linux/drivers/mtd/nand/raw/lpc32xx_slc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NXP LPC32XX NAND SLC driver
   4 *
   5 * Authors:
   6 *    Kevin Wells <kevin.wells@nxp.com>
   7 *    Roland Stigge <stigge@antcom.de>
   8 *
   9 * Copyright © 2011 NXP Semiconductors
  10 * Copyright © 2012 Roland Stigge
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/mtd/mtd.h>
  17#include <linux/mtd/rawnand.h>
  18#include <linux/mtd/partitions.h>
  19#include <linux/clk.h>
  20#include <linux/err.h>
  21#include <linux/delay.h>
  22#include <linux/io.h>
  23#include <linux/mm.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/dmaengine.h>
  26#include <linux/gpio.h>
  27#include <linux/of.h>
  28#include <linux/of_gpio.h>
  29#include <linux/mtd/lpc32xx_slc.h>
  30
  31#define LPC32XX_MODNAME         "lpc32xx-nand"
  32
  33/**********************************************************************
  34* SLC NAND controller register offsets
  35**********************************************************************/
  36
  37#define SLC_DATA(x)             (x + 0x000)
  38#define SLC_ADDR(x)             (x + 0x004)
  39#define SLC_CMD(x)              (x + 0x008)
  40#define SLC_STOP(x)             (x + 0x00C)
  41#define SLC_CTRL(x)             (x + 0x010)
  42#define SLC_CFG(x)              (x + 0x014)
  43#define SLC_STAT(x)             (x + 0x018)
  44#define SLC_INT_STAT(x)         (x + 0x01C)
  45#define SLC_IEN(x)              (x + 0x020)
  46#define SLC_ISR(x)              (x + 0x024)
  47#define SLC_ICR(x)              (x + 0x028)
  48#define SLC_TAC(x)              (x + 0x02C)
  49#define SLC_TC(x)               (x + 0x030)
  50#define SLC_ECC(x)              (x + 0x034)
  51#define SLC_DMA_DATA(x)         (x + 0x038)
  52
  53/**********************************************************************
  54* slc_ctrl register definitions
  55**********************************************************************/
  56#define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
  57#define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
  58#define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
  59
  60/**********************************************************************
  61* slc_cfg register definitions
  62**********************************************************************/
  63#define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
  64#define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
  65#define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
  66#define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
  67#define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
  68#define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
  69
  70/**********************************************************************
  71* slc_stat register definitions
  72**********************************************************************/
  73#define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
  74#define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
  75#define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
  76
  77/**********************************************************************
  78* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
  79**********************************************************************/
  80#define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
  81#define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
  82
  83/**********************************************************************
  84* slc_tac register definitions
  85**********************************************************************/
  86/* Computation of clock cycles on basis of controller and device clock rates */
  87#define SLCTAC_CLOCKS(c, n, s)  (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
  88
  89/* Clock setting for RDY write sample wait time in 2*n clocks */
  90#define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
  91/* Write pulse width in clock cycles, 1 to 16 clocks */
  92#define SLCTAC_WWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 24))
  93/* Write hold time of control and data signals, 1 to 16 clocks */
  94#define SLCTAC_WHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 20))
  95/* Write setup time of control and data signals, 1 to 16 clocks */
  96#define SLCTAC_WSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 16))
  97/* Clock setting for RDY read sample wait time in 2*n clocks */
  98#define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
  99/* Read pulse width in clock cycles, 1 to 16 clocks */
 100#define SLCTAC_RWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 8))
 101/* Read hold time of control and data signals, 1 to 16 clocks */
 102#define SLCTAC_RHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 4))
 103/* Read setup time of control and data signals, 1 to 16 clocks */
 104#define SLCTAC_RSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 0))
 105
 106/**********************************************************************
 107* slc_ecc register definitions
 108**********************************************************************/
 109/* ECC line party fetch macro */
 110#define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
 111#define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
 112
 113/*
 114 * DMA requires storage space for the DMA local buffer and the hardware ECC
 115 * storage area. The DMA local buffer is only used if DMA mapping fails
 116 * during runtime.
