linux/drivers/mtd/nand/raw/nand_base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Overview:
   4 *   This is the generic MTD driver for NAND flash devices. It should be
   5 *   capable of working with almost all NAND chips currently available.
   6 *
   7 *      Additional technical information is available on
   8 *      http://www.linux-mtd.infradead.org/doc/nand.html
   9 *
  10 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  11 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  12 *
  13 *  Credits:
  14 *      David Woodhouse for adding multichip support
  15 *
  16 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  17 *      rework for 2K page size chips
  18 *
  19 *  TODO:
  20 *      Enable cached programming for 2k page size chips
  21 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  22 *      if we have HW ECC support.
  23 *      BBT table is not serialized, has to be fixed
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/module.h>
  29#include <linux/delay.h>
  30#include <linux/errno.h>
  31#include <linux/err.h>
  32#include <linux/sched.h>
  33#include <linux/slab.h>
  34#include <linux/mm.h>
  35#include <linux/types.h>
  36#include <linux/mtd/mtd.h>
  37#include <linux/mtd/nand.h>
  38#include <linux/mtd/nand-ecc-sw-hamming.h>
  39#include <linux/mtd/nand-ecc-sw-bch.h>
  40#include <linux/interrupt.h>
  41#include <linux/bitops.h>
  42#include <linux/io.h>
  43#include <linux/mtd/partitions.h>
  44#include <linux/of.h>
  45#include <linux/of_gpio.h>
  46#include <linux/gpio/consumer.h>
  47
  48#include "internals.h"
  49
  50static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
  51                                       struct mtd_pairing_info *info)
  52{
  53        int lastpage = (mtd->erasesize / mtd->writesize) - 1;
  54        int dist = 3;
  55
  56        if (page == lastpage)
  57                dist = 2;
  58
  59        if (!page || (page & 1)) {
  60                info->group = 0;
  61                info->pair = (page + 1) / 2;
  62        } else {
  63                info->group = 1;
  64                info->pair = (page + 1 - dist) / 2;
  65        }
  66
  67        return 0;
  68}
  69
  70static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
  71                                        const struct mtd_pairing_info *info)
  72{
  73        int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
  74        int page = info->pair * 2;
  75        int dist = 3;
  76
  77        if (!info->group && !info->pair)
  78                return 0;
  79
  80        if (info->pair == lastpair && info->group)
  81                dist = 2;
  82
  83        if (!info->group)
  84                page--;
  85        else if (info->pair)
  86                page += dist - 1;
  87
  88        if (page >= mtd->erasesize / mtd->writesize)
  89                return -EINVAL;
  90
  91        return page;
  92}
  93
  94const struct mtd_pairing_scheme dist3_pairing_scheme = {
  95        .ngroups = 2,
  96        .get_info = nand_pairing_dist3_get_info,
  97        .get_wunit = nand_pairing_dist3_get_wunit,
  98};
  99
 100static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
 101{
 102        int ret = 0;
 103
 104        /* Start address must align on block boundary */
 105        if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
 106                pr_debug("%s: unaligned address\n", __func__);
 107                ret = -EINVAL;
 108        }
 109
 110        /* Length must align on block boundary */
 111        if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
 112                pr_debug("%s: length not block aligned\n", __func__);
 113                ret = -EINVAL;
 114        }
 115
 116        return ret;
 117}
 118
 119/**
 120 * nand_extract_bits - Copy unaligned bits from one buffer to another one
 121 * @dst: destination buffer
 122 * @dst_off: bit offset at which the writing starts
 123 * @src: source buffer
 124 * @src_off: bit offset at which the reading starts
 125 * @nbits: number of bits to copy from @src to @dst
 126 *
 127 * Copy bits from one memory region to another (overlap authorized).
 128 */
 129void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
 130                       unsigned int src_off, unsigned int nbits)
 131{
 132        unsigned int tmp, n;
 133
 134        dst += dst_off / 8;
 135        dst_off %= 8;
 136        src += src_off / 8;
 137        src_off %= 8;
 138
 139        while (nbits) {
 140                n = min3(8 - dst_off, 8 - src_off, nbits);
 141
 142                tmp = (*src >> src_off) & GENMASK(n - 1, 0);
 143                *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
 144                *dst |= tmp << dst_off;
 145
 146                dst_off += n;
 147                if (dst_off >= 8) {
 148                        dst++;
 149                        dst_off -= 8;
 150                }
 151
 152                src_off += n;
 153                if (src_off >= 8) {
 154                        src++;
 155                        src_off -= 8;
 156                }
 157
 158                nbits -= n;
 159        }
 160}
 161EXPORT_SYMBOL_GPL(nand_extract_bits);
 162
 163/**
 164 * nand_select_target() - Select a NAND target (A.K.A. die)
 165 * @chip: NAND chip object
 166 * @cs: the CS line to select. Note that this CS id is always from the chip
 167 *      PoV, not the controller one
 168 *
 169 * Select a NAND target so that further operations executed on @chip go to the
 170 * selected NAND target.
 171 */
 172void nand_select_target(struct nand_chip *chip, unsigned int cs)
 173{
 174        /*
 175         * cs should always lie between 0 and nanddev_ntargets(), when that's
 176         * not the case it's a bug and the caller should be fixed.
 177         */
 178        if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
 179                return;
 180
 181        chip->cur_cs = cs;
 182
 183        if (chip->legacy.select_chip)
 184                chip->legacy.select_chip(chip, cs);
 185}
 186EXPORT_SYMBOL_GPL(nand_select_target);
 187
 188/**
 189 * nand_deselect_target() - Deselect the currently selected target
 190 * @chip: NAND chip object
 191 *
 192 * Deselect the currently selected NAND target. The result of operations
 193 * executed on @chip after the target has been deselected is undefined.
 194 */
 195void nand_deselect_target(struct nand_chip *chip)
 196{
 197        if (chip->legacy.select_chip)
 198                chip->legacy.select_chip(chip, -1);
 199
 200        chip->cur_cs = -1;
 201}
 202EXPORT_SYMBOL_GPL(nand_deselect_target);
 203
 204/**
 205 * nand_release_device - [GENERIC] release chip
 206 * @chip: NAND chip object
 207 *
 208 * Release chip lock and wake up anyone waiting on the device.
 209 */
 210static void nand_release_device(struct nand_chip *chip)
 211{
 212        /* Release the controller and the chip */
 213        mutex_unlock(&chip->controller->lock);
 214        mutex_unlock(&chip->lock);
 215}
 216
 217/**
 218 * nand_bbm_get_next_page - Get the next page for bad block markers
 219 * @chip: NAND chip object
 220 * @page: First page to start checking for bad block marker usage
 221 *
 222 * Returns an integer that corresponds to the page offset within a block, for
 223 * a page that is used to store bad block markers. If no more pages are
 224 * available, -EINVAL is returned.
 225 */
 226int nand_bbm_get_next_page(struct nand_chip *chip, int page)
 227{
 228        struct mtd_info *mtd = nand_to_mtd(chip);
 229        int last_page = ((mtd->erasesize - mtd->writesize) >>
 230                         chip->page_shift) & chip->pagemask;
 231        unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
 232                | NAND_BBM_LASTPAGE;
 233
 234        if (page == 0 && !(chip->options & bbm_flags))
 235                return 0;
 236        if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
 237                return 0;
 238        if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
 239                return 1;
 240        if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
 241                return last_page;
 242
 243        return -EINVAL;
 244}
 245
 246/**
 247 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 248 * @chip: NAND chip object
 249 * @ofs: offset from device start
 250 *
 251 * Check, if the block is bad.
 252 */
 253static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
 254{
 255        int first_page, page_offset;
 256        int res;
 257        u8 bad;
 258
 259        first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 260        page_offset = nand_bbm_get_next_page(chip, 0);
 261
 262        while (page_offset >= 0) {
 263                res = chip->ecc.read_oob(chip, first_page + page_offset);
 264                if (res < 0)
 265                        return res;
 266
 267                bad = chip->oob_poi[chip->badblockpos];
 268
 269                if (likely(chip->badblockbits == 8))
 270                        res = bad != 0xFF;
 271                else
 272                        res = hweight8(bad) < chip->badblockbits;
 273                if (res)
 274                        return res;
 275
 276                page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
 277        }
 278
 279        return 0;
 280}
 281
 282/**
 283 * nand_region_is_secured() - Check if the region is secured
 284 * @chip: NAND chip object
 285 * @offset: Offset of the region to check
 286 * @size: Size of the region to check
 287 *
 288 * Checks if the region is secured by comparing the offset and size with the
 289 * list of secure regions obtained from DT. Returns true if the region is
 290 * secured else false.
 291 */
 292static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
 293{
 294        int i;
 295
 296        /* Skip touching the secure regions if present */
 297        for (i = 0; i < chip->nr_secure_regions; i++) {
 298                const struct nand_secure_region *region = &chip->secure_regions[i];
 299
 300                if (offset + size <= region->offset ||
 301                    offset >= region->offset + region->size)
 302                        continue;
 303
 304                pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
 305                         __func__, offset, offset + size);
 306
 307                return true;
 308        }
 309
 310        return false;
 311}
 312
 313static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
 314{
 315        struct mtd_info *mtd = nand_to_mtd(chip);
 316
 317        if (chip->options & NAND_NO_BBM_QUIRK)
 318                return 0;
 319
 320        /* Check if the region is secured */
 321        if (nand_region_is_secured(chip, ofs, mtd->erasesize))
 322                return -EIO;
 323
 324        if (mtd_check_expert_analysis_mode())
 325                return 0;
 326
 327        if (chip->legacy.block_bad)
 328                return chip->legacy.block_bad(chip, ofs);
 329
 330        return nand_block_bad(chip, ofs);
 331}
 332
 333/**
 334 * nand_get_device - [GENERIC] Get chip for selected access
 335 * @chip: NAND chip structure
 336 *
 337 * Lock the device and its controller for exclusive access
 338 *
 339 * Return: -EBUSY if the chip has been suspended, 0 otherwise
 340 */
 341static void nand_get_device(struct nand_chip *chip)
 342{
 343        /* Wait until the device is resumed. */
 344        while (1) {
 345                mutex_lock(&chip->lock);
 346                if (!chip->suspended) {
 347                        mutex_lock(&chip->controller->lock);
 348                        return;
 349                }
 350                mutex_unlock(&chip->lock);
 351
 352                wait_event(chip->resume_wq, !chip->suspended);
 353        }
 354}
 355
 356/**
 357 * nand_check_wp - [GENERIC] check if the chip is write protected
 358 * @chip: NAND chip object
 359 *
 360 * Check, if the device is write protected. The function expects, that the
 361 * device is already selected.
 362 */
 363static int nand_check_wp(struct nand_chip *chip)
 364{
 365        u8 status;
 366        int ret;
 367
 368        /* Broken xD cards report WP despite being writable */
 369        if (chip->options & NAND_BROKEN_XD)
 370                return 0;
 371
 372        /* Check the WP bit */
 373        ret = nand_status_op(chip, &status);
 374        if (ret)
 375                return ret;
 376
 377        return status & NAND_STATUS_WP ? 0 : 1;
 378}
 379
 380/**
 381 * nand_fill_oob - [INTERN] Transfer client buffer to oob
 382 * @chip: NAND chip object
 383 * @oob: oob data buffer
 384 * @len: oob data write length
 385 * @ops: oob ops structure
 386 */
 387static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
 388                              struct mtd_oob_ops *ops)
 389{
 390        struct mtd_info *mtd = nand_to_mtd(chip);
 391        int ret;
 392
 393        /*
 394         * Initialise to all 0xFF, to avoid the possibility of left over OOB
 395         * data from a previous OOB read.
 396         */
 397        memset(chip->oob_poi, 0xff, mtd->oobsize);
 398
 399        switch (ops->mode) {
 400
 401        case MTD_OPS_PLACE_OOB:
 402        case MTD_OPS_RAW:
 403                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
 404                return oob + len;
 405
 406        case MTD_OPS_AUTO_OOB:
 407                ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
 408                                                  ops->ooboffs, len);
 409                BUG_ON(ret);
 410                return oob + len;
 411
 412        default:
 413                BUG();
 414        }
 415        return NULL;
 416}
 417
 418/**
 419 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
 420 * @chip: NAND chip object
 421 * @to: offset to write to
 422 * @ops: oob operation description structure
 423 *
 424 * NAND write out-of-band.
 425 */
 426static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
 427                             struct mtd_oob_ops *ops)
 428{
 429        struct mtd_info *mtd = nand_to_mtd(chip);
 430        int chipnr, page, status, len, ret;
 431
 432        pr_debug("%s: to = 0x%08x, len = %i\n",
 433                         __func__, (unsigned int)to, (int)ops->ooblen);
 434
 435        len = mtd_oobavail(mtd, ops);
 436
 437        /* Do not allow write past end of page */
 438        if ((ops->ooboffs + ops->ooblen) > len) {
 439                pr_debug("%s: attempt to write past end of page\n",
 440                                __func__);
 441                return -EINVAL;
 442        }
 443
 444        /* Check if the region is secured */
 445        if (nand_region_is_secured(chip, to, ops->ooblen))
 446                return -EIO;
 447
 448        chipnr = (int)(to >> chip->chip_shift);
 449
 450        /*
 451         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
 452         * of my DiskOnChip 2000 test units) will clear the whole data page too
 453         * if we don't do this. I have no clue why, but I seem to have 'fixed'
 454         * it in the doc2000 driver in August 1999.  dwmw2.
 455         */
 456        ret = nand_reset(chip, chipnr);
 457        if (ret)
 458                return ret;
 459
 460        nand_select_target(chip, chipnr);
 461
 462        /* Shift to get page */
 463        page = (int)(to >> chip->page_shift);
 464
 465        /* Check, if it is write protected */
 466        if (nand_check_wp(chip)) {
 467                nand_deselect_target(chip);
 468                return -EROFS;
 469        }
 470
 471        /* Invalidate the page cache, if we write to the cached page */
 472        if (page == chip->pagecache.page)
 473                chip->pagecache.page = -1;
 474
 475        nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
 476
 477        if (ops->mode == MTD_OPS_RAW)
 478                status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
 479        else
 480                status = chip->ecc.write_oob(chip, page & chip->pagemask);
 481
 482        nand_deselect_target(chip);
 483
 484        if (status)
 485                return status;
 486
 487        ops->oobretlen = ops->ooblen;
 488
 489        return 0;
 490}
 491
 492/**
 493 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
 494 * @chip: NAND chip object
 495 * @ofs: offset from device start
 496 *
 497 * This is the default implementation, which can be overridden by a hardware
 498 * specific driver. It provides the details for writing a bad block marker to a
 499 * block.
 500 */
 501static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
 502{
 503        struct mtd_info *mtd = nand_to_mtd(chip);
 504        struct mtd_oob_ops ops;
 505        uint8_t buf[2] = { 0, 0 };
 506        int ret = 0, res, page_offset;
 507
 508        memset(&ops, 0, sizeof(ops));
 509        ops.oobbuf = buf;
 510        ops.ooboffs = chip->badblockpos;
 511        if (chip->options & NAND_BUSWIDTH_16) {
 512                ops.ooboffs &= ~0x01;
 513                ops.len = ops.ooblen = 2;
 514        } else {
 515                ops.len = ops.ooblen = 1;
 516        }
 517        ops.mode = MTD_OPS_PLACE_OOB;
 518
 519        page_offset = nand_bbm_get_next_page(chip, 0);
 520
 521        while (page_offset >= 0) {
 522                res = nand_do_write_oob(chip,
 523                                        ofs + (page_offset * mtd->writesize),
 524                                        &ops);
 525
 526                if (!ret)
 527                        ret = res;
 528
 529                page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
 530        }
 531
 532        return ret;
 533}
 534
 535/**
 536 * nand_markbad_bbm - mark a block by updating the BBM
 537 * @chip: NAND chip object
 538 * @ofs: offset of the block to mark bad
 539 */
 540int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
 541{
 542        if (chip->legacy.block_markbad)
 543                return chip->legacy.block_markbad(chip, ofs);
 544
 545        return nand_default_block_markbad(chip, ofs);
 546}
 547
 548/**
 549 * nand_block_markbad_lowlevel - mark a block bad
 550 * @chip: NAND chip object
 551 * @ofs: offset from device start
 552 *
 553 * This function performs the generic NAND bad block marking steps (i.e., bad
 554 * block table(s) and/or marker(s)). We only allow the hardware driver to
 555 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
 556 *
 557 * We try operations in the following order:
 558 *
 559 *  (1) erase the affected block, to allow OOB marker to be written cleanly
 560 *  (2) write bad block marker to OOB area of affected block (unless flag
 561 *      NAND_BBT_NO_OOB_BBM is present)
 562 *  (3) update the BBT
 563 *
 564 * Note that we retain the first error encountered in (2) or (3), finish the
 565 * procedures, and dump the error in the end.
 566*/
 567static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
 568{
 569        struct mtd_info *mtd = nand_to_mtd(chip);
 570        int res, ret = 0;
 571
 572        if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
 573                struct erase_info einfo;
 574
 575                /* Attempt erase before marking OOB */
 576                memset(&einfo, 0, sizeof(einfo));
 577                einfo.addr = ofs;
 578                einfo.len = 1ULL << chip->phys_erase_shift;
 579                nand_erase_nand(chip, &einfo, 0);
 580
 581                /* Write bad block marker to OOB */
 582                nand_get_device(chip);
 583
 584                ret = nand_markbad_bbm(chip, ofs);
 585                nand_release_device(chip);
 586        }
 587
 588        /* Mark block bad in BBT */
 589        if (chip->bbt) {
 590                res = nand_markbad_bbt(chip, ofs);
 591                if (!ret)
 592                        ret = res;
 593        }
 594
 595        if (!ret)
 596                mtd->ecc_stats.badblocks++;
 597
 598        return ret;
 599}
 600
 601/**
 602 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
 603 * @mtd: MTD device structure
 604 * @ofs: offset from device start
 605 *
 606 * Check if the block is marked as reserved.
 607 */
 608static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 609{
 610        struct nand_chip *chip = mtd_to_nand(mtd);
 611
 612        if (!chip->bbt)
 613                return 0;
 614        /* Return info from the table */
 615        return nand_isreserved_bbt(chip, ofs);
 616}
 617
 618/**
 619 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 620 * @chip: NAND chip object
 621 * @ofs: offset from device start
 622 * @allowbbt: 1, if its allowed to access the bbt area
 623 *
 624 * Check, if the block is bad. Either by reading the bad block table or
 625 * calling of the scan function.
 626 */
 627static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
 628{
 629        /* Return info from the table */
 630        if (chip->bbt)
 631                return nand_isbad_bbt(chip, ofs, allowbbt);
 632
 633        return nand_isbad_bbm(chip, ofs);
 634}
 635
 636/**
 637 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
 638 * @chip: NAND chip structure
 639 * @timeout_ms: Timeout in ms
 640 *
 641 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
 642 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
 643 * returned.
 644 *
 645 * This helper is intended to be used when the controller does not have access
 646 * to the NAND R/B pin.
 647 *
 648 * Be aware that calling this helper from an ->exec_op() implementation means
 649 * ->exec_op() must be re-entrant.
 650 *
 651 * Return 0 if the NAND chip is ready, a negative error otherwise.
 652 */
 653int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
 654{
 655        const struct nand_interface_config *conf;
 656        u8 status = 0;
 657        int ret;
 658
 659        if (!nand_has_exec_op(chip))
 660                return -ENOTSUPP;
 661
 662        /* Wait tWB before polling the STATUS reg. */
 663        conf = nand_get_interface_config(chip);
 664        ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
 665
 666        ret = nand_status_op(chip, NULL);
 667        if (ret)
 668                return ret;
 669
 670        /*
 671         * +1 below is necessary because if we are now in the last fraction
 672         * of jiffy and msecs_to_jiffies is 1 then we will wait only that
 673         * small jiffy fraction - possibly leading to false timeout
 674         */
 675        timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
 676        do {
 677                ret = nand_read_data_op(chip, &status, sizeof(status), true,
 678                                        false);
 679                if (ret)
 680                        break;
 681
 682                if (status & NAND_STATUS_READY)
 683                        break;
 684
 685                /*
 686                 * Typical lowest execution time for a tR on most NANDs is 10us,
 687                 * use this as polling delay before doing something smarter (ie.
 688                 * deriving a delay from the timeout value, timeout_ms/ratio).
 689                 */
 690                udelay(10);
 691        } while (time_before(jiffies, timeout_ms));
 692
 693        /*
 694         * We have to exit READ_STATUS mode in order to read real data on the
 695         * bus in case the WAITRDY instruction is preceding a DATA_IN
 696         * instruction.
 697         */
 698        nand_exit_status_op(chip);
 699
 700        if (ret)
 701                return ret;
 702
 703        return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
 704};
 705EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
 706
 707/**
 708 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
 709 * @chip: NAND chip structure
 710 * @gpiod: GPIO descriptor of R/B pin
 711 * @timeout_ms: Timeout in ms
 712 *
 713 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
 714 * whitin the specified timeout, -ETIMEDOUT is returned.
