linux/drivers/media/v4l2-core/v4l2-fwnode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * V4L2 fwnode binding parsing library
   4 *
   5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
   6 * formerly was located in v4l2-of.c.
   7 *
   8 * Copyright (c) 2016 Intel Corporation.
   9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
  10 *
  11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
  12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
  13 *
  14 * Copyright (C) 2012 Renesas Electronics Corp.
  15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
  16 */
  17#include <linux/acpi.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/property.h>
  23#include <linux/slab.h>
  24#include <linux/string.h>
  25#include <linux/types.h>
  26
  27#include <media/v4l2-async.h>
  28#include <media/v4l2-fwnode.h>
  29#include <media/v4l2-subdev.h>
  30
  31static const struct v4l2_fwnode_bus_conv {
  32        enum v4l2_fwnode_bus_type fwnode_bus_type;
  33        enum v4l2_mbus_type mbus_type;
  34        const char *name;
  35} buses[] = {
  36        {
  37                V4L2_FWNODE_BUS_TYPE_GUESS,
  38                V4L2_MBUS_UNKNOWN,
  39                "not specified",
  40        }, {
  41                V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
  42                V4L2_MBUS_CSI2_CPHY,
  43                "MIPI CSI-2 C-PHY",
  44        }, {
  45                V4L2_FWNODE_BUS_TYPE_CSI1,
  46                V4L2_MBUS_CSI1,
  47                "MIPI CSI-1",
  48        }, {
  49                V4L2_FWNODE_BUS_TYPE_CCP2,
  50                V4L2_MBUS_CCP2,
  51                "compact camera port 2",
  52        }, {
  53                V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
  54                V4L2_MBUS_CSI2_DPHY,
  55                "MIPI CSI-2 D-PHY",
  56        }, {
  57                V4L2_FWNODE_BUS_TYPE_PARALLEL,
  58                V4L2_MBUS_PARALLEL,
  59                "parallel",
  60        }, {
  61                V4L2_FWNODE_BUS_TYPE_BT656,
  62                V4L2_MBUS_BT656,
  63                "Bt.656",
  64        }, {
  65                V4L2_FWNODE_BUS_TYPE_DPI,
  66                V4L2_MBUS_DPI,
  67                "DPI",
  68        }
  69};
  70
  71static const struct v4l2_fwnode_bus_conv *
  72get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
  73{
  74        unsigned int i;
  75
  76        for (i = 0; i < ARRAY_SIZE(buses); i++)
  77                if (buses[i].fwnode_bus_type == type)
  78                        return &buses[i];
  79
  80        return NULL;
  81}
  82
  83static enum v4l2_mbus_type
  84v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
  85{
  86        const struct v4l2_fwnode_bus_conv *conv =
  87                get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
  88
  89        return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
  90}
  91
  92static const char *
  93v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
  94{
  95        const struct v4l2_fwnode_bus_conv *conv =
  96                get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
  97
  98        return conv ? conv->name : "not found";
  99}
 100
 101static const struct v4l2_fwnode_bus_conv *
 102get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
 103{
 104        unsigned int i;
 105
 106        for (i = 0; i < ARRAY_SIZE(buses); i++)
 107                if (buses[i].mbus_type == type)
 108                        return &buses[i];
 109
 110        return NULL;
 111}
 112
 113static const char *
 114v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
 115{
 116        const struct v4l2_fwnode_bus_conv *conv =
 117                get_v4l2_fwnode_bus_conv_by_mbus(type);
 118
 119        return conv ? conv->name : "not found";
 120}
 121
 122static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
 123                                               struct v4l2_fwnode_endpoint *vep,
 124                                               enum v4l2_mbus_type bus_type)
 125{
 126        struct v4l2_mbus_config_mipi_csi2 *bus = &vep->bus.mipi_csi2;
 127        bool have_clk_lane = false, have_data_lanes = false,
 128                have_lane_polarities = false;
 129        unsigned int flags = 0, lanes_used = 0;
 130        u32 array[1 + V4L2_MBUS_CSI2_MAX_DATA_LANES];
 131        u32 clock_lane = 0;
 132        unsigned int num_data_lanes = 0;
 133        bool use_default_lane_mapping = false;
 134        unsigned int i;
 135        u32 v;
 136        int rval;
 137
 138        if (bus_type == V4L2_MBUS_CSI2_DPHY ||
 139            bus_type == V4L2_MBUS_CSI2_CPHY) {
 140                use_default_lane_mapping = true;
 141
 142                num_data_lanes = min_t(u32, bus->num_data_lanes,
 143                                       V4L2_MBUS_CSI2_MAX_DATA_LANES);
 144
 145                clock_lane = bus->clock_lane;
 146                if (clock_lane)
 147                        use_default_lane_mapping = false;
 148
 149                for (i = 0; i < num_data_lanes; i++) {
 150                        array[i] = bus->data_lanes[i];
 151                        if (array[i])
 152                                use_default_lane_mapping = false;
 153                }
 154
 155                if (use_default_lane_mapping)
 156                        pr_debug("no lane mapping given, using defaults\n");
 157        }
 158
 159        rval = fwnode_property_count_u32(fwnode, "data-lanes");
 160        if (rval > 0) {
 161                num_data_lanes =
 162                        min_t(int, V4L2_MBUS_CSI2_MAX_DATA_LANES, rval);
 163
 164                fwnode_property_read_u32_array(fwnode, "data-lanes", array,
 165                                               num_data_lanes);
 166
 167                have_data_lanes = true;
 168                if (use_default_lane_mapping) {
 169                        pr_debug("data-lanes property exists; disabling default mapping\n");
 170                        use_default_lane_mapping = false;
 171                }
 172        }
 173
 174        for (i = 0; i < num_data_lanes; i++) {
 175                if (lanes_used & BIT(array[i])) {
