct v4l2_ctrl *detect_tx_5v_ctrl;
 260        struct v4l2_ctrl *rgb_quantization_range_ctrl;
 261
 262        /* audio */
 263        u8  audio_ch_alloc;
 264        int audio_samplerate;
 265        int audio_channels;
 266        int audio_samplesize;
 267        int audio_type;
 268        struct mutex audio_lock;
 269        struct snd_pcm_substream *audio_stream;
 270
 271        /* EDID */
 272        struct {
 273                u8 edid[256];
 274                u32 present;
 275                unsigned int blocks;
 276        } edid;
 277        struct delayed_work delayed_work_enable_hpd;
 278};
 279
 280static const struct v4l2_event tda1997x_ev_fmt = {
 281        .type = V4L2_EVENT_SOURCE_CHANGE,
 282        .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
 283};
 284
 285static const struct tda1997x_chip_info tda1997x_chip_info[] = {
 286        [TDA19971] = {
 287                .type = TDA19971,
 288                .name = "tda19971",
 289        },
 290        [TDA19973] = {
 291                .type = TDA19973,
 292                .name = "tda19973",
 293        },
 294};
 295
 296static inline struct tda1997x_state *to_state(struct v4l2_subdev *sd)
 297{
 298        return container_of(sd, struct tda1997x_state, sd);
 299}
 300
 301static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
 302{
 303        return &container_of(ctrl->handler, struct tda1997x_state, hdl)->sd;
 304}
 305
 306static int tda1997x_cec_read(struct v4l2_subdev *sd, u8 reg)
 307{
 308        struct tda1997x_state *state = to_state(sd);
 309        int val;
 310
 311        val = i2c_smbus_read_byte_data(state->client_cec, reg);
 312        if (val < 0) {
 313                v4l_err(state->client, "read reg error: reg=%2x\n", reg);
 314                val = -1;
 315        }
 316
 317        return val;
 318}
 319
 320static int tda1997x_cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
 321{
 322        struct tda1997x_state *state = to_state(sd);
 323        int ret = 0;
 324
 325        ret = i2c_smbus_write_byte_data(state->client_cec, reg, val);
 326        if (ret < 0) {
 327                v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
 328                        reg, val);
 329                ret = -1;
 330        }
 331
 332        return ret;
 333}
 334
 335/* -----------------------------------------------------------------------------
 336 * I2C transfer
 337 */
 338
 339static int tda1997x_setpage(struct v4l2_subdev *sd, u8 page)
 340{
 341        struct tda1997x_state *state = to_state(sd);
 342        int ret;
 343
 344        if (state->page != page) {
 345                ret = i2c_smbus_write_byte_data(state->client,
 346                        REG_CURPAGE_00H, page);
 347                if (ret < 0) {
 348                        v4l_err(state->client,
 349                                "write reg error:reg=%2x,val=%2x\n",
 350                                REG_CURPAGE_00H, page);
 351                        return ret;
 352                }
 353                state->page = page;
 354        }
 355        return 0;
 356}
 357
 358static inline int io_read(struct v4l2_subdev *sd, u16 reg)
 359{
 360        struct tda1997x_state *state = to_state(sd);
 361        int val;
 362
 363        mutex_lock(&state->page_lock);
 364        if (tda1997x_setpage(sd, reg >> 8)) {
 365                val = -1;
 366                goto out;
 367        }
 368
 369        val = i2c_smbus_read_byte_data(state->client, reg&0xff);
 370        if (val < 0) {
 371                v4l_err(state->client, "read reg error: reg=%2x\n", reg & 0xff);
 372                val = -1;
 373                goto out;
 374        }
 375
 376out:
 377        mutex_unlock(&state->page_lock);
 378        return val;
 379}
 380
 381static inline long io_read16(struct v4l2_subdev *sd, u16 reg)
 382{
 383        int val;
 384        long lval = 0;
 385
 386        val = io_read(sd, reg);
 387        if (val < 0)
 388                return val;
 389        lval |= (val << 8);
 390        val = io_read(sd, reg + 1);
 391        if (val < 0)
 392                return val;
 393        lval |= val;
 394
 395        return lval;
 396}
 397
 398static inline long io_read24(struct v4l2_subdev *sd, u16 reg)
 399{
 400        int val;
 401        long lval = 0;
 402
 403        val = io_read(sd, reg);
 404        if (val < 0)
 405                return val;
 406        lval |= (val << 16);
 407        val = io_read(sd, reg + 1);
 408        if (val < 0)
 409                return val;
 410        lval |= (val << 8);
 411        val = io_read(sd, reg + 2);
 412        if (val < 0)
 413                return val;
 414        lval |= val;
 415
 416        return lval;
 417}
 418
 419static unsigned int io_readn(struct v4l2_subdev *sd, u16 reg, u8 len, u8 *data)
 420{
 421        int i;
 422        int sz = 0;
 423        int val;
 424
 425        for (i = 0; i < len; i++) {
 426                val = io_read(sd, reg + i);
 427                if (val < 0)
 428                        break;
 429                data[i] = val;
 430                sz++;
 431        }
 432
 433        return sz;
 434}
 435
 436static int io_write(struct v4l2_subdev *sd, u16 reg, u8 val)
 437{
 438        struct tda1997x_state *state = to_state(sd);
 439        s32 ret = 0;
 440
 441        mutex_lock(&state->page_lock);
 442        if (tda1997x_setpage(sd, reg >> 8)) {
 443                ret = -1;
 444                goto out;
 445        }
 446
 447        ret = i2c_smbus_write_byte_data(state->client, reg & 0xff, val);
 448        if (ret < 0) {
 449                v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
 450                        reg&0xff, val);
 451                ret = -1;
 452                goto out;
 453        }
 454
 455out:
 456        mutex_unlock(&state->page_lock);
 457        return ret;
 458}
 459
 460static int io_write16(struct v4l2_subdev *sd, u16 reg, u16 val)
 461{
 462        int ret;
 463
 464        ret = io_write(sd, reg, (val >> 8) & 0xff);
 465        if (ret < 0)
 466                return ret;
 467        ret = io_write(sd, reg + 1, val & 0xff);
 468        if (ret < 0)
 469                return ret;
 470        return 0;
 471}
 472
 473static int io_write24(struct v4l2_subdev *sd, u16 reg, u32 val)
 474{
 475        int ret;
 476
 477        ret = io_write(sd, reg, (val >> 16) & 0xff);
 478        if (ret < 0)
 479                return ret;
 480        ret = io_write(sd, reg + 1, (val >> 8) & 0xff);
 481        if (ret < 0)
 482                return ret;
 483        ret = io_write(sd, reg + 2, val & 0xff);
 484        if (ret < 0)
 485                return ret;
 486        return 0;
 487}
 488
 489/* -----------------------------------------------------------------------------
 490 * Hotplug
 491 */
 492
 493enum hpd_mode {
 494        HPD_LOW_BP,     /* HPD low and pulse of at least 100ms */
 495        HPD_LOW_OTHER,  /* HPD low and pulse of at least 100ms */
 496        HPD_HIGH_BP,    /* HIGH */
 497        HPD_HIGH_OTHER,
 498        HPD_PULSE,      /* HPD low pulse */
 499};
 500
 501/* manual HPD (Hot Plug Detect) control */
 502static int tda1997x_manual_hpd(struct v4l2_subdev *sd, enum hpd_mode mode)
 503{
 504        u8 hpd_auto, hpd_pwr, hpd_man;
 505
 506        hpd_auto = io_read(sd, REG_HPD_AUTO_CTRL);
 507        hpd_pwr = io_read(sd, REG_HPD_POWER);
 508        hpd_man = io_read(sd, REG_HPD_MAN_CTRL);
 509
 510        /* mask out unused bits */
 511        hpd_man &= (HPD_MAN_CTRL_HPD_PULSE |
 512                    HPD_MAN_CTRL_5VEN |
 513                    HPD_MAN_CTRL_HPD_B |
 514                    HPD_MAN_CTRL_HPD_A);
 515
 516        switch (mode) {
 517        /* HPD low and pulse of at least 100ms */
 518        case HPD_LOW_BP:
 519                /* hpd_bp=0 */
 520                hpd_pwr &= ~HPD_POWER_BP_MASK;
 521                /* disable HPD_A and HPD_B */
 522                hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
 523                io_write(sd, REG_HPD_POWER, hpd_pwr);
 524                io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
 525                break;
 526        /* HPD high */
 527        case HPD_HIGH_BP:
 528                /* hpd_bp=1 */
 529                hpd_pwr &= ~HPD_POWER_BP_MASK;
 530                hpd_pwr |= 1 << HPD_POWER_BP_SHIFT;
 531                io_write(sd, REG_HPD_POWER, hpd_pwr);
 532                break;
 533        /* HPD low and pulse of at least 100ms */
 534        case HPD_LOW_OTHER:
 535                /* disable HPD_A and HPD_B */
 536                hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
 537                /* hp_other=0 */
 538                hpd_auto &= ~HPD_AUTO_HP_OTHER;
 539                io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
 540                io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
 541                break;
 542        /* HPD high */
 543        case HPD_HIGH_OTHER:
 544                hpd_auto |= HPD_AUTO_HP_OTHER;
 545                io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
 546                break;
 547        /* HPD low pulse */
 548        case HPD_PULSE:
 549                /* disable HPD_A and HPD_B */
 550                hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
 551                io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
 552                break;
 553        }
 554
 555        return 0;
 556}
 557
 558static void tda1997x_delayed_work_enable_hpd(struct work_struct *work)
 559{
 560        struct delayed_work *dwork = to_delayed_work(work);
 561        struct tda1997x_state *state = container_of(dwork,
 562                                                    struct tda1997x_state,
 563                                                    delayed_work_enable_hpd);
 564        struct v4l2_subdev *sd = &state->sd;
 565
 566        v4l2_dbg(2, debug, sd, "%s\n", __func__);
 567
 568        /* Set HPD high */
 569        tda1997x_manual_hpd(sd, HPD_HIGH_OTHER);
 570        tda1997x_manual_hpd(sd, HPD_HIGH_BP);
 571
 572        state->edid.present = 1;
 573}
 574
 575static void tda1997x_disable_edid(struct v4l2_subdev *sd)
 576{
 577        struct tda1997x_state *state = to_state(sd);
 578
 579        v4l2_dbg(1, debug, sd, "%s\n", __func__);
 580        cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
 581
 582        /* Set HPD low */
 583        tda1997x_manual_hpd(sd, HPD_LOW_BP);
 584}
 585
 586static void tda1997x_enable_edid(struct v4l2_subdev *sd)
 587{
 588        struct tda1997x_state *state = to_state(sd);
 589
 590        v4l2_dbg(1, debug, sd, "%s\n", __func__);
 591
 592        /* Enable hotplug after 100ms */
 593        schedule_delayed_work(&state->delayed_work_enable_hpd, HZ / 10);
 594}
 595
 596/* -----------------------------------------------------------------------------
 597 * Signal Control
 598 */
 599
 600/*
 601 * configure vid_fmt based on mbus_code
 602 */
 603static int
 604tda1997x_setup_format(struct tda1997x_state *state, u32 code)
 605{
 606        v4l_dbg(1, debug, state->client, "%s code=0x%x\n", __func__, code);
 607        switch (code) {
 608        case MEDIA_BUS_FMT_RGB121212_1X36:
 609        case MEDIA_BUS_FMT_RGB888_1X24:
 610        case MEDIA_BUS_FMT_YUV12_1X36:
 611        case MEDIA_BUS_FMT_YUV8_1X24:
 612                state->vid_fmt = OF_FMT_444;
 613                break;
 614        case MEDIA_BUS_FMT_UYVY12_1X24:
 615        case MEDIA_BUS_FMT_UYVY10_1X20:
 616        case MEDIA_BUS_FMT_UYVY8_1X16:
 617                state->vid_fmt = OF_FMT_422_SMPT;
 618                break;
 619        case MEDIA_BUS_FMT_UYVY12_2X12:
 620        case MEDIA_BUS_FMT_UYVY10_2X10:
 621        case MEDIA_BUS_FMT_UYVY8_2X8:
 622                state->vid_fmt = OF_FMT_422_CCIR;
 623                break;
 624        default:
 625                v4l_err(state->client, "incompatible format (0x%x)\n", code);
 626                return -EINVAL;
 627        }
 628        v4l_dbg(1, debug, state->client, "%s code=0x%x fmt=%s\n", __func__,
 629                code, vidfmt_names[state->vid_fmt]);
 630        state->mbus_code = code;
 631
 632        return 0;
 633}
 634
 635/*
 636 * The color conversion matrix will convert between the colorimetry of the
 637 * HDMI input to the desired output format RGB|YUV. RGB output is to be
 638 * full-range and YUV is to be limited range.
 639 *
 640 * RGB full-range uses values from 0 to 255 which is recommended on a monitor
 641 * and RGB Limited uses values from 16 to 236 (16=black, 235=white) which is
 642 * typically recommended on a TV.