 715 *
 716 * This helper is intended to be used when the controller has access to the
 717 * NAND R/B pin over GPIO.
 718 *
 719 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
 720 */
 721int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
 722                      unsigned long timeout_ms)
 723{
 724
 725        /*
 726         * Wait until R/B pin indicates chip is ready or timeout occurs.
 727         * +1 below is necessary because if we are now in the last fraction
 728         * of jiffy and msecs_to_jiffies is 1 then we will wait only that
 729         * small jiffy fraction - possibly leading to false timeout.
 730         */
 731        timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
 732        do {
 733                if (gpiod_get_value_cansleep(gpiod))
 734                        return 0;
 735
 736                cond_resched();
 737        } while (time_before(jiffies, timeout_ms));
 738
 739        return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
 740};
 741EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
 742
 743/**
 744 * panic_nand_wait - [GENERIC] wait until the command is done
 745 * @chip: NAND chip structure
 746 * @timeo: timeout
 747 *
 748 * Wait for command done. This is a helper function for nand_wait used when
 749 * we are in interrupt context. May happen when in panic and trying to write
 750 * an oops through mtdoops.
 751 */
 752void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
 753{
 754        int i;
 755        for (i = 0; i < timeo; i++) {
 756                if (chip->legacy.dev_ready) {
 757                        if (chip->legacy.dev_ready(chip))
 758                                break;
 759                } else {
 760                        int ret;
 761                        u8 status;
 762
 763                        ret = nand_read_data_op(chip, &status, sizeof(status),
 764                                                true, false);
 765                        if (ret)
 766                                return;
 767
 768                        if (status & NAND_STATUS_READY)
 769                                break;
 770                }
 771                mdelay(1);
 772        }
 773}
 774
 775static bool nand_supports_get_features(struct nand_chip *chip, int addr)
 776{
 777        return (chip->parameters.supports_set_get_features &&
 778                test_bit(addr, chip->parameters.get_feature_list));
 779}
 780
 781static bool nand_supports_set_features(struct nand_chip *chip, int addr)
 782{
 783        return (chip->parameters.supports_set_get_features &&
 784                test_bit(addr, chip->parameters.set_feature_list));
 785}
 786
 787/**
 788 * nand_reset_interface - Reset data interface and timings
 789 * @chip: The NAND chip
 790 * @chipnr: Internal die id
 791 *
 792 * Reset the Data interface and timings to ONFI mode 0.
 793 *
 794 * Returns 0 for success or negative error code otherwise.
 795 */
 796static int nand_reset_interface(struct nand_chip *chip, int chipnr)
 797{
 798        const struct nand_controller_ops *ops = chip->controller->ops;
 799        int ret;
 800
 801        if (!nand_controller_can_setup_interface(chip))
 802                return 0;
 803
 804        /*
 805         * The ONFI specification says:
 806         * "
 807         * To transition from NV-DDR or NV-DDR2 to the SDR data
 808         * interface, the host shall use the Reset (FFh) command
 809         * using SDR timing mode 0. A device in any timing mode is
 810         * required to recognize Reset (FFh) command issued in SDR
 811         * timing mode 0.
 812         * "
 813         *
 814         * Configure the data interface in SDR mode and set the
 815         * timings to timing mode 0.
 816         */
 817
 818        chip->current_interface_config = nand_get_reset_interface_config();
 819        ret = ops->setup_interface(chip, chipnr,
 820                                   chip->current_interface_config);
 821        if (ret)
 822                pr_err("Failed to configure data interface to SDR timing mode 0\n");
 823
 824        return ret;
 825}
 826
 827/**
 828 * nand_setup_interface - Setup the best data interface and timings
 829 * @chip: The NAND chip
 830 * @chipnr: Internal die id
 831 *
 832 * Configure what has been reported to be the best data interface and NAND
 833 * timings supported by the chip and the driver.
 834 *
 835 * Returns 0 for success or negative error code otherwise.
 836 */
 837static int nand_setup_interface(struct nand_chip *chip, int chipnr)
 838{
 839        const struct nand_controller_ops *ops = chip->controller->ops;
 840        u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
 841        int ret;
 842
 843        if (!nand_controller_can_setup_interface(chip))
 844                return 0;
 845
 846        /*
 847         * A nand_reset_interface() put both the NAND chip and the NAND
 848         * controller in timings mode 0. If the default mode for this chip is
 849         * also 0, no need to proceed to the change again. Plus, at probe time,
 850         * nand_setup_interface() uses ->set/get_features() which would
 851         * fail anyway as the parameter page is not available yet.
 852         */
 853        if (!chip->best_interface_config)
 854                return 0;
 855
 856        request = chip->best_interface_config->timings.mode;
 857        if (nand_interface_is_sdr(chip->best_interface_config))
 858                request |= ONFI_DATA_INTERFACE_SDR;
 859        else
 860                request |= ONFI_DATA_INTERFACE_NVDDR;
 861        tmode_param[0] = request;
 862
 863        /* Change the mode on the chip side (if supported by the NAND chip) */
 864        if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
 865                nand_select_target(chip, chipnr);
 866                ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
 867                                        tmode_param);
 868                nand_deselect_target(chip);
 869                if (ret)
 870                        return ret;
 871        }
 872
 873        /* Change the mode on the controller side */
 874        ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
 875        if (ret)
 876                return ret;
 877
 878        /* Check the mode has been accepted by the chip, if supported */
 879        if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
 880                goto update_interface_config;
 881
 882        memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
 883        nand_select_target(chip, chipnr);
 884        ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
 885                                tmode_param);
 886        nand_deselect_target(chip);
 887        if (ret)
 888                goto err_reset_chip;
 889
 890        if (request != tmode_param[0]) {
 891                pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
 892                        nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
 893                        chip->best_interface_config->timings.mode);
 894                pr_debug("NAND chip would work in %s timing mode %d\n",
 895                         tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
 896                         (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
 897                goto err_reset_chip;
 898        }
 899
 900update_interface_config:
 901        chip->current_interface_config = chip->best_interface_config;
 902
 903        return 0;
 904
 905err_reset_chip:
 906        /*
 907         * Fallback to mode 0 if the chip explicitly did not ack the chosen
 908         * timing mode.
 909         */
 910        nand_reset_interface(chip, chipnr);
 911        nand_select_target(chip, chipnr);
 912        nand_reset_op(chip);
 913        nand_deselect_target(chip);
 914
 915        return ret;
 916}
 917
 918/**
 919 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
 920 *                                NAND controller and the NAND chip support
 921 * @chip: the NAND chip
 922 * @iface: the interface configuration (can eventually be updated)
 923 * @spec_timings: specific timings, when not fitting the ONFI specification
 924 *
 925 * If specific timings are provided, use them. Otherwise, retrieve supported
 926 * timing modes from ONFI information.
 927 */
 928int nand_choose_best_sdr_timings(struct nand_chip *chip,
 929                                 struct nand_interface_config *iface,
 930                                 struct nand_sdr_timings *spec_timings)
 931{
 932        const struct nand_controller_ops *ops = chip->controller->ops;
 933        int best_mode = 0, mode, ret = -EOPNOTSUPP;
 934
 935        iface->type = NAND_SDR_IFACE;
 936
 937        if (spec_timings) {
 938                iface->timings.sdr = *spec_timings;
 939                iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
 940
 941                /* Verify the controller supports the requested interface */
 942                ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
 943                                           iface);
 944                if (!ret) {
 945                        chip->best_interface_config = iface;
 946                        return ret;
 947                }
 948
 949                /* Fallback to slower modes */
 950                best_mode = iface->timings.mode;
 951        } else if (chip->parameters.onfi) {
 952                best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
 953        }
 954
 955        for (mode = best_mode; mode >= 0; mode--) {
 956                onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
 957
 958                ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
 959                                           iface);
 960                if (!ret) {
 961                        chip->best_interface_config = iface;
 962                        break;
 963                }
 964        }
 965
 966        return ret;
 967}
 968
 969/**
 970 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
 971 *                                  NAND controller and the NAND chip support
 972 * @chip: the NAND chip
 973 * @iface: the interface configuration (can eventually be updated)
 974 * @spec_timings: specific timings, when not fitting the ONFI specification
 975 *
 976 * If specific timings are provided, use them. Otherwise, retrieve supported
 977 * timing modes from ONFI information.
 978 */
 979int nand_choose_best_nvddr_timings(struct nand_chip *chip,
 980                                   struct nand_interface_config *iface,
 981                                   struct nand_nvddr_timings *spec_timings)
 982{
 983        const struct nand_controller_ops *ops = chip->controller->ops;
 984        int best_mode = 0, mode, ret = -EOPNOTSUPP;
 985
 986        iface->type = NAND_NVDDR_IFACE;
 987
 988        if (spec_timings) {
 989                iface->timings.nvddr = *spec_timings;
 990                iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
 991
 992                /* Verify the controller supports the requested interface */
 993                ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
 994                                           iface);
 995                if (!ret) {
 996                        chip->best_interface_config = iface;
 997                        return ret;
 998                }
 999
1000                /* Fallback to slower modes */
1001                best_mode = iface->timings.mode;
1002        } else if (chip->parameters.onfi) {
1003                best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1004        }
1005
1006        for (mode = best_mode; mode >= 0; mode--) {
1007                onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1008
1009                ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1010                                           iface);
1011                if (!ret) {
1012                        chip->best_interface_config = iface;
1013                        break;
1014                }
1015        }
1016
1017        return ret;
1018}
1019
1020/**
1021 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1022 *                            NAND controller and the NAND chip support
1023 * @chip: the NAND chip
1024 * @iface: the interface configuration (can eventually be updated)
1025 *
1026 * If specific timings are provided, use them. Otherwise, retrieve supported
1027 * timing modes from ONFI information.
1028 */
1029static int nand_choose_best_timings(struct nand_chip *chip,
1030                                    struct nand_interface_config *iface)
1031{
1032        int ret;
1033
1034        /* Try the fastest timings: NV-DDR */
1035        ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1036        if (!ret)
1037                return 0;
1038
1039        /* Fallback to SDR timings otherwise */
1040        return nand_choose_best_sdr_timings(chip, iface, NULL);
1041}
1042
1043/**
1044 * nand_choose_interface_config - find the best data interface and timings
1045 * @chip: The NAND chip
1046 *
1047 * Find the best data interface and NAND timings supported by the chip
1048 * and the driver. Eventually let the NAND manufacturer driver propose his own
1049 * set of timings.
1050 *
1051 * After this function nand_chip->interface_config is initialized with the best
1052 * timing mode available.
1053 *
1054 * Returns 0 for success or negative error code otherwise.
1055 */
1056static int nand_choose_interface_config(struct nand_chip *chip)
1057{
1058        struct nand_interface_config *iface;
1059        int ret;
1060
1061        if (!nand_controller_can_setup_interface(chip))
1062                return 0;
1063
1064        iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1065        if (!iface)
1066                return -ENOMEM;
1067
1068        if (chip->ops.choose_interface_config)
1069                ret = chip->ops.choose_interface_config(chip, iface);
1070        else
1071                ret = nand_choose_best_timings(chip, iface);
1072
1073        if (ret)
1074                kfree(iface);
1075
1076        return ret;
1077}
1078
1079/**
1080 * nand_fill_column_cycles - fill the column cycles of an address
1081 * @chip: The NAND chip
1082 * @addrs: Array of address cycles to fill
1083 * @offset_in_page: The offset in the page
1084 *
1085 * Fills the first or the first two bytes of the @addrs field depending
1086 * on the NAND bus width and the page size.
1087 *
1088 * Returns the number of cycles needed to encode the column, or a negative
1089 * error code in case one of the arguments is invalid.
1090 */
1091static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1092                                   unsigned int offset_in_page)
1093{
1094        struct mtd_info *mtd = nand_to_mtd(chip);
1095
1096        /* Make sure the offset is less than the actual page size. */
1097        if (offset_in_page > mtd->writesize + mtd->oobsize)
1098                return -EINVAL;
1099
1100        /*
1101         * On small page NANDs, there's a dedicated command to access the OOB
1102         * area, and the column address is relative to the start of the OOB
1103         * area, not the start of the page. Asjust the address accordingly.
1104         */
1105        if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1106                offset_in_page -= mtd->writesize;
1107
1108        /*
1109         * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1110         * wide, then it must be divided by 2.
1111         */
1112        if (chip->options & NAND_BUSWIDTH_16) {
1113                if (WARN_ON(offset_in_page % 2))
1114                        return -EINVAL;
1115
1116                offset_in_page /= 2;
1117        }
1118
1119        addrs[0] = offset_in_page;
1120
1121        /*
1122         * Small page NANDs use 1 cycle for the columns, while large page NANDs
1123         * need 2
1124         */
1125        if (mtd->writesize <= 512)
1126                return 1;
1127
1128        addrs[1] = offset_in_page >> 8;
1129
1130        return 2;
1131}
1132
1133static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1134                                     unsigned int offset_in_page, void *buf,
1135                                     unsigned int len)
1136{
1137        const struct nand_interface_config *conf =
1138                nand_get_interface_config(chip);
1139        struct mtd_info *mtd = nand_to_mtd(chip);
1140        u8 addrs[4];
1141        struct nand_op_instr instrs[] = {
1142                NAND_OP_CMD(NAND_CMD_READ0, 0),
1143                NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1144                NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1145                                 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1146                NAND_OP_DATA_IN(len, buf, 0),
1147        };
1148        struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1149        int ret;
1150
1151        /* Drop the DATA_IN instruction if len is set to 0. */
1152        if (!len)
1153                op.ninstrs--;
1154
1155        if (offset_in_page >= mtd->writesize)
1156                instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1157        else if (offset_in_page >= 256 &&
1158                 !(chip->options & NAND_BUSWIDTH_16))
1159                instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1160
1161        ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1162        if (ret < 0)
1163                return ret;
1164
1165        addrs[1] = page;
1166        addrs[2] = page >> 8;
1167
1168        if (chip->options & NAND_ROW_ADDR_3) {
1169                addrs[3] = page >> 16;
1170                instrs[1].ctx.addr.naddrs++;
1171        }
1172
1173        return nand_exec_op(chip, &op);
1174}
1175
1176static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1177                                     unsigned int offset_in_page, void *buf,
1178                                     unsigned int len)
1179{
1180        const struct nand_interface_config *conf =
1181                nand_get_interface_config(chip);
1182        u8 addrs[5];
1183        struct nand_op_instr instrs[] = {
1184                NAND_OP_CMD(NAND_CMD_READ0, 0),
1185                NAND_OP_ADDR(4, addrs, 0),
1186                NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1187                NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1188                                 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1189                NAND_OP_DATA_IN(len, buf, 0),
1190        };
1191        struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1192        int ret;
1193
1194        /* Drop the DATA_IN instruction if len is set to 0. */
1195        if (!len)
1196                op.ninstrs--;
1197
1198        ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1199        if (ret < 0)
1200                return ret;
1201
1202        addrs[2] = page;
1203        addrs[3] = page >> 8;
1204
1205        if (chip->options & NAND_ROW_ADDR_3) {
1206                addrs[4] = page >> 16;
1207                instrs[1].ctx.addr.naddrs++;
1208        }
1209
1210        return nand_exec_op(chip, &op);
1211}
1212
1213/**
1214 * nand_read_page_op - Do a READ PAGE operation
1215 * @chip: The NAND chip
1216 * @page: page to read
1217 * @offset_in_page: offset within the page
1218 * @buf: buffer used to store the data
1219 * @len: length of the buffer
1220 *
1221 * This function issues a READ PAGE operation.
1222 * This function does not select/unselect the CS line.
1223 *
1224 * Returns 0 on success, a negative error code otherwise.
1225 */
1226int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1227                      unsigned int offset_in_page, void *buf, unsigned int len)
1228{
1229        struct mtd_info *mtd = nand_to_mtd(chip);
1230
1231        if (len && !buf)
1232                return -EINVAL;
1233
1234        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1235                return -EINVAL;
1236
1237        if (nand_has_exec_op(chip)) {
1238                if (mtd->writesize > 512)
1239                        return nand_lp_exec_read_page_op(chip, page,
1240                                                         offset_in_page, buf,
1241                                                         len);
1242
1243                return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1244                                                 buf, len);
1245        }
1246
1247        chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1248        if (len)
1249                chip->legacy.read_buf(chip, buf, len);
1250
1251        return 0;
1252}
1253EXPORT_SYMBOL_GPL(nand_read_page_op);
1254
1255/**
1256 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1257 * @chip: The NAND chip
1258 * @page: parameter page to read
1259 * @buf: buffer used to store the data
1260 * @len: length of the buffer
1261 *
1262 * This function issues a READ PARAMETER PAGE operation.
1263 * This function does not select/unselect the CS line.
1264 *
1265 * Returns 0 on success, a negative error code otherwise.
1266 */
1267int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1268                            unsigned int len)
1269{
1270        unsigned int i;
1271        u8 *p = buf;
1272
1273        if (len && !buf)
1274                return -EINVAL;
1275
1276        if (nand_has_exec_op(chip)) {
1277                const struct nand_interface_config *conf =
1278                        nand_get_interface_config(chip);
1279                struct nand_op_instr instrs[] = {
1280                        NAND_OP_CMD(NAND_CMD_PARAM, 0),
1281                        NAND_OP_ADDR(1, &page,
1282                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1283                        NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1284                                         NAND_COMMON_TIMING_NS(conf, tRR_min)),
1285                        NAND_OP_8BIT_DATA_IN(len, buf, 0),
1286                };
1287                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1288
1289                /* Drop the DATA_IN instruction if len is set to 0. */
1290                if (!len)
1291                        op.ninstrs--;
1292
1293                return nand_exec_op(chip, &op);
1294        }
1295
1296        chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1297        for (i = 0; i < len; i++)
1298                p[i] = chip->legacy.read_byte(chip);
1299
1300        return 0;
1301}
1302
1303/**
1304 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1305 * @chip: The NAND chip
1306 * @offset_in_page: offset within the page
1307 * @buf: buffer used to store the data
1308 * @len: length of the buffer
1309 * @force_8bit: force 8-bit bus access
1310 *
1311 * This function issues a CHANGE READ COLUMN operation.
1312 * This function does not select/unselect the CS line.
1313 *
1314 * Returns 0 on success, a negative error code otherwise.
1315 */
1316int nand_change_read_column_op(struct nand_chip *chip,
1317                               unsigned int offset_in_page, void *buf,
1318                               unsigned int len, bool force_8bit)
1319{
1320        struct mtd_info *mtd = nand_to_mtd(chip);
1321
1322        if (len && !buf)
1323                return -EINVAL;
1324
1325        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1326                return -EINVAL;
1327
1328        /* Small page NANDs do not support column change. */
1329        if (mtd->writesize <= 512)
1330                return -ENOTSUPP;
1331
1332        if (nand_has_exec_op(chip)) {
1333                const struct nand_interface_config *conf =
1334                        nand_get_interface_config(chip);
1335                u8 addrs[2] = {};
1336                struct nand_op_instr instrs[] = {
1337                        NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1338                        NAND_OP_ADDR(2, addrs, 0),
1339                        NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1340                                    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1341                        NAND_OP_DATA_IN(len, buf, 0),
1342                };
1343                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1344                int ret;
1345
1346                ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1347                if (ret < 0)
1348                        return ret;
1349
1350                /* Drop the DATA_IN instruction if len is set to 0. */
1351                if (!len)
1352                        op.ninstrs--;
1353
1354                instrs[3].ctx.data.force_8bit = force_8bit;
1355
1356                return nand_exec_op(chip, &op);
1357        }
1358
1359        chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1360        if (len)
1361                chip->legacy.read_buf(chip, buf, len);
1362
1363        return 0;
1364}
1365EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1366
1367/**
1368 * nand_read_oob_op - Do a READ OOB operation
1369 * @chip: The NAND chip
1370 * @page: page to read
1371 * @offset_in_oob: offset within the OOB area
1372 * @buf: buffer used to store the data
1373 * @len: length of the buffer
1374 *
1375 * This function issues a READ OOB operation.
1376 * This function does not select/unselect the CS line.
1377 *
1378 * Returns 0 on success, a negative error code otherwise.
1379 */
1380int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1381                     unsigned int offset_in_oob, void *buf, unsigned int len)
1382{
1383        struct mtd_info *mtd = nand_to_mtd(chip);
1384
1385        if (len && !buf)
1386                return -EINVAL;
1387
1388        if (offset_in_oob + len > mtd->oobsize)
1389                return -EINVAL;
1390
1391        if (nand_has_exec_op(chip))
1392                return nand_read_page_op(chip, page,
1393                                         mtd->writesize + offset_in_oob,
1394                                         buf, len);
1395
1396        chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1397        if (len)
1398                chip->legacy.read_buf(chip, buf, len);
1399
1400        return 0;
1401}
1402EXPORT_SYMBOL_GPL(nand_read_oob_op);
1403
1404static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1405                                  unsigned int offset_in_page, const void *buf,
1406                                  unsigned int len, bool prog)
1407{
1408        const struct nand_interface_config *conf =
1409                nand_get_interface_config(chip);
1410        struct mtd_info *mtd = nand_to_mtd(chip);
1411        u8 addrs[5] = {};
1412        struct nand_op_instr instrs[] = {
1413                /*
1414                 * The first instruction will be dropped if we're dealing
1415                 * with a large page NAND and adjusted if we're dealing
1416                 * with a small page NAND and the page offset is > 255.