 117 */
 118#define LPC32XX_DMA_DATA_SIZE           4096
 119#define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
 120
 121/* Number of bytes used for ECC stored in NAND per 256 bytes */
 122#define LPC32XX_SLC_DEV_ECC_BYTES       3
 123
 124/*
 125 * If the NAND base clock frequency can't be fetched, this frequency will be
 126 * used instead as the base. This rate is used to setup the timing registers
 127 * used for NAND accesses.
 128 */
 129#define LPC32XX_DEF_BUS_RATE            133250000
 130
 131/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
 132#define LPC32XX_DMA_TIMEOUT             100
 133
 134/*
 135 * NAND ECC Layout for small page NAND devices
 136 * Note: For large and huge page devices, the default layouts are used
 137 */
 138static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
 139                                 struct mtd_oob_region *oobregion)
 140{
 141        if (section)
 142                return -ERANGE;
 143
 144        oobregion->length = 6;
 145        oobregion->offset = 10;
 146
 147        return 0;
 148}
 149
 150static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
 151                                  struct mtd_oob_region *oobregion)
 152{
 153        if (section > 1)
 154                return -ERANGE;
 155
 156        if (!section) {
 157                oobregion->offset = 0;
 158                oobregion->length = 4;
 159        } else {
 160                oobregion->offset = 6;
 161                oobregion->length = 4;
 162        }
 163
 164        return 0;
 165}
 166
 167static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
 168        .ecc = lpc32xx_ooblayout_ecc,
 169        .free = lpc32xx_ooblayout_free,
 170};
 171
 172static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 173static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 174
 175/*
 176 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 177 * Note: Large page devices used the default layout
 178 */
 179static struct nand_bbt_descr bbt_smallpage_main_descr = {
 180        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 181                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 182        .offs = 0,
 183        .len = 4,
 184        .veroffs = 6,
 185        .maxblocks = 4,
 186        .pattern = bbt_pattern
 187};
 188
 189static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
 190        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 191                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 192        .offs = 0,
 193        .len = 4,
 194        .veroffs = 6,
 195        .maxblocks = 4,
 196        .pattern = mirror_pattern
 197};
 198
 199/*
 200 * NAND platform configuration structure
 201 */
 202struct lpc32xx_nand_cfg_slc {
 203        uint32_t wdr_clks;
 204        uint32_t wwidth;
 205        uint32_t whold;
 206        uint32_t wsetup;
 207        uint32_t rdr_clks;
 208        uint32_t rwidth;
 209        uint32_t rhold;
 210        uint32_t rsetup;
 211        int wp_gpio;
 212        struct mtd_partition *parts;
 213        unsigned num_parts;
 214};
 215
 216struct lpc32xx_nand_host {
 217        struct nand_chip        nand_chip;
 218        struct lpc32xx_slc_platform_data *pdata;
 219        struct clk              *clk;
 220        void __iomem            *io_base;
 221        struct lpc32xx_nand_cfg_slc *ncfg;
 222
 223        struct completion       comp;
 224        struct dma_chan         *dma_chan;
 225        uint32_t                dma_buf_len;
 226        struct dma_slave_config dma_slave_config;
 227        struct scatterlist      sgl;
 228
 229        /*
 230         * DMA and CPU addresses of ECC work area and data buffer
 231         */
 232        uint32_t                *ecc_buf;
