linux/drivers/mmc/host/mmc_spi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Access SD/MMC cards through SPI master controllers
   4 *
   5 * (C) Copyright 2005, Intec Automation,
   6 *              Mike Lavender (mike@steroidmicros)
   7 * (C) Copyright 2006-2007, David Brownell
   8 * (C) Copyright 2007, Axis Communications,
   9 *              Hans-Peter Nilsson (hp@axis.com)
  10 * (C) Copyright 2007, ATRON electronic GmbH,
  11 *              Jan Nikitenko <jan.nikitenko@gmail.com>
  12 */
  13#include <linux/sched.h>
  14#include <linux/delay.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/bio.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/crc7.h>
  20#include <linux/crc-itu-t.h>
  21#include <linux/scatterlist.h>
  22
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/mmc.h>              /* for R1_SPI_* bit values */
  25#include <linux/mmc/slot-gpio.h>
  26
  27#include <linux/spi/spi.h>
  28#include <linux/spi/mmc_spi.h>
  29
  30#include <asm/unaligned.h>
  31
  32
  33/* NOTES:
  34 *
  35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
  36 *   controller, although some of them do have hardware support for
  37 *   SPI protocol.  The main reason for such configs would be mmc-ish
  38 *   cards like DataFlash, which don't support that "native" protocol.
  39 *
  40 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  41 *   switch between driver stacks, and in any case if "native" mode
  42 *   is available, it will be faster and hence preferable.
  43 *
  44 * - MMC depends on a different chipselect management policy than the
  45 *   SPI interface currently supports for shared bus segments:  it needs
  46 *   to issue multiple spi_message requests with the chipselect active,
  47 *   using the results of one message to decide the next one to issue.
  48 *
  49 *   Pending updates to the programming interface, this driver expects
  50 *   that it not share the bus with other drivers (precluding conflicts).
  51 *
  52 * - We tell the controller to keep the chipselect active from the
  53 *   beginning of an mmc_host_ops.request until the end.  So beware
  54 *   of SPI controller drivers that mis-handle the cs_change flag!
  55 *
  56 *   However, many cards seem OK with chipselect flapping up/down
  57 *   during that time ... at least on unshared bus segments.
  58 */
  59
  60
  61/*
  62 * Local protocol constants, internal to data block protocols.
  63 */
  64
  65/* Response tokens used to ack each block written: */
  66#define SPI_MMC_RESPONSE_CODE(x)        ((x) & 0x1f)
  67#define SPI_RESPONSE_ACCEPTED           ((2 << 1)|1)
  68#define SPI_RESPONSE_CRC_ERR            ((5 << 1)|1)
  69#define SPI_RESPONSE_WRITE_ERR          ((6 << 1)|1)
  70
  71/* Read and write blocks start with these tokens and end with crc;
  72 * on error, read tokens act like a subset of R2_SPI_* values.
  73 */
  74#define SPI_TOKEN_SINGLE        0xfe    /* single block r/w, multiblock read */
  75#define SPI_TOKEN_MULTI_WRITE   0xfc    /* multiblock write */
  76#define SPI_TOKEN_STOP_TRAN     0xfd    /* terminate multiblock write */
  77
  78#define MMC_SPI_BLOCKSIZE       512
  79
  80#define MMC_SPI_R1B_TIMEOUT_MS  3000
  81#define MMC_SPI_INIT_TIMEOUT_MS 3000
  82
  83/* One of the critical speed parameters is the amount of data which may
  84 * be transferred in one command. If this value is too low, the SD card
  85 * controller has to do multiple partial block writes (argggh!). With
  86 * today (2008) SD cards there is little speed gain if we transfer more
  87 * than 64 KBytes at a time. So use this value until there is any indication
  88 * that we should do more here.
  89 */
  90#define MMC_SPI_BLOCKSATONCE    128
  91
  92/****************************************************************************/
  93
  94/*
  95 * Local Data Structures
  96 */
  97
  98/* "scratch" is per-{command,block} data exchanged with the card */
  99struct scratch {
 100        u8                      status[29];
 101        u8                      data_token;
 102        __be16                  crc_val;
 103};
 104
 105struct mmc_spi_host {
 106        struct mmc_host         *mmc;
 107        struct spi_device       *spi;
 108
 109        unsigned char           power_mode;
 110        u16                     powerup_msecs;
 111
 112        struct mmc_spi_platform_data    *pdata;
 113
 114        /* for bulk data transfers */
 115        struct spi_transfer     token, t, crc, early_status;
 116        struct spi_message      m;
 117
 118        /* for status readback */
 119        struct spi_transfer     status;
 120        struct spi_message      readback;
 121
 122        /* underlying DMA-aware controller, or null */
 123        struct device           *dma_dev;
 124
 125        /* buffer used for commands and for message "overhead" */
 126        struct scratch          *data;
 127        dma_addr_t              data_dma;
 128
 129        /* Specs say to write ones most of the time, even when the card
 130         * has no need to read its input data; and many cards won't care.
 131         * This is our source of those ones.
 132         */
 133        void                    *ones;
 134        dma_addr_t              ones_dma;
 135};
 136
 137
 138/****************************************************************************/
 139
 140/*
 141 * MMC-over-SPI protocol glue, used by the MMC stack interface
 142 */
 143
 144static inline int mmc_cs_off(struct mmc_spi_host *host)
 145{
 146        /* chipselect will always be inactive after setup() */
 147        return spi_setup(host->spi);
 148}
 149
 150static int
 151mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 152{
 153        int status;
 154
 155        if (len > sizeof(*host->data)) {
 156                WARN_ON(1);
 157                return -EIO;
 158        }
 159
 160        host->status.len = len;
 161
 162        if (host->dma_dev)
 163                dma_sync_single_for_device(host->dma_dev,
 164                                host->data_dma, sizeof(*host->data),
 165                                DMA_FROM_DEVICE);
 166
 167        status = spi_sync_locked(host->spi, &host->readback);
 168
 169        if (host->dma_dev)
 170                dma_sync_single_for_cpu(host->dma_dev,
 171                                host->data_dma, sizeof(*host->data),
 172                                DMA_FROM_DEVICE);
 173
 174        return status;
 175}
 176
 177static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 178                        unsigned n, u8 byte)
 179{
 180        u8 *cp = host->data->status;
 181        unsigned long start = jiffies;
 182
 183        do {
 184                int             status;
 185                unsigned        i;
 186
 187                status = mmc_spi_readbytes(host, n);
 188                if (status < 0)
 189                        return status;
 190
 191                for (i = 0; i < n; i++) {
 192                        if (cp[i] != byte)
 193                                return cp[i];
 194                }
 195
 196                /* If we need long timeouts, we may release the CPU */
 197                cond_resched();
 198        } while (time_is_after_jiffies(start + timeout));
 199        return -ETIMEDOUT;
 200}
 201
 202static inline int
 203mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 204{
 205        return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 206}
 207
 208static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 209{
 210        return mmc_spi_skip(host, timeout, 1, 0xff);
 211}
 212
 213
 214/*
 215 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 216 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 217 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 218 *
 219 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 220 * newer cards R7 (IF_COND).