1417                 */
1418                NAND_OP_CMD(NAND_CMD_READ0, 0),
1419                NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1420                NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1421                NAND_OP_DATA_OUT(len, buf, 0),
1422                NAND_OP_CMD(NAND_CMD_PAGEPROG,
1423                            NAND_COMMON_TIMING_NS(conf, tWB_max)),
1424                NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1425        };
1426        struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1427        int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1428
1429        if (naddrs < 0)
1430                return naddrs;
1431
1432        addrs[naddrs++] = page;
1433        addrs[naddrs++] = page >> 8;
1434        if (chip->options & NAND_ROW_ADDR_3)
1435                addrs[naddrs++] = page >> 16;
1436
1437        instrs[2].ctx.addr.naddrs = naddrs;
1438
1439        /* Drop the last two instructions if we're not programming the page. */
1440        if (!prog) {
1441                op.ninstrs -= 2;
1442                /* Also drop the DATA_OUT instruction if empty. */
1443                if (!len)
1444                        op.ninstrs--;
1445        }
1446
1447        if (mtd->writesize <= 512) {
1448                /*
1449                 * Small pages need some more tweaking: we have to adjust the
1450                 * first instruction depending on the page offset we're trying
1451                 * to access.
1452                 */
1453                if (offset_in_page >= mtd->writesize)
1454                        instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1455                else if (offset_in_page >= 256 &&
1456                         !(chip->options & NAND_BUSWIDTH_16))
1457                        instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1458        } else {
1459                /*
1460                 * Drop the first command if we're dealing with a large page
1461                 * NAND.
1462                 */
1463                op.instrs++;
1464                op.ninstrs--;
1465        }
1466
1467        return nand_exec_op(chip, &op);
1468}
1469
1470/**
1471 * nand_prog_page_begin_op - starts a PROG PAGE operation
1472 * @chip: The NAND chip
1473 * @page: page to write
1474 * @offset_in_page: offset within the page
1475 * @buf: buffer containing the data to write to the page
1476 * @len: length of the buffer
1477 *
1478 * This function issues the first half of a PROG PAGE operation.
1479 * This function does not select/unselect the CS line.
1480 *
1481 * Returns 0 on success, a negative error code otherwise.
1482 */
1483int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1484                            unsigned int offset_in_page, const void *buf,
1485                            unsigned int len)
1486{
1487        struct mtd_info *mtd = nand_to_mtd(chip);
1488
1489        if (len && !buf)
1490                return -EINVAL;
1491
1492        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1493                return -EINVAL;
1494
1495        if (nand_has_exec_op(chip))
1496                return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1497                                              len, false);
1498
1499        chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1500
1501        if (buf)
1502                chip->legacy.write_buf(chip, buf, len);
1503
1504        return 0;
1505}
1506EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1507
1508/**
1509 * nand_prog_page_end_op - ends a PROG PAGE operation
1510 * @chip: The NAND chip
1511 *
1512 * This function issues the second half of a PROG PAGE operation.
1513 * This function does not select/unselect the CS line.
1514 *
1515 * Returns 0 on success, a negative error code otherwise.
1516 */
1517int nand_prog_page_end_op(struct nand_chip *chip)
1518{
1519        int ret;
1520        u8 status;
1521
1522        if (nand_has_exec_op(chip)) {
1523                const struct nand_interface_config *conf =
1524                        nand_get_interface_config(chip);
1525                struct nand_op_instr instrs[] = {
1526                        NAND_OP_CMD(NAND_CMD_PAGEPROG,
1527                                    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1528                        NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1529                                         0),
1530                };
1531                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1532
1533                ret = nand_exec_op(chip, &op);
1534                if (ret)
1535                        return ret;
1536
1537                ret = nand_status_op(chip, &status);
1538                if (ret)
1539                        return ret;
1540        } else {
1541                chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1542                ret = chip->legacy.waitfunc(chip);
1543                if (ret < 0)
1544                        return ret;
1545
1546                status = ret;
1547        }
1548
1549        if (status & NAND_STATUS_FAIL)
1550                return -EIO;
1551
1552        return 0;
1553}
1554EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1555
1556/**
1557 * nand_prog_page_op - Do a full PROG PAGE operation
1558 * @chip: The NAND chip
1559 * @page: page to write
1560 * @offset_in_page: offset within the page
1561 * @buf: buffer containing the data to write to the page
1562 * @len: length of the buffer
1563 *
1564 * This function issues a full PROG PAGE operation.
1565 * This function does not select/unselect the CS line.
1566 *
1567 * Returns 0 on success, a negative error code otherwise.
1568 */
1569int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1570                      unsigned int offset_in_page, const void *buf,
1571                      unsigned int len)
1572{
1573        struct mtd_info *mtd = nand_to_mtd(chip);
1574        u8 status;
1575        int ret;
1576
1577        if (!len || !buf)
1578                return -EINVAL;
1579
1580        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1581                return -EINVAL;
1582
1583        if (nand_has_exec_op(chip)) {
1584                ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1585                                                len, true);
1586                if (ret)
1587                        return ret;
1588
1589                ret = nand_status_op(chip, &status);
1590                if (ret)
1591                        return ret;
1592        } else {
1593                chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1594                                     page);
1595                chip->legacy.write_buf(chip, buf, len);
1596                chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1597                ret = chip->legacy.waitfunc(chip);
1598                if (ret < 0)
1599                        return ret;
1600
1601                status = ret;
1602        }
1603
1604        if (status & NAND_STATUS_FAIL)
1605                return -EIO;
1606
1607        return 0;
1608}
1609EXPORT_SYMBOL_GPL(nand_prog_page_op);
1610
1611/**
1612 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1613 * @chip: The NAND chip
1614 * @offset_in_page: offset within the page
1615 * @buf: buffer containing the data to send to the NAND
1616 * @len: length of the buffer
1617 * @force_8bit: force 8-bit bus access
1618 *
1619 * This function issues a CHANGE WRITE COLUMN operation.
1620 * This function does not select/unselect the CS line.
1621 *
1622 * Returns 0 on success, a negative error code otherwise.
1623 */
1624int nand_change_write_column_op(struct nand_chip *chip,
1625                                unsigned int offset_in_page,
1626                                const void *buf, unsigned int len,
1627                                bool force_8bit)
1628{
1629        struct mtd_info *mtd = nand_to_mtd(chip);
1630
1631        if (len && !buf)
1632                return -EINVAL;
1633
1634        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1635                return -EINVAL;
1636
1637        /* Small page NANDs do not support column change. */
1638        if (mtd->writesize <= 512)
1639                return -ENOTSUPP;
1640
1641        if (nand_has_exec_op(chip)) {
1642                const struct nand_interface_config *conf =
1643                        nand_get_interface_config(chip);
1644                u8 addrs[2];
1645                struct nand_op_instr instrs[] = {
1646                        NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1647                        NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1648                        NAND_OP_DATA_OUT(len, buf, 0),
1649                };
1650                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1651                int ret;
1652
1653                ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1654                if (ret < 0)
1655                        return ret;
1656
1657                instrs[2].ctx.data.force_8bit = force_8bit;
1658
1659                /* Drop the DATA_OUT instruction if len is set to 0. */
1660                if (!len)
1661                        op.ninstrs--;
1662
1663                return nand_exec_op(chip, &op);
1664        }
1665
1666        chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1667        if (len)
1668                chip->legacy.write_buf(chip, buf, len);
1669
1670        return 0;
1671}
1672EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1673
1674/**
1675 * nand_readid_op - Do a READID operation
1676 * @chip: The NAND chip
1677 * @addr: address cycle to pass after the READID command
1678 * @buf: buffer used to store the ID
1679 * @len: length of the buffer
1680 *
1681 * This function sends a READID command and reads back the ID returned by the
1682 * NAND.
1683 * This function does not select/unselect the CS line.
1684 *
1685 * Returns 0 on success, a negative error code otherwise.
1686 */
1687int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1688                   unsigned int len)
1689{
1690        unsigned int i;
1691        u8 *id = buf, *ddrbuf = NULL;
1692
1693        if (len && !buf)
1694                return -EINVAL;
1695
1696        if (nand_has_exec_op(chip)) {
1697                const struct nand_interface_config *conf =
1698                        nand_get_interface_config(chip);
1699                struct nand_op_instr instrs[] = {
1700                        NAND_OP_CMD(NAND_CMD_READID, 0),
1701                        NAND_OP_ADDR(1, &addr,
1702                                     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1703                        NAND_OP_8BIT_DATA_IN(len, buf, 0),
1704                };
1705                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1706                int ret;
1707
1708                /* READ_ID data bytes are received twice in NV-DDR mode */
1709                if (len && nand_interface_is_nvddr(conf)) {
1710                        ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1711                        if (!ddrbuf)
1712                                return -ENOMEM;
1713
1714                        instrs[2].ctx.data.len *= 2;
1715                        instrs[2].ctx.data.buf.in = ddrbuf;
1716                }
1717
1718                /* Drop the DATA_IN instruction if len is set to 0. */
1719                if (!len)
1720                        op.ninstrs--;
1721
1722                ret = nand_exec_op(chip, &op);
1723                if (!ret && len && nand_interface_is_nvddr(conf)) {
1724                        for (i = 0; i < len; i++)
1725                                id[i] = ddrbuf[i * 2];
1726                }
1727
1728                kfree(ddrbuf);
1729
1730                return ret;
1731        }
1732
1733        chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1734
1735        for (i = 0; i < len; i++)
1736                id[i] = chip->legacy.read_byte(chip);
1737
1738        return 0;
1739}
1740EXPORT_SYMBOL_GPL(nand_readid_op);
1741
1742/**
1743 * nand_status_op - Do a STATUS operation
1744 * @chip: The NAND chip
1745 * @status: out variable to store the NAND status
1746 *
1747 * This function sends a STATUS command and reads back the status returned by
1748 * the NAND.
1749 * This function does not select/unselect the CS line.
1750 *
1751 * Returns 0 on success, a negative error code otherwise.
1752 */
1753int nand_status_op(struct nand_chip *chip, u8 *status)
1754{
1755        if (nand_has_exec_op(chip)) {
1756                const struct nand_interface_config *conf =
1757                        nand_get_interface_config(chip);
1758                u8 ddrstatus[2];
1759                struct nand_op_instr instrs[] = {
1760                        NAND_OP_CMD(NAND_CMD_STATUS,
1761                                    NAND_COMMON_TIMING_NS(conf, tADL_min)),
1762                        NAND_OP_8BIT_DATA_IN(1, status, 0),
1763                };
1764                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1765                int ret;
1766
1767                /* The status data byte will be received twice in NV-DDR mode */
1768                if (status && nand_interface_is_nvddr(conf)) {
1769                        instrs[1].ctx.data.len *= 2;
1770                        instrs[1].ctx.data.buf.in = ddrstatus;
1771                }
1772
1773                if (!status)
1774                        op.ninstrs--;
1775
1776                ret = nand_exec_op(chip, &op);
1777                if (!ret && status && nand_interface_is_nvddr(conf))
1778                        *status = ddrstatus[0];
1779
1780                return ret;
1781        }
1782
1783        chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1784        if (status)
1785                *status = chip->legacy.read_byte(chip);
1786
1787        return 0;
1788}
1789EXPORT_SYMBOL_GPL(nand_status_op);
1790
1791/**
1792 * nand_exit_status_op - Exit a STATUS operation
1793 * @chip: The NAND chip
1794 *
1795 * This function sends a READ0 command to cancel the effect of the STATUS
1796 * command to avoid reading only the status until a new read command is sent.
1797 *
1798 * This function does not select/unselect the CS line.
1799 *
1800 * Returns 0 on success, a negative error code otherwise.
1801 */
1802int nand_exit_status_op(struct nand_chip *chip)
1803{
1804        if (nand_has_exec_op(chip)) {
1805                struct nand_op_instr instrs[] = {
1806                        NAND_OP_CMD(NAND_CMD_READ0, 0),
1807                };
1808                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1809
1810                return nand_exec_op(chip, &op);
1811        }
1812
1813        chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1814
1815        return 0;
1816}
1817
1818/**
1819 * nand_erase_op - Do an erase operation
1820 * @chip: The NAND chip
1821 * @eraseblock: block to erase
1822 *
1823 * This function sends an ERASE command and waits for the NAND to be ready
1824 * before returning.
1825 * This function does not select/unselect the CS line.
1826 *
1827 * Returns 0 on success, a negative error code otherwise.
1828 */
1829int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1830{
1831        unsigned int page = eraseblock <<
1832                            (chip->phys_erase_shift - chip->page_shift);
1833        int ret;
1834        u8 status;
1835
1836        if (nand_has_exec_op(chip)) {
1837                const struct nand_interface_config *conf =
1838                        nand_get_interface_config(chip);
1839                u8 addrs[3] = { page, page >> 8, page >> 16 };
1840                struct nand_op_instr instrs[] = {
1841                        NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1842                        NAND_OP_ADDR(2, addrs, 0),
1843                        NAND_OP_CMD(NAND_CMD_ERASE2,
1844                                    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1845                        NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1846                                         0),
1847                };
1848                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1849
1850                if (chip->options & NAND_ROW_ADDR_3)
1851                        instrs[1].ctx.addr.naddrs++;
1852
1853                ret = nand_exec_op(chip, &op);
1854                if (ret)
1855                        return ret;
1856
1857                ret = nand_status_op(chip, &status);
1858                if (ret)
1859                        return ret;
1860        } else {
1861                chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1862                chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1863
1864                ret = chip->legacy.waitfunc(chip);
1865                if (ret < 0)
1866                        return ret;
1867
1868                status = ret;
1869        }
1870
1871        if (status & NAND_STATUS_FAIL)
1872                return -EIO;
1873
1874        return 0;
1875}
1876EXPORT_SYMBOL_GPL(nand_erase_op);
1877
1878/**
1879 * nand_set_features_op - Do a SET FEATURES operation
1880 * @chip: The NAND chip
1881 * @feature: feature id
1882 * @data: 4 bytes of data
1883 *
1884 * This function sends a SET FEATURES command and waits for the NAND to be
1885 * ready before returning.
1886 * This function does not select/unselect the CS line.
1887 *
1888 * Returns 0 on success, a negative error code otherwise.
1889 */
1890static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1891                                const void *data)
1892{
1893        const u8 *params = data;
1894        int i, ret;
1895
1896        if (nand_has_exec_op(chip)) {
1897                const struct nand_interface_config *conf =
1898                        nand_get_interface_config(chip);
1899                struct nand_op_instr instrs[] = {
1900                        NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1901                        NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
1902                                                                        tADL_min)),
1903                        NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1904                                              NAND_COMMON_TIMING_NS(conf,
1905                                                                    tWB_max)),
1906                        NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1907                                         0),
1908                };
1909                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1910
1911                return nand_exec_op(chip, &op);
1912        }
1913
1914        chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1915        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1916                chip->legacy.write_byte(chip, params[i]);
1917
1918        ret = chip->legacy.waitfunc(chip);
1919        if (ret < 0)
1920                return ret;
1921
1922        if (ret & NAND_STATUS_FAIL)
1923                return -EIO;
1924
1925        return 0;
1926}
1927
1928/**
1929 * nand_get_features_op - Do a GET FEATURES operation
1930 * @chip: The NAND chip
1931 * @feature: feature id
1932 * @data: 4 bytes of data
1933 *
1934 * This function sends a GET FEATURES command and waits for the NAND to be
1935 * ready before returning.
1936 * This function does not select/unselect the CS line.
1937 *
1938 * Returns 0 on success, a negative error code otherwise.
1939 */
1940static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1941                                void *data)
1942{
1943        u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
1944        int i;
1945
1946        if (nand_has_exec_op(chip)) {
1947                const struct nand_interface_config *conf =
1948                        nand_get_interface_config(chip);
1949                struct nand_op_instr instrs[] = {
1950                        NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1951                        NAND_OP_ADDR(1, &feature,
1952                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1953                        NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1954                                         NAND_COMMON_TIMING_NS(conf, tRR_min)),
1955                        NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1956                                             data, 0),
1957                };
1958                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1959                int ret;
1960
1961                /* GET_FEATURE data bytes are received twice in NV-DDR mode */
1962                if (nand_interface_is_nvddr(conf)) {
1963                        instrs[3].ctx.data.len *= 2;
1964                        instrs[3].ctx.data.buf.in = ddrbuf;
1965                }
1966
1967                ret = nand_exec_op(chip, &op);
1968                if (nand_interface_is_nvddr(conf)) {
1969                        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
1970                                params[i] = ddrbuf[i * 2];
1971                }
1972
1973                return ret;
1974        }
1975
1976        chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1977        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1978                params[i] = chip->legacy.read_byte(chip);
1979
1980        return 0;
1981}
1982
1983static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1984                            unsigned int delay_ns)
1985{
1986        if (nand_has_exec_op(chip)) {
1987                struct nand_op_instr instrs[] = {
1988                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1989                                         PSEC_TO_NSEC(delay_ns)),
1990                };
1991                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1992
1993                return nand_exec_op(chip, &op);
1994        }
1995
1996        /* Apply delay or wait for ready/busy pin */
1997        if (!chip->legacy.dev_ready)
1998                udelay(chip->legacy.chip_delay);
1999        else
2000                nand_wait_ready(chip);
2001
2002        return 0;
2003}
2004
2005/**
2006 * nand_reset_op - Do a reset operation
2007 * @chip: The NAND chip
2008 *
2009 * This function sends a RESET command and waits for the NAND to be ready
2010 * before returning.
2011 * This function does not select/unselect the CS line.
2012 *
2013 * Returns 0 on success, a negative error code otherwise.
2014 */
2015int nand_reset_op(struct nand_chip *chip)
2016{
2017        if (nand_has_exec_op(chip)) {
2018                const struct nand_interface_config *conf =
2019                        nand_get_interface_config(chip);
2020                struct nand_op_instr instrs[] = {
2021                        NAND_OP_CMD(NAND_CMD_RESET,
2022                                    NAND_COMMON_TIMING_NS(conf, tWB_max)),
2023                        NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2024                                         0),
2025                };
2026                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2027
2028                return nand_exec_op(chip, &op);
2029        }
2030
2031        chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2032
2033        return 0;
2034}
2035EXPORT_SYMBOL_GPL(nand_reset_op);
2036
2037/**
2038 * nand_read_data_op - Read data from the NAND
2039 * @chip: The NAND chip
2040 * @buf: buffer used to store the data
2041 * @len: length of the buffer
2042 * @force_8bit: force 8-bit bus access
2043 * @check_only: do not actually run the command, only checks if the
2044 *              controller driver supports it
2045 *
2046 * This function does a raw data read on the bus. Usually used after launching
2047 * another NAND operation like nand_read_page_op().
2048 * This function does not select/unselect the CS line.
2049 *
2050 * Returns 0 on success, a negative error code otherwise.
2051 */
2052int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2053                      bool force_8bit, bool check_only)
2054{
2055        if (!len || !buf)
2056                return -EINVAL;
2057
2058        if (nand_has_exec_op(chip)) {
2059                const struct nand_interface_config *conf =
2060                        nand_get_interface_config(chip);
2061                struct nand_op_instr instrs[] = {
2062                        NAND_OP_DATA_IN(len, buf, 0),
2063                };
2064                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2065                u8 *ddrbuf = NULL;
2066                int ret, i;
2067
2068                instrs[0].ctx.data.force_8bit = force_8bit;
2069
2070                /*
2071                 * Parameter payloads (ID, status, features, etc) do not go
2072                 * through the same pipeline as regular data, hence the
2073                 * force_8bit flag must be set and this also indicates that in
2074                 * case NV-DDR timings are being used the data will be received
2075                 * twice.
2076                 */
2077                if (force_8bit && nand_interface_is_nvddr(conf)) {
2078                        ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2079                        if (!ddrbuf)
2080                                return -ENOMEM;
2081
2082                        instrs[0].ctx.data.len *= 2;
2083                        instrs[0].ctx.data.buf.in = ddrbuf;
2084                }
2085
2086                if (check_only) {
2087                        ret = nand_check_op(chip, &op);
2088                        kfree(ddrbuf);
2089                        return ret;
2090                }
2091
2092                ret = nand_exec_op(chip, &op);
2093                if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2094                        u8 *dst = buf;
2095
2096                        for (i = 0; i < len; i++)
2097                                dst[i] = ddrbuf[i * 2];
2098                }
2099
2100                kfree(ddrbuf);
2101
2102                return ret;
2103        }
2104
2105        if (check_only)
2106                return 0;
2107
2108        if (force_8bit) {
2109                u8 *p = buf;
2110                unsigned int i;
2111
2112                for (i = 0; i < len; i++)
2113                        p[i] = chip->legacy.read_byte(chip);
2114        } else {
2115                chip->legacy.read_buf(chip, buf, len);
2116        }
2117
2118        return 0;
2119}
2120EXPORT_SYMBOL_GPL(nand_read_data_op);
2121
2122/**
2123 * nand_write_data_op - Write data from the NAND
2124 * @chip: The NAND chip
2125 * @buf: buffer containing the data to send on the bus
2126 * @len: length of the buffer
2127 * @force_8bit: force 8-bit bus access
2128 *
2129 * This function does a raw data write on the bus. Usually used after launching
2130 * another NAND operation like nand_write_page_begin_op().