 643 */
 644static void
 645tda1997x_configure_csc(struct v4l2_subdev *sd)
 646{
 647        struct tda1997x_state *state = to_state(sd);
 648        struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
 649        struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
 650        /* Blanking code values depend on output colorspace (RGB or YUV) */
 651        struct blanking_codes {
 652                s16 code_gy;
 653                s16 code_bu;
 654                s16 code_rv;
 655        };
 656        static const struct blanking_codes rgb_blanking = { 64, 64, 64 };
 657        static const struct blanking_codes yuv_blanking = { 64, 512, 512 };
 658        const struct blanking_codes *blanking_codes = NULL;
 659        u8 reg;
 660
 661        v4l_dbg(1, debug, state->client, "input:%s quant:%s output:%s\n",
 662                hdmi_colorspace_names[avi->colorspace],
 663                v4l2_quantization_names[c->quantization],
 664                vidfmt_names[state->vid_fmt]);
 665        state->conv = NULL;
 666        switch (state->vid_fmt) {
 667        /* RGB output */
 668        case OF_FMT_444:
 669                blanking_codes = &rgb_blanking;
 670                if (c->colorspace == V4L2_COLORSPACE_SRGB) {
 671                        if (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)
 672                                state->conv = &conv_matrix[RGBLIMITED_RGBFULL];
 673                } else {
 674                        if (c->colorspace == V4L2_COLORSPACE_REC709)
 675                                state->conv = &conv_matrix[ITU709_RGBFULL];
 676                        else if (c->colorspace == V4L2_COLORSPACE_SMPTE170M)
 677                                state->conv = &conv_matrix[ITU601_RGBFULL];
 678                }
 679                break;
 680
 681        /* YUV output */
 682        case OF_FMT_422_SMPT: /* semi-planar */
 683        case OF_FMT_422_CCIR: /* CCIR656 */
 684                blanking_codes = &yuv_blanking;
 685                if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
 686                    (c->quantization == V4L2_QUANTIZATION_FULL_RANGE)) {
 687                        if (state->timings.bt.height <= 576)
 688                                state->conv = &conv_matrix[RGBFULL_ITU601];
 689                        else
 690                                state->conv = &conv_matrix[RGBFULL_ITU709];
 691                } else if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
 692                           (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)) {
 693                        if (state->timings.bt.height <= 576)
 694                                state->conv = &conv_matrix[RGBLIMITED_ITU601];
 695                        else
 696                                state->conv = &conv_matrix[RGBLIMITED_ITU709];
 697                }
 698                break;
 699        }
 700
 701        if (state->conv) {
 702                v4l_dbg(1, debug, state->client, "%s\n",
 703                        state->conv->name);
 704                /* enable matrix conversion */
 705                reg = io_read(sd, REG_VDP_CTRL);
 706                reg &= ~VDP_CTRL_MATRIX_BP;
 707                io_write(sd, REG_VDP_CTRL, reg);
 708                /* offset inputs */
 709                io_write16(sd, REG_VDP_MATRIX + 0, state->conv->offint1);
 710                io_write16(sd, REG_VDP_MATRIX + 2, state->conv->offint2);
 711                io_write16(sd, REG_VDP_MATRIX + 4, state->conv->offint3);
 712                /* coefficients */
 713                io_write16(sd, REG_VDP_MATRIX + 6, state->conv->p11coef);
 714                io_write16(sd, REG_VDP_MATRIX + 8, state->conv->p12coef);
 715                io_write16(sd, REG_VDP_MATRIX + 10, state->conv->p13coef);
 716                io_write16(sd, REG_VDP_MATRIX + 12, state->conv->p21coef);
 717                io_write16(sd, REG_VDP_MATRIX + 14, state->conv->p22coef);
 718                io_write16(sd, REG_VDP_MATRIX + 16, state->conv->p23coef);
 719                io_write16(sd, REG_VDP_MATRIX + 18, state->conv->p31coef);
 720                io_write16(sd, REG_VDP_MATRIX + 20, state->conv->p32coef);
 721                io_write16(sd, REG_VDP_MATRIX + 22, state->conv->p33coef);
 722                /* offset outputs */
 723                io_write16(sd, REG_VDP_MATRIX + 24, state->conv->offout1);
 724                io_write16(sd, REG_VDP_MATRIX + 26, state->conv->offout2);
 725                io_write16(sd, REG_VDP_MATRIX + 28, state->conv->offout3);
 726        } else {
 727                /* disable matrix conversion */
 728                reg = io_read(sd, REG_VDP_CTRL);
 729                reg |= VDP_CTRL_MATRIX_BP;
 730                io_write(sd, REG_VDP_CTRL, reg);
 731        }
 732
 733        /* SetBlankingCodes */
 734        if (blanking_codes) {
 735                io_write16(sd, REG_BLK_GY, blanking_codes->code_gy);
 736                io_write16(sd, REG_BLK_BU, blanking_codes->code_bu);
 737                io_write16(sd, REG_BLK_RV, blanking_codes->code_rv);
 738        }
 739}
 740
 741/* Configure frame detection window and VHREF timing generator */
 742static void
 743tda1997x_configure_vhref(struct v4l2_subdev *sd)
 744{
 745        struct tda1997x_state *state = to_state(sd);
 746        const struct v4l2_bt_timings *bt = &state->timings.bt;
 747        int width, lines;
 748        u16 href_start, href_end;
 749        u16 vref_f1_start, vref_f2_start;
 750        u8 vref_f1_width, vref_f2_width;
 751        u8 field_polarity;
 752        u16 fieldref_f1_start, fieldref_f2_start;
 753        u8 reg;
 754
 755        href_start = bt->hbackporch + bt->hsync + 1;
 756        href_end = href_start + bt->width;
 757        vref_f1_start = bt->height + bt->vbackporch + bt->vsync +
 758                        bt->il_vbackporch + bt->il_vsync +
 759                        bt->il_vfrontporch;
 760        vref_f1_width = bt->vbackporch + bt->vsync + bt->vfrontporch;
 761        vref_f2_start = 0;
 762        vref_f2_width = 0;
 763        fieldref_f1_start = 0;
 764        fieldref_f2_start = 0;
 765        if (bt->interlaced) {
 766                vref_f2_start = (bt->height / 2) +
 767                                (bt->il_vbackporch + bt->il_vsync - 1);
 768                vref_f2_width = bt->il_vbackporch + bt->il_vsync +
 769                                bt->il_vfrontporch;
 770                fieldref_f2_start = vref_f2_start + bt->il_vfrontporch +
 771                                    fieldref_f1_start;
 772        }
 773        field_polarity = 0;
 774
 775        width = V4L2_DV_BT_FRAME_WIDTH(bt);
 776        lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
 777
 778        /*
 779         * Configure Frame Detection Window:
 780         *  horiz area where the VHREF module consider a VSYNC a new frame
 781         */
 782        io_write16(sd, REG_FDW_S, 0x2ef); /* start position */
 783        io_write16(sd, REG_FDW_E, 0x141); /* end position */
 784
 785        /* Set Pixel And Line Counters */
 786        if (state->chip_revision == 0)
 787                io_write16(sd, REG_PXCNT_PR, 4);
 788        else
 789                io_write16(sd, REG_PXCNT_PR, 1);
 790        io_write16(sd, REG_PXCNT_NPIX, width & MASK_VHREF);
 791        io_write16(sd, REG_LCNT_PR, 1);
 792        io_write16(sd, REG_LCNT_NLIN, lines & MASK_VHREF);
 793
 794        /*
 795         * Configure the VHRef timing generator responsible for rebuilding all
 796         * horiz and vert synch and ref signals from its input allowing auto
 797         * detection algorithms and forcing predefined modes (480i & 576i)
 798         */
 799        reg = VHREF_STD_DET_OFF << VHREF_STD_DET_SHIFT;
 800        io_write(sd, REG_VHREF_CTRL, reg);
 801
 802        /*
 803         * Configure the VHRef timing values. In case the VHREF generator has
 804         * been configured in manual mode, this will allow to manually set all
 805         * horiz and vert ref values (non-active pixel areas) of the generator
 806         * and allows setting the frame reference params.
 807         */
 808        /* horizontal reference start/end */
 809        io_write16(sd, REG_HREF_S, href_start & MASK_VHREF);
 810        io_write16(sd, REG_HREF_E, href_end & MASK_VHREF);
 811        /* vertical reference f1 start/end */
 812        io_write16(sd, REG_VREF_F1_S, vref_f1_start & MASK_VHREF);
 813        io_write(sd, REG_VREF_F1_WIDTH, vref_f1_width);
 814        /* vertical reference f2 start/end */
 815        io_write16(sd, REG_VREF_F2_S, vref_f2_start & MASK_VHREF);
 816        io_write(sd, REG_VREF_F2_WIDTH, vref_f2_width);
 817
 818        /* F1/F2 FREF, field polarity */
 819        reg = fieldref_f1_start & MASK_VHREF;
 820        reg |= field_polarity << 8;
 821        io_write16(sd, REG_FREF_F1_S, reg);
 822        reg = fieldref_f2_start & MASK_VHREF;
 823        io_write16(sd, REG_FREF_F2_S, reg);
 824}
 825
 826/* Configure Video Output port signals */
 827static int
 828tda1997x_configure_vidout(struct tda1997x_state *state)
 829{
 830        struct v4l2_subdev *sd = &state->sd;
 831        struct tda1997x_platform_data *pdata = &state->pdata;
 832        u8 prefilter;
 833        u8 reg;
 834
 835        /* Configure pixel clock generator: delay, polarity, rate */
 836        reg = (state->vid_fmt == OF_FMT_422_CCIR) ?