 176                        if (have_data_lanes || !use_default_lane_mapping)
 177                                pr_warn("duplicated lane %u in data-lanes, using defaults\n",
 178                                        array[i]);
 179                        use_default_lane_mapping = true;
 180                }
 181                lanes_used |= BIT(array[i]);
 182
 183                if (have_data_lanes)
 184                        pr_debug("lane %u position %u\n", i, array[i]);
 185        }
 186
 187        rval = fwnode_property_count_u32(fwnode, "lane-polarities");
 188        if (rval > 0) {
 189                if (rval != 1 + num_data_lanes /* clock+data */) {
 190                        pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
 191                                1 + num_data_lanes, rval);
 192                        return -EINVAL;
 193                }
 194
 195                have_lane_polarities = true;
 196        }
 197
 198        if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
 199                clock_lane = v;
 200                pr_debug("clock lane position %u\n", v);
 201                have_clk_lane = true;
 202        }
 203
 204        if (have_clk_lane && lanes_used & BIT(clock_lane) &&
 205            !use_default_lane_mapping) {
 206                pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
 207                        v);
 208                use_default_lane_mapping = true;
 209        }
 210
 211        if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
 212                flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
 213                pr_debug("non-continuous clock\n");
 214        }
 215
 216        if (bus_type == V4L2_MBUS_CSI2_DPHY ||
 217            bus_type == V4L2_MBUS_CSI2_CPHY ||
 218            lanes_used || have_clk_lane || flags) {
 219                /* Only D-PHY has a clock lane. */
 220                unsigned int dfl_data_lane_index =
 221                        bus_type == V4L2_MBUS_CSI2_DPHY;
 222
 223                bus->flags = flags;
 224                if (bus_type == V4L2_MBUS_UNKNOWN)
 225                        vep->bus_type = V4L2_MBUS_CSI2_DPHY;
 226                bus->num_data_lanes = num_data_lanes;
 227
 228                if (use_default_lane_mapping) {
 229                        bus->clock_lane = 0;
 230                        for (i = 0; i < num_data_lanes; i++)
 231                                bus->data_lanes[i] = dfl_data_lane_index + i;
 232                } else {
 233                        bus->clock_lane = clock_lane;
 234                        for (i = 0; i < num_data_lanes; i++)
 235                                bus->data_lanes[i] = array[i];
 236                }
 237
 238                if (have_lane_polarities) {
 239                        fwnode_property_read_u32_array(fwnode,
 240                                                       "lane-polarities", array,
 241                                                       1 + num_data_lanes);
 242
 243                        for (i = 0; i < 1 + num_data_lanes; i++) {
 244                                bus->lane_polarities[i] = array[i];
 245                                pr_debug("lane %u polarity %sinverted",
 246                                         i, array[i] ? "" : "not ");
 247                        }
 248                } else {
 249                        pr_debug("no lane polarities defined, assuming not inverted\n");
 250                }
 251        }
 252
 253        return 0;
 254}
 255
 256#define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH |      \
 257                             V4L2_MBUS_HSYNC_ACTIVE_LOW |       \
 258                             V4L2_MBUS_VSYNC_ACTIVE_HIGH |      \
 259                             V4L2_MBUS_VSYNC_ACTIVE_LOW |       \
 260                             V4L2_MBUS_FIELD_EVEN_HIGH |        \
 261                             V4L2_MBUS_FIELD_EVEN_LOW)
 262
 263static void
 264v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
 265                                        struct v4l2_fwnode_endpoint *vep,
 266                                        enum v4l2_mbus_type bus_type)
 267{
 268        struct v4l2_mbus_config_parallel *bus = &vep->bus.parallel;
 269        unsigned int flags = 0;
 270        u32 v;
 271
 272        if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
 273                flags = bus->flags;
 274
 275        if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
 276                flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
 277                           V4L2_MBUS_HSYNC_ACTIVE_LOW);
 278                flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
 279                        V4L2_MBUS_HSYNC_ACTIVE_LOW;
 280                pr_debug("hsync-active %s\n", v ? "high" : "low");
 281        }
 282
 283        if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
 284                flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
 285                           V4L2_MBUS_VSYNC_ACTIVE_LOW);
 286                flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
 287                        V4L2_MBUS_VSYNC_ACTIVE_LOW;
 288                pr_debug("vsync-active %s\n", v ? "high" : "low");
 289        }
 290
 291        if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
 292                flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
 293                           V4L2_MBUS_FIELD_EVEN_LOW);
 294                flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
 295                        V4L2_MBUS_FIELD_EVEN_LOW;
 296                pr_debug("field-even-active %s\n", v ? "high" : "low");
 297        }
 298
 299        if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
 300                flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
 301                           V4L2_MBUS_PCLK_SAMPLE_FALLING);
 302                flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
 303                        V4L2_MBUS_PCLK_SAMPLE_FALLING;
 304                pr_debug("pclk-sample %s\n", v ? "high" : "low");
 305        }
 306
 307        if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