2131 * This function does not select/unselect the CS line.
2132 *
2133 * Returns 0 on success, a negative error code otherwise.
2134 */
2135int nand_write_data_op(struct nand_chip *chip, const void *buf,
2136                       unsigned int len, bool force_8bit)
2137{
2138        if (!len || !buf)
2139                return -EINVAL;
2140
2141        if (nand_has_exec_op(chip)) {
2142                struct nand_op_instr instrs[] = {
2143                        NAND_OP_DATA_OUT(len, buf, 0),
2144                };
2145                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2146
2147                instrs[0].ctx.data.force_8bit = force_8bit;
2148
2149                return nand_exec_op(chip, &op);
2150        }
2151
2152        if (force_8bit) {
2153                const u8 *p = buf;
2154                unsigned int i;
2155
2156                for (i = 0; i < len; i++)
2157                        chip->legacy.write_byte(chip, p[i]);
2158        } else {
2159                chip->legacy.write_buf(chip, buf, len);
2160        }
2161
2162        return 0;
2163}
2164EXPORT_SYMBOL_GPL(nand_write_data_op);
2165
2166/**
2167 * struct nand_op_parser_ctx - Context used by the parser
2168 * @instrs: array of all the instructions that must be addressed
2169 * @ninstrs: length of the @instrs array
2170 * @subop: Sub-operation to be passed to the NAND controller
2171 *
2172 * This structure is used by the core to split NAND operations into
2173 * sub-operations that can be handled by the NAND controller.
2174 */
2175struct nand_op_parser_ctx {
2176        const struct nand_op_instr *instrs;
2177        unsigned int ninstrs;
2178        struct nand_subop subop;
2179};
2180
2181/**
2182 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2183 * @pat: the parser pattern element that matches @instr
2184 * @instr: pointer to the instruction to check
2185 * @start_offset: this is an in/out parameter. If @instr has already been
2186 *                split, then @start_offset is the offset from which to start
2187 *                (either an address cycle or an offset in the data buffer).
2188 *                Conversely, if the function returns true (ie. instr must be
2189 *                split), this parameter is updated to point to the first
2190 *                data/address cycle that has not been taken care of.
2191 *
2192 * Some NAND controllers are limited and cannot send X address cycles with a
2193 * unique operation, or cannot read/write more than Y bytes at the same time.
2194 * In this case, split the instruction that does not fit in a single
2195 * controller-operation into two or more chunks.
2196 *
2197 * Returns true if the instruction must be split, false otherwise.
2198 * The @start_offset parameter is also updated to the offset at which the next
2199 * bundle of instruction must start (if an address or a data instruction).
2200 */
2201static bool
2202nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2203                                const struct nand_op_instr *instr,
2204                                unsigned int *start_offset)
2205{
2206        switch (pat->type) {
2207        case NAND_OP_ADDR_INSTR:
2208                if (!pat->ctx.addr.maxcycles)
2209                        break;
2210
2211                if (instr->ctx.addr.naddrs - *start_offset >
2212                    pat->ctx.addr.maxcycles) {
2213                        *start_offset += pat->ctx.addr.maxcycles;
2214                        return true;
2215                }
2216                break;
2217
2218        case NAND_OP_DATA_IN_INSTR:
2219        case NAND_OP_DATA_OUT_INSTR:
2220                if (!pat->ctx.data.maxlen)
2221                        break;
2222
2223                if (instr->ctx.data.len - *start_offset >
2224                    pat->ctx.data.maxlen) {
2225                        *start_offset += pat->ctx.data.maxlen;
2226                        return true;
2227                }
2228                break;
2229
2230        default:
2231                break;
2232        }
2233
2234        return false;
2235}
2236
2237/**
2238 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2239 *                            remaining in the parser context
2240 * @pat: the pattern to test
2241 * @ctx: the parser context structure to match with the pattern @pat
2242 *
2243 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2244 * Returns true if this is the case, false ortherwise. When true is returned,
2245 * @ctx->subop is updated with the set of instructions to be passed to the
2246 * controller driver.
2247 */
2248static bool
2249nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2250                         struct nand_op_parser_ctx *ctx)
2251{
2252        unsigned int instr_offset = ctx->subop.first_instr_start_off;
2253        const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2254        const struct nand_op_instr *instr = ctx->subop.instrs;
2255        unsigned int i, ninstrs;
2256
2257        for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2258                /*
2259                 * The pattern instruction does not match the operation
2260                 * instruction. If the instruction is marked optional in the
2261                 * pattern definition, we skip the pattern element and continue
2262                 * to the next one. If the element is mandatory, there's no
2263                 * match and we can return false directly.
2264                 */
2265                if (instr->type != pat->elems[i].type) {
2266                        if (!pat->elems[i].optional)
2267                                return false;
2268
2269                        continue;
2270                }
2271
2272                /*
2273                 * Now check the pattern element constraints. If the pattern is
2274                 * not able to handle the whole instruction in a single step,
2275                 * we have to split it.
2276                 * The last_instr_end_off value comes back updated to point to
2277                 * the position where we have to split the instruction (the
2278                 * start of the next subop chunk).
2279                 */
2280                if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2281                                                    &instr_offset)) {
2282                        ninstrs++;
2283                        i++;
2284                        break;
2285                }
2286
2287                instr++;
2288                ninstrs++;
2289                instr_offset = 0;
2290        }
2291
2292        /*
2293         * This can happen if all instructions of a pattern are optional.
2294         * Still, if there's not at least one instruction handled by this
2295         * pattern, this is not a match, and we should try the next one (if
2296         * any).
2297         */
2298        if (!ninstrs)
2299                return false;
2300
2301        /*
2302         * We had a match on the pattern head, but the pattern may be longer
2303         * than the instructions we're asked to execute. We need to make sure
2304         * there's no mandatory elements in the pattern tail.
2305         */
2306        for (; i < pat->nelems; i++) {
2307                if (!pat->elems[i].optional)
2308                        return false;
2309        }
2310
2311        /*
2312         * We have a match: update the subop structure accordingly and return
2313         * true.
2314         */
2315        ctx->subop.ninstrs = ninstrs;
2316        ctx->subop.last_instr_end_off = instr_offset;
2317
2318        return true;
2319}
2320
2321#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2322static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2323{
2324        const struct nand_op_instr *instr;
2325        char *prefix = "      ";
2326        unsigned int i;
2327
2328        pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2329
2330        for (i = 0; i < ctx->ninstrs; i++) {
2331                instr = &ctx->instrs[i];
2332
2333                if (instr == &ctx->subop.instrs[0])
2334                        prefix = "    ->";
2335
2336                nand_op_trace(prefix, instr);
2337
2338                if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2339                        prefix = "      ";
2340        }
2341}
2342#else
2343static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2344{
2345        /* NOP */
2346}
2347#endif
2348
2349static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2350                                  const struct nand_op_parser_ctx *b)
2351{
2352        if (a->subop.ninstrs < b->subop.ninstrs)
2353                return -1;
2354        else if (a->subop.ninstrs > b->subop.ninstrs)
2355                return 1;
2356
2357        if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2358                return -1;
2359        else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2360                return 1;
2361
2362        return 0;
2363}
2364
2365/**
2366 * nand_op_parser_exec_op - exec_op parser
2367 * @chip: the NAND chip
2368 * @parser: patterns description provided by the controller driver
2369 * @op: the NAND operation to address
2370 * @check_only: when true, the function only checks if @op can be handled but
2371 *              does not execute the operation
2372 *
2373 * Helper function designed to ease integration of NAND controller drivers that
2374 * only support a limited set of instruction sequences. The supported sequences
2375 * are described in @parser, and the framework takes care of splitting @op into
2376 * multiple sub-operations (if required) and pass them back to the ->exec()
2377 * callback of the matching pattern if @check_only is set to false.
2378 *
2379 * NAND controller drivers should call this function from their own ->exec_op()
2380 * implementation.
2381 *
2382 * Returns 0 on success, a negative error code otherwise. A failure can be
2383 * caused by an unsupported operation (none of the supported patterns is able
2384 * to handle the requested operation), or an error returned by one of the
2385 * matching pattern->exec() hook.
2386 */
2387int nand_op_parser_exec_op(struct nand_chip *chip,
2388                           const struct nand_op_parser *parser,
2389                           const struct nand_operation *op, bool check_only)
2390{
2391        struct nand_op_parser_ctx ctx = {
2392                .subop.cs = op->cs,
2393                .subop.instrs = op->instrs,
2394                .instrs = op->instrs,
2395                .ninstrs = op->ninstrs,
2396        };
2397        unsigned int i;
2398
2399        while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2400                const struct nand_op_parser_pattern *pattern;
2401                struct nand_op_parser_ctx best_ctx;
2402                int ret, best_pattern = -1;
2403
2404                for (i = 0; i < parser->npatterns; i++) {
2405                        struct nand_op_parser_ctx test_ctx = ctx;
2406
2407                        pattern = &parser->patterns[i];
2408                        if (!nand_op_parser_match_pat(pattern, &test_ctx))
2409                                continue;
2410
2411                        if (best_pattern >= 0 &&
2412                            nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2413                                continue;
2414
2415                        best_pattern = i;
2416                        best_ctx = test_ctx;
2417                }
2418
2419                if (best_pattern < 0) {
2420                        pr_debug("->exec_op() parser: pattern not found!\n");
2421                        return -ENOTSUPP;
2422                }
2423
2424                ctx = best_ctx;
2425                nand_op_parser_trace(&ctx);
2426
2427                if (!check_only) {
2428                        pattern = &parser->patterns[best_pattern];
2429                        ret = pattern->exec(chip, &ctx.subop);
2430                        if (ret)
2431                                return ret;
2432                }
2433
2434                /*
2435                 * Update the context structure by pointing to the start of the
2436                 * next subop.
2437                 */
2438                ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2439                if (ctx.subop.last_instr_end_off)
2440                        ctx.subop.instrs -= 1;
2441
2442                ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2443        }
2444
2445        return 0;
2446}
2447EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2448
2449static bool nand_instr_is_data(const struct nand_op_instr *instr)
2450{
2451        return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2452                         instr->type == NAND_OP_DATA_OUT_INSTR);
2453}
2454
2455static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2456                                      unsigned int instr_idx)
2457{
2458        return subop && instr_idx < subop->ninstrs;
2459}
2460
2461static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2462                                             unsigned int instr_idx)
2463{
2464        if (instr_idx)
2465                return 0;
2466
2467        return subop->first_instr_start_off;
2468}
2469
2470/**
2471 * nand_subop_get_addr_start_off - Get the start offset in an address array
2472 * @subop: The entire sub-operation
2473 * @instr_idx: Index of the instruction inside the sub-operation
2474 *
2475 * During driver development, one could be tempted to directly use the
2476 * ->addr.addrs field of address instructions. This is wrong as address
2477 * instructions might be split.
2478 *
2479 * Given an address instruction, returns the offset of the first cycle to issue.
2480 */
2481unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2482                                           unsigned int instr_idx)
2483{
2484        if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2485                    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2486                return 0;
2487
2488        return nand_subop_get_start_off(subop, instr_idx);
2489}
2490EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2491
2492/**
2493 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2494 * @subop: The entire sub-operation
2495 * @instr_idx: Index of the instruction inside the sub-operation
2496 *
2497 * During driver development, one could be tempted to directly use the
2498 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2499 * might be split.
2500 *
2501 * Given an address instruction, returns the number of address cycle to issue.
2502 */
2503unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2504                                         unsigned int instr_idx)
2505{
2506        int start_off, end_off;
2507
2508        if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2509                    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2510                return 0;
2511
2512        start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2513
2514        if (instr_idx == subop->ninstrs - 1 &&
2515            subop->last_instr_end_off)
2516                end_off = subop->last_instr_end_off;
2517        else
2518                end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2519
2520        return end_off - start_off;
2521}
2522EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2523
2524/**
2525 * nand_subop_get_data_start_off - Get the start offset in a data array
2526 * @subop: The entire sub-operation
2527 * @instr_idx: Index of the instruction inside the sub-operation
2528 *
2529 * During driver development, one could be tempted to directly use the
2530 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2531 * instructions might be split.
2532 *
2533 * Given a data instruction, returns the offset to start from.
2534 */
2535unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2536                                           unsigned int instr_idx)
2537{
2538        if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2539                    !nand_instr_is_data(&subop->instrs[instr_idx])))
2540                return 0;
2541
2542        return nand_subop_get_start_off(subop, instr_idx);
2543}
2544EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2545
2546/**
2547 * nand_subop_get_data_len - Get the number of bytes to retrieve
2548 * @subop: The entire sub-operation
2549 * @instr_idx: Index of the instruction inside the sub-operation
2550 *
2551 * During driver development, one could be tempted to directly use the
2552 * ->data->len field of a data instruction. This is wrong as data instructions
2553 * might be split.
2554 *
2555 * Returns the length of the chunk of data to send/receive.
2556 */
2557unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2558                                     unsigned int instr_idx)
2559{
2560        int start_off = 0, end_off;
2561
2562        if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2563                    !nand_instr_is_data(&subop->instrs[instr_idx])))
2564                return 0;
2565
2566        start_off = nand_subop_get_data_start_off(subop, instr_idx);
2567
2568        if (instr_idx == subop->ninstrs - 1 &&
2569            subop->last_instr_end_off)
2570                end_off = subop->last_instr_end_off;
2571        else
2572                end_off = subop->instrs[instr_idx].ctx.data.len;
2573
2574        return end_off - start_off;
2575}
2576EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2577
2578/**
2579 * nand_reset - Reset and initialize a NAND device
2580 * @chip: The NAND chip
2581 * @chipnr: Internal die id
2582 *
2583 * Save the timings data structure, then apply SDR timings mode 0 (see
2584 * nand_reset_interface for details), do the reset operation, and apply
2585 * back the previous timings.
2586 *
2587 * Returns 0 on success, a negative error code otherwise.
2588 */
2589int nand_reset(struct nand_chip *chip, int chipnr)
2590{
2591        int ret;
2592
2593        ret = nand_reset_interface(chip, chipnr);
2594        if (ret)
2595                return ret;
2596
2597        /*
2598         * The CS line has to be released before we can apply the new NAND
2599         * interface settings, hence this weird nand_select_target()
2600         * nand_deselect_target() dance.
2601         */
2602        nand_select_target(chip, chipnr);
2603        ret = nand_reset_op(chip);
2604        nand_deselect_target(chip);
2605        if (ret)
2606                return ret;
2607
2608        ret = nand_setup_interface(chip, chipnr);
2609        if (ret)
2610                return ret;
2611
2612        return 0;
2613}
2614EXPORT_SYMBOL_GPL(nand_reset);
2615
2616/**
2617 * nand_get_features - wrapper to perform a GET_FEATURE
2618 * @chip: NAND chip info structure
2619 * @addr: feature address
2620 * @subfeature_param: the subfeature parameters, a four bytes array
2621 *
2622 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2623 * operation cannot be handled.
2624 */
2625int nand_get_features(struct nand_chip *chip, int addr,
2626                      u8 *subfeature_param)
2627{
2628        if (!nand_supports_get_features(chip, addr))
2629                return -ENOTSUPP;
2630
2631        if (chip->legacy.get_features)
2632                return chip->legacy.get_features(chip, addr, subfeature_param);
2633
2634        return nand_get_features_op(chip, addr, subfeature_param);
2635}
2636
2637/**
2638 * nand_set_features - wrapper to perform a SET_FEATURE
2639 * @chip: NAND chip info structure
2640 * @addr: feature address
2641 * @subfeature_param: the subfeature parameters, a four bytes array
2642 *
2643 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2644 * operation cannot be handled.
2645 */
2646int nand_set_features(struct nand_chip *chip, int addr,
2647                      u8 *subfeature_param)
2648{
2649        if (!nand_supports_set_features(chip, addr))
2650                return -ENOTSUPP;
2651
2652        if (chip->legacy.set_features)
2653                return chip->legacy.set_features(chip, addr, subfeature_param);
2654
2655        return nand_set_features_op(chip, addr, subfeature_param);
2656}
2657
2658/**
2659 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2660 * @buf: buffer to test
2661 * @len: buffer length
2662 * @bitflips_threshold: maximum number of bitflips
2663 *
2664 * Check if a buffer contains only 0xff, which means the underlying region
2665 * has been erased and is ready to be programmed.
2666 * The bitflips_threshold specify the maximum number of bitflips before
2667 * considering the region is not erased.
2668 * Note: The logic of this function has been extracted from the memweight
2669 * implementation, except that nand_check_erased_buf function exit before
2670 * testing the whole buffer if the number of bitflips exceed the
2671 * bitflips_threshold value.
2672 *
2673 * Returns a positive number of bitflips less than or equal to
2674 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2675 * threshold.
2676 */
2677static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2678{
2679        const unsigned char *bitmap = buf;
2680        int bitflips = 0;
2681        int weight;
2682
2683        for (; len && ((uintptr_t)bitmap) % sizeof(long);
2684             len--, bitmap++) {
2685                weight = hweight8(*bitmap);
2686                bitflips += BITS_PER_BYTE - weight;
2687                if (unlikely(bitflips > bitflips_threshold))
2688                        return -EBADMSG;
2689        }
2690
2691        for (; len >= sizeof(long);
2692             len -= sizeof(long), bitmap += sizeof(long)) {
2693                unsigned long d = *((unsigned long *)bitmap);
2694                if (d == ~0UL)
2695                        continue;
2696                weight = hweight_long(d);
2697                bitflips += BITS_PER_LONG - weight;
2698                if (unlikely(bitflips > bitflips_threshold))
2699                        return -EBADMSG;
2700        }
2701
2702        for (; len > 0; len--, bitmap++) {
2703                weight = hweight8(*bitmap);
2704                bitflips += BITS_PER_BYTE - weight;
2705                if (unlikely(bitflips > bitflips_threshold))
2706                        return -EBADMSG;
2707        }
2708
2709        return bitflips;
2710}
2711
2712/**
2713 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2714 *                               0xff data
2715 * @data: data buffer to test
2716 * @datalen: data length
2717 * @ecc: ECC buffer
2718 * @ecclen: ECC length
2719 * @extraoob: extra OOB buffer
2720 * @extraooblen: extra OOB length
2721 * @bitflips_threshold: maximum number of bitflips
2722 *
2723 * Check if a data buffer and its associated ECC and OOB data contains only
2724 * 0xff pattern, which means the underlying region has been erased and is
2725 * ready to be programmed.
2726 * The bitflips_threshold specify the maximum number of bitflips before
2727 * considering the region as not erased.
2728 *
2729 * Note:
2730 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2731 *    different from the NAND page size. When fixing bitflips, ECC engines will
2732 *    report the number of errors per chunk, and the NAND core infrastructure
2733 *    expect you to return the maximum number of bitflips for the whole page.
2734 *    This is why you should always use this function on a single chunk and
2735 *    not on the whole page. After checking each chunk you should update your
2736 *    max_bitflips value accordingly.
2737 * 2/ When checking for bitflips in erased pages you should not only check
2738 *    the payload data but also their associated ECC data, because a user might
2739 *    have programmed almost all bits to 1 but a few. In this case, we
2740 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2741 *    this case.
2742 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2743 *    data are protected by the ECC engine.
2744 *    It could also be used if you support subpages and want to attach some
2745 *    extra OOB data to an ECC chunk.
2746 *
2747 * Returns a positive number of bitflips less than or equal to
2748 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2749 * threshold. In case of success, the passed buffers are filled with 0xff.
2750 */
2751int nand_check_erased_ecc_chunk(void *data, int datalen,
2752                                void *ecc, int ecclen,
2753                                void *extraoob, int extraooblen,
2754                                int bitflips_threshold)
2755{
2756        int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2757
2758        data_bitflips = nand_check_erased_buf(data, datalen,
2759                                              bitflips_threshold);
2760        if (data_bitflips < 0)
2761                return data_bitflips;
2762
2763        bitflips_threshold -= data_bitflips;
2764
2765        ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2766        if (ecc_bitflips < 0)
2767                return ecc_bitflips;
2768
2769        bitflips_threshold -= ecc_bitflips;
2770
2771        extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2772                                                  bitflips_threshold);
2773        if (extraoob_bitflips < 0)
2774                return extraoob_bitflips;
2775
2776        if (data_bitflips)
2777                memset(data, 0xff, datalen);
2778
2779        if (ecc_bitflips)
2780                memset(ecc, 0xff, ecclen);
2781
2782        if (extraoob_bitflips)
2783                memset(extraoob, 0xff, extraooblen);
2784
2785        return data_bitflips + ecc_bitflips + extraoob_bitflips;
2786}
2787EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2788
2789/**
2790 * nand_read_page_raw_notsupp - dummy read raw page function
2791 * @chip: nand chip info structure
2792 * @buf: buffer to store read data
2793 * @oob_required: caller requires OOB data read to chip->oob_poi
2794 * @page: page number to read
2795 *
2796 * Returns -ENOTSUPP unconditionally.