 837               PCLK_SEL_X2 : PCLK_SEL_X1;
 838        reg |= pdata->vidout_delay_pclk << PCLK_DELAY_SHIFT;
 839        reg |= pdata->vidout_inv_pclk << PCLK_INV_SHIFT;
 840        io_write(sd, REG_PCLK, reg);
 841
 842        /* Configure pre-filter */
 843        prefilter = 0; /* filters off */
 844        /* YUV422 mode requires conversion */
 845        if ((state->vid_fmt == OF_FMT_422_SMPT) ||
 846            (state->vid_fmt == OF_FMT_422_CCIR)) {
 847                /* 2/7 taps for Rv and Bu */
 848                prefilter = FILTERS_CTRL_2_7TAP << FILTERS_CTRL_BU_SHIFT |
 849                            FILTERS_CTRL_2_7TAP << FILTERS_CTRL_RV_SHIFT;
 850        }
 851        io_write(sd, REG_FILTERS_CTRL, prefilter);
 852
 853        /* Configure video port */
 854        reg = state->vid_fmt & OF_FMT_MASK;
 855        if (state->vid_fmt == OF_FMT_422_CCIR)
 856                reg |= (OF_BLK | OF_TRC);
 857        reg |= OF_VP_ENABLE;
 858        io_write(sd, REG_OF, reg);
 859
 860        /* Configure formatter and conversions */
 861        reg = io_read(sd, REG_VDP_CTRL);
 862        /* pre-filter is needed unless (REG_FILTERS_CTRL == 0) */
 863        if (!prefilter)
 864                reg |= VDP_CTRL_PREFILTER_BP;
 865        else
 866                reg &= ~VDP_CTRL_PREFILTER_BP;
 867        /* formatter is needed for YUV422 and for trc/blc codes */
 868        if (state->vid_fmt == OF_FMT_444)
 869                reg |= VDP_CTRL_FORMATTER_BP;
 870        /* formatter and compdel needed for timing/blanking codes */
 871        else
 872                reg &= ~(VDP_CTRL_FORMATTER_BP | VDP_CTRL_COMPDEL_BP);
 873        /* activate compdel for small sync delays */
 874        if ((pdata->vidout_delay_vs < 4) || (pdata->vidout_delay_hs < 4))
 875                reg &= ~VDP_CTRL_COMPDEL_BP;
 876        io_write(sd, REG_VDP_CTRL, reg);
 877
 878        /* Configure DE output signal: delay, polarity, and source */
 879        reg = pdata->vidout_delay_de << DE_FREF_DELAY_SHIFT |
 880              pdata->vidout_inv_de << DE_FREF_INV_SHIFT |
 881              pdata->vidout_sel_de << DE_FREF_SEL_SHIFT;
 882        io_write(sd, REG_DE_FREF, reg);
 883
 884        /* Configure HS/HREF output signal: delay, polarity, and source */
 885        if (state->vid_fmt != OF_FMT_422_CCIR) {
 886                reg = pdata->vidout_delay_hs << HS_HREF_DELAY_SHIFT |
 887                      pdata->vidout_inv_hs << HS_HREF_INV_SHIFT |
 888                      pdata->vidout_sel_hs << HS_HREF_SEL_SHIFT;
 889        } else
 890                reg = HS_HREF_SEL_NONE << HS_HREF_SEL_SHIFT;
 891        io_write(sd, REG_HS_HREF, reg);
 892
 893        /* Configure VS/VREF output signal: delay, polarity, and source */
 894        if (state->vid_fmt != OF_FMT_422_CCIR) {
 895                reg = pdata->vidout_delay_vs << VS_VREF_DELAY_SHIFT |
 896                      pdata->vidout_inv_vs << VS_VREF_INV_SHIFT |
 897                      pdata->vidout_sel_vs << VS_VREF_SEL_SHIFT;
 898        } else
 899                reg = VS_VREF_SEL_NONE << VS_VREF_SEL_SHIFT;
 900        io_write(sd, REG_VS_VREF, reg);
 901
 902        return 0;
 903}
 904
 905/* Configure Audio output port signals */
 906static int
 907tda1997x_configure_audout(struct v4l2_subdev *sd, u8 channel_assignment)
 908{
 909        struct tda1997x_state *state = to_state(sd);
 910        struct tda1997x_platform_data *pdata = &state->pdata;
 911        bool sp_used_by_fifo = true;
 912        u8 reg;
 913
 914        if (!pdata->audout_format)
 915                return 0;
 916
 917        /* channel assignment (CEA-861-D Table 20) */
 918        io_write(sd, REG_AUDIO_PATH, channel_assignment);
 919
 920        /* Audio output configuration */
 921        reg = 0;
 922        switch (pdata->audout_format) {
 923        case AUDFMT_TYPE_I2S:
 924                reg |= AUDCFG_BUS_I2S << AUDCFG_BUS_SHIFT;
 925                break;
 926        case AUDFMT_TYPE_SPDIF:
 927                reg |= AUDCFG_BUS_SPDIF << AUDCFG_BUS_SHIFT;
 928                break;
 929        }
 930        switch (state->audio_type) {
 931        case AUDCFG_TYPE_PCM:
 932                reg |= AUDCFG_TYPE_PCM << AUDCFG_TYPE_SHIFT;
 933                break;
 934        case AUDCFG_TYPE_OBA:
 935                reg |= AUDCFG_TYPE_OBA << AUDCFG_TYPE_SHIFT;
 936                break;
 937        case AUDCFG_TYPE_DST:
 938                reg |= AUDCFG_TYPE_DST << AUDCFG_TYPE_SHIFT;
 939                sp_used_by_fifo = false;
 940                break;
 941        case AUDCFG_TYPE_HBR:
 942                reg |= AUDCFG_TYPE_HBR << AUDCFG_TYPE_SHIFT;
 943                if (pdata->audout_layout == 1) {
 944                        /* demuxed via AP0:AP3 */
 945                        reg |= AUDCFG_HBR_DEMUX << AUDCFG_HBR_SHIFT;
 946                        if (pdata->audout_format == AUDFMT_TYPE_SPDIF)
 947                                sp_used_by_fifo = false;
 948                } else {
 949                        /* straight via AP0 */
 950                        reg |= AUDCFG_HBR_STRAIGHT << AUDCFG_HBR_SHIFT;
 951                }
 952                break;
 953        }
 954        if (pdata->audout_width == 32)
 955                reg |= AUDCFG_I2SW_32 << AUDCFG_I2SW_SHIFT;
 956        else
 957                reg |= AUDCFG_I2SW_16 << AUDCFG_I2SW_SHIFT;
 958
 959        /* automatic hardware mute */
 960        if (pdata->audio_auto_mute)
 961                reg |= AUDCFG_AUTO_MUTE_EN;
 962        /* clock polarity */
 963        if (pdata->audout_invert_clk)
 964                reg |= AUDCFG_CLK_INVERT;
 965        io_write(sd, REG_AUDCFG, reg);
 966
 967        /* audio layout */
 968        reg = (pdata->audout_layout) ? AUDIO_LAYOUT_LAYOUT1 : 0;
 969        if (!pdata->audout_layoutauto)
 970                reg |= AUDIO_LAYOUT_MANUAL;
 971        if (sp_used_by_fifo)
 972                reg |= AUDIO_LAYOUT_SP_FLAG;
 973        io_write(sd, REG_AUDIO_LAYOUT, reg);
 974
 975        /* FIFO Latency value */
 976        io_write(sd, REG_FIFO_LATENCY_VAL, 0x80);
 977
 978        /* Audio output port config */
 979        if (sp_used_by_fifo) {
 980                reg = AUDIO_OUT_ENABLE_AP0;
 981                if (channel_assignment >= 0x01)
 982                        reg |= AUDIO_OUT_ENABLE_AP1;
 983                if (channel_assignment >= 0x04)
 984                        reg |= AUDIO_OUT_ENABLE_AP2;
 985                if (channel_assignment >= 0x0c)
 986                        reg |= AUDIO_OUT_ENABLE_AP3;
 987                /* specific cases where AP1 is not used */
 988                if ((channel_assignment == 0x04)
 989                 || (channel_assignment == 0x08)
 990                 || (channel_assignment == 0x0c)
 991                 || (channel_assignment == 0x10)
 992                 || (channel_assignment == 0x14)
 993                 || (channel_assignment == 0x18)
 994                 || (channel_assignment == 0x1c))
 995                        reg &= ~AUDIO_OUT_ENABLE_AP1;
 996                /* specific cases where AP2 is not used */
 997                if ((channel_assignment >= 0x14)
 998                 && (channel_assignment <= 0x17))
 999                        reg &= ~AUDIO_OUT_ENABLE_AP2;
1000        } else {
1001                reg = AUDIO_OUT_ENABLE_AP3 |
1002                      AUDIO_OUT_ENABLE_AP2 |
1003                      AUDIO_OUT_ENABLE_AP1 |
1004                      AUDIO_OUT_ENABLE_AP0;
1005        }
1006        if (pdata->audout_format == AUDFMT_TYPE_I2S)
1007                reg |= (AUDIO_OUT_ENABLE_ACLK | AUDIO_OUT_ENABLE_WS);
1008        io_write(sd, REG_AUDIO_OUT_ENABLE, reg);
1009
1010        /* reset test mode to normal audio freq auto selection */
1011        io_write(sd, REG_TEST_MODE, 0x00);
1012
1013        return 0;
1014}
1015
1016/* Soft Reset of specific hdmi info */
1017static int
1018tda1997x_hdmi_info_reset(struct v4l2_subdev *sd, u8 info_rst, bool reset_sus)
1019{
1020        u8 reg;
1021
1022        /* reset infoframe engine packets */
1023        reg = io_read(sd, REG_HDMI_INFO_RST);
1024        io_write(sd, REG_HDMI_INFO_RST, info_rst);
1025
1026        /* if infoframe engine has been reset clear INT_FLG_MODE */
1027        if (reg & RESET_IF) {
1028                reg = io_read(sd, REG_INT_FLG_CLR_MODE);
1029                io_write(sd, REG_INT_FLG_CLR_MODE, reg);
1030        }
1031
1032        /* Disable REFTIM to restart start-up-sequencer (SUS) */
1033        reg = io_read(sd, REG_RATE_CTRL);
1034        reg &= ~RATE_REFTIM_ENABLE;
1035        if (!reset_sus)
1036                reg |= RATE_REFTIM_ENABLE;
1037        reg = io_write(sd, REG_RATE_CTRL, reg);
1038
1039        return 0;
1040}
1041
1042static void
1043tda1997x_power_mode(struct tda1997x_state *state, bool enable)
1044{
1045        struct v4l2_subdev *sd = &state->sd;
1046        u8 reg;
1047
1048        if (enable) {
1049                /* Automatic control of TMDS */
1050                io_write(sd, REG_PON_OVR_EN, PON_DIS);
1051                /* Enable current bias unit */
1052                io_write(sd, REG_CFG1, PON_EN);
1053                /* Enable deep color PLL */
1054                io_write(sd, REG_DEEP_PLL7_BYP, PON_DIS);
1055                /* Output buffers active */
1056                reg = io_read(sd, REG_OF);
1057                reg &= ~OF_VP_ENABLE;
1058                io_write(sd, REG_OF, reg);
1059        } else {
1060                /* Power down EDID mode sequence */
1061                /* Output buffers in HiZ */
1062                reg = io_read(sd, REG_OF);
1063                reg |= OF_VP_ENABLE;
1064                io_write(sd, REG_OF, reg);
1065                /* Disable deep color PLL */
1066                io_write(sd, REG_DEEP_PLL7_BYP, PON_EN);
1067                /* Disable current bias unit */
1068                io_write(sd, REG_CFG1, PON_DIS);
1069                /* Manual control of TMDS */
1070                io_write(sd, REG_PON_OVR_EN, PON_EN);
1071        }
1072}
1073
1074static bool
1075tda1997x_detect_tx_5v(struct v4l2_subdev *sd)
1076{
1077        u8 reg = io_read(sd, REG_DETECT_5V);
1078
1079        return ((reg & DETECT_5V_SEL) ? 1 : 0);
1080}
1081
1082static bool
1083tda1997x_detect_tx_hpd(struct v4l2_subdev *sd)
1084{
1085        u8 reg = io_read(sd, REG_DETECT_5V);
1086
1087        return ((reg & DETECT_HPD) ? 1 : 0);
1088}
1089
1090static int
1091tda1997x_detect_std(struct tda1997x_state *state,
1092                    struct v4l2_dv_timings *timings)
1093{
1094        struct v4l2_subdev *sd = &state->sd;
1095
1096        /*
1097         * Read the FMT registers
1098         *   REG_V_PER: Period of a frame (or field) in MCLK (27MHz) cycles
1099         *   REG_H_PER: Period of a line in MCLK (27MHz) cycles
1100         *   REG_HS_WIDTH: Period of horiz sync pulse in MCLK (27MHz) cycles
1101         */
1102        u32 vper, vsync_pos;
1103        u16 hper, hsync_pos, hsper, interlaced;
1104        u16 htot, hact, hfront, hsync, hback;
1105        u16 vtot, vact, vfront1, vfront2, vsync, vback1, vback2;
1106
1107        if (!state->input_detect[0] && !state->input_detect[1])
1108                return -ENOLINK;
1109
1110        vper = io_read24(sd, REG_V_PER);
1111        hper = io_read16(sd, REG_H_PER);
1112        hsper = io_read16(sd, REG_HS_WIDTH);
1113        vsync_pos = vper & MASK_VPER_SYNC_POS;
1114        hsync_pos = hper & MASK_HPER_SYNC_POS;
1115        interlaced = hsper & MASK_HSWIDTH_INTERLACED;
1116        vper &= MASK_VPER;
1117        hper &= MASK_HPER;
1118        hsper &= MASK_HSWIDTH;
1119        v4l2_dbg(1, debug, sd, "Signal Timings: %u/%u/%u\n", vper, hper, hsper);
1120
1121        htot = io_read16(sd, REG_FMT_H_TOT);
1122        hact = io_read16(sd, REG_FMT_H_ACT);
1123        hfront = io_read16(sd, REG_FMT_H_FRONT);
1124        hsync = io_read16(sd, REG_FMT_H_SYNC);
1125        hback = io_read16(sd, REG_FMT_H_BACK);
1126
1127        vtot = io_read16(sd, REG_FMT_V_TOT);
1128        vact = io_read16(sd, REG_FMT_V_ACT);
1129        vfront1 = io_read(sd, REG_FMT_V_FRONT_F1);
1130        vfront2 = io_read(sd, REG_FMT_V_FRONT_F2);
1131        vsync = io_read(sd, REG_FMT_V_SYNC);
1132        vback1 = io_read(sd, REG_FMT_V_BACK_F1);
1133        vback2 = io_read(sd, REG_FMT_V_BACK_F2);
1134
1135        v4l2_dbg(1, debug, sd, "Geometry: H %u %u %u %u %u Sync%c  V %u %u %u %u %u %u %u Sync%c\n",
1136                 htot, hact, hfront, hsync, hback, hsync_pos ? '+' : '-',
1137                 vtot, vact, vfront1, vfront2, vsync, vback1, vback2, vsync_pos ? '+' : '-');
1138
1139        if (!timings)
1140                return 0;
1141
1142        timings->type = V4L2_DV_BT_656_1120;
1143        timings->bt.width = hact;
1144        timings->bt.hfrontporch = hfront;
1145        timings->bt.hsync = hsync;
1146        timings->bt.hbackporch = hback;
1147        timings->bt.height = vact;
1148        timings->bt.vfrontporch = vfront1;
1149        timings->bt.vsync = vsync;
1150        timings->bt.vbackporch = vback1;
1151        timings->bt.interlaced = interlaced ? V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1152        timings->bt.polarities = vsync_pos ? V4L2_DV_VSYNC_POS_POL : 0;
1153        timings->bt.polarities |= hsync_pos ? V4L2_DV_HSYNC_POS_POL : 0;
1154
1155        timings->bt.pixelclock = (u64)htot * vtot * 27000000;
1156        if (interlaced) {
1157                timings->bt.il_vfrontporch = vfront2;
1158                timings->bt.il_vsync = timings->bt.vsync;
1159                timings->bt.il_vbackporch = vback2;
1160                do_div(timings->bt.pixelclock, vper * 2 /* full frame */);
1161        } else {
1162                timings->bt.il_vfrontporch = 0;
1163                timings->bt.il_vsync = 0;
1164                timings->bt.il_vbackporch = 0;
1165                do_div(timings->bt.pixelclock, vper);
1166        }
1167        v4l2_find_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
1168                                 (u32)timings->bt.pixelclock / 500, NULL, NULL);
1169        v4l2_print_dv_timings(sd->name, "Detected format: ", timings, false);
1170        return 0;
1171}
1172
1173/* some sort of errata workaround for chip revision 0 (N1) */
1174static void tda1997x_reset_n1(struct tda1997x_state *state)
1175{
1176        struct v4l2_subdev *sd = &state->sd;
1177        u8 reg;
1178
1179        /* clear HDMI mode flag in BCAPS */
1180        io_write(sd, REG_CLK_CFG, CLK_CFG_SEL_ACLK_EN | CLK_CFG_SEL_ACLK);
1181        io_write(sd, REG_PON_OVR_EN, PON_EN);
1182        io_write(sd, REG_PON_CBIAS, PON_EN);
1183        io_write(sd, REG_PON_PLL, PON_EN);
1184
1185        reg = io_read(sd, REG_MODE_REC_CFG1);
1186        reg &= ~0x06;
1187        reg |= 0x02;
1188        io_write(sd, REG_MODE_REC_CFG1, reg);
1189        io_write(sd, REG_CLK_CFG, CLK_CFG_DIS);
1190        io_write(sd, REG_PON_OVR_EN, PON_DIS);
1191        reg = io_read(sd, REG_MODE_REC_CFG1);
1192        reg &= ~0x06;
1193        io_write(sd, REG_MODE_REC_CFG1, reg);
1194}
1195
1196/*
1197 * Activity detection must only be notified when stable_clk_x AND active_x
1198 * bits are set to 1. If only stable_clk_x bit is set to 1 but not
1199 * active_x, it means that the TMDS clock is not in the defined range
1200 * and activity detection must not be notified.