 308                flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
 309                           V4L2_MBUS_DATA_ACTIVE_LOW);
 310                flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
 311                        V4L2_MBUS_DATA_ACTIVE_LOW;
 312                pr_debug("data-active %s\n", v ? "high" : "low");
 313        }
 314
 315        if (fwnode_property_present(fwnode, "slave-mode")) {
 316                pr_debug("slave mode\n");
 317                flags &= ~V4L2_MBUS_MASTER;
 318                flags |= V4L2_MBUS_SLAVE;
 319        } else {
 320                flags &= ~V4L2_MBUS_SLAVE;
 321                flags |= V4L2_MBUS_MASTER;
 322        }
 323
 324        if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
 325                bus->bus_width = v;
 326                pr_debug("bus-width %u\n", v);
 327        }
 328
 329        if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
 330                bus->data_shift = v;
 331                pr_debug("data-shift %u\n", v);
 332        }
 333
 334        if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
 335                flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
 336                           V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
 337                flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
 338                        V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
 339                pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
 340        }
 341
 342        if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
 343                flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
 344                           V4L2_MBUS_DATA_ENABLE_LOW);
 345                flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
 346                        V4L2_MBUS_DATA_ENABLE_LOW;
 347                pr_debug("data-enable-active %s\n", v ? "high" : "low");
 348        }
 349
 350        switch (bus_type) {
 351        default:
 352                bus->flags = flags;
 353                if (flags & PARALLEL_MBUS_FLAGS)
 354                        vep->bus_type = V4L2_MBUS_PARALLEL;
 355                else
 356                        vep->bus_type = V4L2_MBUS_BT656;
 357                break;
 358        case V4L2_MBUS_PARALLEL:
 359                vep->bus_type = V4L2_MBUS_PARALLEL;
 360                bus->flags = flags;
 361                break;
 362        case V4L2_MBUS_BT656:
 363                vep->bus_type = V4L2_MBUS_BT656;
 364                bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
 365                break;
 366        }
 367}
 368
 369static void
 370v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
 371                                    struct v4l2_fwnode_endpoint *vep,
 372                                    enum v4l2_mbus_type bus_type)
 373{
 374        struct v4l2_mbus_config_mipi_csi1 *bus = &vep->bus.mipi_csi1;
 375        u32 v;
 376
 377        if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
 378                bus->clock_inv = v;
 379                pr_debug("clock-inv %u\n", v);
 380        }
 381
 382        if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
 383                bus->strobe = v;
 384                pr_debug("strobe %u\n", v);
 385        }
 386
 387        if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
 388                bus->data_lane = v;
 389                pr_debug("data-lanes %u\n", v);
 390        }
 391
 392        if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
 393                bus->clock_lane = v;
 394                pr_debug("clock-lanes %u\n", v);
 395        }
 396
 397        if (bus_type == V4L2_MBUS_CCP2)
 398                vep->bus_type = V4L2_MBUS_CCP2;
 399        else
 400                vep->bus_type = V4L2_MBUS_CSI1;
 401}
 402
 403static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
 404                                        struct v4l2_fwnode_endpoint *vep)
 405{
 406        u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
 407        enum v4l2_mbus_type mbus_type;
 408        int rval;
 409
 410        pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
 411
 412        fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
 413        pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
 414                 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
 415                 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
 416                 vep->bus_type);
 417        mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
 418        if (mbus_type == V4L2_MBUS_INVALID) {
 419                pr_debug("unsupported bus type %u\n", bus_type);
 420                return -EINVAL;
 421        }
 422
 423        if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
 424                if (mbus_type != V4L2_MBUS_UNKNOWN &&
 425                    vep->bus_type != mbus_type) {
 426                        pr_debug("expecting bus type %s\n",
 427                                 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
 428                        return -ENXIO;
 429                }
 430        } else {
 431                vep->bus_type = mbus_type;
 432        }
 433
 434        switch (vep->bus_type) {
 435        case V4L2_MBUS_UNKNOWN:
 436                rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
 437                                                           V4L2_MBUS_UNKNOWN);
 438                if (rval)
 439                        return rval;
 440
 441                if (vep->bus_type == V4L2_MBUS_UNKNOWN)
 442                        v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
 443                                                                V4L2_MBUS_UNKNOWN);
 444
 445                pr_debug("assuming media bus type %s (%u)\n",
 446                         v4l2_fwnode_mbus_type_to_string(vep->bus_type),
 447                         vep->bus_type);
 448
 449                break;
 450        case V4L2_MBUS_CCP2:
 451        case V4L2_MBUS_CSI1:
 452                v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
 453
 454                break;