 233        uint8_t                 *data_buf;
 234        dma_addr_t              io_base_dma;
 235};
 236
 237static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
 238{
 239        uint32_t clkrate, tmp;
 240
 241        /* Reset SLC controller */
 242        writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
 243        udelay(1000);
 244
 245        /* Basic setup */
 246        writel(0, SLC_CFG(host->io_base));
 247        writel(0, SLC_IEN(host->io_base));
 248        writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
 249                SLC_ICR(host->io_base));
 250
 251        /* Get base clock for SLC block */
 252        clkrate = clk_get_rate(host->clk);
 253        if (clkrate == 0)
 254                clkrate = LPC32XX_DEF_BUS_RATE;
 255
 256        /* Compute clock setup values */
 257        tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
 258                SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
 259                SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
 260                SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
 261                SLCTAC_RDR(host->ncfg->rdr_clks) |
 262                SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
 263                SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
 264                SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
 265        writel(tmp, SLC_TAC(host->io_base));
 266}
 267
 268/*
 269 * Hardware specific access to control lines
 270 */
 271static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
 272                                  unsigned int ctrl)
 273{
 274        uint32_t tmp;
 275        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 276
 277        /* Does CE state need to be changed? */
 278        tmp = readl(SLC_CFG(host->io_base));
 279        if (ctrl & NAND_NCE)
 280                tmp |= SLCCFG_CE_LOW;
 281        else
 282                tmp &= ~SLCCFG_CE_LOW;
 283        writel(tmp, SLC_CFG(host->io_base));
 284
 285        if (cmd != NAND_CMD_NONE) {
 286                if (ctrl & NAND_CLE)
 287                        writel(cmd, SLC_CMD(host->io_base));
 288                else
 289                        writel(cmd, SLC_ADDR(host->io_base));
 290        }
 291}
 292
 293/*
 294 * Read the Device Ready pin
 295 */
 296static int lpc32xx_nand_device_ready(struct nand_chip *chip)
 297{
 298        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 299        int rdy = 0;
 300
 301        if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
 302                rdy = 1;
 303
 304        return rdy;
 305}
 306
 307/*
 308 * Enable NAND write protect
 309 */
 310static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
 311{
 312        if (gpio_is_valid(host->ncfg->wp_gpio))
 313                gpio_set_value(host->ncfg->wp_gpio, 0);
 314}
 315
 316/*
 317 * Disable NAND write protect
 318 */
 319static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
 320{
 321        if (gpio_is_valid(host->ncfg->wp_gpio))
 322                gpio_set_value(host->ncfg->wp_gpio, 1);
 323}
 324
 325/*
 326 * Prepares SLC for transfers with H/W ECC enabled
 327 */
 328static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
 329{
 330        /* Hardware ECC is enabled automatically in hardware as needed */
 331}
 332
 333/*
 334 * Calculates the ECC for the data
 335 */
 336static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
 337                                      const unsigned char *buf,
 338                                      unsigned char *code)
 339{
 340        /*
 341         * ECC is calculated automatically in hardware during syndrome read
 342         * and write operations, so it doesn't need to be calculated here.