1201 */
1202static u8
1203tda1997x_read_activity_status_regs(struct v4l2_subdev *sd)
1204{
1205        u8 reg, status = 0;
1206
1207        /* Read CLK_A_STATUS register */
1208        reg = io_read(sd, REG_CLK_A_STATUS);
1209        /* ignore if not active */
1210        if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1211                reg &= ~MASK_CLK_STABLE;
1212        status |= ((reg & MASK_CLK_STABLE) >> 2);
1213
1214        /* Read CLK_B_STATUS register */
1215        reg = io_read(sd, REG_CLK_B_STATUS);
1216        /* ignore if not active */
1217        if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1218                reg &= ~MASK_CLK_STABLE;
1219        status |= ((reg & MASK_CLK_STABLE) >> 1);
1220
1221        /* Read the SUS_STATUS register */
1222        reg = io_read(sd, REG_SUS_STATUS);
1223
1224        /* If state = 5 => TMDS is locked */
1225        if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED)
1226                status |= MASK_SUS_STATE;
1227        else
1228                status &= ~MASK_SUS_STATE;
1229
1230        return status;
1231}
1232
1233static void
1234set_rgb_quantization_range(struct tda1997x_state *state)
1235{
1236        struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
1237
1238        state->colorimetry = v4l2_hdmi_rx_colorimetry(&state->avi_infoframe,
1239                                                      NULL,
1240                                                      state->timings.bt.height);
1241        /* If ycbcr_enc is V4L2_YCBCR_ENC_DEFAULT, we receive RGB */
1242        if (c->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) {
1243                switch (state->rgb_quantization_range) {
1244                case V4L2_DV_RGB_RANGE_LIMITED:
1245                        c->quantization = V4L2_QUANTIZATION_FULL_RANGE;
1246                        break;
1247                case V4L2_DV_RGB_RANGE_FULL:
1248                        c->quantization = V4L2_QUANTIZATION_LIM_RANGE;
1249                        break;
1250                }
1251        }
1252        v4l_dbg(1, debug, state->client,
1253                "colorspace=%d/%d colorimetry=%d range=%s content=%d\n",
1254                state->avi_infoframe.colorspace, c->colorspace,
1255                state->avi_infoframe.colorimetry,
1256                v4l2_quantization_names[c->quantization],
1257                state->avi_infoframe.content_type);
1258}
1259
1260/* parse an infoframe and do some sanity checks on it */
1261static unsigned int
1262tda1997x_parse_infoframe(struct tda1997x_state *state, u16 addr)
1263{
1264        struct v4l2_subdev *sd = &state->sd;
1265        union hdmi_infoframe frame;
1266        u8 buffer[40] = { 0 };
1267        u8 reg;
1268        int len, err;
1269
1270        /* read data */
1271        len = io_readn(sd, addr, sizeof(buffer), buffer);
1272        err = hdmi_infoframe_unpack(&frame, buffer, len);
1273        if (err) {
1274                v4l_err(state->client,
1275                        "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1276                        len, addr, buffer[0]);
1277                return err;
1278        }
1279        hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1280        switch (frame.any.type) {
1281        /* Audio InfoFrame: see HDMI spec 8.2.2 */
1282        case HDMI_INFOFRAME_TYPE_AUDIO:
1283                /* sample rate */
1284                switch (frame.audio.sample_frequency) {
1285                case HDMI_AUDIO_SAMPLE_FREQUENCY_32000:
1286                        state->audio_samplerate = 32000;
1287                        break;
1288                case HDMI_AUDIO_SAMPLE_FREQUENCY_44100:
1289                        state->audio_samplerate = 44100;
1290                        break;
1291                case HDMI_AUDIO_SAMPLE_FREQUENCY_48000:
1292                        state->audio_samplerate = 48000;
1293                        break;
1294                case HDMI_AUDIO_SAMPLE_FREQUENCY_88200:
1295                        state->audio_samplerate = 88200;
1296                        break;
1297                case HDMI_AUDIO_SAMPLE_FREQUENCY_96000:
1298                        state->audio_samplerate = 96000;
1299                        break;
1300                case HDMI_AUDIO_SAMPLE_FREQUENCY_176400:
1301                        state->audio_samplerate = 176400;
1302                        break;
1303                case HDMI_AUDIO_SAMPLE_FREQUENCY_192000:
1304                        state->audio_samplerate = 192000;
1305                        break;
1306                default:
1307                case HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM:
1308                        break;
1309                }
1310
1311                /* sample size */
1312                switch (frame.audio.sample_size) {
1313                case HDMI_AUDIO_SAMPLE_SIZE_16:
1314                        state->audio_samplesize = 16;
1315                        break;
1316                case HDMI_AUDIO_SAMPLE_SIZE_20:
1317                        state->audio_samplesize = 20;
1318                        break;
1319                case HDMI_AUDIO_SAMPLE_SIZE_24:
1320                        state->audio_samplesize = 24;
1321                        break;
1322                case HDMI_AUDIO_SAMPLE_SIZE_STREAM:
1323                default:
1324                        break;
1325                }
1326
1327                /* Channel Count */
1328                state->audio_channels = frame.audio.channels;
1329                if (frame.audio.channel_allocation &&
1330                    frame.audio.channel_allocation != state->audio_ch_alloc) {
1331                        /* use the channel assignment from the infoframe */
1332                        state->audio_ch_alloc = frame.audio.channel_allocation;
1333                        tda1997x_configure_audout(sd, state->audio_ch_alloc);
1334                        /* reset the audio FIFO */
1335                        tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
1336                }
1337                break;
1338
1339        /* Auxiliary Video information (AVI) InfoFrame: see HDMI spec 8.2.1 */
1340        case HDMI_INFOFRAME_TYPE_AVI:
1341                state->avi_infoframe = frame.avi;
1342                set_rgb_quantization_range(state);
1343
1344                /* configure upsampler: 0=bypass 1=repeatchroma 2=interpolate */
1345                reg = io_read(sd, REG_PIX_REPEAT);
1346                reg &= ~PIX_REPEAT_MASK_UP_SEL;
1347                if (frame.avi.colorspace == HDMI_COLORSPACE_YUV422)
1348                        reg |= (PIX_REPEAT_CHROMA << PIX_REPEAT_SHIFT);
1349                io_write(sd, REG_PIX_REPEAT, reg);
1350
1351                /* ConfigurePixelRepeater: repeat n-times each pixel */
1352                reg = io_read(sd, REG_PIX_REPEAT);
1353                reg &= ~PIX_REPEAT_MASK_REP;
1354                reg |= frame.avi.pixel_repeat;
1355                io_write(sd, REG_PIX_REPEAT, reg);
1356
1357                /* configure the receiver with the new colorspace */
1358                tda1997x_configure_csc(sd);
1359                break;
1360        default:
1361                break;
1362        }
1363        return 0;
1364}
1365
1366static void tda1997x_irq_sus(struct tda1997x_state *state, u8 *flags)
1367{
1368        struct v4l2_subdev *sd = &state->sd;
1369        u8 reg, source;
1370
1371        source = io_read(sd, REG_INT_FLG_CLR_SUS);
1372        io_write(sd, REG_INT_FLG_CLR_SUS, source);
1373
1374        if (source & MASK_MPT) {
1375                /* reset MTP in use flag if set */
1376                if (state->mptrw_in_progress)
1377                        state->mptrw_in_progress = 0;
1378        }
1379
1380        if (source & MASK_SUS_END) {
1381                /* reset audio FIFO */
1382                reg = io_read(sd, REG_HDMI_INFO_RST);
1383                reg |= MASK_SR_FIFO_FIFO_CTRL;
1384                io_write(sd, REG_HDMI_INFO_RST, reg);
1385                reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1386                io_write(sd, REG_HDMI_INFO_RST, reg);
1387
1388                /* reset HDMI flags */
1389                state->hdmi_status = 0;
1390        }
1391
1392        /* filter FMT interrupt based on SUS state */
1393        reg = io_read(sd, REG_SUS_STATUS);
1394        if (((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED)
1395           || (source & MASK_MPT)) {
1396                source &= ~MASK_FMT;
1397        }
1398
1399        if (source & (MASK_FMT | MASK_SUS_END)) {
1400                reg = io_read(sd, REG_SUS_STATUS);
1401                if ((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED) {
1402                        v4l_err(state->client, "BAD SUS STATUS\n");
1403                        return;
1404                }
1405                if (debug)
1406                        tda1997x_detect_std(state, NULL);
1407                /* notify user of change in resolution */
1408                v4l2_subdev_notify_event(&state->sd, &tda1997x_ev_fmt);
1409        }
1410}
1411
1412static void tda1997x_irq_ddc(struct tda1997x_state *state, u8 *flags)
1413{
1414        struct v4l2_subdev *sd = &state->sd;
1415        u8 source;
1416
1417        source = io_read(sd, REG_INT_FLG_CLR_DDC);
1418        io_write(sd, REG_INT_FLG_CLR_DDC, source);
1419        if (source & MASK_EDID_MTP) {
1420                /* reset MTP in use flag if set */
1421                if (state->mptrw_in_progress)
1422                        state->mptrw_in_progress = 0;
1423        }
1424
1425        /* Detection of +5V */
1426        if (source & MASK_DET_5V) {
1427                v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
1428                                 tda1997x_detect_tx_5v(sd));
1429        }
1430}
1431
1432static void tda1997x_irq_rate(struct tda1997x_state *state, u8 *flags)
1433{
1434        struct v4l2_subdev *sd = &state->sd;
1435        u8 reg, source;
1436
1437        u8 irq_status;
1438
1439        source = io_read(sd, REG_INT_FLG_CLR_RATE);
1440        io_write(sd, REG_INT_FLG_CLR_RATE, source);
1441
1442        /* read status regs */
1443        irq_status = tda1997x_read_activity_status_regs(sd);
1444
1445        /*
1446         * read clock status reg until INT_FLG_CLR_RATE is still 0
1447         * after the read to make sure its the last one
1448         */
1449        reg = source;
1450        while (reg != 0) {
1451                irq_status = tda1997x_read_activity_status_regs(sd);
1452                reg = io_read(sd, REG_INT_FLG_CLR_RATE);
1453                io_write(sd, REG_INT_FLG_CLR_RATE, reg);
1454                source |= reg;
1455        }
1456
1457        /* we only pay attention to stability change events */
1458        if (source & (MASK_RATE_A_ST | MASK_RATE_B_ST)) {
1459                int input = (source & MASK_RATE_A_ST)?0:1;
1460                u8 mask = 1<<input;
1461
1462                /* state change */
1463                if ((irq_status & mask) != (state->activity_status & mask)) {
1464                        /* activity lost */
1465                        if ((irq_status & mask) == 0) {
1466                                v4l_info(state->client,
1467                                         "HDMI-%c: Digital Activity Lost\n",
1468                                         input+'A');
1469
1470                                /* bypass up/down sampler and pixel repeater */
1471                                reg = io_read(sd, REG_PIX_REPEAT);
1472                                reg &= ~PIX_REPEAT_MASK_UP_SEL;
1473                                reg &= ~PIX_REPEAT_MASK_REP;
1474                                io_write(sd, REG_PIX_REPEAT, reg);
1475
1476                                if (state->chip_revision == 0)
1477                                        tda1997x_reset_n1(state);
1478
1479                                state->input_detect[input] = 0;