 221 */
 222
 223static char *maptype(struct mmc_command *cmd)
 224{
 225        switch (mmc_spi_resp_type(cmd)) {
 226        case MMC_RSP_SPI_R1:    return "R1";
 227        case MMC_RSP_SPI_R1B:   return "R1B";
 228        case MMC_RSP_SPI_R2:    return "R2/R5";
 229        case MMC_RSP_SPI_R3:    return "R3/R4/R7";
 230        default:                return "?";
 231        }
 232}
 233
 234/* return zero, else negative errno after setting cmd->error */
 235static int mmc_spi_response_get(struct mmc_spi_host *host,
 236                struct mmc_command *cmd, int cs_on)
 237{
 238        unsigned long timeout_ms;
 239        u8      *cp = host->data->status;
 240        u8      *end = cp + host->t.len;
 241        int     value = 0;
 242        int     bitshift;
 243        u8      leftover = 0;
 244        unsigned short rotator;
 245        int     i;
 246        char    tag[32];
 247
 248        snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 249                cmd->opcode, maptype(cmd));
 250
 251        /* Except for data block reads, the whole response will already
 252         * be stored in the scratch buffer.  It's somewhere after the
 253         * command and the first byte we read after it.  We ignore that
 254         * first byte.  After STOP_TRANSMISSION command it may include
 255         * two data bits, but otherwise it's all ones.
 256         */
 257        cp += 8;
 258        while (cp < end && *cp == 0xff)
 259                cp++;
 260
 261        /* Data block reads (R1 response types) may need more data... */
 262        if (cp == end) {
 263                cp = host->data->status;
 264                end = cp+1;
 265
 266                /* Card sends N(CR) (== 1..8) bytes of all-ones then one
 267                 * status byte ... and we already scanned 2 bytes.
 268                 *
 269                 * REVISIT block read paths use nasty byte-at-a-time I/O
 270                 * so it can always DMA directly into the target buffer.
 271                 * It'd probably be better to memcpy() the first chunk and
 272                 * avoid extra i/o calls...
 273                 *
 274                 * Note we check for more than 8 bytes, because in practice,
 275                 * some SD cards are slow...
 276                 */
 277                for (i = 2; i < 16; i++) {
 278                        value = mmc_spi_readbytes(host, 1);
 279                        if (value < 0)
 280                                goto done;
 281                        if (*cp != 0xff)
 282                                goto checkstatus;
 283                }
 284                value = -ETIMEDOUT;
 285                goto done;
 286        }
 287
 288checkstatus:
 289        bitshift = 0;
 290        if (*cp & 0x80) {
 291                /* Houston, we have an ugly card with a bit-shifted response */
 292                rotator = *cp++ << 8;
 293                /* read the next byte */
 294                if (cp == end) {
 295                        value = mmc_spi_readbytes(host, 1);
 296                        if (value < 0)
 297                                goto done;
 298                        cp = host->data->status;
 299                        end = cp+1;
 300                }
 301                rotator |= *cp++;
 302                while (rotator & 0x8000) {
 303                        bitshift++;
 304                        rotator <<= 1;
 305                }
 306                cmd->resp[0] = rotator >> 8;
 307                leftover = rotator;
 308        } else {
 309                cmd->resp[0] = *cp++;
 310        }
 311        cmd->error = 0;
 312
 313        /* Status byte: the entire seven-bit R1 response.  */
 314        if (cmd->resp[0] != 0) {
 315                if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 316                                & cmd->resp[0])
 317                        value = -EFAULT; /* Bad address */
 318                else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 319                        value = -ENOSYS; /* Function not implemented */
 320                else if (R1_SPI_COM_CRC & cmd->resp[0])
 321                        value = -EILSEQ; /* Illegal byte sequence */
 322                else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 323                                & cmd->resp[0])
 324                        value = -EIO;    /* I/O error */
 325                /* else R1_SPI_IDLE, "it's resetting" */
 326        }
 327
 328        switch (mmc_spi_resp_type(cmd)) {
 329
 330        /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 331         * and less-common stuff like various erase operations.
 332         */
 333        case MMC_RSP_SPI_R1B:
 334                /* maybe we read all the busy tokens already */
 335                while (cp < end && *cp == 0)
 336                        cp++;
 337                if (cp == end) {
 338                        timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
 339                                MMC_SPI_R1B_TIMEOUT_MS;
 340                        mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
 341                }
 342                break;
 343
 344        /* SPI R2 == R1 + second status byte; SEND_STATUS
 345         * SPI R5 == R1 + data byte; IO_RW_DIRECT
 346         */
 347        case MMC_RSP_SPI_R2:
 348                /* read the next byte */
 349                if (cp == end) {
 350                        value = mmc_spi_readbytes(host, 1);
 351                        if (value < 0)
 352                                goto done;
 353                        cp = host->data->status;
 354                        end = cp+1;
 355                }
 356                if (bitshift) {
 357                        rotator = leftover << 8;
 358                        rotator |= *cp << bitshift;
 359                        cmd->resp[0] |= (rotator & 0xFF00);
 360                } else {
 361                        cmd->resp[0] |= *cp << 8;
 362                }
 363                break;
 364
 365        /* SPI R3, R4, or R7 == R1 + 4 bytes */
 366        case MMC_RSP_SPI_R3:
 367                rotator = leftover << 8;
 368                cmd->resp[1] = 0;
 369                for (i = 0; i < 4; i++) {
 370                        cmd->resp[1] <<= 8;
 371                        /* read the next byte */
 372                        if (cp == end) {
 373                                value = mmc_spi_readbytes(host, 1);
 374                                if (value < 0)
 375                                        goto done;
 376                                cp = host->data->status;
 377                                end = cp+1;
 378                        }
 379                        if (bitshift) {
 380                                rotator |= *cp++ << bitshift;
 381                                cmd->resp[1] |= (rotator >> 8);
 382                                rotator <<= 8;
 383                        } else {
 384                                cmd->resp[1] |= *cp++;
 385                        }
 386                }
 387                break;
 388
 389        /* SPI R1 == just one status byte */
 390        case MMC_RSP_SPI_R1:
 391                break;
 392
 393        default:
 394                dev_dbg(&host->spi->dev, "bad response type %04x\n",
 395                        mmc_spi_resp_type(cmd));
 396                if (value >= 0)
 397                        value = -EINVAL;
 398                goto done;
 399        }
 400
 401        if (value < 0)
 402                dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 403                        tag, cmd->resp[0], cmd->resp[1]);
 404
 405        /* disable chipselect on errors and some success cases */
 406        if (value >= 0 && cs_on)
 407                return value;
 408done:
 409        if (value < 0)
 410                cmd->error = value;
 411        mmc_cs_off(host);
 412        return value;
 413}
 414
 415/* Issue command and read its response.