 343         */
 344        return 0;
 345}
 346
 347/*
 348 * Read a single byte from NAND device
 349 */
 350static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
 351{
 352        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 353
 354        return (uint8_t)readl(SLC_DATA(host->io_base));
 355}
 356
 357/*
 358 * Simple device read without ECC
 359 */
 360static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
 361{
 362        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 363
 364        /* Direct device read with no ECC */
 365        while (len-- > 0)
 366                *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
 367}
 368
 369/*
 370 * Simple device write without ECC
 371 */
 372static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
 373                                   int len)
 374{
 375        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 376
 377        /* Direct device write with no ECC */
 378        while (len-- > 0)
 379                writel((uint32_t)*buf++, SLC_DATA(host->io_base));
 380}
 381
 382/*
 383 * Read the OOB data from the device without ECC using FIFO method
 384 */
 385static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
 386{
 387        struct mtd_info *mtd = nand_to_mtd(chip);
 388
 389        return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 390}
 391
 392/*
 393 * Write the OOB data to the device without ECC using FIFO method
 394 */
 395static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
 396{
 397        struct mtd_info *mtd = nand_to_mtd(chip);
 398
 399        return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
 400                                 mtd->oobsize);
 401}
 402
 403/*
 404 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 405 */
 406static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
 407{
 408        int i;
 409
 410        for (i = 0; i < (count * 3); i += 3) {
 411                uint32_t ce = ecc[i / 3];
 412                ce = ~(ce << 2) & 0xFFFFFF;
 413                spare[i + 2] = (uint8_t)(ce & 0xFF);
 414                ce >>= 8;
 415                spare[i + 1] = (uint8_t)(ce & 0xFF);
 416                ce >>= 8;
 417                spare[i] = (uint8_t)(ce & 0xFF);
 418        }
 419}
 420
 421static void lpc32xx_dma_complete_func(void *completion)
 422{
 423        complete(completion);
 424}
 425
 426static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
 427                            void *mem, int len, enum dma_transfer_direction dir)
 428{
 429        struct nand_chip *chip = mtd_to_nand(mtd);
 430        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 431        struct dma_async_tx_descriptor *desc;
 432        int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 433        int res;
 434
 435        host->dma_slave_config.direction = dir;
 436        host->dma_slave_config.src_addr = dma;
 437        host->dma_slave_config.dst_addr = dma;
 438        host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 439        host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 440        host->dma_slave_config.src_maxburst = 4;
 441        host->dma_slave_config.dst_maxburst = 4;
 442        /* DMA controller does flow control: */
 443        host->dma_slave_config.device_fc = false;
 444        if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
 445                dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
 446                return -ENXIO;
 447        }
 448
 449        sg_init_one(&host->sgl, mem, len);
 450
 451        res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
 452                         DMA_BIDIRECTIONAL);
 453        if (res != 1) {
 454                dev_err(mtd->dev.parent, "Failed to map sg list\n");
 455                return -ENXIO;
 456        }
 457        desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
 458                                       flags);
 459        if (!desc) {
 460                dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
 461                goto out1;
 462        }
 463
 464        init_completion(&host->comp);
 465        desc->callback = lpc32xx_dma_complete_func;
 466        desc->callback_param = &host->comp;
 467
 468        dmaengine_submit(desc);
 469        dma_async_issue_pending(host->dma_chan);
 470
 471        wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
 472
 473        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 474                     DMA_BIDIRECTIONAL);
 475
 476        return 0;
 477out1:
 478        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 479                     DMA_BIDIRECTIONAL);
 480        return -ENXIO;
 481}
 482
 483/*
 484 * DMA read/write transfers with ECC support
 485 */
 486static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
 487                        int read)
 488{
 489        struct nand_chip *chip = mtd_to_nand(mtd);
 490        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 491        int i, status = 0;
 492        unsigned long timeout;
 493        int res;
 494        enum dma_transfer_direction dir =
 495                read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
 496        uint8_t *dma_buf;
 497        bool dma_mapped;
 498
 499        if ((void *)buf <= high_memory) {
 500                dma_buf = buf;
 501                dma_mapped = true;
 502        } else {
 503                dma_buf = host->data_buf;
 504                dma_mapped = false;
 505                if (!read)
 506                        memcpy(host->data_buf, buf, mtd->writesize);
 507        }
 508
 509        if (read) {
 510                writel(readl(SLC_CFG(host->io_base)) |
 511                       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 512                       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
 513        } else {
 514                writel((readl(SLC_CFG(host->io_base)) |
 515                        SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
 516                       ~SLCCFG_DMA_DIR,
 517                        SLC_CFG(host->io_base));
 518        }
 519
 520        /* Clear initial ECC */
 521        writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
 522
 523        /* Transfer size is data area only */
 524        writel(mtd->writesize, SLC_TC(host->io_base));
 525
 526        /* Start transfer in the NAND controller */
 527        writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
 528               SLC_CTRL(host->io_base));
 529
 530        for (i = 0; i < chip->ecc.steps; i++) {
 531                /* Data */
 532                res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
 533                                       dma_buf + i * chip->ecc.size,
 534                                       mtd->writesize / chip->ecc.steps, dir);
 535                if (res)
 536                        return res;
 537
 538                /* Always _read_ ECC */
 539                if (i == chip->ecc.steps - 1)
 540                        break;
 541                if (!read) /* ECC availability delayed on write */
 542                        udelay(10);
 543                res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
 544                                       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
 545                if (res)
 546                        return res;
 547        }
 548
 549        /*
 550         * According to NXP, the DMA can be finished here, but the NAND
 551         * controller may still have buffered data. After porting to using the
 552         * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
 553         * appears to be always true, according to tests. Keeping the check for
 554         * safety reasons for now.