 455        case V4L2_MBUS_CSI2_DPHY:
 456        case V4L2_MBUS_CSI2_CPHY:
 457                rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
 458                                                           vep->bus_type);
 459                if (rval)
 460                        return rval;
 461
 462                break;
 463        case V4L2_MBUS_PARALLEL:
 464        case V4L2_MBUS_BT656:
 465                v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
 466                                                        vep->bus_type);
 467
 468                break;
 469        default:
 470                pr_warn("unsupported bus type %u\n", mbus_type);
 471                return -EINVAL;
 472        }
 473
 474        fwnode_graph_parse_endpoint(fwnode, &vep->base);
 475
 476        return 0;
 477}
 478
 479int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
 480                               struct v4l2_fwnode_endpoint *vep)
 481{
 482        int ret;
 483
 484        ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
 485
 486        pr_debug("===== end parsing endpoint %pfw\n", fwnode);
 487
 488        return ret;
 489}
 490EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
 491
 492void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
 493{
 494        if (IS_ERR_OR_NULL(vep))
 495                return;
 496
 497        kfree(vep->link_frequencies);
 498        vep->link_frequencies = NULL;
 499}
 500EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
 501
 502int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
 503                                     struct v4l2_fwnode_endpoint *vep)
 504{
 505        int rval;
 506
 507        rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
 508        if (rval < 0)
 509                return rval;
 510
 511        rval = fwnode_property_count_u64(fwnode, "link-frequencies");
 512        if (rval > 0) {
 513                unsigned int i;
 514
 515                vep->link_frequencies =
 516                        kmalloc_array(rval, sizeof(*vep->link_frequencies),
 517                                      GFP_KERNEL);
 518                if (!vep->link_frequencies)
 519                        return -ENOMEM;
 520
 521                vep->nr_of_link_frequencies = rval;
 522
 523                rval = fwnode_property_read_u64_array(fwnode,
 524                                                      "link-frequencies",
 525                                                      vep->link_frequencies,
 526                                                      vep->nr_of_link_frequencies);
 527                if (rval < 0) {
 528                        v4l2_fwnode_endpoint_free(vep);
 529                        return rval;
 530                }
 531
 532                for (i = 0; i < vep->nr_of_link_frequencies; i++)
 533                        pr_debug("link-frequencies %u value %llu\n", i,
 534                                 vep->link_frequencies[i]);
 535        }
 536
 537        pr_debug("===== end parsing endpoint %pfw\n", fwnode);
 538
 539        return 0;
 540}
 541EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
 542
 543int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
 544                           struct v4l2_fwnode_link *link)
 545{
 546        struct fwnode_endpoint fwep;
 547
 548        memset(link, 0, sizeof(*link));
 549
 550        fwnode_graph_parse_endpoint(fwnode, &fwep);
 551        link->local_id = fwep.id;
 552        link->local_port = fwep.port;
 553        link->local_node = fwnode_graph_get_port_parent(fwnode);
 554
 555        fwnode = fwnode_graph_get_remote_endpoint(fwnode);
 556        if (!fwnode) {
 557                fwnode_handle_put(fwnode);
 558                return -ENOLINK;
 559        }
 560
 561        fwnode_graph_parse_endpoint(fwnode, &fwep);
 562        link->remote_id = fwep.id;
 563        link->remote_port = fwep.port;
 564        link->remote_node = fwnode_graph_get_port_parent(fwnode);
 565
 566        return 0;
 567}
 568EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
 569
 570void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
 571{
 572        fwnode_handle_put(link->local_node);
 573        fwnode_handle_put(link->remote_node);
 574}
 575EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
 576
 577static const struct v4l2_fwnode_connector_conv {
 578        enum v4l2_connector_type type;
 579        const char *compatible;
 580} connectors[] = {
 581        {
 582                .type = V4L2_CONN_COMPOSITE,
 583                .compatible = "composite-video-connector",
 584        }, {
 585                .type = V4L2_CONN_SVIDEO,
 586                .compatible = "svideo-connector",
 587        },
 588};
 589
 590static enum v4l2_connector_type
 591v4l2_fwnode_string_to_connector_type(const char *con_str)
 592{
 593        unsigned int i;
 594
 595        for (i = 0; i < ARRAY_SIZE(connectors); i++)
 596                if (!strcmp(con_str, connectors[i].compatible))
 597                        return connectors[i].type;
 598
 599        return V4L2_CONN_UNKNOWN;
 600}
 601
 602static void
 603v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
 604                                   struct v4l2_fwnode_connector *vc)
 605{
 606        u32 stds;
 607        int ret;
 608
 609        ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
 610
 611        /* The property is optional. */
 612        vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
 613}
 614
 615void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
 616{
 617        struct v4l2_connector_link *link, *tmp;
 618
 619        if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
 620                return;
 621
 622        list_for_each_entry_safe(link, tmp, &connector->links, head) {
 623                v4l2_fwnode_put_link(&link->fwnode_link);
 624                list_del(&link->head);
 625                kfree(link);
 626        }
 627
 628        kfree(connector->label);
 629        connector->label = NULL;
 630        connector->type = V4L2_CONN_UNKNOWN;
 631}
 632EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
 633
 634static enum v4l2_connector_type