1480                                v4l2_subdev_notify_event(sd, &tda1997x_ev_fmt);
1481                        }
1482
1483                        /* activity detected */
1484                        else {
1485                                v4l_info(state->client,
1486                                         "HDMI-%c: Digital Activity Detected\n",
1487                                         input+'A');
1488                                state->input_detect[input] = 1;
1489                        }
1490
1491                        /* hold onto current state */
1492                        state->activity_status = (irq_status & mask);
1493                }
1494        }
1495}
1496
1497static void tda1997x_irq_info(struct tda1997x_state *state, u8 *flags)
1498{
1499        struct v4l2_subdev *sd = &state->sd;
1500        u8 source;
1501
1502        source = io_read(sd, REG_INT_FLG_CLR_INFO);
1503        io_write(sd, REG_INT_FLG_CLR_INFO, source);
1504
1505        /* Audio infoframe */
1506        if (source & MASK_AUD_IF) {
1507                tda1997x_parse_infoframe(state, AUD_IF);
1508                source &= ~MASK_AUD_IF;
1509        }
1510
1511        /* Source Product Descriptor infoframe change */
1512        if (source & MASK_SPD_IF) {
1513                tda1997x_parse_infoframe(state, SPD_IF);
1514                source &= ~MASK_SPD_IF;
1515        }
1516
1517        /* Auxiliary Video Information infoframe */
1518        if (source & MASK_AVI_IF) {
1519                tda1997x_parse_infoframe(state, AVI_IF);
1520                source &= ~MASK_AVI_IF;
1521        }
1522}
1523
1524static void tda1997x_irq_audio(struct tda1997x_state *state, u8 *flags)
1525{
1526        struct v4l2_subdev *sd = &state->sd;
1527        u8 reg, source;
1528
1529        source = io_read(sd, REG_INT_FLG_CLR_AUDIO);
1530        io_write(sd, REG_INT_FLG_CLR_AUDIO, source);
1531
1532        /* reset audio FIFO on FIFO pointer error or audio mute */
1533        if (source & MASK_ERROR_FIFO_PT ||
1534            source & MASK_MUTE_FLG) {
1535                /* audio reset audio FIFO */
1536                reg = io_read(sd, REG_SUS_STATUS);
1537                if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED) {
1538                        reg = io_read(sd, REG_HDMI_INFO_RST);
1539                        reg |= MASK_SR_FIFO_FIFO_CTRL;
1540                        io_write(sd, REG_HDMI_INFO_RST, reg);
1541                        reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1542                        io_write(sd, REG_HDMI_INFO_RST, reg);
1543                        /* reset channel status IT if present */
1544                        source &= ~(MASK_CH_STATE);
1545                }
1546        }
1547        if (source & MASK_AUDIO_FREQ_FLG) {
1548                static const int freq[] = {
1549                        0, 32000, 44100, 48000, 88200, 96000, 176400, 192000
1550                };
1551
1552                reg = io_read(sd, REG_AUDIO_FREQ);
1553                state->audio_samplerate = freq[reg & 7];
1554                v4l_info(state->client, "Audio Frequency Change: %dHz\n",
1555                         state->audio_samplerate);
1556        }
1557        if (source & MASK_AUDIO_FLG) {
1558                reg = io_read(sd, REG_AUDIO_FLAGS);
1559                if (reg & BIT(AUDCFG_TYPE_DST))
1560                        state->audio_type = AUDCFG_TYPE_DST;
1561                if (reg & BIT(AUDCFG_TYPE_OBA))
1562                        state->audio_type = AUDCFG_TYPE_OBA;
1563                if (reg & BIT(AUDCFG_TYPE_HBR))
1564                        state->audio_type = AUDCFG_TYPE_HBR;
1565                if (reg & BIT(AUDCFG_TYPE_PCM))
1566                        state->audio_type = AUDCFG_TYPE_PCM;
1567                v4l_info(state->client, "Audio Type: %s\n",
1568                         audtype_names[state->audio_type]);
1569        }
1570}
1571
1572static void tda1997x_irq_hdcp(struct tda1997x_state *state, u8 *flags)
1573{
1574        struct v4l2_subdev *sd = &state->sd;
1575        u8 reg, source;
1576
1577        source = io_read(sd, REG_INT_FLG_CLR_HDCP);
1578        io_write(sd, REG_INT_FLG_CLR_HDCP, source);
1579
1580        /* reset MTP in use flag if set */
1581        if (source & MASK_HDCP_MTP)
1582                state->mptrw_in_progress = 0;
1583        if (source & MASK_STATE_C5) {
1584                /* REPEATER: mask AUDIO and IF irqs to avoid IF during auth */
1585                reg = io_read(sd, REG_INT_MASK_TOP);
1586                reg &= ~(INTERRUPT_AUDIO | INTERRUPT_INFO);
1587                io_write(sd, REG_INT_MASK_TOP, reg);
1588                *flags &= (INTERRUPT_AUDIO | INTERRUPT_INFO);
1589        }
1590}
1591
1592static irqreturn_t tda1997x_isr_thread(int irq, void *d)
1593{
1594        struct tda1997x_state *state = d;
1595        struct v4l2_subdev *sd = &state->sd;
1596        u8 flags;
1597
1598        mutex_lock(&state->lock);
1599        do {
1600                /* read interrupt flags */
1601                flags = io_read(sd, REG_INT_FLG_CLR_TOP);
1602                if (flags == 0)
1603                        break;
1604
1605                /* SUS interrupt source (Input activity events) */
1606                if (flags & INTERRUPT_SUS)
1607                        tda1997x_irq_sus(state, &flags);
1608                /* DDC interrupt source (Display Data Channel) */
1609                else if (flags & INTERRUPT_DDC)
1610                        tda1997x_irq_ddc(state, &flags);
1611                /* RATE interrupt source (Digital Input activity) */
1612                else if (flags & INTERRUPT_RATE)
1613                        tda1997x_irq_rate(state, &flags);
1614                /* Infoframe change interrupt */
1615                else if (flags & INTERRUPT_INFO)
1616                        tda1997x_irq_info(state, &flags);
1617                /* Audio interrupt source:
1618                 *   freq change, DST,OBA,HBR,ASP flags, mute, FIFO err
1619                 */
1620                else if (flags & INTERRUPT_AUDIO)
1621                        tda1997x_irq_audio(state, &flags);
1622                /* HDCP interrupt source (content protection) */
1623                if (flags & INTERRUPT_HDCP)
1624                        tda1997x_irq_hdcp(state, &flags);
1625        } while (flags != 0);
1626        mutex_unlock(&state->lock);
1627
1628        return IRQ_HANDLED;
1629}
1630
1631/* -----------------------------------------------------------------------------
1632 * v4l2_subdev_video_ops
1633 */
1634
1635static int
1636tda1997x_g_input_status(struct v4l2_subdev *sd, u32 *status)
1637{
1638        struct tda1997x_state *state = to_state(sd);
1639        u32 vper;
1640        u16 hper;
1641        u16 hsper;
1642
1643        mutex_lock(&state->lock);
1644        vper = io_read24(sd, REG_V_PER) & MASK_VPER;
1645        hper = io_read16(sd, REG_H_PER) & MASK_HPER;
1646        hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
1647        /*
1648         * The tda1997x supports A/B inputs but only a single output.
1649         * The irq handler monitors for timing changes on both inputs and
1650         * sets the input_detect array to 0|1 depending on signal presence.
1651         * I believe selection of A vs B is automatic.
1652         *
1653         * The vper/hper/hsper registers provide the frame period, line period
1654         * and horiz sync period (units of MCLK clock cycles (27MHz)) and
1655         * testing shows these values to be random if no signal is present
1656         * or locked.
1657         */
1658        v4l2_dbg(1, debug, sd, "inputs:%d/%d timings:%d/%d/%d\n",
1659                 state->input_detect[0], state->input_detect[1],
1660                 vper, hper, hsper);
1661        if (!state->input_detect[0] && !state->input_detect[1])
1662                *status = V4L2_IN_ST_NO_SIGNAL;
1663        else if (!vper || !hper || !hsper)
1664                *status = V4L2_IN_ST_NO_SYNC;
1665        else
1666                *status = 0;
1667        mutex_unlock(&state->lock);
1668
1669        return 0;
1670};
1671
1672static int tda1997x_s_dv_timings(struct v4l2_subdev *sd,
1673                                struct v4l2_dv_timings *timings)
1674{
1675        struct tda1997x_state *state = to_state(sd);
1676
1677        v4l_dbg(1, debug, state->client, "%s\n", __func__);
1678
1679        if (v4l2_match_dv_timings(&state->timings, timings, 0, false))
1680                return 0; /* no changes */
1681
1682        if (!v4l2_valid_dv_timings(timings, &tda1997x_dv_timings_cap,
1683                                   NULL, NULL))
1684                return -ERANGE;
1685
1686        mutex_lock(&state->lock);
1687        state->timings = *timings;
1688        /* setup frame detection window and VHREF timing generator */
1689        tda1997x_configure_vhref(sd);
1690        /* configure colorspace conversion */
1691        tda1997x_configure_csc(sd);
1692        mutex_unlock(&state->lock);
1693
1694        return 0;
1695}
1696
1697static int tda1997x_g_dv_timings(struct v4l2_subdev *sd,
1698                                 struct v4l2_dv_timings *timings)
1699{
1700        struct tda1997x_state *state = to_state(sd);
1701
1702        v4l_dbg(1, debug, state->client, "%s\n", __func__);
1703        mutex_lock(&state->lock);
1704        *timings = state->timings;
1705        mutex_unlock(&state->lock);
1706
1707        return 0;
1708}
1709
1710static int tda1997x_query_dv_timings(struct v4l2_subdev *sd,
1711                                     struct v4l2_dv_timings *timings)
1712{
1713        struct tda1997x_state *state = to_state(sd);
1714        int ret;
1715
1716        v4l_dbg(1, debug, state->client, "%s\n", __func__);
1717        memset(timings, 0, sizeof(struct v4l2_dv_timings));
1718        mutex_lock(&state->lock);
1719        ret = tda1997x_detect_std(state, timings);
1720        mutex_unlock(&state->lock);
1721
1722        return ret;
1723}
1724
1725static const struct v4l2_subdev_video_ops tda1997x_video_ops = {
1726        .g_input_status = tda1997x_g_input_status,
1727        .s_dv_timings = tda1997x_s_dv_timings,
1728        .g_dv_timings = tda1997x_g_dv_timings,
1729        .query_dv_timings = tda1997x_query_dv_timings,
1730};
1731
1732
1733/* -----------------------------------------------------------------------------
1734 * v4l2_subdev_pad_ops
1735 */
1736
1737static int tda1997x_init_cfg(struct v4l2_subdev *sd,
1738                             struct v4l2_subdev_state *sd_state)
1739{
1740        struct tda1997x_state *state = to_state(sd);
1741        struct v4l2_mbus_framefmt *mf;
1742
1743        mf = v4l2_subdev_get_try_format(sd, sd_state, 0);
1744        mf->code = state->mbus_codes[0];
1745
1746        return 0;
1747}
1748
1749static int tda1997x_enum_mbus_code(struct v4l2_subdev *sd,
1750                                  struct v4l2_subdev_state *sd_state,
1751                                  struct v4l2_subdev_mbus_code_enum *code)
1752{
1753        struct tda1997x_state *state = to_state(sd);
1754
1755        v4l_dbg(1, debug, state->client, "%s %d\n", __func__, code->index);
1756        if (code->index >= ARRAY_SIZE(state->mbus_codes))
1757                return -EINVAL;
1758
1759        if (!state->mbus_codes[code->index])
1760                return -EINVAL;
1761
1762        code->code = state->mbus_codes[code->index];
1763
1764        return 0;
1765}
1766
1767static void tda1997x_fill_format(struct tda1997x_state *state,
1768                                 struct v4l2_mbus_framefmt *format)
1769{
1770        const struct v4l2_bt_timings *bt;
1771
1772        memset(format, 0, sizeof(*format));
1773        bt = &state->timings.bt;
1774        format->width = bt->width;
1775        format->height = bt->height;
1776        format->colorspace = state->colorimetry.colorspace;
1777        format->field = (bt->interlaced) ?