 555         */
 556        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
 557                dev_warn(mtd->dev.parent, "FIFO not empty!\n");
 558                timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
 559                while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
 560                       time_before(jiffies, timeout))
 561                        cpu_relax();
 562                if (!time_before(jiffies, timeout)) {
 563                        dev_err(mtd->dev.parent, "FIFO held data too long\n");
 564                        status = -EIO;
 565                }
 566        }
 567
 568        /* Read last calculated ECC value */
 569        if (!read)
 570                udelay(10);
 571        host->ecc_buf[chip->ecc.steps - 1] =
 572                readl(SLC_ECC(host->io_base));
 573
 574        /* Flush DMA */
 575        dmaengine_terminate_all(host->dma_chan);
 576
 577        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
 578            readl(SLC_TC(host->io_base))) {
 579                /* Something is left in the FIFO, something is wrong */
 580                dev_err(mtd->dev.parent, "DMA FIFO failure\n");
 581                status = -EIO;
 582        }
 583
 584        /* Stop DMA & HW ECC */
 585        writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
 586               SLC_CTRL(host->io_base));
 587        writel(readl(SLC_CFG(host->io_base)) &
 588               ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 589                 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
 590
 591        if (!dma_mapped && read)
 592                memcpy(buf, host->data_buf, mtd->writesize);
 593
 594        return status;
 595}
 596
 597/*
 598 * Read the data and OOB data from the device, use ECC correction with the
 599 * data, disable ECC for the OOB data
 600 */
 601static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
 602                                           int oob_required, int page)
 603{
 604        struct mtd_info *mtd = nand_to_mtd(chip);
 605        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 606        struct mtd_oob_region oobregion = { };
 607        int stat, i, status, error;
 608        uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
 609
 610        /* Issue read command */
 611        nand_read_page_op(chip, page, 0, NULL, 0);
 612
 613        /* Read data and oob, calculate ECC */
 614        status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
 615
 616        /* Get OOB data */
 617        chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 618
 619        /* Convert to stored ECC format */
 620        lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
 621
 622        /* Pointer to ECC data retrieved from NAND spare area */
 623        error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 624        if (error)
 625                return error;
 626
 627        oobecc = chip->oob_poi + oobregion.offset;
 628
 629        for (i = 0; i < chip->ecc.steps; i++) {
 630                stat = chip->ecc.correct(chip, buf, oobecc,
 631                                         &tmpecc[i * chip->ecc.bytes]);
 632                if (stat < 0)
 633                        mtd->ecc_stats.failed++;
 634                else
 635                        mtd->ecc_stats.corrected += stat;
 636
 637                buf += chip->ecc.size;
 638                oobecc += chip->ecc.bytes;
 639        }
 640
 641        return status;
 642}
 643
 644/*
 645 * Read the data and OOB data from the device, no ECC correction with the
 646 * data or OOB data
 647 */
 648static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
 649                                               uint8_t *buf, int oob_required,
 650                                               int page)
 651{
 652        struct mtd_info *mtd = nand_to_mtd(chip);
 653
 654        /* Issue read command */
 655        nand_read_page_op(chip, page, 0, NULL, 0);
 656
 657        /* Raw reads can just use the FIFO interface */
 658        chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
 659        chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 660
 661        return 0;
 662}
 663
 664/*
 665 * Write the data and OOB data to the device, use ECC with the data,
 666 * disable ECC for the OOB data
 667 */
 668static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
 669                                            const uint8_t *buf,
 670                                            int oob_required, int page)
 671{
 672        struct mtd_info *mtd = nand_to_mtd(chip);
 673        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 674        struct mtd_oob_region oobregion = { };
 675        uint8_t *pb;
 676        int error;
 677
 678        nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 679
 680        /* Write data, calculate ECC on outbound data */
 681        error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
 682        if (error)
 683                return error;
 684
 685        /*
 686         * The calculated ECC needs some manual work done to it before
 687         * committing it to NAND. Process the calculated ECC and place