 416 * Returns zero on success, negative for error.
 417 *
 418 * On error, caller must cope with mmc core retry mechanism.  That
 419 * means immediate low-level resubmit, which affects the bus lock...
 420 */
 421static int
 422mmc_spi_command_send(struct mmc_spi_host *host,
 423                struct mmc_request *mrq,
 424                struct mmc_command *cmd, int cs_on)
 425{
 426        struct scratch          *data = host->data;
 427        u8                      *cp = data->status;
 428        int                     status;
 429        struct spi_transfer     *t;
 430
 431        /* We can handle most commands (except block reads) in one full
 432         * duplex I/O operation before either starting the next transfer
 433         * (data block or command) or else deselecting the card.
 434         *
 435         * First, write 7 bytes:
 436         *  - an all-ones byte to ensure the card is ready
 437         *  - opcode byte (plus start and transmission bits)
 438         *  - four bytes of big-endian argument
 439         *  - crc7 (plus end bit) ... always computed, it's cheap
 440         *
 441         * We init the whole buffer to all-ones, which is what we need
 442         * to write while we're reading (later) response data.
 443         */
 444        memset(cp, 0xff, sizeof(data->status));
 445
 446        cp[1] = 0x40 | cmd->opcode;
 447        put_unaligned_be32(cmd->arg, cp + 2);
 448        cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
 449        cp += 7;
 450
 451        /* Then, read up to 13 bytes (while writing all-ones):
 452         *  - N(CR) (== 1..8) bytes of all-ones
 453         *  - status byte (for all response types)
 454         *  - the rest of the response, either:
 455         *      + nothing, for R1 or R1B responses
 456         *      + second status byte, for R2 responses
 457         *      + four data bytes, for R3 and R7 responses
 458         *
 459         * Finally, read some more bytes ... in the nice cases we know in
 460         * advance how many, and reading 1 more is always OK:
 461         *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 462         *  - N(RC) (== 1..N) bytes of all-ones, before next command
 463         *  - N(WR) (== 1..N) bytes of all-ones, before data write
 464         *
 465         * So in those cases one full duplex I/O of at most 21 bytes will
 466         * handle the whole command, leaving the card ready to receive a
 467         * data block or new command.  We do that whenever we can, shaving
 468         * CPU and IRQ costs (especially when using DMA or FIFOs).
 469         *
 470         * There are two other cases, where it's not generally practical
 471         * to rely on a single I/O:
 472         *
 473         *  - R1B responses need at least N(EC) bytes of all-zeroes.
 474         *
 475         *    In this case we can *try* to fit it into one I/O, then
 476         *    maybe read more data later.
 477         *
 478         *  - Data block reads are more troublesome, since a variable
 479         *    number of padding bytes precede the token and data.
 480         *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 481         *      + N(AC) (== 1..many) bytes of all-ones
 482         *
 483         *    In this case we currently only have minimal speedups here:
 484         *    when N(CR) == 1 we can avoid I/O in response_get().
 485         */
 486        if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 487                cp += 2;        /* min(N(CR)) + status */
 488                /* R1 */
 489        } else {
 490                cp += 10;       /* max(N(CR)) + status + min(N(RC),N(WR)) */
 491                if (cmd->flags & MMC_RSP_SPI_S2)        /* R2/R5 */
 492                        cp++;
 493                else if (cmd->flags & MMC_RSP_SPI_B4)   /* R3/R4/R7 */
 494                        cp += 4;
 495                else if (cmd->flags & MMC_RSP_BUSY)     /* R1B */
 496                        cp = data->status + sizeof(data->status);
 497                /* else:  R1 (most commands) */
 498        }
 499
 500        dev_dbg(&host->spi->dev, "  CMD%d, resp %s\n",
 501                cmd->opcode, maptype(cmd));
 502
 503        /* send command, leaving chipselect active */
 504        spi_message_init(&host->m);
 505
 506        t = &host->t;
 507        memset(t, 0, sizeof(*t));
 508        t->tx_buf = t->rx_buf = data->status;
 509        t->tx_dma = t->rx_dma = host->data_dma;
 510        t->len = cp - data->status;
 511        t->cs_change = 1;
 512        spi_message_add_tail(t, &host->m);
 513
 514        if (host->dma_dev) {
 515                host->m.is_dma_mapped = 1;
 516                dma_sync_single_for_device(host->dma_dev,
 517                                host->data_dma, sizeof(*host->data),
 518                                DMA_BIDIRECTIONAL);
 519        }
 520        status = spi_sync_locked(host->spi, &host->m);
 521
 522        if (host->dma_dev)
 523                dma_sync_single_for_cpu(host->dma_dev,
 524                                host->data_dma, sizeof(*host->data),
 525                                DMA_BIDIRECTIONAL);
 526        if (status < 0) {
 527                dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 528                cmd->error = status;
 529                return status;
 530        }
 531
 532        /* after no-data commands and STOP_TRANSMISSION, chipselect off */
 533        return mmc_spi_response_get(host, cmd, cs_on);
 534}
 535
 536/* Build data message with up to four separate transfers.  For TX, we
 537 * start by writing the data token.  And in most cases, we finish with
 538 * a status transfer.
 539 *
 540 * We always provide TX data for data and CRC.  The MMC/SD protocol
 541 * requires us to write ones; but Linux defaults to writing zeroes;
 542 * so we explicitly initialize it to all ones on RX paths.
 543 *
 544 * We also handle DMA mapping, so the underlying SPI controller does
 545 * not need to (re)do it for each message.
 546 */
 547static void
 548mmc_spi_setup_data_message(
 549        struct mmc_spi_host     *host,
 550        bool                    multiple,
 551        enum dma_data_direction direction)
 552{
 553        struct spi_transfer     *t;
 554        struct scratch          *scratch = host->data;
 555        dma_addr_t              dma = host->data_dma;
 556
 557        spi_message_init(&host->m);
 558        if (dma)
 559                host->m.is_dma_mapped = 1;
 560
 561        /* for reads, readblock() skips 0xff bytes before finding
 562         * the token; for writes, this transfer issues that token.