1778                V4L2_FIELD_SEQ_TB : V4L2_FIELD_NONE;
1779}
1780
1781static int tda1997x_get_format(struct v4l2_subdev *sd,
1782                               struct v4l2_subdev_state *sd_state,
1783                               struct v4l2_subdev_format *format)
1784{
1785        struct tda1997x_state *state = to_state(sd);
1786
1787        v4l_dbg(1, debug, state->client, "%s pad=%d which=%d\n",
1788                __func__, format->pad, format->which);
1789
1790        tda1997x_fill_format(state, &format->format);
1791
1792        if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1793                struct v4l2_mbus_framefmt *fmt;
1794
1795                fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1796                format->format.code = fmt->code;
1797        } else
1798                format->format.code = state->mbus_code;
1799
1800        return 0;
1801}
1802
1803static int tda1997x_set_format(struct v4l2_subdev *sd,
1804                               struct v4l2_subdev_state *sd_state,
1805                               struct v4l2_subdev_format *format)
1806{
1807        struct tda1997x_state *state = to_state(sd);
1808        u32 code = 0;
1809        int i;
1810
1811        v4l_dbg(1, debug, state->client, "%s pad=%d which=%d fmt=0x%x\n",
1812                __func__, format->pad, format->which, format->format.code);
1813
1814        for (i = 0; i < ARRAY_SIZE(state->mbus_codes); i++) {
1815                if (format->format.code == state->mbus_codes[i]) {
1816                        code = state->mbus_codes[i];
1817                        break;
1818                }
1819        }
1820        if (!code)
1821                code = state->mbus_codes[0];
1822
1823        tda1997x_fill_format(state, &format->format);
1824        format->format.code = code;
1825
1826        if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1827                struct v4l2_mbus_framefmt *fmt;
1828
1829                fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1830                *fmt = format->format;
1831        } else {
1832                int ret = tda1997x_setup_format(state, format->format.code);
1833
1834                if (ret)
1835                        return ret;
1836                /* mbus_code has changed - re-configure csc/vidout */
1837                tda1997x_configure_csc(sd);
1838                tda1997x_configure_vidout(state);
1839        }
1840
1841        return 0;
1842}
1843
1844static int tda1997x_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1845{
1846        struct tda1997x_state *state = to_state(sd);
1847
1848        v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1849        memset(edid->reserved, 0, sizeof(edid->reserved));
1850
1851        if (edid->start_block == 0 && edid->blocks == 0) {
1852                edid->blocks = state->edid.blocks;
1853                return 0;
1854        }
1855
1856        if (!state->edid.present)
1857                return -ENODATA;
1858
1859        if (edid->start_block >= state->edid.blocks)
1860                return -EINVAL;
1861
1862        if (edid->start_block + edid->blocks > state->edid.blocks)
1863                edid->blocks = state->edid.blocks - edid->start_block;
1864
1865        memcpy(edid->edid, state->edid.edid + edid->start_block * 128,
1866               edid->blocks * 128);
1867
1868        return 0;
1869}
1870
1871static int tda1997x_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1872{
1873        struct tda1997x_state *state = to_state(sd);
1874        int i;
1875
1876        v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1877        memset(edid->reserved, 0, sizeof(edid->reserved));
1878
1879        if (edid->start_block != 0)
1880                return -EINVAL;
1881
1882        if (edid->blocks == 0) {
1883                state->edid.blocks = 0;
1884                state->edid.present = 0;
1885                tda1997x_disable_edid(sd);
1886                return 0;
1887        }
1888
1889        if (edid->blocks > 2) {
1890                edid->blocks = 2;
1891                return -E2BIG;
1892        }
1893
1894        tda1997x_disable_edid(sd);
1895
1896        /* write base EDID */
1897        for (i = 0; i < 128; i++)
1898                io_write(sd, REG_EDID_IN_BYTE0 + i, edid->edid[i]);
1899
1900        /* write CEA Extension */
1901        for (i = 0; i < 128; i++)
1902                io_write(sd, REG_EDID_IN_BYTE128 + i, edid->edid[i+128]);
1903
1904        /* store state */
1905        memcpy(state->edid.edid, edid->edid, 256);
1906        state->edid.blocks = edid->blocks;
1907
1908        tda1997x_enable_edid(sd);
1909
1910        return 0;
1911}
1912
1913static int tda1997x_get_dv_timings_cap(struct v4l2_subdev *sd,
1914                                       struct v4l2_dv_timings_cap *cap)
1915{
1916        *cap = tda1997x_dv_timings_cap;
1917        return 0;
1918}
1919
1920static int tda1997x_enum_dv_timings(struct v4l2_subdev *sd,
1921                                    struct v4l2_enum_dv_timings *timings)
1922{
1923        return v4l2_enum_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
1924                                        NULL, NULL);
1925}
1926
1927static const struct v4l2_subdev_pad_ops tda1997x_pad_ops = {
1928        .init_cfg = tda1997x_init_cfg,
1929        .enum_mbus_code = tda1997x_enum_mbus_code,
1930        .get_fmt = tda1997x_get_format,
1931        .set_fmt = tda1997x_set_format,
1932        .get_edid = tda1997x_get_edid,
1933        .set_edid = tda1997x_set_edid,
1934        .dv_timings_cap = tda1997x_get_dv_timings_cap,
1935        .enum_dv_timings = tda1997x_enum_dv_timings,
1936};
1937
1938/* -----------------------------------------------------------------------------
1939 * v4l2_subdev_core_ops
1940 */
1941
1942static int tda1997x_log_infoframe(struct v4l2_subdev *sd, int addr)
1943{
1944        struct tda1997x_state *state = to_state(sd);
1945        union hdmi_infoframe frame;
1946        u8 buffer[40] = { 0 };
1947        int len, err;
1948
1949        /* read data */
1950        len = io_readn(sd, addr, sizeof(buffer), buffer);
1951        v4l2_dbg(1, debug, sd, "infoframe: addr=%d len=%d\n", addr, len);
1952        err = hdmi_infoframe_unpack(&frame, buffer, len);
1953        if (err) {
1954                v4l_err(state->client,
1955                        "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1956                        len, addr, buffer[0]);
1957                return err;
1958        }
1959        hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1960
1961        return 0;
1962}
1963
1964static int tda1997x_log_status(struct v4l2_subdev *sd)
1965{
1966        struct tda1997x_state *state = to_state(sd);
1967        struct v4l2_dv_timings timings;
1968        struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
1969
1970        v4l2_info(sd, "-----Chip status-----\n");
1971        v4l2_info(sd, "Chip: %s N%d\n", state->info->name,
1972                  state->chip_revision + 1);
1973        v4l2_info(sd, "EDID Enabled: %s\n", state->edid.present ? "yes" : "no");
1974
1975        v4l2_info(sd, "-----Signal status-----\n");
1976        v4l2_info(sd, "Cable detected (+5V power): %s\n",
1977                  tda1997x_detect_tx_5v(sd) ? "yes" : "no");
1978        v4l2_info(sd, "HPD detected: %s\n",
1979                  tda1997x_detect_tx_hpd(sd) ? "yes" : "no");
1980
1981        v4l2_info(sd, "-----Video Timings-----\n");
1982        switch (tda1997x_detect_std(state, &timings)) {
1983        case -ENOLINK:
1984                v4l2_info(sd, "No video detected\n");
1985                break;
1986        case -ERANGE:
1987                v4l2_info(sd, "Invalid signal detected\n");
1988                break;
1989        }
1990        v4l2_print_dv_timings(sd->name, "Configured format: ",
1991                              &state->timings, true);
1992
1993        v4l2_info(sd, "-----Color space-----\n");
1994        v4l2_info(sd, "Input color space: %s %s %s",
1995                  hdmi_colorspace_names[avi->colorspace],
1996                  (avi->colorspace == HDMI_COLORSPACE_RGB) ? "" :
1997                        hdmi_colorimetry_names[avi->colorimetry],
1998                  v4l2_quantization_names[state->colorimetry.quantization]);
1999        v4l2_info(sd, "Output color space: %s",
2000                  vidfmt_names[state->vid_fmt]);
2001        v4l2_info(sd, "Color space conversion: %s", state->conv ?
2002                  state->conv->name : "None");
2003
2004        v4l2_info(sd, "-----Audio-----\n");
2005        if (state->audio_channels) {
2006                v4l2_info(sd, "audio: %dch %dHz\n", state->audio_channels,
2007                          state->audio_samplerate);
2008        } else {
2009                v4l2_info(sd, "audio: none\n");
2010        }
2011
2012        v4l2_info(sd, "-----Infoframes-----\n");
2013        tda1997x_log_infoframe(sd, AUD_IF);
2014        tda1997x_log_infoframe(sd, SPD_IF);
2015        tda1997x_log_infoframe(sd, AVI_IF);
2016
2017        return 0;
2018}
2019
2020static int tda1997x_subscribe_event(struct v4l2_subdev *sd,
2021                                    struct v4l2_fh *fh,
2022                                    struct v4l2_event_subscription *sub)
2023{
2024        switch (sub->type) {
2025        case V4L2_EVENT_SOURCE_CHANGE:
2026                return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2027        case V4L2_EVENT_CTRL:
2028                return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2029        default:
2030                return -EINVAL;
2031        }
2032}
2033
2034static const struct v4l2_subdev_core_ops tda1997x_core_ops = {
2035        .log_status = tda1997x_log_status,
2036        .subscribe_event = tda1997x_subscribe_event,
2037        .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2038};
2039
2040/* -----------------------------------------------------------------------------
2041 * v4l2_subdev_ops
2042 */
2043
2044static const struct v4l2_subdev_ops tda1997x_subdev_ops = {
2045        .core = &tda1997x_core_ops,
2046        .video = &tda1997x_video_ops,
2047        .pad = &tda1997x_pad_ops,
2048};
2049
2050/* -----------------------------------------------------------------------------
2051 * v4l2_controls
2052 */
2053
2054static int tda1997x_s_ctrl(struct v4l2_ctrl *ctrl)
2055{
2056        struct v4l2_subdev *sd = to_sd(ctrl);
2057        struct tda1997x_state *state = to_state(sd);
2058
2059        switch (ctrl->id) {
2060        /* allow overriding the default RGB quantization range */
2061        case V4L2_CID_DV_RX_RGB_RANGE:
2062                state->rgb_quantization_range = ctrl->val;
2063                set_rgb_quantization_range(state);
2064                tda1997x_configure_csc(sd);
2065                return 0;
2066        }
2067
2068        return -EINVAL;
2069};
2070
2071static int tda1997x_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2072{
2073        struct v4l2_subdev *sd = to_sd(ctrl);
2074        struct tda1997x_state *state = to_state(sd);
2075
2076        if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
2077                ctrl->val = state->avi_infoframe.content_type;
2078                return 0;
2079        }
2080        return -EINVAL;
2081};
2082
2083static const struct v4l2_ctrl_ops tda1997x_ctrl_ops = {
2084        .s_ctrl = tda1997x_s_ctrl,
2085        .g_volatile_ctrl = tda1997x_g_volatile_ctrl,
2086};
2087
2088static int tda1997x_core_init(struct v4l2_subdev *sd)
2089{
2090        struct tda1997x_state *state = to_state(sd);
2091        struct tda1997x_platform_data *pdata = &state->pdata;
2092        u8 reg;
2093        int i;
2094
2095        /* disable HPD */
2096        io_write(sd, REG_HPD_AUTO_CTRL, HPD_AUTO_HPD_UNSEL);
2097        if (state->chip_revision == 0) {
2098                io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_DIS_HDCP | MAN_RST_HDCP);
2099                io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2100        }
2101
2102        /* reset infoframe at end of start-up-sequencer */
2103        io_write(sd, REG_SUS_SET_RGB2, 0x06);
2104        io_write(sd, REG_SUS_SET_RGB3, 0x06);
2105
2106        /* Enable TMDS pull-ups */
2107        io_write(sd, REG_RT_MAN_CTRL, RT_MAN_CTRL_RT |
2108                 RT_MAN_CTRL_RT_B | RT_MAN_CTRL_RT_A);
2109
2110        /* enable sync measurement timing */
2111        tda1997x_cec_write(sd, REG_PWR_CONTROL & 0xff, 0x04);
2112        /* adjust CEC clock divider */
2113        tda1997x_cec_write(sd, REG_OSC_DIVIDER & 0xff, 0x03);
2114        tda1997x_cec_write(sd, REG_EN_OSC_PERIOD_LSB & 0xff, 0xa0);
2115        io_write(sd, REG_TIMER_D, 0x54);
2116        /* enable power switch */
2117        reg = tda1997x_cec_read(sd, REG_CONTROL & 0xff);
2118        reg |= 0x20;
2119        tda1997x_cec_write(sd, REG_CONTROL & 0xff, reg);
2120        mdelay(50);
2121
2122        /* read the chip version */
2123        reg = io_read(sd, REG_VERSION);
2124        /* get the chip configuration */
2125        reg = io_read(sd, REG_CMTP_REG10);
2126
2127        /* enable interrupts we care about */
2128        io_write(sd, REG_INT_MASK_TOP,
2129                 INTERRUPT_HDCP | INTERRUPT_AUDIO | INTERRUPT_INFO |
2130                 INTERRUPT_RATE | INTERRUPT_SUS);
2131        /* config_mtp,fmt,sus_end,sus_st */
2132        io_write(sd, REG_INT_MASK_SUS, MASK_MPT | MASK_FMT | MASK_SUS_END);
2133        /* rate stability change for inputs A/B */
2134        io_write(sd, REG_INT_MASK_RATE, MASK_RATE_B_ST | MASK_RATE_A_ST);
2135        /* aud,spd,avi*/
2136        io_write(sd, REG_INT_MASK_INFO,
2137                 MASK_AUD_IF | MASK_SPD_IF | MASK_AVI_IF);
2138        /* audio_freq,audio_flg,mute_flg,fifo_err */
2139        io_write(sd, REG_INT_MASK_AUDIO,
2140                 MASK_AUDIO_FREQ_FLG | MASK_AUDIO_FLG | MASK_MUTE_FLG |
2141                 MASK_ERROR_FIFO_PT);
2142        /* HDCP C5 state reached */
2143        io_write(sd, REG_INT_MASK_HDCP, MASK_STATE_C5);
2144        /* 5V detect and HDP pulse end */
2145        io_write(sd, REG_INT_MASK_DDC, MASK_DET_5V);
2146        /* don't care about AFE/MODE */
2147        io_write(sd, REG_INT_MASK_AFE, 0);