2797 */
2798int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2799                               int oob_required, int page)
2800{
2801        return -ENOTSUPP;
2802}
2803
2804/**
2805 * nand_read_page_raw - [INTERN] read raw page data without ecc
2806 * @chip: nand chip info structure
2807 * @buf: buffer to store read data
2808 * @oob_required: caller requires OOB data read to chip->oob_poi
2809 * @page: page number to read
2810 *
2811 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2812 */
2813int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2814                       int page)
2815{
2816        struct mtd_info *mtd = nand_to_mtd(chip);
2817        int ret;
2818
2819        ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2820        if (ret)
2821                return ret;
2822
2823        if (oob_required) {
2824                ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2825                                        false, false);
2826                if (ret)
2827                        return ret;
2828        }
2829
2830        return 0;
2831}
2832EXPORT_SYMBOL(nand_read_page_raw);
2833
2834/**
2835 * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2836 * @chip: NAND chip info structure
2837 * @buf: buffer to store read data
2838 * @oob_required: caller requires OOB data read to chip->oob_poi
2839 * @page: page number to read
2840 *
2841 * This is a raw page read, ie. without any error detection/correction.
2842 * Monolithic means we are requesting all the relevant data (main plus
2843 * eventually OOB) to be loaded in the NAND cache and sent over the
2844 * bus (from the NAND chip to the NAND controller) in a single
2845 * operation. This is an alternative to nand_read_page_raw(), which
2846 * first reads the main data, and if the OOB data is requested too,
2847 * then reads more data on the bus.
2848 */
2849int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2850                                  int oob_required, int page)
2851{
2852        struct mtd_info *mtd = nand_to_mtd(chip);
2853        unsigned int size = mtd->writesize;
2854        u8 *read_buf = buf;
2855        int ret;
2856
2857        if (oob_required) {
2858                size += mtd->oobsize;
2859
2860                if (buf != chip->data_buf)
2861                        read_buf = nand_get_data_buf(chip);
2862        }
2863
2864        ret = nand_read_page_op(chip, page, 0, read_buf, size);
2865        if (ret)
2866                return ret;
2867
2868        if (buf != chip->data_buf)
2869                memcpy(buf, read_buf, mtd->writesize);
2870
2871        return 0;
2872}
2873EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2874
2875/**
2876 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2877 * @chip: nand chip info structure
2878 * @buf: buffer to store read data
2879 * @oob_required: caller requires OOB data read to chip->oob_poi
2880 * @page: page number to read
2881 *
2882 * We need a special oob layout and handling even when OOB isn't used.
2883 */
2884static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2885                                       int oob_required, int page)
2886{
2887        struct mtd_info *mtd = nand_to_mtd(chip);
2888        int eccsize = chip->ecc.size;
2889        int eccbytes = chip->ecc.bytes;
2890        uint8_t *oob = chip->oob_poi;
2891        int steps, size, ret;
2892
2893        ret = nand_read_page_op(chip, page, 0, NULL, 0);
2894        if (ret)
2895                return ret;
2896
2897        for (steps = chip->ecc.steps; steps > 0; steps--) {
2898                ret = nand_read_data_op(chip, buf, eccsize, false, false);
2899                if (ret)
2900                        return ret;
2901
2902                buf += eccsize;
2903
2904                if (chip->ecc.prepad) {
2905                        ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2906                                                false, false);
2907                        if (ret)
2908                                return ret;
2909
2910                        oob += chip->ecc.prepad;
2911                }
2912
2913                ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2914                if (ret)
2915                        return ret;
2916
2917                oob += eccbytes;
2918
2919                if (chip->ecc.postpad) {
2920                        ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2921                                                false, false);
2922                        if (ret)
2923                                return ret;
2924
2925                        oob += chip->ecc.postpad;
2926                }
2927        }
2928
2929        size = mtd->oobsize - (oob - chip->oob_poi);
2930        if (size) {
2931                ret = nand_read_data_op(chip, oob, size, false, false);
2932                if (ret)
2933                        return ret;
2934        }
2935
2936        return 0;
2937}
2938
2939/**
2940 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2941 * @chip: nand chip info structure
2942 * @buf: buffer to store read data
2943 * @oob_required: caller requires OOB data read to chip->oob_poi
2944 * @page: page number to read
2945 */
2946static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2947                                int oob_required, int page)
2948{
2949        struct mtd_info *mtd = nand_to_mtd(chip);
2950        int i, eccsize = chip->ecc.size, ret;
2951        int eccbytes = chip->ecc.bytes;
2952        int eccsteps = chip->ecc.steps;
2953        uint8_t *p = buf;
2954        uint8_t *ecc_calc = chip->ecc.calc_buf;
2955        uint8_t *ecc_code = chip->ecc.code_buf;
2956        unsigned int max_bitflips = 0;
2957
2958        chip->ecc.read_page_raw(chip, buf, 1, page);
2959
2960        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2961                chip->ecc.calculate(chip, p, &ecc_calc[i]);
2962
2963        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2964                                         chip->ecc.total);
2965        if (ret)
2966                return ret;
2967
2968        eccsteps = chip->ecc.steps;
2969        p = buf;
2970
2971        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2972                int stat;
2973
2974                stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2975                if (stat < 0) {
2976                        mtd->ecc_stats.failed++;
2977                } else {
2978                        mtd->ecc_stats.corrected += stat;
2979                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
2980                }
2981        }
2982        return max_bitflips;
2983}
2984
2985/**
2986 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2987 * @chip: nand chip info structure
2988 * @data_offs: offset of requested data within the page
2989 * @readlen: data length
2990 * @bufpoi: buffer to store read data
2991 * @page: page number to read
2992 */
2993static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2994                             uint32_t readlen, uint8_t *bufpoi, int page)
2995{
2996        struct mtd_info *mtd = nand_to_mtd(chip);
2997        int start_step, end_step, num_steps, ret;
2998        uint8_t *p;
2999        int data_col_addr, i, gaps = 0;
3000        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3001        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3002        int index, section = 0;
3003        unsigned int max_bitflips = 0;
3004        struct mtd_oob_region oobregion = { };
3005
3006        /* Column address within the page aligned to ECC size (256bytes) */
3007        start_step = data_offs / chip->ecc.size;
3008        end_step = (data_offs + readlen - 1) / chip->ecc.size;
3009        num_steps = end_step - start_step + 1;
3010        index = start_step * chip->ecc.bytes;
3011
3012        /* Data size aligned to ECC ecc.size */
3013        datafrag_len = num_steps * chip->ecc.size;
3014        eccfrag_len = num_steps * chip->ecc.bytes;
3015
3016        data_col_addr = start_step * chip->ecc.size;
3017        /* If we read not a page aligned data */
3018        p = bufpoi + data_col_addr;
3019        ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3020        if (ret)
3021                return ret;
3022
3023        /* Calculate ECC */
3024        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3025                chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3026
3027        /*
3028         * The performance is faster if we position offsets according to
3029         * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3030         */
3031        ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3032        if (ret)
3033                return ret;
3034
3035        if (oobregion.length < eccfrag_len)
3036                gaps = 1;
3037
3038        if (gaps) {
3039                ret = nand_change_read_column_op(chip, mtd->writesize,
3040                                                 chip->oob_poi, mtd->oobsize,
3041                                                 false);
3042                if (ret)
3043                        return ret;
3044        } else {
3045                /*
3046                 * Send the command to read the particular ECC bytes take care
3047                 * about buswidth alignment in read_buf.
3048                 */
3049                aligned_pos = oobregion.offset & ~(busw - 1);
3050                aligned_len = eccfrag_len;
3051                if (oobregion.offset & (busw - 1))
3052                        aligned_len++;
3053                if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3054                    (busw - 1))
3055                        aligned_len++;
3056
3057                ret = nand_change_read_column_op(chip,
3058                                                 mtd->writesize + aligned_pos,
3059                                                 &chip->oob_poi[aligned_pos],
3060                                                 aligned_len, false);
3061                if (ret)
3062                        return ret;
3063        }
3064
3065        ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3066                                         chip->oob_poi, index, eccfrag_len);
3067        if (ret)
3068                return ret;
3069
3070        p = bufpoi + data_col_addr;
3071        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3072                int stat;
3073
3074                stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3075                                         &chip->ecc.calc_buf[i]);
3076                if (stat == -EBADMSG &&
3077                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3078                        /* check for empty pages with bitflips */
3079                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3080                                                &chip->ecc.code_buf[i],
3081                                                chip->ecc.bytes,
3082                                                NULL, 0,
3083                                                chip->ecc.strength);
3084                }
3085
3086                if (stat < 0) {
3087                        mtd->ecc_stats.failed++;
3088                } else {
3089                        mtd->ecc_stats.corrected += stat;
3090                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3091                }
3092        }
3093        return max_bitflips;
3094}
3095
3096/**
3097 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3098 * @chip: nand chip info structure
3099 * @buf: buffer to store read data
3100 * @oob_required: caller requires OOB data read to chip->oob_poi
3101 * @page: page number to read
3102 *
3103 * Not for syndrome calculating ECC controllers which need a special oob layout.
3104 */
3105static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3106                                int oob_required, int page)
3107{
3108        struct mtd_info *mtd = nand_to_mtd(chip);
3109        int i, eccsize = chip->ecc.size, ret;
3110        int eccbytes = chip->ecc.bytes;
3111        int eccsteps = chip->ecc.steps;
3112        uint8_t *p = buf;
3113        uint8_t *ecc_calc = chip->ecc.calc_buf;
3114        uint8_t *ecc_code = chip->ecc.code_buf;
3115        unsigned int max_bitflips = 0;
3116
3117        ret = nand_read_page_op(chip, page, 0, NULL, 0);
3118        if (ret)
3119                return ret;
3120
3121        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3122                chip->ecc.hwctl(chip, NAND_ECC_READ);
3123
3124                ret = nand_read_data_op(chip, p, eccsize, false, false);
3125                if (ret)
3126                        return ret;
3127
3128                chip->ecc.calculate(chip, p, &ecc_calc[i]);
3129        }
3130
3131        ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3132                                false);
3133        if (ret)
3134                return ret;
3135
3136        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3137                                         chip->ecc.total);
3138        if (ret)
3139                return ret;
3140
3141        eccsteps = chip->ecc.steps;
3142        p = buf;
3143
3144        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3145                int stat;
3146
3147                stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3148                if (stat == -EBADMSG &&
3149                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3150                        /* check for empty pages with bitflips */
3151                        stat = nand_check_erased_ecc_chunk(p, eccsize,
3152                                                &ecc_code[i], eccbytes,
3153                                                NULL, 0,
3154                                                chip->ecc.strength);
3155                }
3156
3157                if (stat < 0) {
3158                        mtd->ecc_stats.failed++;
3159                } else {
3160                        mtd->ecc_stats.corrected += stat;
3161                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3162                }
3163        }
3164        return max_bitflips;
3165}
3166
3167/**
3168 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3169 *                                  data read from OOB area
3170 * @chip: nand chip info structure
3171 * @buf: buffer to store read data
3172 * @oob_required: caller requires OOB data read to chip->oob_poi
3173 * @page: page number to read
3174 *
3175 * Hardware ECC for large page chips, which requires the ECC data to be
3176 * extracted from the OOB before the actual data is read.
3177 */
3178int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3179                                   int oob_required, int page)
3180{
3181        struct mtd_info *mtd = nand_to_mtd(chip);
3182        int i, eccsize = chip->ecc.size, ret;
3183        int eccbytes = chip->ecc.bytes;
3184        int eccsteps = chip->ecc.steps;
3185        uint8_t *p = buf;
3186        uint8_t *ecc_code = chip->ecc.code_buf;
3187        unsigned int max_bitflips = 0;
3188
3189        /* Read the OOB area first */
3190        ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3191        if (ret)
3192                return ret;
3193
3194        /* Move read cursor to start of page */
3195        ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3196        if (ret)
3197                return ret;
3198
3199        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3200                                         chip->ecc.total);
3201        if (ret)
3202                return ret;
3203
3204        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3205                int stat;
3206
3207                chip->ecc.hwctl(chip, NAND_ECC_READ);
3208
3209                ret = nand_read_data_op(chip, p, eccsize, false, false);
3210                if (ret)
3211                        return ret;
3212
3213                stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3214                if (stat == -EBADMSG &&
3215                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3216                        /* check for empty pages with bitflips */
3217                        stat = nand_check_erased_ecc_chunk(p, eccsize,
3218                                                           &ecc_code[i],
3219                                                           eccbytes, NULL, 0,
3220                                                           chip->ecc.strength);
3221                }
3222
3223                if (stat < 0) {
3224                        mtd->ecc_stats.failed++;
3225                } else {
3226                        mtd->ecc_stats.corrected += stat;
3227                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3228                }
3229        }
3230        return max_bitflips;
3231}
3232EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3233
3234/**
3235 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3236 * @chip: nand chip info structure
3237 * @buf: buffer to store read data
3238 * @oob_required: caller requires OOB data read to chip->oob_poi
3239 * @page: page number to read
3240 *
3241 * The hw generator calculates the error syndrome automatically. Therefore we
3242 * need a special oob layout and handling.
3243 */
3244static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3245                                   int oob_required, int page)
3246{
3247        struct mtd_info *mtd = nand_to_mtd(chip);
3248        int ret, i, eccsize = chip->ecc.size;
3249        int eccbytes = chip->ecc.bytes;
3250        int eccsteps = chip->ecc.steps;
3251        int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3252        uint8_t *p = buf;
3253        uint8_t *oob = chip->oob_poi;
3254        unsigned int max_bitflips = 0;
3255
3256        ret = nand_read_page_op(chip, page, 0, NULL, 0);
3257        if (ret)
3258                return ret;
3259
3260        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3261                int stat;
3262
3263                chip->ecc.hwctl(chip, NAND_ECC_READ);
3264
3265                ret = nand_read_data_op(chip, p, eccsize, false, false);
3266                if (ret)
3267                        return ret;
3268
3269                if (chip->ecc.prepad) {
3270                        ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3271                                                false, false);
3272                        if (ret)
3273                                return ret;
3274
3275                        oob += chip->ecc.prepad;
3276                }
3277
3278                chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3279
3280                ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3281                if (ret)
3282                        return ret;
3283
3284                stat = chip->ecc.correct(chip, p, oob, NULL);
3285
3286                oob += eccbytes;
3287
3288                if (chip->ecc.postpad) {
3289                        ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3290                                                false, false);
3291                        if (ret)
3292                                return ret;
3293
3294                        oob += chip->ecc.postpad;
3295                }
3296
3297                if (stat == -EBADMSG &&
3298                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3299                        /* check for empty pages with bitflips */
3300                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3301                                                           oob - eccpadbytes,
3302                                                           eccpadbytes,
3303                                                           NULL, 0,
3304                                                           chip->ecc.strength);
3305                }
3306
3307                if (stat < 0) {
3308                        mtd->ecc_stats.failed++;
3309                } else {
3310                        mtd->ecc_stats.corrected += stat;
3311                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3312                }
3313        }
3314
3315        /* Calculate remaining oob bytes */
3316        i = mtd->oobsize - (oob - chip->oob_poi);
3317        if (i) {
3318                ret = nand_read_data_op(chip, oob, i, false, false);
3319                if (ret)
3320                        return ret;
3321        }
3322
3323        return max_bitflips;
3324}
3325
3326/**
3327 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3328 * @chip: NAND chip object
3329 * @oob: oob destination address
3330 * @ops: oob ops structure
3331 * @len: size of oob to transfer
3332 */
3333static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3334                                  struct mtd_oob_ops *ops, size_t len)
3335{
3336        struct mtd_info *mtd = nand_to_mtd(chip);
3337        int ret;
3338
3339        switch (ops->mode) {
3340
3341        case MTD_OPS_PLACE_OOB:
3342        case MTD_OPS_RAW:
3343                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3344                return oob + len;
3345
3346        case MTD_OPS_AUTO_OOB:
3347                ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3348                                                  ops->ooboffs, len);
3349                BUG_ON(ret);
3350                return oob + len;
3351
3352        default:
3353                BUG();
3354        }
3355        return NULL;
3356}
3357
3358/**
3359 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3360 * @chip: NAND chip object
3361 * @retry_mode: the retry mode to use
3362 *
3363 * Some vendors supply a special command to shift the Vt threshold, to be used
3364 * when there are too many bitflips in a page (i.e., ECC error). After setting
3365 * a new threshold, the host should retry reading the page.
3366 */
3367static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3368{
3369        pr_debug("setting READ RETRY mode %d\n", retry_mode);
3370
3371        if (retry_mode >= chip->read_retries)
3372                return -EINVAL;
3373
3374        if (!chip->ops.setup_read_retry)
3375                return -EOPNOTSUPP;
3376
3377        return chip->ops.setup_read_retry(chip, retry_mode);
3378}
3379
3380static void nand_wait_readrdy(struct nand_chip *chip)
3381{
3382        const struct nand_interface_config *conf;
3383
3384        if (!(chip->options & NAND_NEED_READRDY))
3385                return;
3386
3387        conf = nand_get_interface_config(chip);
3388        WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3389}
3390
3391/**
3392 * nand_do_read_ops - [INTERN] Read data with ECC
3393 * @chip: NAND chip object
3394 * @from: offset to read from
3395 * @ops: oob ops structure
3396 *
3397 * Internal function. Called with chip held.
3398 */
3399static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3400                            struct mtd_oob_ops *ops)
3401{
3402        int chipnr, page, realpage, col, bytes, aligned, oob_required;
3403        struct mtd_info *mtd = nand_to_mtd(chip);
3404        int ret = 0;
3405        uint32_t readlen = ops->len;
3406        uint32_t oobreadlen = ops->ooblen;
3407        uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3408
3409        uint8_t *bufpoi, *oob, *buf;
3410        int use_bounce_buf;
3411        unsigned int max_bitflips = 0;
3412        int retry_mode = 0;
3413        bool ecc_fail = false;
3414
3415        /* Check if the region is secured */
3416        if (nand_region_is_secured(chip, from, readlen))
3417                return -EIO;
3418
3419        chipnr = (int)(from >> chip->chip_shift);
3420        nand_select_target(chip, chipnr);
3421
3422        realpage = (int)(from >> chip->page_shift);
3423        page = realpage & chip->pagemask;
3424
3425        col = (int)(from & (mtd->writesize - 1));
3426
3427        buf = ops->datbuf;
3428        oob = ops->oobbuf;
3429        oob_required = oob ? 1 : 0;
3430
3431        while (1) {
3432                struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3433
3434                bytes = min(mtd->writesize - col, readlen);
3435                aligned = (bytes == mtd->writesize);
3436
3437                if (!aligned)
3438                        use_bounce_buf = 1;
3439                else if (chip->options & NAND_USES_DMA)
3440                        use_bounce_buf = !virt_addr_valid(buf) ||
3441                                         !IS_ALIGNED((unsigned long)buf,
3442                                                     chip->buf_align);
3443                else
3444                        use_bounce_buf = 0;
3445
3446                /* Is the current page in the buffer? */
3447                if (realpage != chip->pagecache.page || oob) {
3448                        bufpoi = use_bounce_buf ? chip->data_buf : buf;
3449
3450                        if (use_bounce_buf && aligned)
3451                                pr_debug("%s: using read bounce buffer for buf@%p\n",
3452                                                 __func__, buf);
3453
3454read_retry:
3455                        /*
3456                         * Now read the page into the buffer.  Absent an error,
3457                         * the read methods return max bitflips per ecc step.
3458                         */
3459                        if (unlikely(ops->mode == MTD_OPS_RAW))
3460                                ret = chip->ecc.read_page_raw(chip, bufpoi,
3461                                                              oob_required,
3462                                                              page);
3463                        else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3464                                 !oob)
3465                                ret = chip->ecc.read_subpage(chip, col, bytes,
3466                                                             bufpoi, page);
3467                        else
3468                                ret = chip->ecc.read_page(chip, bufpoi,
3469                                                          oob_required, page);
3470                        if (ret < 0) {
3471                                if (use_bounce_buf)
3472                                        /* Invalidate page cache */
3473                                        chip->pagecache.page = -1;
3474                                break;
3475                        }
3476
3477                        /*
3478                         * Copy back the data in the initial buffer when reading
3479                         * partial pages or when a bounce buffer is required.