 688         * the resultant values directly into the OOB buffer. */
 689        error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 690        if (error)
 691                return error;
 692
 693        pb = chip->oob_poi + oobregion.offset;
 694        lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
 695
 696        /* Write ECC data to device */
 697        chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 698
 699        return nand_prog_page_end_op(chip);
 700}
 701
 702/*
 703 * Write the data and OOB data to the device, no ECC correction with the
 704 * data or OOB data
 705 */
 706static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
 707                                                const uint8_t *buf,
 708                                                int oob_required, int page)
 709{
 710        struct mtd_info *mtd = nand_to_mtd(chip);
 711
 712        /* Raw writes can just use the FIFO interface */
 713        nand_prog_page_begin_op(chip, page, 0, buf,
 714                                chip->ecc.size * chip->ecc.steps);
 715        chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 716
 717        return nand_prog_page_end_op(chip);
 718}
 719
 720static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
 721{
 722        struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 723        dma_cap_mask_t mask;
 724
 725        if (!host->pdata || !host->pdata->dma_filter) {
 726                dev_err(mtd->dev.parent, "no DMA platform data\n");
 727                return -ENOENT;
 728        }
 729
 730        dma_cap_zero(mask);
 731        dma_cap_set(DMA_SLAVE, mask);
 732        host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
 733                                             "nand-slc");
 734        if (!host->dma_chan) {
 735                dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
 736                return -EBUSY;
 737        }
 738
 739        return 0;
 740}
 741
 742static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
 743{
 744        struct lpc32xx_nand_cfg_slc *ncfg;
 745        struct device_node *np = dev->of_node;
 746
 747        ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
 748        if (!ncfg)
 749                return NULL;
 750
 751        of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
 752        of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
 753        of_property_read_u32(np, "nxp,whold", &ncfg->whold);
 754        of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
 755        of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
 756        of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
 757        of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
 758        of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
 759
 760        if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
 761            !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
 762            !ncfg->rhold || !ncfg->rsetup) {
 763                dev_err(dev, "chip parameters not specified correctly\n");
 764                return NULL;
 765        }
 766
 767        ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
 768
 769        return ncfg;
 770}
 771
 772static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
 773{
 774        struct mtd_info *mtd = nand_to_mtd(chip);
 775        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 776
 777        if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
 778                return 0;
 779
 780        /* OOB and ECC CPU and DMA work areas */
 781        host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
 782
 783        /*
 784         * Small page FLASH has a unique OOB layout, but large and huge
 785         * page FLASH use the standard layout. Small page FLASH uses a
 786         * custom BBT marker layout.
 787         */
 788        if (mtd->writesize <= 512)
 789                mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
 790
 791        chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
 792        /* These sizes remain the same regardless of page size */
 793        chip->ecc.size = 256;
 794        chip->ecc.strength = 1;
 795        chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
 796        chip->ecc.prepad = 0;
 797        chip->ecc.postpad = 0;
 798        chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
 799        chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
 800        chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
 801        chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
 802        chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
 803        chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
 804        chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
 805        chip->ecc.correct = rawnand_sw_hamming_correct;
 806        chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
 807
 808        /*
 809         * Use a custom BBT marker setup for small page FLASH that
 810         * won't interfere with the ECC layout. Large and huge page
 811         * FLASH use the standard layout.