2148        io_write(sd, REG_INT_MASK_MODE, 0);
2149
2150        /* clear all interrupts */
2151        io_write(sd, REG_INT_FLG_CLR_TOP, 0xff);
2152        io_write(sd, REG_INT_FLG_CLR_SUS, 0xff);
2153        io_write(sd, REG_INT_FLG_CLR_DDC, 0xff);
2154        io_write(sd, REG_INT_FLG_CLR_RATE, 0xff);
2155        io_write(sd, REG_INT_FLG_CLR_MODE, 0xff);
2156        io_write(sd, REG_INT_FLG_CLR_INFO, 0xff);
2157        io_write(sd, REG_INT_FLG_CLR_AUDIO, 0xff);
2158        io_write(sd, REG_INT_FLG_CLR_HDCP, 0xff);
2159        io_write(sd, REG_INT_FLG_CLR_AFE, 0xff);
2160
2161        /* init TMDS equalizer */
2162        if (state->chip_revision == 0)
2163                io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2164        io_write24(sd, REG_CLK_MIN_RATE, CLK_MIN_RATE);
2165        io_write24(sd, REG_CLK_MAX_RATE, CLK_MAX_RATE);
2166        if (state->chip_revision == 0)
2167                io_write(sd, REG_WDL_CFG, WDL_CFG_VAL);
2168        /* DC filter */
2169        io_write(sd, REG_DEEP_COLOR_CTRL, DC_FILTER_VAL);
2170        /* disable test pattern */
2171        io_write(sd, REG_SVC_MODE, 0x00);
2172        /* update HDMI INFO CTRL */
2173        io_write(sd, REG_INFO_CTRL, 0xff);
2174        /* write HDMI INFO EXCEED value */
2175        io_write(sd, REG_INFO_EXCEED, 3);
2176
2177        if (state->chip_revision == 0)
2178                tda1997x_reset_n1(state);
2179
2180        /*
2181         * No HDCP acknowledge when HDCP is disabled
2182         * and reset SUS to force format detection
2183         */
2184        tda1997x_hdmi_info_reset(sd, NACK_HDCP, true);
2185
2186        /* Set HPD low */
2187        tda1997x_manual_hpd(sd, HPD_LOW_BP);
2188
2189        /* Configure receiver capabilities */
2190        io_write(sd, REG_HDCP_BCAPS, HDCP_HDMI | HDCP_FAST_REAUTH);
2191
2192        /* Configure HDMI: Auto HDCP mode, packet controlled mute */
2193        reg = HDMI_CTRL_MUTE_AUTO << HDMI_CTRL_MUTE_SHIFT;
2194        reg |= HDMI_CTRL_HDCP_AUTO << HDMI_CTRL_HDCP_SHIFT;
2195        io_write(sd, REG_HDMI_CTRL, reg);
2196
2197        /* reset start-up-sequencer to force format detection */
2198        tda1997x_hdmi_info_reset(sd, 0, true);
2199
2200        /* disable matrix conversion */
2201        reg = io_read(sd, REG_VDP_CTRL);
2202        reg |= VDP_CTRL_MATRIX_BP;
2203        io_write(sd, REG_VDP_CTRL, reg);
2204
2205        /* set video output mode */
2206        tda1997x_configure_vidout(state);
2207
2208        /* configure video output port */
2209        for (i = 0; i < 9; i++) {
2210                v4l_dbg(1, debug, state->client, "vidout_cfg[%d]=0x%02x\n", i,
2211                        pdata->vidout_port_cfg[i]);
2212                io_write(sd, REG_VP35_32_CTRL + i, pdata->vidout_port_cfg[i]);
2213        }
2214
2215        /* configure audio output port */
2216        tda1997x_configure_audout(sd, 0);
2217
2218        /* configure audio clock freq */
2219        switch (pdata->audout_mclk_fs) {
2220        case 512:
2221                reg = AUDIO_CLOCK_SEL_512FS;
2222                break;
2223        case 256:
2224                reg = AUDIO_CLOCK_SEL_256FS;
2225                break;
2226        case 128:
2227                reg = AUDIO_CLOCK_SEL_128FS;
2228                break;
2229        case 64:
2230                reg = AUDIO_CLOCK_SEL_64FS;
2231                break;
2232        case 32:
2233                reg = AUDIO_CLOCK_SEL_32FS;
2234                break;
2235        default:
2236                reg = AUDIO_CLOCK_SEL_16FS;
2237                break;
2238        }
2239        io_write(sd, REG_AUDIO_CLOCK, reg);
2240
2241        /* reset advanced infoframes (ISRC1/ISRC2/ACP) */
2242        tda1997x_hdmi_info_reset(sd, RESET_AI, false);
2243        /* reset infoframe */
2244        tda1997x_hdmi_info_reset(sd, RESET_IF, false);
2245        /* reset audio infoframes */
2246        tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
2247        /* reset gamut */
2248        tda1997x_hdmi_info_reset(sd, RESET_GAMUT, false);
2249
2250        /* get initial HDMI status */
2251        state->hdmi_status = io_read(sd, REG_HDMI_FLAGS);
2252
2253        io_write(sd, REG_EDID_ENABLE, EDID_ENABLE_A_EN | EDID_ENABLE_B_EN);
2254        return 0;
2255}
2256
2257static int tda1997x_set_power(struct tda1997x_state *state, bool on)
2258{
2259        int ret = 0;
2260
2261        if (on) {
2262                ret = regulator_bulk_enable(TDA1997X_NUM_SUPPLIES,
2263                                             state->supplies);
2264                msleep(300);
2265        } else {
2266                ret = regulator_bulk_disable(TDA1997X_NUM_SUPPLIES,
2267                                             state->supplies);
2268        }
2269
2270        return ret;
2271}
2272
2273static const struct i2c_device_id tda1997x_i2c_id[] = {
2274        {"tda19971", (kernel_ulong_t)&tda1997x_chip_info[TDA19971]},
2275        {"tda19973", (kernel_ulong_t)&tda1997x_chip_info[TDA19973]},
2276        { },
2277};
2278MODULE_DEVICE_TABLE(i2c, tda1997x_i2c_id);
2279
2280static const struct of_device_id tda1997x_of_id[] __maybe_unused = {
2281        { .compatible = "nxp,tda19971", .data = &tda1997x_chip_info[TDA19971] },
2282        { .compatible = "nxp,tda19973", .data = &tda1997x_chip_info[TDA19973] },
2283        { },
2284};
2285MODULE_DEVICE_TABLE(of, tda1997x_of_id);
2286
2287static int tda1997x_parse_dt(struct tda1997x_state *state)
2288{
2289        struct tda1997x_platform_data *pdata = &state->pdata;
2290        struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
2291        struct device_node *ep;
2292        struct device_node *np;
2293        unsigned int flags;
2294        const char *str;
2295        int ret;
2296        u32 v;
2297
2298        /*
2299         * setup default values:
2300         * - HREF: active high from start to end of row
2301         * - VS: Vertical Sync active high at beginning of frame
2302         * - DE: Active high when data valid
2303         * - A_CLK: 128*Fs
2304         */
2305        pdata->vidout_sel_hs = HS_HREF_SEL_HREF_VHREF;
2306        pdata->vidout_sel_vs = VS_VREF_SEL_VREF_HDMI;
2307        pdata->vidout_sel_de = DE_FREF_SEL_DE_VHREF;
2308
2309        np = state->client->dev.of_node;
2310        ep = of_graph_get_next_endpoint(np, NULL);
2311        if (!ep)
2312                return -EINVAL;
2313
2314        ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &bus_cfg);
2315        if (ret) {
2316                of_node_put(ep);
2317                return ret;
2318        }
2319        of_node_put(ep);
2320        pdata->vidout_bus_type = bus_cfg.bus_type;
2321
2322        /* polarity of HS/VS/DE */
2323        flags = bus_cfg.bus.parallel.flags;
2324        if (flags & V4L2_MBUS_HSYNC_ACTIVE_LOW)
2325                pdata->vidout_inv_hs = 1;
2326        if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
2327                pdata->vidout_inv_vs = 1;
2328        if (flags & V4L2_MBUS_DATA_ACTIVE_LOW)
2329                pdata->vidout_inv_de = 1;
2330        pdata->vidout_bus_width = bus_cfg.bus.parallel.bus_width;
2331
2332        /* video output port config */
2333        ret = of_property_count_u32_elems(np, "nxp,vidout-portcfg");
2334        if (ret > 0) {
2335                u32 reg, val, i;
2336
2337                for (i = 0; i < ret / 2 && i < 9; i++) {
2338                        of_property_read_u32_index(np, "nxp,vidout-portcfg",
2339                                                   i * 2, &reg);
2340                        of_property_read_u32_index(np, "nxp,vidout-portcfg",
2341                                                   i * 2 + 1, &val);
2342                        if (reg < 9)
2343                                pdata->vidout_port_cfg[reg] = val;
2344                }
2345        } else {
2346                v4l_err(state->client, "nxp,vidout-portcfg missing\n");
2347                return -EINVAL;
2348        }
2349
2350        /* default to channel layout dictated by packet header */
2351        pdata->audout_layoutauto = true;
2352
2353        pdata->audout_format = AUDFMT_TYPE_DISABLED;
2354        if (!of_property_read_string(np, "nxp,audout-format", &str)) {
2355                if (strcmp(str, "i2s") == 0)
2356                        pdata->audout_format = AUDFMT_TYPE_I2S;
2357                else if (strcmp(str, "spdif") == 0)
2358                        pdata->audout_format = AUDFMT_TYPE_SPDIF;
2359                else {
2360                        v4l_err(state->client, "nxp,audout-format invalid\n");
2361                        return -EINVAL;
2362                }
2363                if (!of_property_read_u32(np, "nxp,audout-layout", &v)) {
2364                        switch (v) {
2365                        case 0:
2366                        case 1:
2367                                break;
2368                        default:
2369                                v4l_err(state->client,
2370                                        "nxp,audout-layout invalid\n");
2371                                return -EINVAL;
2372                        }
2373                        pdata->audout_layout = v;
2374                }
2375                if (!of_property_read_u32(np, "nxp,audout-width", &v)) {
2376                        switch (v) {
2377                        case 16:
2378                        case 32:
2379                                break;
2380                        default:
2381                                v4l_err(state->client,
2382                                        "nxp,audout-width invalid\n");
2383                                return -EINVAL;
2384                        }
2385                        pdata->audout_width = v;
2386                }
2387                if (!of_property_read_u32(np, "nxp,audout-mclk-fs", &v)) {
2388                        switch (v) {
2389                        case 512:
2390                        case 256:
2391                        case 128:
2392                        case 64:
2393                        case 32:
2394                        case 16:
2395                                break;
2396                        default:
2397                                v4l_err(state->client,
2398                                        "nxp,audout-mclk-fs invalid\n");
2399                                return -EINVAL;
2400                        }
2401                        pdata->audout_mclk_fs = v;
2402                }
2403        }
2404
2405        return 0;
2406}
2407
2408static int tda1997x_get_regulators(struct tda1997x_state *state)
2409{
2410        int i;
2411
2412        for (i = 0; i < TDA1997X_NUM_SUPPLIES; i++)
2413                state->supplies[i].supply = tda1997x_supply_name[i];
2414
2415        return devm_regulator_bulk_get(&state->client->dev,
2416                                       TDA1997X_NUM_SUPPLIES,
2417                                       state->supplies);
2418}
2419
2420static int tda1997x_identify_module(struct tda1997x_state *state)
2421{
2422        struct v4l2_subdev *sd = &state->sd;
2423        enum tda1997x_type type;
2424        u8 reg;
2425
2426        /* Read chip configuration*/
2427        reg = io_read(sd, REG_CMTP_REG10);
2428        state->tmdsb_clk = (reg >> 6) & 0x01; /* use tmds clock B_inv for B */
2429        state->tmdsb_soc = (reg >> 5) & 0x01; /* tmds of input B */
2430        state->port_30bit = (reg >> 2) & 0x03; /* 30bit vs 24bit */
2431        state->output_2p5 = (reg >> 1) & 0x01; /* output supply 2.5v */
2432        switch ((reg >> 4) & 0x03) {
2433        case 0x00:
2434                type = TDA19971;
2435                break;
2436        case 0x02:
2437        case 0x03:
2438                type = TDA19973;
2439                break;
2440        default:
2441                dev_err(&state->client->dev, "unsupported chip ID\n");
2442                return -EIO;
2443        }
2444        if (state->info->type != type) {
2445                dev_err(&state->client->dev, "chip id mismatch\n");
2446                return -EIO;
2447        }
2448
2449        /* read chip revision */
2450        state->chip_revision = io_read(sd, REG_CMTP_REG11);
2451
2452        return 0;
2453}
2454
2455static const struct media_entity_operations tda1997x_media_ops = {
2456        .link_validate = v4l2_subdev_link_validate,
2457};
2458
2459
2460/* -----------------------------------------------------------------------------
2461 * HDMI Audio Codec
2462 */
2463
2464/* refine sample-rate based on HDMI source */
2465static int tda1997x_pcm_startup(struct snd_pcm_substream *substream,
2466                                struct snd_soc_dai *dai)
2467{
2468        struct v4l2_subdev *sd = snd_soc_dai_get_drvdata(dai);
2469        struct tda1997x_state *state = to_state(sd);
2470        struct snd_soc_component *component = dai->component;
2471        struct snd_pcm_runtime *rtd = substream->runtime;
2472        int rate, err;
2473
2474        rate = state->audio_samplerate;
2475        err = snd_pcm_hw_constraint_minmax(rtd, SNDRV_PCM_HW_PARAM_RATE,
2476                                           rate, rate);
2477        if (err < 0) {
2478                dev_err(component->dev, "failed to constrain samplerate to %dHz\n",
2479                        rate);
2480                return err;
2481        }
2482        dev_info(component->dev, "set samplerate constraint to %dHz\n", rate);
2483
2484        return 0;
2485}
2486
2487static const struct snd_soc_dai_ops tda1997x_dai_ops = {
2488        .startup = tda1997x_pcm_startup,
2489};
2490
2491static struct snd_soc_dai_driver tda1997x_audio_dai = {
2492        .name = "tda1997x",
2493        .capture = {
2494                .stream_name = "Capture",
2495                .channels_min = 2,
2496                .channels_max = 8,
2497                .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
2498                         SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
2499                         SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
2500                         SNDRV_PCM_RATE_192000,
2501        },
2502        .ops = &tda1997x_dai_ops,
2503};
2504
2505static int tda1997x_codec_probe(struct snd_soc_component *component)