 635v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
 636{
 637        const char *type_name;
 638        int err;
 639
 640        if (!fwnode)
 641                return V4L2_CONN_UNKNOWN;
 642
 643        /* The connector-type is stored within the compatible string. */
 644        err = fwnode_property_read_string(fwnode, "compatible", &type_name);
 645        if (err)
 646                return V4L2_CONN_UNKNOWN;
 647
 648        return v4l2_fwnode_string_to_connector_type(type_name);
 649}
 650
 651int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
 652                                struct v4l2_fwnode_connector *connector)
 653{
 654        struct fwnode_handle *connector_node;
 655        enum v4l2_connector_type connector_type;
 656        const char *label;
 657        int err;
 658
 659        if (!fwnode)
 660                return -EINVAL;
 661
 662        memset(connector, 0, sizeof(*connector));
 663
 664        INIT_LIST_HEAD(&connector->links);
 665
 666        connector_node = fwnode_graph_get_port_parent(fwnode);
 667        connector_type = v4l2_fwnode_get_connector_type(connector_node);
 668        if (connector_type == V4L2_CONN_UNKNOWN) {
 669                fwnode_handle_put(connector_node);
 670                connector_node = fwnode_graph_get_remote_port_parent(fwnode);
 671                connector_type = v4l2_fwnode_get_connector_type(connector_node);
 672        }
 673
 674        if (connector_type == V4L2_CONN_UNKNOWN) {
 675                pr_err("Unknown connector type\n");
 676                err = -ENOTCONN;
 677                goto out;
 678        }
 679
 680        connector->type = connector_type;
 681        connector->name = fwnode_get_name(connector_node);
 682        err = fwnode_property_read_string(connector_node, "label", &label);
 683        connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
 684
 685        /* Parse the connector specific properties. */
 686        switch (connector->type) {
 687        case V4L2_CONN_COMPOSITE:
 688        case V4L2_CONN_SVIDEO:
 689                v4l2_fwnode_connector_parse_analog(connector_node, connector);
 690                break;
 691        /* Avoid compiler warnings */
 692        case V4L2_CONN_UNKNOWN:
 693                break;
 694        }
 695
 696out:
 697        fwnode_handle_put(connector_node);
 698
 699        return err;
 700}
 701EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
 702
 703int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
 704                                   struct v4l2_fwnode_connector *connector)
 705{
 706        struct fwnode_handle *connector_ep;
 707        struct v4l2_connector_link *link;
 708        int err;
 709
 710        if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
 711                return -EINVAL;
 712
 713        connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
 714        if (!connector_ep)
 715                return -ENOTCONN;
 716
 717        link = kzalloc(sizeof(*link), GFP_KERNEL);
 718        if (!link) {
 719                err = -ENOMEM;
 720                goto err;
 721        }
 722
 723        err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
 724        if (err)
 725                goto err;
 726
 727        fwnode_handle_put(connector_ep);
 728
 729        list_add(&link->head, &connector->links);
 730        connector->nr_of_links++;
 731
 732        return 0;
 733
 734err:
 735        kfree(link);
 736        fwnode_handle_put(connector_ep);
 737
 738        return err;
 739}
 740EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
 741
 742int v4l2_fwnode_device_parse(struct device *dev,
 743                             struct v4l2_fwnode_device_properties *props)
 744{
 745        struct fwnode_handle *fwnode = dev_fwnode(dev);
 746        u32 val;
 747        int ret;
 748
 749        memset(props, 0, sizeof(*props));
 750
 751        props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
 752        ret = fwnode_property_read_u32(fwnode, "orientation", &val);
 753        if (!ret) {
 754                switch (val) {
 755                case V4L2_FWNODE_ORIENTATION_FRONT:
 756                case V4L2_FWNODE_ORIENTATION_BACK:
 757                case V4L2_FWNODE_ORIENTATION_EXTERNAL:
 758                        break;
 759                default:
 760                        dev_warn(dev, "Unsupported device orientation: %u\n", val);
 761                        return -EINVAL;
 762                }
 763
 764                props->orientation = val;
 765                dev_dbg(dev, "device orientation: %u\n", val);
 766        }
 767
 768        props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
 769        ret = fwnode_property_read_u32(fwnode, "rotation", &val);
 770        if (!ret) {
 771                if (val >= 360) {
 772                        dev_warn(dev, "Unsupported device rotation: %u\n", val);
 773                        return -EINVAL;
 774                }
 775
 776                props->rotation = val;
 777                dev_dbg(dev, "device rotation: %u\n", val);
 778        }
 779
 780        return 0;
 781}
 782EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
 783
 784static int
 785v4l2_async_nf_fwnode_parse_endpoint(struct device *dev,
 786                                    struct v4l2_async_notifier *notifier,
 787                                    struct fwnode_handle *endpoint,
 788                                    unsigned int asd_struct_size,
 789                                    parse_endpoint_func parse_endpoint)
 790{
 791        struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
 792        struct v4l2_async_subdev *asd;
 793        int ret;
 794
 795        asd = kzalloc(asd_struct_size, GFP_KERNEL);
 796        if (!asd)
 797                return -ENOMEM;
 798
 799        asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
 800        asd->match.fwnode =
 801                fwnode_graph_get_remote_port_parent(endpoint);
 802        if (!asd->match.fwnode) {
 803                dev_dbg(dev, "no remote endpoint found\n");
 804                ret = -ENOTCONN;
 805                goto out_err;
 806        }