 563         */
 564        if (direction == DMA_TO_DEVICE) {
 565                t = &host->token;
 566                memset(t, 0, sizeof(*t));
 567                t->len = 1;
 568                if (multiple)
 569                        scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 570                else
 571                        scratch->data_token = SPI_TOKEN_SINGLE;
 572                t->tx_buf = &scratch->data_token;
 573                if (dma)
 574                        t->tx_dma = dma + offsetof(struct scratch, data_token);
 575                spi_message_add_tail(t, &host->m);
 576        }
 577
 578        /* Body of transfer is buffer, then CRC ...
 579         * either TX-only, or RX with TX-ones.
 580         */
 581        t = &host->t;
 582        memset(t, 0, sizeof(*t));
 583        t->tx_buf = host->ones;
 584        t->tx_dma = host->ones_dma;
 585        /* length and actual buffer info are written later */
 586        spi_message_add_tail(t, &host->m);
 587
 588        t = &host->crc;
 589        memset(t, 0, sizeof(*t));
 590        t->len = 2;
 591        if (direction == DMA_TO_DEVICE) {
 592                /* the actual CRC may get written later */
 593                t->tx_buf = &scratch->crc_val;
 594                if (dma)
 595                        t->tx_dma = dma + offsetof(struct scratch, crc_val);
 596        } else {
 597                t->tx_buf = host->ones;
 598                t->tx_dma = host->ones_dma;
 599                t->rx_buf = &scratch->crc_val;
 600                if (dma)
 601                        t->rx_dma = dma + offsetof(struct scratch, crc_val);
 602        }
 603        spi_message_add_tail(t, &host->m);
 604
 605        /*
 606         * A single block read is followed by N(EC) [0+] all-ones bytes
 607         * before deselect ... don't bother.
 608         *
 609         * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 610         * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 611         * collect that single byte, so readblock() doesn't need to.
 612         *
 613         * For a write, the one-byte data response follows immediately, then
 614         * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 615         * Then single block reads may deselect, and multiblock ones issue
 616         * the next token (next data block, or STOP_TRAN).  We can try to
 617         * minimize I/O ops by using a single read to collect end-of-busy.
 618         */
 619        if (multiple || direction == DMA_TO_DEVICE) {
 620                t = &host->early_status;
 621                memset(t, 0, sizeof(*t));
 622                t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
 623                t->tx_buf = host->ones;
 624                t->tx_dma = host->ones_dma;
 625                t->rx_buf = scratch->status;
 626                if (dma)
 627                        t->rx_dma = dma + offsetof(struct scratch, status);
 628                t->cs_change = 1;
 629                spi_message_add_tail(t, &host->m);
 630        }
 631}
 632
 633/*
 634 * Write one block:
 635 *  - caller handled preceding N(WR) [1+] all-ones bytes
 636 *  - data block
 637 *      + token
 638 *      + data bytes
 639 *      + crc16
 640 *  - an all-ones byte ... card writes a data-response byte
 641 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 642 *
 643 * Return negative errno, else success.
 644 */
 645static int
 646mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 647        unsigned long timeout)
 648{
 649        struct spi_device       *spi = host->spi;
 650        int                     status, i;
 651        struct scratch          *scratch = host->data;
 652        u32                     pattern;
 653
 654        if (host->mmc->use_spi_crc)
 655                scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
 656        if (host->dma_dev)
 657                dma_sync_single_for_device(host->dma_dev,
 658                                host->data_dma, sizeof(*scratch),
 659                                DMA_BIDIRECTIONAL);
 660
 661        status = spi_sync_locked(spi, &host->m);
 662
 663        if (status != 0) {
 664                dev_dbg(&spi->dev, "write error (%d)\n", status);
 665                return status;
 666        }
 667
 668        if (host->dma_dev)
 669                dma_sync_single_for_cpu(host->dma_dev,
 670                                host->data_dma, sizeof(*scratch),
 671                                DMA_BIDIRECTIONAL);
 672
 673        /*
 674         * Get the transmission data-response reply.  It must follow
 675         * immediately after the data block we transferred.  This reply
 676         * doesn't necessarily tell whether the write operation succeeded;
 677         * it just says if the transmission was ok and whether *earlier*
 678         * writes succeeded; see the standard.
 679         *
 680         * In practice, there are (even modern SDHC-)cards which are late
 681         * in sending the response, and miss the time frame by a few bits,
 682         * so we have to cope with this situation and check the response
 683         * bit-by-bit. Arggh!!!
 684         */
 685        pattern = get_unaligned_be32(scratch->status);
 686
 687        /* First 3 bit of pattern are undefined */
 688        pattern |= 0xE0000000;
 689
 690        /* left-adjust to leading 0 bit */
 691        while (pattern & 0x80000000)
 692                pattern <<= 1;
 693        /* right-adjust for pattern matching. Code is in bit 4..0 now. */
 694        pattern >>= 27;
 695
 696        switch (pattern) {
 697        case SPI_RESPONSE_ACCEPTED:
 698                status = 0;
 699                break;
 700        case SPI_RESPONSE_CRC_ERR:
 701                /* host shall then issue MMC_STOP_TRANSMISSION */
 702                status = -EILSEQ;
 703                break;
 704        case SPI_RESPONSE_WRITE_ERR:
 705                /* host shall then issue MMC_STOP_TRANSMISSION,
 706                 * and should MMC_SEND_STATUS to sort it out
 707                 */
 708                status = -EIO;
 709                break;
 710        default:
 711                status = -EPROTO;
 712                break;
 713        }
 714        if (status != 0) {
 715                dev_dbg(&spi->dev, "write error %02x (%d)\n",
 716                        scratch->status[0], status);
 717                return status;
 718        }
 719
 720        t->tx_buf += t->len;
 721        if (host->dma_dev)
 722                t->tx_dma += t->len;
 723
 724        /* Return when not busy.  If we didn't collect that status yet,
 725         * we'll need some more I/O.
 726         */
 727        for (i = 4; i < sizeof(scratch->status); i++) {
 728                /* card is non-busy if the most recent bit is 1 */
 729                if (scratch->status[i] & 0x01)
 730                        return 0;
 731        }
 732        return mmc_spi_wait_unbusy(host, timeout);
 733}
 734
 735/*
 736 * Read one block:
 737 *  - skip leading all-ones bytes ... either
 738 *      + N(AC) [1..f(clock,CSD)] usually, else
 739 *      + N(CX) [0..8] when reading CSD or CID
 740 *  - data block
 741 *      + token ... if error token, no data or crc
 742 *      + data bytes
 743 *      + crc16
 744 *
 745 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 746 * before dropping chipselect.
 747 *
 748 * For multiblock reads, caller either reads the next block or issues a
 749 * STOP_TRANSMISSION command.