2506{
2507        return 0;
2508}
2509
2510static void tda1997x_codec_remove(struct snd_soc_component *component)
2511{
2512}
2513
2514static struct snd_soc_component_driver tda1997x_codec_driver = {
2515        .probe                  = tda1997x_codec_probe,
2516        .remove                 = tda1997x_codec_remove,
2517        .idle_bias_on           = 1,
2518        .use_pmdown_time        = 1,
2519        .endianness             = 1,
2520        .non_legacy_dai_naming  = 1,
2521};
2522
2523static int tda1997x_probe(struct i2c_client *client,
2524                         const struct i2c_device_id *id)
2525{
2526        struct tda1997x_state *state;
2527        struct tda1997x_platform_data *pdata;
2528        struct v4l2_subdev *sd;
2529        struct v4l2_ctrl_handler *hdl;
2530        struct v4l2_ctrl *ctrl;
2531        static const struct v4l2_dv_timings cea1920x1080 =
2532                V4L2_DV_BT_CEA_1920X1080P60;
2533        u32 *mbus_codes;
2534        int i, ret;
2535
2536        /* Check if the adapter supports the needed features */
2537        if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2538                return -EIO;
2539
2540        state = kzalloc(sizeof(struct tda1997x_state), GFP_KERNEL);
2541        if (!state)
2542                return -ENOMEM;
2543
2544        state->client = client;
2545        pdata = &state->pdata;
2546        if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
2547                const struct of_device_id *oid;
2548
2549                oid = of_match_node(tda1997x_of_id, client->dev.of_node);
2550                state->info = oid->data;
2551
2552                ret = tda1997x_parse_dt(state);
2553                if (ret < 0) {
2554                        v4l_err(client, "DT parsing error\n");
2555                        goto err_free_state;
2556                }
2557        } else if (client->dev.platform_data) {
2558                struct tda1997x_platform_data *pdata =
2559                        client->dev.platform_data;
2560                state->info =
2561                        (const struct tda1997x_chip_info *)id->driver_data;
2562                state->pdata = *pdata;
2563        } else {
2564                v4l_err(client, "No platform data\n");
2565                ret = -ENODEV;
2566                goto err_free_state;
2567        }
2568
2569        ret = tda1997x_get_regulators(state);
2570        if (ret)
2571                goto err_free_state;
2572
2573        ret = tda1997x_set_power(state, 1);
2574        if (ret)
2575                goto err_free_state;
2576
2577        mutex_init(&state->page_lock);
2578        mutex_init(&state->lock);
2579        state->page = 0xff;
2580
2581        INIT_DELAYED_WORK(&state->delayed_work_enable_hpd,
2582                          tda1997x_delayed_work_enable_hpd);
2583
2584        /* set video format based on chip and bus width */
2585        ret = tda1997x_identify_module(state);
2586        if (ret)
2587                goto err_free_mutex;
2588
2589        /* initialize subdev */
2590        sd = &state->sd;
2591        v4l2_i2c_subdev_init(sd, client, &tda1997x_subdev_ops);
2592        snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
2593                 id->name, i2c_adapter_id(client->adapter),
2594                 client->addr);
2595        sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
2596        sd->entity.function = MEDIA_ENT_F_DV_DECODER;
2597        sd->entity.ops = &tda1997x_media_ops;
2598
2599        /* set allowed mbus modes based on chip, bus-type, and bus-width */
2600        i = 0;
2601        mbus_codes = state->mbus_codes;
2602        switch (state->info->type) {
2603        case TDA19973:
2604                switch (pdata->vidout_bus_type) {
2605                case V4L2_MBUS_PARALLEL:
2606                        switch (pdata->vidout_bus_width) {
2607                        case 36:
2608                                mbus_codes[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
2609                                mbus_codes[i++] = MEDIA_BUS_FMT_YUV12_1X36;
2610                                fallthrough;
2611                        case 24:
2612                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2613                                break;
2614                        }
2615                        break;
2616                case V4L2_MBUS_BT656:
2617                        switch (pdata->vidout_bus_width) {
2618                        case 36:
2619                        case 24:
2620                        case 12:
2621                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2622                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2623                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2624                                break;
2625                        }
2626                        break;
2627                default:
2628                        break;
2629                }
2630                break;
2631        case TDA19971:
2632                switch (pdata->vidout_bus_type) {
2633                case V4L2_MBUS_PARALLEL:
2634                        switch (pdata->vidout_bus_width) {
2635                        case 24:
2636                                mbus_codes[i++] = MEDIA_BUS_FMT_RGB888_1X24;
2637                                mbus_codes[i++] = MEDIA_BUS_FMT_YUV8_1X24;
2638                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2639                                fallthrough;
2640                        case 20:
2641                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
2642                                fallthrough;
2643                        case 16:
2644                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
2645                                break;
2646                        }
2647                        break;
2648                case V4L2_MBUS_BT656:
2649                        switch (pdata->vidout_bus_width) {
2650                        case 24:
2651                        case 20:
2652                        case 16:
2653                        case 12:
2654                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2655                                fallthrough;
2656                        case 10:
2657                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2658                                fallthrough;
2659                        case 8:
2660                                mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2661                                break;
2662                        }
2663                        break;
2664                default:
2665                        break;
2666                }
2667                break;
2668        }
2669        if (WARN_ON(i > ARRAY_SIZE(state->mbus_codes))) {
2670                ret = -EINVAL;
2671                goto err_free_mutex;
2672        }
2673
2674        /* default format */
2675        tda1997x_setup_format(state, state->mbus_codes[0]);
2676        state->timings = cea1920x1080;
2677
2678        /*
2679         * default to SRGB full range quantization
2680         * (in case we don't get an infoframe such as DVI signal
2681         */
2682        state->colorimetry.colorspace = V4L2_COLORSPACE_SRGB;
2683        state->colorimetry.quantization = V4L2_QUANTIZATION_FULL_RANGE;
2684
2685        /* disable/reset HDCP to get correct I2C access to Rx HDMI */
2686        io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_RST_HDCP | MAN_DIS_HDCP);
2687
2688        /*
2689         * if N2 version, reset compdel_bp as it may generate some small pixel
2690         * shifts in case of embedded sync/or delay lower than 4
2691         */
2692        if (state->chip_revision != 0) {
2693                io_write(sd, REG_MAN_SUS_HDMI_SEL, 0x00);
2694                io_write(sd, REG_VDP_CTRL, 0x1f);
2695        }
2696
2697        v4l_info(client, "NXP %s N%d detected\n", state->info->name,
2698                 state->chip_revision + 1);
2699        v4l_info(client, "video: %dbit %s %d formats available\n",
2700                pdata->vidout_bus_width,
2701                (pdata->vidout_bus_type == V4L2_MBUS_PARALLEL) ?
2702                        "parallel" : "BT656",
2703                i);
2704        if (pdata->audout_format) {
2705                v4l_info(client, "audio: %dch %s layout%d sysclk=%d*fs\n",
2706                         pdata->audout_layout ? 2 : 8,
2707                         audfmt_names[pdata->audout_format],
2708                         pdata->audout_layout,
2709                         pdata->audout_mclk_fs);
2710        }
2711
2712        ret = 0x34 + ((io_read(sd, REG_SLAVE_ADDR)>>4) & 0x03);
2713        state->client_cec = devm_i2c_new_dummy_device(&client->dev,
2714                                                      client->adapter, ret);
2715        if (IS_ERR(state->client_cec)) {
2716                ret = PTR_ERR(state->client_cec);
2717                goto err_free_mutex;
2718        }
2719
2720        v4l_info(client, "CEC slave address 0x%02x\n", ret);
2721
2722        ret = tda1997x_core_init(sd);
2723        if (ret)
2724                goto err_free_mutex;
2725
2726        /* control handlers */
2727        hdl = &state->hdl;
2728        v4l2_ctrl_handler_init(hdl, 3);
2729        ctrl = v4l2_ctrl_new_std_menu(hdl, &tda1997x_ctrl_ops,
2730                        V4L2_CID_DV_RX_IT_CONTENT_TYPE,
2731                        V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 0,
2732                        V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
2733        if (ctrl)
2734                ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2735        /* custom controls */
2736        state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2737                        V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0);
2738        state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl,
2739                        &tda1997x_ctrl_ops,
2740                        V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0,
2741                        V4L2_DV_RGB_RANGE_AUTO);
2742        state->sd.ctrl_handler = hdl;
2743        if (hdl->error) {
2744                ret = hdl->error;
2745                goto err_free_handler;
2746        }
2747        v4l2_ctrl_handler_setup(hdl);
2748
2749        /* initialize source pads */
2750        state->pads[TDA1997X_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
2751        ret = media_entity_pads_init(&sd->entity, TDA1997X_NUM_PADS,
2752                state->pads);
2753        if (ret) {
2754                v4l_err(client, "failed entity_init: %d", ret);
2755                goto err_free_handler;
2756        }
2757
2758        ret = v4l2_async_register_subdev(sd);
2759        if (ret)
2760                goto err_free_media;
2761
2762        /* register audio DAI */
2763        if (pdata->audout_format) {
2764                u64 formats;
2765
2766                if (pdata->audout_width == 32)
2767                        formats = SNDRV_PCM_FMTBIT_S32_LE;
2768                else
2769                        formats = SNDRV_PCM_FMTBIT_S16_LE;
2770                tda1997x_audio_dai.capture.formats = formats;
2771                ret = devm_snd_soc_register_component(&state->client->dev,
2772                                             &tda1997x_codec_driver,
2773                                             &tda1997x_audio_dai, 1);
2774                if (ret) {
2775                        dev_err(&client->dev, "register audio codec failed\n");
2776                        goto err_free_media;
2777                }
2778                v4l_info(state->client, "registered audio codec\n");
2779        }
2780
2781        /* request irq */
2782        ret = devm_request_threaded_irq(&client->dev, client->irq,
2783                                        NULL, tda1997x_isr_thread,
2784                                        IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2785                                        KBUILD_MODNAME, state);
2786        if (ret) {
2787                v4l_err(client, "irq%d reg failed: %d\n", client->irq, ret);
2788                goto err_free_media;
2789        }
2790
2791        return 0;
2792
2793err_free_media:
2794        media_entity_cleanup(&sd->entity);
2795err_free_handler:
2796        v4l2_ctrl_handler_free(&state->hdl);
2797err_free_mutex:
2798        cancel_delayed_work(&state->delayed_work_enable_hpd);
2799        mutex_destroy(&state->page_lock);
2800        mutex_destroy(&state->lock);
2801err_free_state:
2802        kfree(state);
2803        dev_err(&client->dev, "%s failed: %d\n", __func__, ret);
2804
2805        return ret;
2806}
2807
2808static int tda1997x_remove(struct i2c_client *client)
2809{
2810        struct v4l2_subdev *sd = i2c_get_clientdata(client);
2811        struct tda1997x_state *state = to_state(sd);
2812        struct tda1997x_platform_data *pdata = &state->pdata;
2813
2814        if (pdata->audout_format) {
2815                mutex_destroy(&state->audio_lock);
2816        }
2817
2818        disable_irq(state->client->irq);
2819        tda1997x_power_mode(state, 0);
2820
2821        v4l2_async_unregister_subdev(sd);
2822        media_entity_cleanup(&sd->entity);
2823        v4l2_ctrl_handler_free(&state->hdl);
2824        regulator_bulk_disable(TDA1997X_NUM_SUPPLIES, state->supplies);
2825        cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
2826        mutex_destroy(&state->page_lock);
2827        mutex_destroy(&state->lock);
2828
2829        kfree(state);
2830
2831        return 0;
2832}
2833
2834static struct i2c_driver tda1997x_i2c_driver = {
2835        .driver = {
2836                .name = "tda1997x",
2837                .of_match_table = of_match_ptr(tda1997x_of_id),
2838        },
2839        .probe = tda1997x_probe,
2840        .remove = tda1997x_remove,
2841        .id_table = tda1997x_i2c_id,
2842};
2843
2844module_i2c_driver(tda1997x_i2c_driver);
2845
2846MODULE_AUTHOR("Tim Harvey <tharvey@gateworks.com>");
2847MODULE_DESCRIPTION("TDA1997X HDMI Receiver driver");
2848MODULE_LICENSE("GPL v2");
2849