3480                         */
3481                        if (use_bounce_buf) {
3482                                if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3483                                    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3484                                    (ops->mode != MTD_OPS_RAW)) {
3485                                        chip->pagecache.page = realpage;
3486                                        chip->pagecache.bitflips = ret;
3487                                } else {
3488                                        /* Invalidate page cache */
3489                                        chip->pagecache.page = -1;
3490                                }
3491                                memcpy(buf, bufpoi + col, bytes);
3492                        }
3493
3494                        if (unlikely(oob)) {
3495                                int toread = min(oobreadlen, max_oobsize);
3496
3497                                if (toread) {
3498                                        oob = nand_transfer_oob(chip, oob, ops,
3499                                                                toread);
3500                                        oobreadlen -= toread;
3501                                }
3502                        }
3503
3504                        nand_wait_readrdy(chip);
3505
3506                        if (mtd->ecc_stats.failed - ecc_stats.failed) {
3507                                if (retry_mode + 1 < chip->read_retries) {
3508                                        retry_mode++;
3509                                        ret = nand_setup_read_retry(chip,
3510                                                        retry_mode);
3511                                        if (ret < 0)
3512                                                break;
3513
3514                                        /* Reset ecc_stats; retry */
3515                                        mtd->ecc_stats = ecc_stats;
3516                                        goto read_retry;
3517                                } else {
3518                                        /* No more retry modes; real failure */
3519                                        ecc_fail = true;
3520                                }
3521                        }
3522
3523                        buf += bytes;
3524                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
3525                } else {
3526                        memcpy(buf, chip->data_buf + col, bytes);
3527                        buf += bytes;
3528                        max_bitflips = max_t(unsigned int, max_bitflips,
3529                                             chip->pagecache.bitflips);
3530                }
3531
3532                readlen -= bytes;
3533
3534                /* Reset to retry mode 0 */
3535                if (retry_mode) {
3536                        ret = nand_setup_read_retry(chip, 0);
3537                        if (ret < 0)
3538                                break;
3539                        retry_mode = 0;
3540                }
3541
3542                if (!readlen)
3543                        break;
3544
3545                /* For subsequent reads align to page boundary */
3546                col = 0;
3547                /* Increment page address */
3548                realpage++;
3549
3550                page = realpage & chip->pagemask;
3551                /* Check, if we cross a chip boundary */
3552                if (!page) {
3553                        chipnr++;
3554                        nand_deselect_target(chip);
3555                        nand_select_target(chip, chipnr);
3556                }
3557        }
3558        nand_deselect_target(chip);
3559
3560        ops->retlen = ops->len - (size_t) readlen;
3561        if (oob)
3562                ops->oobretlen = ops->ooblen - oobreadlen;
3563
3564        if (ret < 0)
3565                return ret;
3566
3567        if (ecc_fail)
3568                return -EBADMSG;
3569
3570        return max_bitflips;
3571}
3572
3573/**
3574 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3575 * @chip: nand chip info structure
3576 * @page: page number to read
3577 */
3578int nand_read_oob_std(struct nand_chip *chip, int page)
3579{
3580        struct mtd_info *mtd = nand_to_mtd(chip);
3581
3582        return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3583}
3584EXPORT_SYMBOL(nand_read_oob_std);
3585
3586/**
3587 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3588 *                          with syndromes
3589 * @chip: nand chip info structure
3590 * @page: page number to read
3591 */
3592static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3593{
3594        struct mtd_info *mtd = nand_to_mtd(chip);
3595        int length = mtd->oobsize;
3596        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3597        int eccsize = chip->ecc.size;
3598        uint8_t *bufpoi = chip->oob_poi;
3599        int i, toread, sndrnd = 0, pos, ret;
3600
3601        ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3602        if (ret)
3603                return ret;
3604
3605        for (i = 0; i < chip->ecc.steps; i++) {
3606                if (sndrnd) {
3607                        int ret;
3608
3609                        pos = eccsize + i * (eccsize + chunk);
3610                        if (mtd->writesize > 512)
3611                                ret = nand_change_read_column_op(chip, pos,
3612                                                                 NULL, 0,
3613                                                                 false);
3614                        else
3615                                ret = nand_read_page_op(chip, page, pos, NULL,
3616                                                        0);
3617
3618                        if (ret)
3619                                return ret;
3620                } else
3621                        sndrnd = 1;
3622                toread = min_t(int, length, chunk);
3623
3624                ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3625                if (ret)
3626                        return ret;
3627
3628                bufpoi += toread;
3629                length -= toread;
3630        }
3631        if (length > 0) {
3632                ret = nand_read_data_op(chip, bufpoi, length, false, false);
3633                if (ret)
3634                        return ret;
3635        }
3636
3637        return 0;
3638}
3639
3640/**
3641 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3642 * @chip: nand chip info structure
3643 * @page: page number to write
3644 */
3645int nand_write_oob_std(struct nand_chip *chip, int page)
3646{
3647        struct mtd_info *mtd = nand_to_mtd(chip);
3648
3649        return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3650                                 mtd->oobsize);
3651}
3652EXPORT_SYMBOL(nand_write_oob_std);
3653
3654/**
3655 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3656 *                           with syndrome - only for large page flash
3657 * @chip: nand chip info structure
3658 * @page: page number to write
3659 */
3660static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3661{
3662        struct mtd_info *mtd = nand_to_mtd(chip);
3663        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3664        int eccsize = chip->ecc.size, length = mtd->oobsize;
3665        int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3666        const uint8_t *bufpoi = chip->oob_poi;
3667
3668        /*
3669         * data-ecc-data-ecc ... ecc-oob
3670         * or
3671         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3672         */
3673        if (!chip->ecc.prepad && !chip->ecc.postpad) {
3674                pos = steps * (eccsize + chunk);
3675                steps = 0;
3676        } else
3677                pos = eccsize;
3678
3679        ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3680        if (ret)
3681                return ret;
3682
3683        for (i = 0; i < steps; i++) {
3684                if (sndcmd) {
3685                        if (mtd->writesize <= 512) {
3686                                uint32_t fill = 0xFFFFFFFF;
3687
3688                                len = eccsize;
3689                                while (len > 0) {
3690                                        int num = min_t(int, len, 4);
3691
3692                                        ret = nand_write_data_op(chip, &fill,
3693                                                                 num, false);
3694                                        if (ret)
3695                                                return ret;
3696
3697                                        len -= num;
3698                                }
3699                        } else {
3700                                pos = eccsize + i * (eccsize + chunk);
3701                                ret = nand_change_write_column_op(chip, pos,
3702                                                                  NULL, 0,
3703                                                                  false);
3704                                if (ret)
3705                                        return ret;
3706                        }
3707                } else
3708                        sndcmd = 1;
3709                len = min_t(int, length, chunk);
3710
3711                ret = nand_write_data_op(chip, bufpoi, len, false);
3712                if (ret)
3713                        return ret;
3714
3715                bufpoi += len;
3716                length -= len;
3717        }
3718        if (length > 0) {
3719                ret = nand_write_data_op(chip, bufpoi, length, false);
3720                if (ret)
3721                        return ret;
3722        }
3723
3724        return nand_prog_page_end_op(chip);
3725}
3726
3727/**
3728 * nand_do_read_oob - [INTERN] NAND read out-of-band
3729 * @chip: NAND chip object
3730 * @from: offset to read from
3731 * @ops: oob operations description structure
3732 *
3733 * NAND read out-of-band data from the spare area.
3734 */
3735static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3736                            struct mtd_oob_ops *ops)
3737{
3738        struct mtd_info *mtd = nand_to_mtd(chip);
3739        unsigned int max_bitflips = 0;
3740        int page, realpage, chipnr;
3741        struct mtd_ecc_stats stats;
3742        int readlen = ops->ooblen;
3743        int len;
3744        uint8_t *buf = ops->oobbuf;
3745        int ret = 0;
3746
3747        pr_debug("%s: from = 0x%08Lx, len = %i\n",
3748                        __func__, (unsigned long long)from, readlen);
3749
3750        /* Check if the region is secured */
3751        if (nand_region_is_secured(chip, from, readlen))
3752                return -EIO;
3753
3754        stats = mtd->ecc_stats;
3755
3756        len = mtd_oobavail(mtd, ops);
3757
3758        chipnr = (int)(from >> chip->chip_shift);
3759        nand_select_target(chip, chipnr);
3760
3761        /* Shift to get page */
3762        realpage = (int)(from >> chip->page_shift);
3763        page = realpage & chip->pagemask;
3764
3765        while (1) {
3766                if (ops->mode == MTD_OPS_RAW)
3767                        ret = chip->ecc.read_oob_raw(chip, page);
3768                else
3769                        ret = chip->ecc.read_oob(chip, page);
3770
3771                if (ret < 0)
3772                        break;
3773
3774                len = min(len, readlen);
3775                buf = nand_transfer_oob(chip, buf, ops, len);
3776
3777                nand_wait_readrdy(chip);
3778
3779                max_bitflips = max_t(unsigned int, max_bitflips, ret);
3780
3781                readlen -= len;
3782                if (!readlen)
3783                        break;
3784
3785                /* Increment page address */
3786                realpage++;
3787
3788                page = realpage & chip->pagemask;
3789                /* Check, if we cross a chip boundary */
3790                if (!page) {
3791                        chipnr++;
3792                        nand_deselect_target(chip);
3793                        nand_select_target(chip, chipnr);
3794                }
3795        }
3796        nand_deselect_target(chip);
3797
3798        ops->oobretlen = ops->ooblen - readlen;
3799
3800        if (ret < 0)
3801                return ret;
3802
3803        if (mtd->ecc_stats.failed - stats.failed)
3804                return -EBADMSG;
3805
3806        return max_bitflips;
3807}
3808
3809/**
3810 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3811 * @mtd: MTD device structure
3812 * @from: offset to read from
3813 * @ops: oob operation description structure
3814 *
3815 * NAND read data and/or out-of-band data.
3816 */
3817static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3818                         struct mtd_oob_ops *ops)
3819{
3820        struct nand_chip *chip = mtd_to_nand(mtd);
3821        int ret;
3822
3823        ops->retlen = 0;
3824
3825        if (ops->mode != MTD_OPS_PLACE_OOB &&
3826            ops->mode != MTD_OPS_AUTO_OOB &&
3827            ops->mode != MTD_OPS_RAW)
3828                return -ENOTSUPP;
3829
3830        nand_get_device(chip);
3831
3832        if (!ops->datbuf)
3833                ret = nand_do_read_oob(chip, from, ops);
3834        else
3835                ret = nand_do_read_ops(chip, from, ops);
3836
3837        nand_release_device(chip);
3838        return ret;
3839}
3840
3841/**
3842 * nand_write_page_raw_notsupp - dummy raw page write function
3843 * @chip: nand chip info structure
3844 * @buf: data buffer
3845 * @oob_required: must write chip->oob_poi to OOB
3846 * @page: page number to write
3847 *
3848 * Returns -ENOTSUPP unconditionally.
3849 */
3850int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3851                                int oob_required, int page)
3852{
3853        return -ENOTSUPP;
3854}
3855
3856/**
3857 * nand_write_page_raw - [INTERN] raw page write function
3858 * @chip: nand chip info structure
3859 * @buf: data buffer
3860 * @oob_required: must write chip->oob_poi to OOB
3861 * @page: page number to write
3862 *
3863 * Not for syndrome calculating ECC controllers, which use a special oob layout.
3864 */
3865int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3866                        int oob_required, int page)
3867{
3868        struct mtd_info *mtd = nand_to_mtd(chip);
3869        int ret;
3870
3871        ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3872        if (ret)
3873                return ret;
3874
3875        if (oob_required) {
3876                ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3877                                         false);
3878                if (ret)
3879                        return ret;
3880        }
3881
3882        return nand_prog_page_end_op(chip);
3883}
3884EXPORT_SYMBOL(nand_write_page_raw);
3885
3886/**
3887 * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3888 * @chip: NAND chip info structure
3889 * @buf: data buffer to write
3890 * @oob_required: must write chip->oob_poi to OOB
3891 * @page: page number to write
3892 *
3893 * This is a raw page write, ie. without any error detection/correction.
3894 * Monolithic means we are requesting all the relevant data (main plus
3895 * eventually OOB) to be sent over the bus and effectively programmed
3896 * into the NAND chip arrays in a single operation. This is an
3897 * alternative to nand_write_page_raw(), which first sends the main
3898 * data, then eventually send the OOB data by latching more data
3899 * cycles on the NAND bus, and finally sends the program command to
3900 * synchronyze the NAND chip cache.
3901 */
3902int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3903                                   int oob_required, int page)
3904{
3905        struct mtd_info *mtd = nand_to_mtd(chip);
3906        unsigned int size = mtd->writesize;
3907        u8 *write_buf = (u8 *)buf;
3908
3909        if (oob_required) {
3910                size += mtd->oobsize;
3911
3912                if (buf != chip->data_buf) {
3913                        write_buf = nand_get_data_buf(chip);
3914                        memcpy(write_buf, buf, mtd->writesize);
3915                }
3916        }
3917
3918        return nand_prog_page_op(chip, page, 0, write_buf, size);
3919}
3920EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3921
3922/**
3923 * nand_write_page_raw_syndrome - [INTERN] raw page write function
3924 * @chip: nand chip info structure
3925 * @buf: data buffer
3926 * @oob_required: must write chip->oob_poi to OOB
3927 * @page: page number to write
3928 *
3929 * We need a special oob layout and handling even when ECC isn't checked.
3930 */
3931static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3932                                        const uint8_t *buf, int oob_required,
3933                                        int page)
3934{
3935        struct mtd_info *mtd = nand_to_mtd(chip);
3936        int eccsize = chip->ecc.size;
3937        int eccbytes = chip->ecc.bytes;
3938        uint8_t *oob = chip->oob_poi;
3939        int steps, size, ret;
3940
3941        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3942        if (ret)
3943                return ret;
3944
3945        for (steps = chip->ecc.steps; steps > 0; steps--) {
3946                ret = nand_write_data_op(chip, buf, eccsize, false);
3947                if (ret)
3948                        return ret;
3949
3950                buf += eccsize;
3951
3952                if (chip->ecc.prepad) {
3953                        ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3954                                                 false);
3955                        if (ret)
3956                                return ret;
3957
3958                        oob += chip->ecc.prepad;
3959                }
3960
3961                ret = nand_write_data_op(chip, oob, eccbytes, false);
3962                if (ret)
3963                        return ret;
3964
3965                oob += eccbytes;
3966
3967                if (chip->ecc.postpad) {
3968                        ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3969                                                 false);
3970                        if (ret)
3971                                return ret;
3972
3973                        oob += chip->ecc.postpad;
3974                }
3975        }
3976
3977        size = mtd->oobsize - (oob - chip->oob_poi);
3978        if (size) {
3979                ret = nand_write_data_op(chip, oob, size, false);
3980                if (ret)
3981                        return ret;
3982        }
3983
3984        return nand_prog_page_end_op(chip);
3985}
3986/**
3987 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3988 * @chip: nand chip info structure
3989 * @buf: data buffer
3990 * @oob_required: must write chip->oob_poi to OOB
3991 * @page: page number to write
3992 */
3993static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3994                                 int oob_required, int page)
3995{
3996        struct mtd_info *mtd = nand_to_mtd(chip);
3997        int i, eccsize = chip->ecc.size, ret;
3998        int eccbytes = chip->ecc.bytes;
3999        int eccsteps = chip->ecc.steps;
4000        uint8_t *ecc_calc = chip->ecc.calc_buf;
4001        const uint8_t *p = buf;
4002
4003        /* Software ECC calculation */
4004        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4005                chip->ecc.calculate(chip, p, &ecc_calc[i]);
4006
4007        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4008                                         chip->ecc.total);
4009        if (ret)
4010                return ret;
4011
4012        return chip->ecc.write_page_raw(chip, buf, 1, page);
4013}
4014
4015/**
4016 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4017 * @chip: nand chip info structure
4018 * @buf: data buffer
4019 * @oob_required: must write chip->oob_poi to OOB
4020 * @page: page number to write
4021 */
4022static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4023                                 int oob_required, int page)
4024{
4025        struct mtd_info *mtd = nand_to_mtd(chip);
4026        int i, eccsize = chip->ecc.size, ret;
4027        int eccbytes = chip->ecc.bytes;
4028        int eccsteps = chip->ecc.steps;
4029        uint8_t *ecc_calc = chip->ecc.calc_buf;
4030        const uint8_t *p = buf;
4031
4032        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4033        if (ret)
4034                return ret;
4035
4036        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4037                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4038
4039                ret = nand_write_data_op(chip, p, eccsize, false);
4040                if (ret)
4041                        return ret;
4042
4043                chip->ecc.calculate(chip, p, &ecc_calc[i]);
4044        }
4045
4046        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4047                                         chip->ecc.total);
4048        if (ret)
4049                return ret;
4050
4051        ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4052        if (ret)
4053                return ret;
4054
4055        return nand_prog_page_end_op(chip);
4056}
4057
4058
4059/**
4060 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4061 * @chip:       nand chip info structure
4062 * @offset:     column address of subpage within the page
4063 * @data_len:   data length
4064 * @buf:        data buffer
4065 * @oob_required: must write chip->oob_poi to OOB
4066 * @page: page number to write
4067 */
4068static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4069                                    uint32_t data_len, const uint8_t *buf,
4070                                    int oob_required, int page)
4071{
4072        struct mtd_info *mtd = nand_to_mtd(chip);
4073        uint8_t *oob_buf  = chip->oob_poi;
4074        uint8_t *ecc_calc = chip->ecc.calc_buf;
4075        int ecc_size      = chip->ecc.size;
4076        int ecc_bytes     = chip->ecc.bytes;
4077        int ecc_steps     = chip->ecc.steps;
4078        uint32_t start_step = offset / ecc_size;
4079        uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4080        int oob_bytes       = mtd->oobsize / ecc_steps;
4081        int step, ret;
4082
4083        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4084        if (ret)
4085                return ret;
4086
4087        for (step = 0; step < ecc_steps; step++) {
4088                /* configure controller for WRITE access */
4089                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4090
4091                /* write data (untouched subpages already masked by 0xFF) */
4092                ret = nand_write_data_op(chip, buf, ecc_size, false);
4093                if (ret)
4094                        return ret;
4095
4096                /* mask ECC of un-touched subpages by padding 0xFF */
4097                if ((step < start_step) || (step > end_step))
4098                        memset(ecc_calc, 0xff, ecc_bytes);
4099                else
4100                        chip->ecc.calculate(chip, buf, ecc_calc);
4101
4102                /* mask OOB of un-touched subpages by padding 0xFF */
4103                /* if oob_required, preserve OOB metadata of written subpage */
4104                if (!oob_required || (step < start_step) || (step > end_step))
4105                        memset(oob_buf, 0xff, oob_bytes);
4106
4107                buf += ecc_size;
4108                ecc_calc += ecc_bytes;
4109                oob_buf  += oob_bytes;
4110        }
4111
4112        /* copy calculated ECC for whole page to chip->buffer->oob */
4113        /* this include masked-value(0xFF) for unwritten subpages */
4114        ecc_calc = chip->ecc.calc_buf;
4115        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4116                                         chip->ecc.total);
4117        if (ret)
4118                return ret;
4119
4120        /* write OOB buffer to NAND device */
4121        ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4122        if (ret)
4123                return ret;
4124
4125        return nand_prog_page_end_op(chip);
4126}
4127
4128
4129/**
4130 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4131 * @chip: nand chip info structure
4132 * @buf: data buffer
4133 * @oob_required: must write chip->oob_poi to OOB
4134 * @page: page number to write
4135 *
4136 * The hw generator calculates the error syndrome automatically. Therefore we
4137 * need a special oob layout and handling.
4138 */
4139static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4140                                    int oob_required, int page)
4141{
4142        struct mtd_info *mtd = nand_to_mtd(chip);
4143        int i, eccsize = chip->ecc.size;
4144        int eccbytes = chip->ecc.bytes;
4145        int eccsteps = chip->ecc.steps;
4146        const uint8_t *p = buf;
4147        uint8_t *oob = chip->oob_poi;
4148        int ret;
4149
4150        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4151        if (ret)
4152                return ret;
4153
4154        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4155                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4156
4157                ret = nand_write_data_op(chip, p, eccsize, false);
4158                if (ret)
4159                        return ret;
4160
4161                if (chip->ecc.prepad) {
4162                        ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4163                                                 false);
4164                        if (ret)
4165                                return ret;
4166
4167                        oob += chip->ecc.prepad;
4168                }
4169
4170                chip->ecc.calculate(chip, p, oob);
4171
4172                ret = nand_write_data_op(chip, oob, eccbytes, false);
4173                if (ret)
4174                        return ret;
4175
4176                oob += eccbytes;
4177
4178                if (chip->ecc.postpad) {
4179                        ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4180                                                 false);
4181                        if (ret)
4182                                return ret;
4183
4184                        oob += chip->ecc.postpad;
4185                }
4186        }
4187
4188        /* Calculate remaining oob bytes */
4189        i = mtd->oobsize - (oob - chip->oob_poi);
4190        if (i) {
4191                ret = nand_write_data_op(chip, oob, i, false);
4192                if (ret)
4193                        return ret;
4194        }
4195
4196        return nand_prog_page_end_op(chip);
4197}
4198
4199/**
4200 * nand_write_page - write one page
4201 * @chip: NAND chip descriptor
4202 * @offset: address offset within the page
4203 * @data_len: length of actual data to be written
4204 * @buf: the data to write
4205 * @oob_required: must write chip->oob_poi to OOB
4206 * @page: page number to write
4207 * @raw: use _raw version of write_page
4208 */
4209static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4210                           int data_len, const uint8_t *buf, int oob_required,
4211                           int page, int raw)
4212{
4213        struct mtd_info *mtd = nand_to_mtd(chip);
4214        int status, subpage;
4215
4216        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4217                chip->ecc.write_subpage)
4218                subpage = offset || (data_len < mtd->writesize);
4219        else
4220                subpage = 0;
4221
4222        if (unlikely(raw))
4223                status = chip->ecc.write_page_raw(chip, buf, oob_required,
4224                                                  page);
4225        else if (subpage)
4226                status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4227                                                 oob_required, page);
4228        else
4229                status = chip->ecc.write_page(chip, buf, oob_required, page);
4230
4231        if (status < 0)
4232                return status;
4233
4234        return 0;
4235}
4236
4237#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
4238
4239/**
4240 * nand_do_write_ops - [INTERN] NAND write with ECC
4241 * @chip: NAND chip object
4242 * @to: offset to write to
4243 * @ops: oob operations description structure
4244 *
4245 * NAND write with ECC.