 750 */
 751static int
 752mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 753        unsigned long timeout)
 754{
 755        struct spi_device       *spi = host->spi;
 756        int                     status;
 757        struct scratch          *scratch = host->data;
 758        unsigned int            bitshift;
 759        u8                      leftover;
 760
 761        /* At least one SD card sends an all-zeroes byte when N(CX)
 762         * applies, before the all-ones bytes ... just cope with that.
 763         */
 764        status = mmc_spi_readbytes(host, 1);
 765        if (status < 0)
 766                return status;
 767        status = scratch->status[0];
 768        if (status == 0xff || status == 0)
 769                status = mmc_spi_readtoken(host, timeout);
 770
 771        if (status < 0) {
 772                dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 773                return status;
 774        }
 775
 776        /* The token may be bit-shifted...
 777         * the first 0-bit precedes the data stream.
 778         */
 779        bitshift = 7;
 780        while (status & 0x80) {
 781                status <<= 1;
 782                bitshift--;
 783        }
 784        leftover = status << 1;
 785
 786        if (host->dma_dev) {
 787                dma_sync_single_for_device(host->dma_dev,
 788                                host->data_dma, sizeof(*scratch),
 789                                DMA_BIDIRECTIONAL);
 790                dma_sync_single_for_device(host->dma_dev,
 791                                t->rx_dma, t->len,
 792                                DMA_FROM_DEVICE);
 793        }
 794
 795        status = spi_sync_locked(spi, &host->m);
 796        if (status < 0) {
 797                dev_dbg(&spi->dev, "read error %d\n", status);
 798                return status;
 799        }
 800
 801        if (host->dma_dev) {
 802                dma_sync_single_for_cpu(host->dma_dev,
 803                                host->data_dma, sizeof(*scratch),
 804                                DMA_BIDIRECTIONAL);
 805                dma_sync_single_for_cpu(host->dma_dev,
 806                                t->rx_dma, t->len,
 807                                DMA_FROM_DEVICE);
 808        }
 809
 810        if (bitshift) {
 811                /* Walk through the data and the crc and do
 812                 * all the magic to get byte-aligned data.
 813                 */
 814                u8 *cp = t->rx_buf;
 815                unsigned int len;
 816                unsigned int bitright = 8 - bitshift;
 817                u8 temp;
 818                for (len = t->len; len; len--) {
 819                        temp = *cp;
 820                        *cp++ = leftover | (temp >> bitshift);
 821                        leftover = temp << bitright;
 822                }
 823                cp = (u8 *) &scratch->crc_val;
 824                temp = *cp;
 825                *cp++ = leftover | (temp >> bitshift);
 826                leftover = temp << bitright;
 827                temp = *cp;
 828                *cp = leftover | (temp >> bitshift);
 829        }
 830
 831        if (host->mmc->use_spi_crc) {
 832                u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 833
 834                be16_to_cpus(&scratch->crc_val);
 835                if (scratch->crc_val != crc) {
 836                        dev_dbg(&spi->dev,
 837                                "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
 838                                scratch->crc_val, crc, t->len);
 839                        return -EILSEQ;
 840                }
 841        }
 842
 843        t->rx_buf += t->len;
 844        if (host->dma_dev)
 845                t->rx_dma += t->len;
 846
 847        return 0;
 848}
 849
 850/*
 851 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 852 * and inline handshaking.  That handhaking makes it unlike most
 853 * other SPI protocol stacks.
 854 */
 855static void
 856mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 857                struct mmc_data *data, u32 blk_size)
 858{
 859        struct spi_device       *spi = host->spi;
 860        struct device           *dma_dev = host->dma_dev;
 861        struct spi_transfer     *t;
 862        enum dma_data_direction direction = mmc_get_dma_dir(data);
 863        struct scatterlist      *sg;
 864        unsigned                n_sg;
 865        bool                    multiple = (data->blocks > 1);
 866        const char              *write_or_read = (direction == DMA_TO_DEVICE) ? "write" : "read";
 867        u32                     clock_rate;
 868        unsigned long           timeout;
 869
 870        mmc_spi_setup_data_message(host, multiple, direction);
 871        t = &host->t;
 872
 873        if (t->speed_hz)
 874                clock_rate = t->speed_hz;
 875        else
 876                clock_rate = spi->max_speed_hz;
 877
 878        timeout = data->timeout_ns / 1000 +
 879                  data->timeout_clks * 1000000 / clock_rate;
 880        timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
 881
 882        /* Handle scatterlist segments one at a time, with synch for
 883         * each 512-byte block
 884         */
 885        for_each_sg(data->sg, sg, data->sg_len, n_sg) {
 886                int                     status = 0;
 887                dma_addr_t              dma_addr = 0;
 888                void                    *kmap_addr;
 889                unsigned                length = sg->length;
 890                enum dma_data_direction dir = direction;
 891
 892                /* set up dma mapping for controller drivers that might
 893                 * use DMA ... though they may fall back to PIO
 894                 */
 895                if (dma_dev) {
 896                        /* never invalidate whole *shared* pages ... */
 897                        if ((sg->offset != 0 || length != PAGE_SIZE)
 898                                        && dir == DMA_FROM_DEVICE)
 899                                dir = DMA_BIDIRECTIONAL;
 900
 901                        dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 902                                                PAGE_SIZE, dir);
 903                        if (dma_mapping_error(dma_dev, dma_addr)) {
 904                                data->error = -EFAULT;
 905                                break;
 906                        }
 907                        if (direction == DMA_TO_DEVICE)
 908                                t->tx_dma = dma_addr + sg->offset;
 909                        else
 910                                t->rx_dma = dma_addr + sg->offset;
 911                }
 912
 913                /* allow pio too; we don't allow highmem */
 914                kmap_addr = kmap(sg_page(sg));
 915                if (direction == DMA_TO_DEVICE)
 916                        t->tx_buf = kmap_addr + sg->offset;
 917                else
 918                        t->rx_buf = kmap_addr + sg->offset;
 919
 920                /* transfer each block, and update request status */
 921                while (length) {
 922                        t->len = min(length, blk_size);
 923
 924                        dev_dbg(&spi->dev, "    %s block, %d bytes\n", write_or_read, t->len);
 925
 926                        if (direction == DMA_TO_DEVICE)
 927                                status = mmc_spi_writeblock(host, t, timeout);
 928                        else
 929                                status = mmc_spi_readblock(host, t, timeout);
 930                        if (status < 0)
 931                                break;
 932
 933                        data->bytes_xfered += t->len;
 934                        length -= t->len;
 935
 936                        if (!multiple)
 937                                break;
 938                }
 939
 940                /* discard mappings */
 941                if (direction == DMA_FROM_DEVICE)
 942                        flush_dcache_page(sg_page(sg));
 943                kunmap(sg_page(sg));
 944                if (dma_dev)
 945                        dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 946
 947                if (status < 0) {
 948                        data->error = status;
 949                        dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
 950                        break;
 951                }
 952        }
 953
 954        /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 955         * can be issued before multiblock writes.  Unlike its more widely
 956         * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 957         * that can affect the STOP_TRAN logic.   Complete (and current)
 958         * MMC specs should sort that out before Linux starts using CMD23.