 812         */
 813        if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
 814            mtd->writesize <= 512) {
 815                chip->bbt_td = &bbt_smallpage_main_descr;
 816                chip->bbt_md = &bbt_smallpage_mirror_descr;
 817        }
 818
 819        return 0;
 820}
 821
 822static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
 823        .attach_chip = lpc32xx_nand_attach_chip,
 824};
 825
 826/*
 827 * Probe for NAND controller
 828 */
 829static int lpc32xx_nand_probe(struct platform_device *pdev)
 830{
 831        struct lpc32xx_nand_host *host;
 832        struct mtd_info *mtd;
 833        struct nand_chip *chip;
 834        struct resource *rc;
 835        int res;
 836
 837        /* Allocate memory for the device structure (and zero it) */
 838        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 839        if (!host)
 840                return -ENOMEM;
 841
 842        rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 843        host->io_base = devm_ioremap_resource(&pdev->dev, rc);
 844        if (IS_ERR(host->io_base))
 845                return PTR_ERR(host->io_base);
 846
 847        host->io_base_dma = rc->start;
 848        if (pdev->dev.of_node)
 849                host->ncfg = lpc32xx_parse_dt(&pdev->dev);
 850        if (!host->ncfg) {
 851                dev_err(&pdev->dev,
 852                        "Missing or bad NAND config from device tree\n");
 853                return -ENOENT;
 854        }
 855        if (host->ncfg->wp_gpio == -EPROBE_DEFER)
 856                return -EPROBE_DEFER;
 857        if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
 858                        host->ncfg->wp_gpio, "NAND WP")) {
 859                dev_err(&pdev->dev, "GPIO not available\n");
 860                return -EBUSY;
 861        }
 862        lpc32xx_wp_disable(host);
 863
 864        host->pdata = dev_get_platdata(&pdev->dev);
 865
 866        chip = &host->nand_chip;
 867        mtd = nand_to_mtd(chip);
 868        nand_set_controller_data(chip, host);
 869        nand_set_flash_node(chip, pdev->dev.of_node);
 870        mtd->owner = THIS_MODULE;
 871        mtd->dev.parent = &pdev->dev;
 872
 873        /* Get NAND clock */
 874        host->clk = devm_clk_get(&pdev->dev, NULL);
 875        if (IS_ERR(host->clk)) {
 876                dev_err(&pdev->dev, "Clock failure\n");
 877                res = -ENOENT;
 878                goto enable_wp;
 879        }
 880        res = clk_prepare_enable(host->clk);
 881        if (res)
 882                goto enable_wp;
 883
 884        /* Set NAND IO addresses and command/ready functions */
 885        chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
 886        chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
 887        chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
 888        chip->legacy.dev_ready = lpc32xx_nand_device_ready;
 889        chip->legacy.chip_delay = 20; /* 20us command delay time */
 890
 891        /* Init NAND controller */
 892        lpc32xx_nand_setup(host);
 893
 894        platform_set_drvdata(pdev, host);
 895
 896        /* NAND callbacks for LPC32xx SLC hardware */
 897        chip->legacy.read_byte = lpc32xx_nand_read_byte;
 898        chip->legacy.read_buf = lpc32xx_nand_read_buf;
 899        chip->legacy.write_buf = lpc32xx_nand_write_buf;
 900
 901        /*
 902         * Allocate a large enough buffer for a single huge page plus
 903         * extra space for the spare area and ECC storage area
 904         */
 905        host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
 906        host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
 907                                      GFP_KERNEL);
 908        if (host->data_buf == NULL) {
 909                res = -ENOMEM;
 910                goto unprepare_clk;
 911        }
 912
 913        res = lpc32xx_nand_dma_setup(host);
 914        if (res) {
 915                res = -EIO;
 916                goto unprepare_clk;
 917        }
 918
 919        /* Find NAND device */
 920        chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
 921        res = nand_scan(chip, 1);
 922        if (res)
 923                goto release_dma;
 924
 925        mtd->name = "nxp_lpc3220_slc";
 926        res = mtd_device_register(mtd, host->ncfg->parts,
 927                                  host->ncfg->num_parts);
 928        if (res)
 929                goto cleanup_nand;
 930
 931        return 0;
 932
 933cleanup_nand:
 934        nand_cleanup(chip);
 935release_dma:
 936        dma_release_channel(host->dma_chan);
 937unprepare_clk:
 938        clk_disable_unprepare(host->clk);
 939enable_wp:
 940        lpc32xx_wp_enable(host);
 941
 942        return res;
 943}
 944
 945/*
 946 * Remove NAND device.