4246 */
4247static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4248                             struct mtd_oob_ops *ops)
4249{
4250        struct mtd_info *mtd = nand_to_mtd(chip);
4251        int chipnr, realpage, page, column;
4252        uint32_t writelen = ops->len;
4253
4254        uint32_t oobwritelen = ops->ooblen;
4255        uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4256
4257        uint8_t *oob = ops->oobbuf;
4258        uint8_t *buf = ops->datbuf;
4259        int ret;
4260        int oob_required = oob ? 1 : 0;
4261
4262        ops->retlen = 0;
4263        if (!writelen)
4264                return 0;
4265
4266        /* Reject writes, which are not page aligned */
4267        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4268                pr_notice("%s: attempt to write non page aligned data\n",
4269                           __func__);
4270                return -EINVAL;
4271        }
4272
4273        /* Check if the region is secured */
4274        if (nand_region_is_secured(chip, to, writelen))
4275                return -EIO;
4276
4277        column = to & (mtd->writesize - 1);
4278
4279        chipnr = (int)(to >> chip->chip_shift);
4280        nand_select_target(chip, chipnr);
4281
4282        /* Check, if it is write protected */
4283        if (nand_check_wp(chip)) {
4284                ret = -EIO;
4285                goto err_out;
4286        }
4287
4288        realpage = (int)(to >> chip->page_shift);
4289        page = realpage & chip->pagemask;
4290
4291        /* Invalidate the page cache, when we write to the cached page */
4292        if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4293            ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4294                chip->pagecache.page = -1;
4295
4296        /* Don't allow multipage oob writes with offset */
4297        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4298                ret = -EINVAL;
4299                goto err_out;
4300        }
4301
4302        while (1) {
4303                int bytes = mtd->writesize;
4304                uint8_t *wbuf = buf;
4305                int use_bounce_buf;
4306                int part_pagewr = (column || writelen < mtd->writesize);
4307
4308                if (part_pagewr)
4309                        use_bounce_buf = 1;
4310                else if (chip->options & NAND_USES_DMA)
4311                        use_bounce_buf = !virt_addr_valid(buf) ||
4312                                         !IS_ALIGNED((unsigned long)buf,
4313                                                     chip->buf_align);
4314                else
4315                        use_bounce_buf = 0;
4316
4317                /*
4318                 * Copy the data from the initial buffer when doing partial page
4319                 * writes or when a bounce buffer is required.
4320                 */
4321                if (use_bounce_buf) {
4322                        pr_debug("%s: using write bounce buffer for buf@%p\n",
4323                                         __func__, buf);
4324                        if (part_pagewr)
4325                                bytes = min_t(int, bytes - column, writelen);
4326                        wbuf = nand_get_data_buf(chip);
4327                        memset(wbuf, 0xff, mtd->writesize);
4328                        memcpy(&wbuf[column], buf, bytes);
4329                }
4330
4331                if (unlikely(oob)) {
4332                        size_t len = min(oobwritelen, oobmaxlen);
4333                        oob = nand_fill_oob(chip, oob, len, ops);
4334                        oobwritelen -= len;
4335                } else {
4336                        /* We still need to erase leftover OOB data */
4337                        memset(chip->oob_poi, 0xff, mtd->oobsize);
4338                }
4339
4340                ret = nand_write_page(chip, column, bytes, wbuf,
4341                                      oob_required, page,
4342                                      (ops->mode == MTD_OPS_RAW));
4343                if (ret)
4344                        break;
4345
4346                writelen -= bytes;
4347                if (!writelen)
4348                        break;
4349
4350                column = 0;
4351                buf += bytes;
4352                realpage++;
4353
4354                page = realpage & chip->pagemask;
4355                /* Check, if we cross a chip boundary */
4356                if (!page) {
4357                        chipnr++;
4358                        nand_deselect_target(chip);
4359                        nand_select_target(chip, chipnr);
4360                }
4361        }
4362
4363        ops->retlen = ops->len - writelen;
4364        if (unlikely(oob))
4365                ops->oobretlen = ops->ooblen;
4366
4367err_out:
4368        nand_deselect_target(chip);
4369        return ret;
4370}
4371
4372/**
4373 * panic_nand_write - [MTD Interface] NAND write with ECC
4374 * @mtd: MTD device structure
4375 * @to: offset to write to
4376 * @len: number of bytes to write
4377 * @retlen: pointer to variable to store the number of written bytes
4378 * @buf: the data to write
4379 *
4380 * NAND write with ECC. Used when performing writes in interrupt context, this
4381 * may for example be called by mtdoops when writing an oops while in panic.
4382 */
4383static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4384                            size_t *retlen, const uint8_t *buf)
4385{
4386        struct nand_chip *chip = mtd_to_nand(mtd);
4387        int chipnr = (int)(to >> chip->chip_shift);
4388        struct mtd_oob_ops ops;
4389        int ret;
4390
4391        nand_select_target(chip, chipnr);
4392
4393        /* Wait for the device to get ready */
4394        panic_nand_wait(chip, 400);
4395
4396        memset(&ops, 0, sizeof(ops));
4397        ops.len = len;
4398        ops.datbuf = (uint8_t *)buf;
4399        ops.mode = MTD_OPS_PLACE_OOB;
4400
4401        ret = nand_do_write_ops(chip, to, &ops);
4402
4403        *retlen = ops.retlen;
4404        return ret;
4405}
4406
4407/**
4408 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4409 * @mtd: MTD device structure
4410 * @to: offset to write to
4411 * @ops: oob operation description structure
4412 */
4413static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4414                          struct mtd_oob_ops *ops)
4415{
4416        struct nand_chip *chip = mtd_to_nand(mtd);
4417        int ret = 0;
4418
4419        ops->retlen = 0;
4420
4421        nand_get_device(chip);
4422
4423        switch (ops->mode) {
4424        case MTD_OPS_PLACE_OOB:
4425        case MTD_OPS_AUTO_OOB:
4426        case MTD_OPS_RAW:
4427                break;
4428
4429        default:
4430                goto out;
4431        }
4432
4433        if (!ops->datbuf)
4434                ret = nand_do_write_oob(chip, to, ops);
4435        else
4436                ret = nand_do_write_ops(chip, to, ops);
4437
4438out:
4439        nand_release_device(chip);
4440        return ret;
4441}
4442
4443/**
4444 * nand_erase - [MTD Interface] erase block(s)
4445 * @mtd: MTD device structure
4446 * @instr: erase instruction
4447 *
4448 * Erase one ore more blocks.
4449 */
4450static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4451{
4452        return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4453}
4454
4455/**
4456 * nand_erase_nand - [INTERN] erase block(s)
4457 * @chip: NAND chip object
4458 * @instr: erase instruction
4459 * @allowbbt: allow erasing the bbt area
4460 *
4461 * Erase one ore more blocks.
4462 */
4463int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4464                    int allowbbt)
4465{
4466        int page, pages_per_block, ret, chipnr;
4467        loff_t len;
4468
4469        pr_debug("%s: start = 0x%012llx, len = %llu\n",
4470                        __func__, (unsigned long long)instr->addr,
4471                        (unsigned long long)instr->len);
4472
4473        if (check_offs_len(chip, instr->addr, instr->len))
4474                return -EINVAL;
4475
4476        /* Check if the region is secured */
4477        if (nand_region_is_secured(chip, instr->addr, instr->len))
4478                return -EIO;
4479
4480        /* Grab the lock and see if the device is available */
4481        nand_get_device(chip);
4482
4483        /* Shift to get first page */
4484        page = (int)(instr->addr >> chip->page_shift);
4485        chipnr = (int)(instr->addr >> chip->chip_shift);
4486
4487        /* Calculate pages in each block */
4488        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4489
4490        /* Select the NAND device */
4491        nand_select_target(chip, chipnr);
4492
4493        /* Check, if it is write protected */
4494        if (nand_check_wp(chip)) {
4495                pr_debug("%s: device is write protected!\n",
4496                                __func__);
4497                ret = -EIO;
4498                goto erase_exit;
4499        }
4500
4501        /* Loop through the pages */
4502        len = instr->len;
4503
4504        while (len) {
4505                loff_t ofs = (loff_t)page << chip->page_shift;
4506
4507                /* Check if we have a bad block, we do not erase bad blocks! */
4508                if (nand_block_checkbad(chip, ((loff_t) page) <<
4509                                        chip->page_shift, allowbbt)) {
4510                        pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4511                                    __func__, (unsigned long long)ofs);
4512                        ret = -EIO;
4513                        goto erase_exit;
4514                }
4515
4516                /*
4517                 * Invalidate the page cache, if we erase the block which
4518                 * contains the current cached page.
4519                 */
4520                if (page <= chip->pagecache.page && chip->pagecache.page <
4521                    (page + pages_per_block))
4522                        chip->pagecache.page = -1;
4523
4524                ret = nand_erase_op(chip, (page & chip->pagemask) >>
4525                                    (chip->phys_erase_shift - chip->page_shift));
4526                if (ret) {
4527                        pr_debug("%s: failed erase, page 0x%08x\n",
4528                                        __func__, page);
4529                        instr->fail_addr = ofs;
4530                        goto erase_exit;
4531                }
4532
4533                /* Increment page address and decrement length */
4534                len -= (1ULL << chip->phys_erase_shift);
4535                page += pages_per_block;
4536
4537                /* Check, if we cross a chip boundary */
4538                if (len && !(page & chip->pagemask)) {
4539                        chipnr++;
4540                        nand_deselect_target(chip);
4541                        nand_select_target(chip, chipnr);
4542                }
4543        }
4544
4545        ret = 0;
4546erase_exit:
4547
4548        /* Deselect and wake up anyone waiting on the device */
4549        nand_deselect_target(chip);
4550        nand_release_device(chip);
4551
4552        /* Return more or less happy */
4553        return ret;
4554}
4555
4556/**
4557 * nand_sync - [MTD Interface] sync
4558 * @mtd: MTD device structure
4559 *
4560 * Sync is actually a wait for chip ready function.
4561 */
4562static void nand_sync(struct mtd_info *mtd)
4563{
4564        struct nand_chip *chip = mtd_to_nand(mtd);
4565
4566        pr_debug("%s: called\n", __func__);
4567
4568        /* Grab the lock and see if the device is available */
4569        nand_get_device(chip);
4570        /* Release it and go back */
4571        nand_release_device(chip);
4572}
4573
4574/**
4575 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4576 * @mtd: MTD device structure
4577 * @offs: offset relative to mtd start
4578 */
4579static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4580{
4581        struct nand_chip *chip = mtd_to_nand(mtd);
4582        int chipnr = (int)(offs >> chip->chip_shift);
4583        int ret;
4584
4585        /* Select the NAND device */
4586        nand_get_device(chip);
4587
4588        nand_select_target(chip, chipnr);
4589
4590        ret = nand_block_checkbad(chip, offs, 0);
4591
4592        nand_deselect_target(chip);
4593        nand_release_device(chip);
4594
4595        return ret;
4596}
4597
4598/**
4599 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4600 * @mtd: MTD device structure
4601 * @ofs: offset relative to mtd start
4602 */
4603static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4604{
4605        int ret;
4606
4607        ret = nand_block_isbad(mtd, ofs);
4608        if (ret) {
4609                /* If it was bad already, return success and do nothing */
4610                if (ret > 0)
4611                        return 0;
4612                return ret;
4613        }
4614
4615        return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4616}
4617
4618/**
4619 * nand_suspend - [MTD Interface] Suspend the NAND flash
4620 * @mtd: MTD device structure
4621 *
4622 * Returns 0 for success or negative error code otherwise.
4623 */
4624static int nand_suspend(struct mtd_info *mtd)
4625{
4626        struct nand_chip *chip = mtd_to_nand(mtd);
4627        int ret = 0;
4628
4629        mutex_lock(&chip->lock);
4630        if (chip->ops.suspend)
4631                ret = chip->ops.suspend(chip);
4632        if (!ret)
4633                chip->suspended = 1;
4634        mutex_unlock(&chip->lock);
4635
4636        return ret;
4637}
4638
4639/**
4640 * nand_resume - [MTD Interface] Resume the NAND flash
4641 * @mtd: MTD device structure
4642 */
4643static void nand_resume(struct mtd_info *mtd)
4644{
4645        struct nand_chip *chip = mtd_to_nand(mtd);
4646
4647        mutex_lock(&chip->lock);
4648        if (chip->suspended) {
4649                if (chip->ops.resume)
4650                        chip->ops.resume(chip);
4651                chip->suspended = 0;
4652        } else {
4653                pr_err("%s called for a chip which is not in suspended state\n",
4654                        __func__);
4655        }
4656        mutex_unlock(&chip->lock);
4657
4658        wake_up_all(&chip->resume_wq);
4659}
4660
4661/**
4662 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4663 *                 prevent further operations
4664 * @mtd: MTD device structure
4665 */
4666static void nand_shutdown(struct mtd_info *mtd)
4667{
4668        nand_suspend(mtd);
4669}
4670
4671/**
4672 * nand_lock - [MTD Interface] Lock the NAND flash
4673 * @mtd: MTD device structure
4674 * @ofs: offset byte address
4675 * @len: number of bytes to lock (must be a multiple of block/page size)
4676 */
4677static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4678{
4679        struct nand_chip *chip = mtd_to_nand(mtd);
4680
4681        if (!chip->ops.lock_area)
4682                return -ENOTSUPP;
4683
4684        return chip->ops.lock_area(chip, ofs, len);
4685}
4686
4687/**
4688 * nand_unlock - [MTD Interface] Unlock the NAND flash
4689 * @mtd: MTD device structure
4690 * @ofs: offset byte address
4691 * @len: number of bytes to unlock (must be a multiple of block/page size)
4692 */
4693static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4694{
4695        struct nand_chip *chip = mtd_to_nand(mtd);
4696
4697        if (!chip->ops.unlock_area)
4698                return -ENOTSUPP;
4699
4700        return chip->ops.unlock_area(chip, ofs, len);
4701}
4702
4703/* Set default functions */
4704static void nand_set_defaults(struct nand_chip *chip)
4705{
4706        /* If no controller is provided, use the dummy, legacy one. */
4707        if (!chip->controller) {
4708                chip->controller = &chip->legacy.dummy_controller;
4709                nand_controller_init(chip->controller);
4710        }
4711
4712        nand_legacy_set_defaults(chip);
4713
4714        if (!chip->buf_align)
4715                chip->buf_align = 1;
4716}
4717
4718/* Sanitize ONFI strings so we can safely print them */
4719void sanitize_string(uint8_t *s, size_t len)
4720{
4721        ssize_t i;
4722
4723        /* Null terminate */
4724        s[len - 1] = 0;
4725
4726        /* Remove non printable chars */
4727        for (i = 0; i < len - 1; i++) {
4728                if (s[i] < ' ' || s[i] > 127)
4729                        s[i] = '?';
4730        }
4731
4732        /* Remove trailing spaces */
4733        strim(s);
4734}
4735
4736/*
4737 * nand_id_has_period - Check if an ID string has a given wraparound period
4738 * @id_data: the ID string
4739 * @arrlen: the length of the @id_data array
4740 * @period: the period of repitition
4741 *
4742 * Check if an ID string is repeated within a given sequence of bytes at
4743 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4744 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4745 * if the repetition has a period of @period; otherwise, returns zero.
4746 */
4747static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4748{
4749        int i, j;
4750        for (i = 0; i < period; i++)
4751                for (j = i + period; j < arrlen; j += period)
4752                        if (id_data[i] != id_data[j])
4753                                return 0;
4754        return 1;
4755}
4756
4757/*
4758 * nand_id_len - Get the length of an ID string returned by CMD_READID
4759 * @id_data: the ID string
4760 * @arrlen: the length of the @id_data array
4761
4762 * Returns the length of the ID string, according to known wraparound/trailing
4763 * zero patterns. If no pattern exists, returns the length of the array.
4764 */
4765static int nand_id_len(u8 *id_data, int arrlen)
4766{
4767        int last_nonzero, period;
4768
4769        /* Find last non-zero byte */
4770        for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4771                if (id_data[last_nonzero])
4772                        break;
4773
4774        /* All zeros */
4775        if (last_nonzero < 0)
4776                return 0;
4777
4778        /* Calculate wraparound period */
4779        for (period = 1; period < arrlen; period++)
4780                if (nand_id_has_period(id_data, arrlen, period))
4781                        break;
4782
4783        /* There's a repeated pattern */
4784        if (period < arrlen)
4785                return period;
4786
4787        /* There are trailing zeros */
4788        if (last_nonzero < arrlen - 1)
4789                return last_nonzero + 1;
4790
4791        /* No pattern detected */
4792        return arrlen;
4793}
4794
4795/* Extract the bits of per cell from the 3rd byte of the extended ID */
4796static int nand_get_bits_per_cell(u8 cellinfo)
4797{
4798        int bits;
4799
4800        bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4801        bits >>= NAND_CI_CELLTYPE_SHIFT;
4802        return bits + 1;
4803}
4804
4805/*
4806 * Many new NAND share similar device ID codes, which represent the size of the
4807 * chip. The rest of the parameters must be decoded according to generic or
4808 * manufacturer-specific "extended ID" decoding patterns.
4809 */
4810void nand_decode_ext_id(struct nand_chip *chip)
4811{
4812        struct nand_memory_organization *memorg;
4813        struct mtd_info *mtd = nand_to_mtd(chip);
4814        int extid;
4815        u8 *id_data = chip->id.data;
4816
4817        memorg = nanddev_get_memorg(&chip->base);
4818
4819        /* The 3rd id byte holds MLC / multichip data */
4820        memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4821        /* The 4th id byte is the important one */
4822        extid = id_data[3];
4823
4824        /* Calc pagesize */
4825        memorg->pagesize = 1024 << (extid & 0x03);
4826        mtd->writesize = memorg->pagesize;
4827        extid >>= 2;
4828        /* Calc oobsize */
4829        memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4830        mtd->oobsize = memorg->oobsize;
4831        extid >>= 2;
4832        /* Calc blocksize. Blocksize is multiples of 64KiB */
4833        memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4834                                       memorg->pagesize;
4835        mtd->erasesize = (64 * 1024) << (extid & 0x03);
4836        extid >>= 2;
4837        /* Get buswidth information */
4838        if (extid & 0x1)
4839                chip->options |= NAND_BUSWIDTH_16;
4840}
4841EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4842
4843/*
4844 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4845 * decodes a matching ID table entry and assigns the MTD size parameters for
4846 * the chip.
4847 */
4848static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4849{
4850        struct mtd_info *mtd = nand_to_mtd(chip);
4851        struct nand_memory_organization *memorg;
4852
4853        memorg = nanddev_get_memorg(&chip->base);
4854
4855        memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4856        mtd->erasesize = type->erasesize;
4857        memorg->pagesize = type->pagesize;
4858        mtd->writesize = memorg->pagesize;
4859        memorg->oobsize = memorg->pagesize / 32;
4860        mtd->oobsize = memorg->oobsize;
4861
4862        /* All legacy ID NAND are small-page, SLC */
4863        memorg->bits_per_cell = 1;
4864}
4865
4866/*
4867 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4868 * heuristic patterns using various detected parameters (e.g., manufacturer,
4869 * page size, cell-type information).