 959         */
 960        if (direction == DMA_TO_DEVICE && multiple) {
 961                struct scratch  *scratch = host->data;
 962                int             tmp;
 963                const unsigned  statlen = sizeof(scratch->status);
 964
 965                dev_dbg(&spi->dev, "    STOP_TRAN\n");
 966
 967                /* Tweak the per-block message we set up earlier by morphing
 968                 * it to hold single buffer with the token followed by some
 969                 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
 970                 * "not busy any longer" status, and leave chip selected.
 971                 */
 972                INIT_LIST_HEAD(&host->m.transfers);
 973                list_add(&host->early_status.transfer_list,
 974                                &host->m.transfers);
 975
 976                memset(scratch->status, 0xff, statlen);
 977                scratch->status[0] = SPI_TOKEN_STOP_TRAN;
 978
 979                host->early_status.tx_buf = host->early_status.rx_buf;
 980                host->early_status.tx_dma = host->early_status.rx_dma;
 981                host->early_status.len = statlen;
 982
 983                if (host->dma_dev)
 984                        dma_sync_single_for_device(host->dma_dev,
 985                                        host->data_dma, sizeof(*scratch),
 986                                        DMA_BIDIRECTIONAL);
 987
 988                tmp = spi_sync_locked(spi, &host->m);
 989
 990                if (host->dma_dev)
 991                        dma_sync_single_for_cpu(host->dma_dev,
 992                                        host->data_dma, sizeof(*scratch),
 993                                        DMA_BIDIRECTIONAL);
 994
 995                if (tmp < 0) {
 996                        if (!data->error)
 997                                data->error = tmp;
 998                        return;
 999                }
1000
1001                /* Ideally we collected "not busy" status with one I/O,
1002                 * avoiding wasteful byte-at-a-time scanning... but more
1003                 * I/O is often needed.
1004                 */
1005                for (tmp = 2; tmp < statlen; tmp++) {
1006                        if (scratch->status[tmp] != 0)
1007                                return;
1008                }
1009                tmp = mmc_spi_wait_unbusy(host, timeout);
1010                if (tmp < 0 && !data->error)
1011                        data->error = tmp;
1012        }
1013}
1014
1015/****************************************************************************/
1016
1017/*
1018 * MMC driver implementation -- the interface to the MMC stack
1019 */
1020
1021static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1022{
1023        struct mmc_spi_host     *host = mmc_priv(mmc);
1024        int                     status = -EINVAL;
1025        int                     crc_retry = 5;
1026        struct mmc_command      stop;
1027
1028#ifdef DEBUG
1029        /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1030        {
1031                struct mmc_command      *cmd;
1032                int                     invalid = 0;
1033
1034                cmd = mrq->cmd;
1035                if (!mmc_spi_resp_type(cmd)) {
1036                        dev_dbg(&host->spi->dev, "bogus command\n");
1037                        cmd->error = -EINVAL;
1038                        invalid = 1;
1039                }
1040
1041                cmd = mrq->stop;
1042                if (cmd && !mmc_spi_resp_type(cmd)) {
1043                        dev_dbg(&host->spi->dev, "bogus STOP command\n");
1044                        cmd->error = -EINVAL;
1045                        invalid = 1;
1046                }
1047
1048                if (invalid) {
1049                        dump_stack();
1050                        mmc_request_done(host->mmc, mrq);
1051                        return;
1052                }
1053        }
1054#endif
1055
1056        /* request exclusive bus access */
1057        spi_bus_lock(host->spi->master);
1058
1059crc_recover:
1060        /* issue command; then optionally data and stop */
1061        status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1062        if (status == 0 && mrq->data) {
1063                mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1064
1065                /*
1066                 * The SPI bus is not always reliable for large data transfers.
1067                 * If an occasional crc error is reported by the SD device with
1068                 * data read/write over SPI, it may be recovered by repeating
1069                 * the last SD command again. The retry count is set to 5 to
1070                 * ensure the driver passes stress tests.
1071                 */
1072                if (mrq->data->error == -EILSEQ && crc_retry) {
1073                        stop.opcode = MMC_STOP_TRANSMISSION;
1074                        stop.arg = 0;
1075                        stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1076                        status = mmc_spi_command_send(host, mrq, &stop, 0);
1077                        crc_retry--;
1078                        mrq->data->error = 0;
1079                        goto crc_recover;
1080                }
1081
1082                if (mrq->stop)
1083                        status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1084                else
1085                        mmc_cs_off(host);
1086        }
1087
1088        /* release the bus */
1089        spi_bus_unlock(host->spi->master);
1090
1091        mmc_request_done(host->mmc, mrq);
1092}
1093
1094/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1095 *
1096 * NOTE that here we can't know that the card has just been powered up;
1097 * not all MMC/SD sockets support power switching.
1098 *
1099 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1100 * this doesn't seem to do the right thing at all...
1101 */
1102static void mmc_spi_initsequence(struct mmc_spi_host *host)
1103{
1104        /* Try to be very sure any previous command has completed;
1105         * wait till not-busy, skip debris from any old commands.
1106         */
1107        mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1108        mmc_spi_readbytes(host, 10);
1109
1110        /*
1111         * Do a burst with chipselect active-high.  We need to do this to
1112         * meet the requirement of 74 clock cycles with both chipselect
1113         * and CMD (MOSI) high before CMD0 ... after the card has been
1114         * powered up to Vdd(min), and so is ready to take commands.
1115         *
1116         * Some cards are particularly needy of this (e.g. Viking "SD256")
1117         * while most others don't seem to care.
1118         *
1119         * Note that this is one of the places MMC/SD plays games with the
1120         * SPI protocol.  Another is that when chipselect is released while
1121         * the card returns BUSY status, the clock must issue several cycles
1122         * with chipselect high before the card will stop driving its output.
1123         *
1124         * SPI_CS_HIGH means "asserted" here. In some cases like when using
1125         * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1126         * inverted by gpiolib, so if we want to ascertain to drive it high
1127         * we should toggle the default with an XOR as we do here.