 947 */
 948static int lpc32xx_nand_remove(struct platform_device *pdev)
 949{
 950        uint32_t tmp;
 951        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 952        struct nand_chip *chip = &host->nand_chip;
 953        int ret;
 954
 955        ret = mtd_device_unregister(nand_to_mtd(chip));
 956        WARN_ON(ret);
 957        nand_cleanup(chip);
 958        dma_release_channel(host->dma_chan);
 959
 960        /* Force CE high */
 961        tmp = readl(SLC_CTRL(host->io_base));
 962        tmp &= ~SLCCFG_CE_LOW;
 963        writel(tmp, SLC_CTRL(host->io_base));
 964
 965        clk_disable_unprepare(host->clk);
 966        lpc32xx_wp_enable(host);
 967
 968        return 0;
 969}
 970
 971#ifdef CONFIG_PM
 972static int lpc32xx_nand_resume(struct platform_device *pdev)
 973{
 974        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 975        int ret;
 976
 977        /* Re-enable NAND clock */
 978        ret = clk_prepare_enable(host->clk);
 979        if (ret)
 980                return ret;
 981
 982        /* Fresh init of NAND controller */
 983        lpc32xx_nand_setup(host);
 984
 985        /* Disable write protect */
 986        lpc32xx_wp_disable(host);
 987
 988        return 0;
 989}
 990
 991static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
 992{
 993        uint32_t tmp;
 994        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 995
 996        /* Force CE high */
 997        tmp = readl(SLC_CTRL(host->io_base));
 998        tmp &= ~SLCCFG_CE_LOW;
 999        writel(tmp, SLC_CTRL(host->io_base));
1000
1001        /* Enable write protect for safety */
1002        lpc32xx_wp_enable(host);
1003
1004        /* Disable clock */
1005        clk_disable_unprepare(host->clk);
1006
1007        return 0;
1008}
1009
1010#else
1011#define lpc32xx_nand_resume NULL
1012#define lpc32xx_nand_suspend NULL
1013#endif
1014
1015static const struct of_device_id lpc32xx_nand_match[] = {
1016        { .compatible = "nxp,lpc3220-slc" },
1017        { /* sentinel */ },
1018};
1019MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1020
1021static struct platform_driver lpc32xx_nand_driver = {
1022        .probe          = lpc32xx_nand_probe,
1023        .remove         = lpc32xx_nand_remove,
1024        .resume         = lpc32xx_nand_resume,
1025        .suspend        = lpc32xx_nand_suspend,
1026        .driver         = {
1027                .name   = LPC32XX_MODNAME,
1028                .of_match_table = lpc32xx_nand_match,
1029        },
1030};
1031
1032module_platform_driver(lpc32xx_nand_driver);
1033
1034MODULE_LICENSE("GPL");
1035MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1036MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1037MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1038