 807
 808        ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
 809        if (ret) {
 810                dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
 811                         ret);
 812                goto out_err;
 813        }
 814
 815        ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
 816        if (ret == -ENOTCONN)
 817                dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
 818                        vep.base.id);
 819        else if (ret < 0)
 820                dev_warn(dev,
 821                         "driver could not parse port@%u/endpoint@%u (%d)\n",
 822                         vep.base.port, vep.base.id, ret);
 823        v4l2_fwnode_endpoint_free(&vep);
 824        if (ret < 0)
 825                goto out_err;
 826
 827        ret = __v4l2_async_nf_add_subdev(notifier, asd);
 828        if (ret < 0) {
 829                /* not an error if asd already exists */
 830                if (ret == -EEXIST)
 831                        ret = 0;
 832                goto out_err;
 833        }
 834
 835        return 0;
 836
 837out_err:
 838        fwnode_handle_put(asd->match.fwnode);
 839        kfree(asd);
 840
 841        return ret == -ENOTCONN ? 0 : ret;
 842}
 843
 844int
 845v4l2_async_nf_parse_fwnode_endpoints(struct device *dev,
 846                                     struct v4l2_async_notifier *notifier,
 847                                     size_t asd_struct_size,
 848                                     parse_endpoint_func parse_endpoint)
 849{
 850        struct fwnode_handle *fwnode;
 851        int ret = 0;
 852
 853        if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
 854                return -EINVAL;
 855
 856        fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
 857                struct fwnode_handle *dev_fwnode;
 858                bool is_available;
 859
 860                dev_fwnode = fwnode_graph_get_port_parent(fwnode);
 861                is_available = fwnode_device_is_available(dev_fwnode);
 862                fwnode_handle_put(dev_fwnode);
 863                if (!is_available)
 864                        continue;
 865
 866
 867                ret = v4l2_async_nf_fwnode_parse_endpoint(dev, notifier,
 868                                                          fwnode,
 869                                                          asd_struct_size,
 870                                                          parse_endpoint);
 871                if (ret < 0)
 872                        break;
 873        }
 874
 875        fwnode_handle_put(fwnode);
 876
 877        return ret;
 878}
 879EXPORT_SYMBOL_GPL(v4l2_async_nf_parse_fwnode_endpoints);
 880
 881/*
 882 * v4l2_fwnode_reference_parse - parse references for async sub-devices
 883 * @dev: the device node the properties of which are parsed for references
 884 * @notifier: the async notifier where the async subdevs will be added
 885 * @prop: the name of the property
 886 *
 887 * Return: 0 on success
 888 *         -ENOENT if no entries were found
 889 *         -ENOMEM if memory allocation failed
 890 *         -EINVAL if property parsing failed
 891 */
 892static int v4l2_fwnode_reference_parse(struct device *dev,
 893                                       struct v4l2_async_notifier *notifier,
 894                                       const char *prop)
 895{
 896        struct fwnode_reference_args args;
 897        unsigned int index;
 898        int ret;
 899
 900        for (index = 0;
 901             !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), prop,
 902                                                        NULL, 0, index, &args));
 903             index++) {
 904                struct v4l2_async_subdev *asd;
 905
 906                asd = v4l2_async_nf_add_fwnode(notifier, args.fwnode,
 907                                               struct v4l2_async_subdev);
 908                fwnode_handle_put(args.fwnode);
 909                if (IS_ERR(asd)) {
 910                        /* not an error if asd already exists */
 911                        if (PTR_ERR(asd) == -EEXIST)
 912                                continue;
 913
 914                        return PTR_ERR(asd);
 915                }
 916        }
 917
 918        /* -ENOENT here means successful parsing */
 919        if (ret != -ENOENT)
 920                return ret;
 921
 922        /* Return -ENOENT if no references were found */
 923        return index ? 0 : -ENOENT;
 924}
 925
 926/*
 927 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
 928 *                                      arguments
 929 * @fwnode: fwnode to read @prop from
 930 * @notifier: notifier for @dev
 931 * @prop: the name of the property
 932 * @index: the index of the reference to get
 933 * @props: the array of integer property names
 934 * @nprops: the number of integer property names in @nprops
 935 *
 936 * First find an fwnode referred to by the reference at @index in @prop.
 937 *
 938 * Then under that fwnode, @nprops times, for each property in @props,
 939 * iteratively follow child nodes starting from fwnode such that they have the
 940 * property in @props array at the index of the child node distance from the
 941 * root node and the value of that property matching with the integer argument
 942 * of the reference, at the same index.
 943 *
 944 * The child fwnode reached at the end of the iteration is then returned to the
 945 * caller.
 946 *
 947 * The core reason for this is that you cannot refer to just any node in ACPI.
 948 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
 949 * provide a list of (property name, property value) tuples where each tuple
 950 * uniquely identifies a child node. The first tuple identifies a child directly
 951 * underneath the device fwnode, the next tuple identifies a child node
 952 * underneath the fwnode identified by the previous tuple, etc. until you
 953 * reached the fwnode you need.
 954 *
 955 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
 956 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
 957 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
 958 * data-node-references.txt and leds.txt .