1128         */
1129        host->spi->mode ^= SPI_CS_HIGH;
1130        if (spi_setup(host->spi) != 0) {
1131                /* Just warn; most cards work without it. */
1132                dev_warn(&host->spi->dev,
1133                                "can't change chip-select polarity\n");
1134                host->spi->mode ^= SPI_CS_HIGH;
1135        } else {
1136                mmc_spi_readbytes(host, 18);
1137
1138                host->spi->mode ^= SPI_CS_HIGH;
1139                if (spi_setup(host->spi) != 0) {
1140                        /* Wot, we can't get the same setup we had before? */
1141                        dev_err(&host->spi->dev,
1142                                        "can't restore chip-select polarity\n");
1143                }
1144        }
1145}
1146
1147static char *mmc_powerstring(u8 power_mode)
1148{
1149        switch (power_mode) {
1150        case MMC_POWER_OFF: return "off";
1151        case MMC_POWER_UP:  return "up";
1152        case MMC_POWER_ON:  return "on";
1153        }
1154        return "?";
1155}
1156
1157static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1158{
1159        struct mmc_spi_host *host = mmc_priv(mmc);
1160
1161        if (host->power_mode != ios->power_mode) {
1162                int             canpower;
1163
1164                canpower = host->pdata && host->pdata->setpower;
1165
1166                dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1167                                mmc_powerstring(ios->power_mode),
1168                                ios->vdd,
1169                                canpower ? ", can switch" : "");
1170
1171                /* switch power on/off if possible, accounting for
1172                 * max 250msec powerup time if needed.
1173                 */
1174                if (canpower) {
1175                        switch (ios->power_mode) {
1176                        case MMC_POWER_OFF:
1177                        case MMC_POWER_UP:
1178                                host->pdata->setpower(&host->spi->dev,
1179                                                ios->vdd);
1180                                if (ios->power_mode == MMC_POWER_UP)
1181                                        msleep(host->powerup_msecs);
1182                        }
1183                }
1184
1185                /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1186                if (ios->power_mode == MMC_POWER_ON)
1187                        mmc_spi_initsequence(host);
1188
1189                /* If powering down, ground all card inputs to avoid power
1190                 * delivery from data lines!  On a shared SPI bus, this
1191                 * will probably be temporary; 6.4.2 of the simplified SD
1192                 * spec says this must last at least 1msec.
1193                 *
1194                 *   - Clock low means CPOL 0, e.g. mode 0
1195                 *   - MOSI low comes from writing zero
1196                 *   - Chipselect is usually active low...
1197                 */
1198                if (canpower && ios->power_mode == MMC_POWER_OFF) {
1199                        int mres;
1200                        u8 nullbyte = 0;
1201
1202                        host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1203                        mres = spi_setup(host->spi);
1204                        if (mres < 0)
1205                                dev_dbg(&host->spi->dev,
1206                                        "switch to SPI mode 0 failed\n");
1207
1208                        if (spi_write(host->spi, &nullbyte, 1) < 0)
1209                                dev_dbg(&host->spi->dev,
1210                                        "put spi signals to low failed\n");
1211
1212                        /*
1213                         * Now clock should be low due to spi mode 0;
1214                         * MOSI should be low because of written 0x00;
1215                         * chipselect should be low (it is active low)
1216                         * power supply is off, so now MMC is off too!
1217                         *
1218                         * FIXME no, chipselect can be high since the
1219                         * device is inactive and SPI_CS_HIGH is clear...
1220                         */
1221                        msleep(10);
1222                        if (mres == 0) {
1223                                host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1224                                mres = spi_setup(host->spi);
1225                                if (mres < 0)
1226                                        dev_dbg(&host->spi->dev,
1227                                                "switch back to SPI mode 3 failed\n");
1228                        }
1229                }
1230
1231                host->power_mode = ios->power_mode;
1232        }
1233
1234        if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1235                int             status;
1236
1237                host->spi->max_speed_hz = ios->clock;
1238                status = spi_setup(host->spi);
1239                dev_dbg(&host->spi->dev, "  clock to %d Hz, %d\n",
1240                        host->spi->max_speed_hz, status);
1241        }
1242}
1243
1244static const struct mmc_host_ops mmc_spi_ops = {
1245        .request        = mmc_spi_request,
1246        .set_ios        = mmc_spi_set_ios,
1247        .get_ro         = mmc_gpio_get_ro,
1248        .get_cd         = mmc_gpio_get_cd,
1249};
1250
1251
1252/****************************************************************************/
1253
1254/*
1255 * SPI driver implementation
1256 */
1257
1258static irqreturn_t
1259mmc_spi_detect_irq(int irq, void *mmc)
1260{
1261        struct mmc_spi_host *host = mmc_priv(mmc);
1262        u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1263
1264        mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1265        return IRQ_HANDLED;
1266}
1267
1268#ifdef CONFIG_HAS_DMA
1269static int mmc_spi_dma_alloc(struct mmc_spi_host *host)
1270{
1271        struct spi_device *spi = host->spi;
1272        struct device *dev;
1273
1274        if (!spi->master->dev.parent->dma_mask)
1275                return 0;
1276
1277        dev = spi->master->dev.parent;
1278
1279        host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE,
1280                                        DMA_TO_DEVICE);
1281        if (dma_mapping_error(dev, host->ones_dma))
1282                return -ENOMEM;
1283
1284        host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data),
1285                                        DMA_BIDIRECTIONAL);
1286        if (dma_mapping_error(dev, host->data_dma)) {
1287                dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1288                                 DMA_TO_DEVICE);
1289                return -ENOMEM;
1290        }
1291
1292        dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data),
1293                                DMA_BIDIRECTIONAL);
1294
1295        host->dma_dev = dev;
1296        return 0;
1297}
1298
1299static void mmc_spi_dma_free(struct mmc_spi_host *host)
1300{
1301        if (!host->dma_dev)
1302                return;
1303
1304        dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1305                         DMA_TO_DEVICE);
1306        dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data),
1307                         DMA_BIDIRECTIONAL);
1308}
1309#else
1310static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; }
1311static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {}
1312#endif
1313
1314static int mmc_spi_probe(struct spi_device *spi)
1315{
1316        void                    *ones;
1317        struct mmc_host         *mmc;
1318        struct mmc_spi_host     *host;
1319        int                     status;
1320        bool                    has_ro = false;
1321
1322        /* We rely on full duplex transfers, mostly to reduce
1323         * per-transfer overheads (by making fewer transfers).
1324         */
1325        if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1326                return -EINVAL;
1327
1328        /* MMC and SD specs only seem to care that sampling is on the
1329         * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1330         * should be legit.  We'll use mode 0 since the steady state is 0,
1331         * which is appropriate for hotplugging, unless the platform data
1332         * specify mode 3 (if hardware is not compatible to mode 0).
1333         */
1334        if (spi->mode != SPI_MODE_3)
1335                spi->mode = SPI_MODE_0;
1336        spi->bits_per_word = 8;
1337
1338        status = spi_setup(spi);
1339        if (status < 0) {
1340                dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1341                                spi->mode, spi->max_speed_hz / 1000,
1342                                status);
1343                return status;
1344        }
1345
1346        /* We need a supply of ones to transmit.  This is the only time
1347         * the CPU touches these, so cache coherency isn't a concern.
1348         *
1349         * NOTE if many systems use more than one MMC-over-SPI connector
1350         * it'd save some memory to share this.  That's evidently rare.
1351         */
1352        status = -ENOMEM;
1353        ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1354        if (!ones)
1355                goto nomem;
1356        memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1357
1358        mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1359        if (!mmc)
1360                goto nomem;
1361
1362        mmc->ops = &mmc_spi_ops;
1363        mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1364        mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1365        mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1366        mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1367
1368        mmc->caps = MMC_CAP_SPI;
1369
1370        /* SPI doesn't need the lowspeed device identification thing for
1371         * MMC or SD cards, since it never comes up in open drain mode.
1372         * That's good; some SPI masters can't handle very low speeds!
1373         *
1374         * However, low speed SDIO cards need not handle over 400 KHz;
1375         * that's the only reason not to use a few MHz for f_min (until
1376         * the upper layer reads the target frequency from the CSD).
1377         */
1378        mmc->f_min = 400000;
1379        mmc->f_max = spi->max_speed_hz;
1380
1381        host = mmc_priv(mmc);
1382        host->mmc = mmc;
1383        host->spi = spi;
1384
1385        host->ones = ones;
1386
1387        dev_set_drvdata(&spi->dev, mmc);
1388
1389        /* Platform data is used to hook up things like card sensing
1390         * and power switching gpios.
1391         */
1392        host->pdata = mmc_spi_get_pdata(spi);
1393        if (host->pdata)
1394                mmc->ocr_avail = host->pdata->ocr_mask;
1395        if (!mmc->ocr_avail) {
1396                dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1397                mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1398        }
1399        if (host->pdata && host->pdata->setpower) {
1400                host->powerup_msecs = host->pdata->powerup_msecs;
1401                if (!host->powerup_msecs || host->powerup_msecs > 250)
1402                        host->powerup_msecs = 250;
1403        }
1404
1405        /* preallocate dma buffers */
1406        host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1407        if (!host->data)
1408                goto fail_nobuf1;
1409
1410        status = mmc_spi_dma_alloc(host);
1411        if (status)
1412                goto fail_dma;
1413
1414        /* setup message for status/busy readback */
1415        spi_message_init(&host->readback);
1416        host->readback.is_dma_mapped = (host->dma_dev != NULL);
1417
1418        spi_message_add_tail(&host->status, &host->readback);
1419        host->status.tx_buf = host->ones;
1420        host->status.tx_dma = host->ones_dma;
1421        host->status.rx_buf = &host->data->status;
1422        host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1423        host->status.cs_change = 1;
1424
1425        /* register card detect irq */
1426        if (host->pdata && host->pdata->init) {
1427                status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1428                if (status != 0)
1429                        goto fail_glue_init;
1430        }
1431
1432        /* pass platform capabilities, if any */
1433        if (host->pdata) {
1434                mmc->caps |= host->pdata->caps;
1435                mmc->caps2 |= host->pdata->caps2;
1436        }
1437
1438        status = mmc_add_host(mmc);
1439        if (status != 0)
1440                goto fail_add_host;
1441
1442        /*
1443         * Index 0 is card detect
1444         * Old boardfiles were specifying 1 ms as debounce
1445         */
1446        status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1447        if (status == -EPROBE_DEFER)
1448                goto fail_add_host;
1449        if (!status) {
1450                /*
1451                 * The platform has a CD GPIO signal that may support
1452                 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1453                 * if polling is needed or not.
1454                 */
1455                mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1456                mmc_gpiod_request_cd_irq(mmc);
1457        }
1458        mmc_detect_change(mmc, 0);
1459
1460        /* Index 1 is write protect/read only */
1461        status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1462        if (status == -EPROBE_DEFER)
1463                goto fail_add_host;
1464        if (!status)
1465                has_ro = true;
1466
1467        dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1468                        dev_name(&mmc->class_dev),
1469                        host->dma_dev ? "" : ", no DMA",
1470                        has_ro ? "" : ", no WP",
1471                        (host->pdata && host->pdata->setpower)
1472                                ? "" : ", no poweroff",
1473                        (mmc->caps & MMC_CAP_NEEDS_POLL)
1474                                ? ", cd polling" : "");
1475        return 0;
1476
1477fail_add_host:
1478        mmc_remove_host(mmc);
1479fail_glue_init:
1480        mmc_spi_dma_free(host);
1481fail_dma:
1482        kfree(host->data);
1483fail_nobuf1:
1484        mmc_spi_put_pdata(spi);
1485        mmc_free_host(mmc);
1486nomem:
1487        kfree(ones);
1488        return status;
1489}
1490
1491
1492static void mmc_spi_remove(struct spi_device *spi)
1493{
1494        struct mmc_host         *mmc = dev_get_drvdata(&spi->dev);
1495        struct mmc_spi_host     *host = mmc_priv(mmc);
1496
1497        /* prevent new mmc_detect_change() calls */
1498        if (host->pdata && host->pdata->exit)
1499                host->pdata->exit(&spi->dev, mmc);
1500
1501        mmc_remove_host(mmc);
1502
1503        mmc_spi_dma_free(host);
1504        kfree(host->data);
1505        kfree(host->ones);
1506
1507        spi->max_speed_hz = mmc->f_max;
1508        mmc_spi_put_pdata(spi);
1509        mmc_free_host(mmc);
1510}
1511
1512static const struct spi_device_id mmc_spi_dev_ids[] = {
1513        { "mmc-spi-slot"},
1514        { },
1515};
1516MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1517
1518static const struct of_device_id mmc_spi_of_match_table[] = {
1519        { .compatible = "mmc-spi-slot", },
1520        {},
1521};
1522MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1523
1524static struct spi_driver mmc_spi_driver = {
1525        .driver = {
1526                .name =         "mmc_spi",
1527                .of_match_table = mmc_spi_of_match_table,
1528        },
1529        .id_table =     mmc_spi_dev_ids,
1530        .probe =        mmc_spi_probe,
1531        .remove =       mmc_spi_remove,
1532};
1533
1534module_spi_driver(mmc_spi_driver);
1535
1536MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1537MODULE_DESCRIPTION("SPI SD/MMC host driver");
1538MODULE_LICENSE("GPL");
1539MODULE_ALIAS("spi:mmc_spi");
1540