 959 *
 960 *      Scope (\_SB.PCI0.I2C2)
 961 *      {
 962 *              Device (CAM0)
 963 *              {
 964 *                      Name (_DSD, Package () {
 965 *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 966 *                              Package () {
 967 *                                      Package () {
 968 *                                              "compatible",
 969 *                                              Package () { "nokia,smia" }
 970 *                                      },
 971 *                              },
 972 *                              ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
 973 *                              Package () {
 974 *                                      Package () { "port0", "PRT0" },
 975 *                              }
 976 *                      })
 977 *                      Name (PRT0, Package() {
 978 *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 979 *                              Package () {
 980 *                                      Package () { "port", 0 },
 981 *                              },
 982 *                              ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
 983 *                              Package () {
 984 *                                      Package () { "endpoint0", "EP00" },
 985 *                              }
 986 *                      })
 987 *                      Name (EP00, Package() {
 988 *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 989 *                              Package () {
 990 *                                      Package () { "endpoint", 0 },
 991 *                                      Package () {
 992 *                                              "remote-endpoint",
 993 *                                              Package() {
 994 *                                                      \_SB.PCI0.ISP, 4, 0
 995 *                                              }
 996 *                                      },
 997 *                              }
 998 *                      })
 999 *              }
1000 *      }
1001 *
1002 *      Scope (\_SB.PCI0)
1003 *      {
1004 *              Device (ISP)
1005 *              {
1006 *                      Name (_DSD, Package () {
1007 *                              ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1008 *                              Package () {
1009 *                                      Package () { "port4", "PRT4" },
1010 *                              }
1011 *                      })
1012 *
1013 *                      Name (PRT4, Package() {
1014 *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1015 *                              Package () {
1016 *                                      Package () { "port", 4 },
1017 *                              },
1018 *                              ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1019 *                              Package () {
1020 *                                      Package () { "endpoint0", "EP40" },
1021 *                              }
1022 *                      })
1023 *
1024 *                      Name (EP40, Package() {
1025 *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1026 *                              Package () {
1027 *                                      Package () { "endpoint", 0 },
1028 *                                      Package () {
1029 *                                              "remote-endpoint",
1030 *                                              Package () {
1031 *                                                      \_SB.PCI0.I2C2.CAM0,
1032 *                                                      0, 0
1033 *                                              }
1034 *                                      },
1035 *                              }
1036 *                      })
1037 *              }
1038 *      }
1039 *
1040 * From the EP40 node under ISP device, you could parse the graph remote
1041 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1042 *
1043 *  @fwnode: fwnode referring to EP40 under ISP.
1044 *  @prop: "remote-endpoint"
1045 *  @index: 0
1046 *  @props: "port", "endpoint"
1047 *  @nprops: 2
1048 *
1049 * And you'd get back fwnode referring to EP00 under CAM0.
1050 *
1051 * The same works the other way around: if you use EP00 under CAM0 as the
1052 * fwnode, you'll get fwnode referring to EP40 under ISP.
1053 *
1054 * The same example in DT syntax would look like this:
1055 *
1056 * cam: cam0 {
1057 *      compatible = "nokia,smia";
1058 *
1059 *      port {
1060 *              port = <0>;
1061 *              endpoint {
1062 *                      endpoint = <0>;
1063 *                      remote-endpoint = <&isp 4 0>;
1064 *              };
1065 *      };
1066 * };
1067 *
1068 * isp: isp {
1069 *      ports {
1070 *              port@4 {
1071 *                      port = <4>;
1072 *                      endpoint {
1073 *                              endpoint = <0>;
1074 *                              remote-endpoint = <&cam 0 0>;
1075 *                      };
1076 *              };
1077 *      };
1078 * };
1079 *
1080 * Return: 0 on success
1081 *         -ENOENT if no entries (or the property itself) were found
1082 *         -EINVAL if property parsing otherwise failed
1083 *         -ENOMEM if memory allocation failed
1084 */
1085static struct fwnode_handle *
1086v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1087                                   const char *prop,
1088                                   unsigned int index,
1089                                   const char * const *props,
1090                                   unsigned int nprops)
1091{
1092        struct fwnode_reference_args fwnode_args;
1093        u64 *args = fwnode_args.args;
1094        struct fwnode_handle *child;
1095        int ret;
1096
1097        /*
1098         * Obtain remote fwnode as well as the integer arguments.
1099         *
1100         * Note that right now both -ENODATA and -ENOENT may signal
1101         * out-of-bounds access. Return -ENOENT in that case.
1102         */
1103        ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1104                                                 index, &fwnode_args);
1105        if (ret)
1106                return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1107
1108        /*
1109         * Find a node in the tree under the referred fwnode corresponding to
1110         * the integer arguments.
1111         */
1112        fwnode = fwnode_args.fwnode;
1113        while (nprops--) {
1114                u32 val;
1115
1116                /* Loop over all child nodes under fwnode. */
1117                fwnode_for_each_child_node(fwnode, child) {
1118                        if (fwnode_property_read_u32(child, *props, &val))
1119                                continue;
1120
1121                        /* Found property, see if its value matches. */
1122                        if (val == *args)
1123                                break;
1124                }
1125
1126                fwnode_handle_put(fwnode);
1127
1128                /* No property found; return an error here. */
1129                if (!child) {
1130                        fwnode = ERR_PTR(-ENOENT);
1131                        break;
1132                }
1133
1134                props++;
1135                args++;
1136                fwnode = child;
1137        }
1138
1139        return fwnode;
1140}
1141
1142struct v4l2_fwnode_int_props {
1143        const char *name;
1144        const char * const *props;
1145        unsigned int nprops;
1146};
1147
1148/*
1149 * v4l2_fwnode_reference_parse_int_props - parse references for async
1150 *                                         sub-devices
1151 * @dev: struct device pointer
1152 * @notifier: notifier for @dev
1153 * @prop: the name of the property
1154 * @props: the array of integer property names
1155 * @nprops: the number of integer properties
1156 *
1157 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1158 * property @prop with integer arguments with child nodes matching in properties
1159 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1160 * accordingly.
1161 *
1162 * While it is technically possible to use this function on DT, it is only
1163 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1164 * on ACPI the references are limited to devices.
1165 *
1166 * Return: 0 on success
1167 *         -ENOENT if no entries (or the property itself) were found
1168 *         -EINVAL if property parsing otherwisefailed
1169 *         -ENOMEM if memory allocation failed
1170 */
1171static int
1172v4l2_fwnode_reference_parse_int_props(struct device *dev,
1173                                      struct v4l2_async_notifier *notifier,
1174                                      const struct v4l2_fwnode_int_props *p)
1175{
1176        struct fwnode_handle *fwnode;
1177        unsigned int index;
1178        int ret;
1179        const char *prop = p->name;
1180        const char * const *props = p->props;
1181        unsigned int nprops = p->nprops;
1182
1183        index = 0;
1184        do {
1185                fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1186                                                            prop, index,
1187                                                            props, nprops);
1188                if (IS_ERR(fwnode)) {
1189                        /*
1190                         * Note that right now both -ENODATA and -ENOENT may
1191                         * signal out-of-bounds access. Return the error in
1192                         * cases other than that.
1193                         */
1194                        if (PTR_ERR(fwnode) != -ENOENT &&
1195                            PTR_ERR(fwnode) != -ENODATA)
1196                                return PTR_ERR(fwnode);
1197                        break;
1198                }
1199                fwnode_handle_put(fwnode);
1200                index++;
1201        } while (1);
1202
1203        for (index = 0;
1204             !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1205                                                                  prop, index,
1206                                                                  props,
1207                                                                  nprops)));
1208             index++) {
1209                struct v4l2_async_subdev *asd;
1210
1211                asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
1212                                               struct v4l2_async_subdev);
1213                fwnode_handle_put(fwnode);
1214                if (IS_ERR(asd)) {
1215                        ret = PTR_ERR(asd);
1216                        /* not an error if asd already exists */
1217                        if (ret == -EEXIST)
1218                                continue;
1219
1220                        return PTR_ERR(asd);
1221                }
1222        }
1223
1224        return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1225}
1226
1227/**
1228 * v4l2_async_nf_parse_fwnode_sensor - parse common references on
1229 *                                           sensors for async sub-devices
1230 * @dev: the device node the properties of which are parsed for references
1231 * @notifier: the async notifier where the async subdevs will be added
1232 *
1233 * Parse common sensor properties for remote devices related to the
1234 * sensor and set up async sub-devices for them.
1235 *
1236 * Any notifier populated using this function must be released with a call to
1237 * v4l2_async_nf_release() after it has been unregistered and the async
1238 * sub-devices are no longer in use, even in the case the function returned an
1239 * error.
1240 *
1241 * Return: 0 on success
1242 *         -ENOMEM if memory allocation failed
1243 *         -EINVAL if property parsing failed
1244 */
1245static int
1246v4l2_async_nf_parse_fwnode_sensor(struct device *dev,
1247                                  struct v4l2_async_notifier *notifier)
1248{
1249        static const char * const led_props[] = { "led" };
1250        static const struct v4l2_fwnode_int_props props[] = {
1251                { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1252                { "lens-focus", NULL, 0 },
1253        };
1254        unsigned int i;
1255
1256        for (i = 0; i < ARRAY_SIZE(props); i++) {
1257                int ret;
1258
1259                if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1260                        ret = v4l2_fwnode_reference_parse_int_props(dev,
1261                                                                    notifier,
1262                                                                    &props[i]);
1263                else
1264                        ret = v4l2_fwnode_reference_parse(dev, notifier,
1265                                                          props[i].name);
1266                if (ret && ret != -ENOENT) {
1267                        dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1268                                 props[i].name, ret);
1269                        return ret;
1270                }
1271        }
1272
1273        return 0;
1274}
1275
1276int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
1277{
1278        struct v4l2_async_notifier *notifier;
1279        int ret;
1280
1281        if (WARN_ON(!sd->dev))
1282                return -ENODEV;
1283
1284        notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1285        if (!notifier)
1286                return -ENOMEM;
1287
1288        v4l2_async_nf_init(notifier);
1289
1290        ret = v4l2_async_nf_parse_fwnode_sensor(sd->dev, notifier);
1291        if (ret < 0)
1292                goto out_cleanup;
1293
1294        ret = v4l2_async_subdev_nf_register(sd, notifier);
1295        if (ret < 0)
1296                goto out_cleanup;
1297
1298        ret = v4l2_async_register_subdev(sd);
1299        if (ret < 0)
1300                goto out_unregister;
1301
1302        sd->subdev_notifier = notifier;
1303
1304        return 0;
1305
1306out_unregister:
1307        v4l2_async_nf_unregister(notifier);
1308
1309out_cleanup:
1310        v4l2_async_nf_cleanup(notifier);
1311        kfree(notifier);
1312
1313        return ret;
1314}
1315EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
1316
1317MODULE_LICENSE("GPL");
1318MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1319MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1320MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1321