4870 */
4871static void nand_decode_bbm_options(struct nand_chip *chip)
4872{
4873        struct mtd_info *mtd = nand_to_mtd(chip);
4874
4875        /* Set the bad block position */
4876        if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4877                chip->badblockpos = NAND_BBM_POS_LARGE;
4878        else
4879                chip->badblockpos = NAND_BBM_POS_SMALL;
4880}
4881
4882static inline bool is_full_id_nand(struct nand_flash_dev *type)
4883{
4884        return type->id_len;
4885}
4886
4887static bool find_full_id_nand(struct nand_chip *chip,
4888                              struct nand_flash_dev *type)
4889{
4890        struct nand_device *base = &chip->base;
4891        struct nand_ecc_props requirements;
4892        struct mtd_info *mtd = nand_to_mtd(chip);
4893        struct nand_memory_organization *memorg;
4894        u8 *id_data = chip->id.data;
4895
4896        memorg = nanddev_get_memorg(&chip->base);
4897
4898        if (!strncmp(type->id, id_data, type->id_len)) {
4899                memorg->pagesize = type->pagesize;
4900                mtd->writesize = memorg->pagesize;
4901                memorg->pages_per_eraseblock = type->erasesize /
4902                                               type->pagesize;
4903                mtd->erasesize = type->erasesize;
4904                memorg->oobsize = type->oobsize;
4905                mtd->oobsize = memorg->oobsize;
4906
4907                memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4908                memorg->eraseblocks_per_lun =
4909                        DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4910                                           memorg->pagesize *
4911                                           memorg->pages_per_eraseblock);
4912                chip->options |= type->options;
4913                requirements.strength = NAND_ECC_STRENGTH(type);
4914                requirements.step_size = NAND_ECC_STEP(type);
4915                nanddev_set_ecc_requirements(base, &requirements);
4916
4917                chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4918                if (!chip->parameters.model)
4919                        return false;
4920
4921                return true;
4922        }
4923        return false;
4924}
4925
4926/*
4927 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4928 * compliant and does not have a full-id or legacy-id entry in the nand_ids
4929 * table.
4930 */
4931static void nand_manufacturer_detect(struct nand_chip *chip)
4932{
4933        /*
4934         * Try manufacturer detection if available and use
4935         * nand_decode_ext_id() otherwise.
4936         */
4937        if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4938            chip->manufacturer.desc->ops->detect) {
4939                struct nand_memory_organization *memorg;
4940
4941                memorg = nanddev_get_memorg(&chip->base);
4942
4943                /* The 3rd id byte holds MLC / multichip data */
4944                memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4945                chip->manufacturer.desc->ops->detect(chip);
4946        } else {
4947                nand_decode_ext_id(chip);
4948        }
4949}
4950
4951/*
4952 * Manufacturer initialization. This function is called for all NANDs including
4953 * ONFI and JEDEC compliant ones.
4954 * Manufacturer drivers should put all their specific initialization code in
4955 * their ->init() hook.
4956 */
4957static int nand_manufacturer_init(struct nand_chip *chip)
4958{
4959        if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4960            !chip->manufacturer.desc->ops->init)
4961                return 0;
4962
4963        return chip->manufacturer.desc->ops->init(chip);
4964}
4965
4966/*
4967 * Manufacturer cleanup. This function is called for all NANDs including
4968 * ONFI and JEDEC compliant ones.
4969 * Manufacturer drivers should put all their specific cleanup code in their
4970 * ->cleanup() hook.
4971 */
4972static void nand_manufacturer_cleanup(struct nand_chip *chip)
4973{
4974        /* Release manufacturer private data */
4975        if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4976            chip->manufacturer.desc->ops->cleanup)
4977                chip->manufacturer.desc->ops->cleanup(chip);
4978}
4979
4980static const char *
4981nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
4982{
4983        return manufacturer_desc ? manufacturer_desc->name : "Unknown";
4984}
4985
4986/*
4987 * Get the flash and manufacturer id and lookup if the type is supported.
4988 */
4989static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4990{
4991        const struct nand_manufacturer_desc *manufacturer_desc;
4992        struct mtd_info *mtd = nand_to_mtd(chip);
4993        struct nand_memory_organization *memorg;
4994        int busw, ret;
4995        u8 *id_data = chip->id.data;
4996        u8 maf_id, dev_id;
4997        u64 targetsize;
4998
4999        /*
5000         * Let's start by initializing memorg fields that might be left
5001         * unassigned by the ID-based detection logic.
5002         */
5003        memorg = nanddev_get_memorg(&chip->base);
5004        memorg->planes_per_lun = 1;
5005        memorg->luns_per_target = 1;
5006
5007        /*
5008         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5009         * after power-up.
5010         */
5011        ret = nand_reset(chip, 0);
5012        if (ret)
5013                return ret;
5014
5015        /* Select the device */
5016        nand_select_target(chip, 0);
5017
5018        /* Send the command for reading device ID */
5019        ret = nand_readid_op(chip, 0, id_data, 2);
5020        if (ret)
5021                return ret;
5022
5023        /* Read manufacturer and device IDs */
5024        maf_id = id_data[0];
5025        dev_id = id_data[1];
5026
5027        /*
5028         * Try again to make sure, as some systems the bus-hold or other
5029         * interface concerns can cause random data which looks like a
5030         * possibly credible NAND flash to appear. If the two results do
5031         * not match, ignore the device completely.
5032         */
5033
5034        /* Read entire ID string */
5035        ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5036        if (ret)
5037                return ret;
5038
5039        if (id_data[0] != maf_id || id_data[1] != dev_id) {
5040                pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5041                        maf_id, dev_id, id_data[0], id_data[1]);
5042                return -ENODEV;
5043        }
5044
5045        chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5046
5047        /* Try to identify manufacturer */
5048        manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5049        chip->manufacturer.desc = manufacturer_desc;
5050
5051        if (!type)
5052                type = nand_flash_ids;
5053
5054        /*
5055         * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5056         * override it.
5057         * This is required to make sure initial NAND bus width set by the
5058         * NAND controller driver is coherent with the real NAND bus width
5059         * (extracted by auto-detection code).
5060         */
5061        busw = chip->options & NAND_BUSWIDTH_16;
5062
5063        /*
5064         * The flag is only set (never cleared), reset it to its default value
5065         * before starting auto-detection.
5066         */
5067        chip->options &= ~NAND_BUSWIDTH_16;
5068
5069        for (; type->name != NULL; type++) {
5070                if (is_full_id_nand(type)) {
5071                        if (find_full_id_nand(chip, type))
5072                                goto ident_done;
5073                } else if (dev_id == type->dev_id) {
5074                        break;
5075                }
5076        }
5077
5078        if (!type->name || !type->pagesize) {
5079                /* Check if the chip is ONFI compliant */
5080                ret = nand_onfi_detect(chip);
5081                if (ret < 0)
5082                        return ret;
5083                else if (ret)
5084                        goto ident_done;
5085
5086                /* Check if the chip is JEDEC compliant */
5087                ret = nand_jedec_detect(chip);
5088                if (ret < 0)
5089                        return ret;
5090                else if (ret)
5091                        goto ident_done;
5092        }
5093
5094        if (!type->name)
5095                return -ENODEV;
5096
5097        chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5098        if (!chip->parameters.model)
5099                return -ENOMEM;
5100
5101        if (!type->pagesize)
5102                nand_manufacturer_detect(chip);
5103        else
5104                nand_decode_id(chip, type);
5105
5106        /* Get chip options */
5107        chip->options |= type->options;
5108
5109        memorg->eraseblocks_per_lun =
5110                        DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5111                                           memorg->pagesize *
5112                                           memorg->pages_per_eraseblock);
5113
5114ident_done:
5115        if (!mtd->name)
5116                mtd->name = chip->parameters.model;
5117
5118        if (chip->options & NAND_BUSWIDTH_AUTO) {
5119                WARN_ON(busw & NAND_BUSWIDTH_16);
5120                nand_set_defaults(chip);
5121        } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5122                /*
5123                 * Check, if buswidth is correct. Hardware drivers should set
5124                 * chip correct!
5125                 */
5126                pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5127                        maf_id, dev_id);
5128                pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5129                        mtd->name);
5130                pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5131                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5132                ret = -EINVAL;
5133
5134                goto free_detect_allocation;
5135        }
5136
5137        nand_decode_bbm_options(chip);
5138
5139        /* Calculate the address shift from the page size */
5140        chip->page_shift = ffs(mtd->writesize) - 1;
5141        /* Convert chipsize to number of pages per chip -1 */
5142        targetsize = nanddev_target_size(&chip->base);
5143        chip->pagemask = (targetsize >> chip->page_shift) - 1;
5144
5145        chip->bbt_erase_shift = chip->phys_erase_shift =
5146                ffs(mtd->erasesize) - 1;
5147        if (targetsize & 0xffffffff)
5148                chip->chip_shift = ffs((unsigned)targetsize) - 1;
5149        else {
5150                chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5151                chip->chip_shift += 32 - 1;
5152        }
5153
5154        if (chip->chip_shift - chip->page_shift > 16)
5155                chip->options |= NAND_ROW_ADDR_3;
5156
5157        chip->badblockbits = 8;
5158
5159        nand_legacy_adjust_cmdfunc(chip);
5160
5161        pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5162                maf_id, dev_id);
5163        pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5164                chip->parameters.model);
5165        pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5166                (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5167                mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5168        return 0;
5169
5170free_detect_allocation:
5171        kfree(chip->parameters.model);
5172
5173        return ret;
5174}
5175
5176static enum nand_ecc_engine_type
5177of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5178{
5179        enum nand_ecc_legacy_mode {
5180                NAND_ECC_INVALID,
5181                NAND_ECC_NONE,
5182                NAND_ECC_SOFT,
5183                NAND_ECC_SOFT_BCH,
5184                NAND_ECC_HW,
5185                NAND_ECC_HW_SYNDROME,
5186                NAND_ECC_ON_DIE,
5187        };
5188        const char * const nand_ecc_legacy_modes[] = {
5189                [NAND_ECC_NONE]         = "none",
5190                [NAND_ECC_SOFT]         = "soft",
5191                [NAND_ECC_SOFT_BCH]     = "soft_bch",
5192                [NAND_ECC_HW]           = "hw",
5193                [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
5194                [NAND_ECC_ON_DIE]       = "on-die",
5195        };
5196        enum nand_ecc_legacy_mode eng_type;
5197        const char *pm;
5198        int err;
5199
5200        err = of_property_read_string(np, "nand-ecc-mode", &pm);
5201        if (err)
5202                return NAND_ECC_ENGINE_TYPE_INVALID;
5203
5204        for (eng_type = NAND_ECC_NONE;
5205             eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5206                if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5207                        switch (eng_type) {
5208                        case NAND_ECC_NONE:
5209                                return NAND_ECC_ENGINE_TYPE_NONE;
5210                        case NAND_ECC_SOFT:
5211                        case NAND_ECC_SOFT_BCH:
5212                                return NAND_ECC_ENGINE_TYPE_SOFT;
5213                        case NAND_ECC_HW:
5214                        case NAND_ECC_HW_SYNDROME:
5215                                return NAND_ECC_ENGINE_TYPE_ON_HOST;
5216                        case NAND_ECC_ON_DIE:
5217                                return NAND_ECC_ENGINE_TYPE_ON_DIE;
5218                        default:
5219                                break;
5220                        }
5221                }
5222        }
5223
5224        return NAND_ECC_ENGINE_TYPE_INVALID;
5225}
5226
5227static enum nand_ecc_placement
5228of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5229{
5230        const char *pm;
5231        int err;
5232
5233        err = of_property_read_string(np, "nand-ecc-mode", &pm);
5234        if (!err) {
5235                if (!strcasecmp(pm, "hw_syndrome"))
5236                        return NAND_ECC_PLACEMENT_INTERLEAVED;
5237        }
5238
5239        return NAND_ECC_PLACEMENT_UNKNOWN;
5240}
5241
5242static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5243{
5244        const char *pm;
5245        int err;
5246
5247        err = of_property_read_string(np, "nand-ecc-mode", &pm);
5248        if (!err) {
5249                if (!strcasecmp(pm, "soft"))
5250                        return NAND_ECC_ALGO_HAMMING;
5251                else if (!strcasecmp(pm, "soft_bch"))
5252                        return NAND_ECC_ALGO_BCH;
5253        }
5254
5255        return NAND_ECC_ALGO_UNKNOWN;
5256}
5257
5258static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5259{
5260        struct device_node *dn = nand_get_flash_node(chip);
5261        struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5262
5263        if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5264                user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5265
5266        if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5267                user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5268
5269        if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5270                user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5271}
5272
5273static int of_get_nand_bus_width(struct nand_chip *chip)
5274{
5275        struct device_node *dn = nand_get_flash_node(chip);
5276        u32 val;
5277        int ret;
5278
5279        ret = of_property_read_u32(dn, "nand-bus-width", &val);
5280        if (ret == -EINVAL)
5281                /* Buswidth defaults to 8 if the property does not exist .*/
5282                return 0;
5283        else if (ret)
5284                return ret;
5285
5286        if (val == 16)
5287                chip->options |= NAND_BUSWIDTH_16;
5288        else if (val != 8)
5289                return -EINVAL;
5290        return 0;
5291}
5292
5293static int of_get_nand_secure_regions(struct nand_chip *chip)
5294{
5295        struct device_node *dn = nand_get_flash_node(chip);
5296        struct property *prop;
5297        int nr_elem, i, j;
5298
5299        /* Only proceed if the "secure-regions" property is present in DT */
5300        prop = of_find_property(dn, "secure-regions", NULL);
5301        if (!prop)
5302                return 0;
5303
5304        nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5305        if (nr_elem <= 0)
5306                return nr_elem;
5307
5308        chip->nr_secure_regions = nr_elem / 2;
5309        chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5310                                       GFP_KERNEL);
5311        if (!chip->secure_regions)
5312                return -ENOMEM;
5313
5314        for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5315                of_property_read_u64_index(dn, "secure-regions", j,
5316                                           &chip->secure_regions[i].offset);
5317                of_property_read_u64_index(dn, "secure-regions", j + 1,
5318                                           &chip->secure_regions[i].size);
5319        }
5320
5321        return 0;
5322}
5323
5324/**
5325 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5326 * @dev: Device that will be parsed. Also used for managed allocations.
5327 * @cs_array: Array of GPIO desc pointers allocated on success
5328 * @ncs_array: Number of entries in @cs_array updated on success.
5329 * @return 0 on success, an error otherwise.
5330 */
5331int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5332                             unsigned int *ncs_array)
5333{
5334        struct device_node *np = dev->of_node;
5335        struct gpio_desc **descs;
5336        int ndescs, i;
5337
5338        ndescs = of_gpio_named_count(np, "cs-gpios");
5339        if (ndescs < 0) {
5340                dev_dbg(dev, "No valid cs-gpios property\n");
5341                return 0;
5342        }
5343
5344        descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5345        if (!descs)
5346                return -ENOMEM;
5347
5348        for (i = 0; i < ndescs; i++) {
5349                descs[i] = gpiod_get_index_optional(dev, "cs", i,
5350                                                    GPIOD_OUT_HIGH);
5351                if (IS_ERR(descs[i]))
5352                        return PTR_ERR(descs[i]);
5353        }
5354
5355        *ncs_array = ndescs;
5356        *cs_array = descs;
5357
5358        return 0;
5359}
5360EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5361
5362static int rawnand_dt_init(struct nand_chip *chip)
5363{
5364        struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5365        struct device_node *dn = nand_get_flash_node(chip);
5366        int ret;
5367
5368        if (!dn)
5369                return 0;
5370
5371        ret = of_get_nand_bus_width(chip);
5372        if (ret)
5373                return ret;
5374
5375        if (of_property_read_bool(dn, "nand-is-boot-medium"))
5376                chip->options |= NAND_IS_BOOT_MEDIUM;
5377
5378        if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5379                chip->bbt_options |= NAND_BBT_USE_FLASH;
5380
5381        of_get_nand_ecc_user_config(nand);
5382        of_get_nand_ecc_legacy_user_config(chip);
5383
5384        /*
5385         * If neither the user nor the NAND controller have requested a specific
5386         * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5387         */
5388        nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5389
5390        /*
5391         * Use the user requested engine type, unless there is none, in this
5392         * case default to the NAND controller choice, otherwise fallback to
5393         * the raw NAND default one.
5394         */
5395        if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5396                chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5397        if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5398                chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5399
5400        chip->ecc.placement = nand->ecc.user_conf.placement;
5401        chip->ecc.algo = nand->ecc.user_conf.algo;
5402        chip->ecc.strength = nand->ecc.user_conf.strength;
5403        chip->ecc.size = nand->ecc.user_conf.step_size;
5404
5405        return 0;
5406}
5407
5408/**
5409 * nand_scan_ident - Scan for the NAND device
5410 * @chip: NAND chip object
5411 * @maxchips: number of chips to scan for
5412 * @table: alternative NAND ID table
5413 *
5414 * This is the first phase of the normal nand_scan() function. It reads the
5415 * flash ID and sets up MTD fields accordingly.
5416 *
5417 * This helper used to be called directly from controller drivers that needed
5418 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5419 * prevented dynamic allocations during this phase which was unconvenient and
5420 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5421 */
5422static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5423                           struct nand_flash_dev *table)
5424{
5425        struct mtd_info *mtd = nand_to_mtd(chip);
5426        struct nand_memory_organization *memorg;
5427        int nand_maf_id, nand_dev_id;
5428        unsigned int i;
5429        int ret;
5430
5431        memorg = nanddev_get_memorg(&chip->base);
5432
5433        /* Assume all dies are deselected when we enter nand_scan_ident(). */
5434        chip->cur_cs = -1;
5435
5436        mutex_init(&chip->lock);
5437        init_waitqueue_head(&chip->resume_wq);
5438
5439        /* Enforce the right timings for reset/detection */
5440        chip->current_interface_config = nand_get_reset_interface_config();
5441
5442        ret = rawnand_dt_init(chip);
5443        if (ret)
5444                return ret;
5445
5446        if (!mtd->name && mtd->dev.parent)
5447                mtd->name = dev_name(mtd->dev.parent);
5448
5449        /* Set the default functions */
5450        nand_set_defaults(chip);
5451
5452        ret = nand_legacy_check_hooks(chip);
5453        if (ret)
5454                return ret;
5455
5456        memorg->ntargets = maxchips;
5457
5458        /* Read the flash type */
5459        ret = nand_detect(chip, table);
5460        if (ret) {
5461                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5462                        pr_warn("No NAND device found\n");
5463                nand_deselect_target(chip);
5464                return ret;
5465        }
5466
5467        nand_maf_id = chip->id.data[0];
5468        nand_dev_id = chip->id.data[1];
5469
5470        nand_deselect_target(chip);
5471
5472        /* Check for a chip array */
5473        for (i = 1; i < maxchips; i++) {
5474                u8 id[2];
5475
5476                /* See comment in nand_get_flash_type for reset */
5477                ret = nand_reset(chip, i);
5478                if (ret)
5479                        break;
5480
5481                nand_select_target(chip, i);
5482                /* Send the command for reading device ID */
5483                ret = nand_readid_op(chip, 0, id, sizeof(id));
5484                if (ret)
5485                        break;
5486                /* Read manufacturer and device IDs */
5487                if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5488                        nand_deselect_target(chip);
5489                        break;
5490                }
5491                nand_deselect_target(chip);
5492        }
5493        if (i > 1)
5494                pr_info("%d chips detected\n", i);
5495
5496        /* Store the number of chips and calc total size for mtd */
5497        memorg->ntargets = i;
5498        mtd->size = i * nanddev_target_size(&chip->base);
5499
5500        return 0;
5501}
5502
5503static void nand_scan_ident_cleanup(struct nand_chip *chip)
5504{
5505        kfree(chip->parameters.model);
5506        kfree(chip->parameters.onfi);
5507}
5508
5509int rawnand_sw_hamming_init(struct nand_chip *chip)
5510{
5511        struct nand_ecc_sw_hamming_conf *engine_conf;
5512        struct nand_device *base = &chip->base;
5513        int ret;
5514
5515        base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5516        base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5517        base->ecc.user_conf.strength = chip->ecc.strength;
5518        base->ecc.user_conf.step_size = chip->ecc.size;
5519
5520        ret = nand_ecc_sw_hamming_init_ctx(base);
5521        if (ret)
5522                return ret;
5523
5524        engine_conf = base->ecc.ctx.priv;
5525
5526        if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5527                engine_conf->sm_order = true;
5528
5529        chip->ecc.size = base->ecc.ctx.conf.step_size;
5530        chip->ecc.strength = base->ecc.ctx.conf.strength;
5531        chip->ecc.total = base->ecc.ctx.total;
5532        chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5533        chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5534
5535        return 0;
5536}
5537EXPORT_SYMBOL(rawnand_sw_hamming_init);
5538
5539int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5540                                 const unsigned char *buf,
5541                                 unsigned char *code)
5542{
5543        struct nand_device *base = &chip->base;
5544
5545        return nand_ecc_sw_hamming_calculate(base, buf, code);
5546}
5547EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5548
5549int rawnand_sw_hamming_correct(struct nand_chip *chip,
5550                               unsigned char *buf,
5551                               unsigned char *read_ecc,
5552                               unsigned char *calc_ecc)
5553{
5554        struct nand_device *base = &chip->base;
5555
5556        return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5557}
5558EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5559
5560void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5561{
5562        struct nand_device *base = &chip->base;
5563
5564        nand_ecc_sw_hamming_cleanup_ctx(base);
5565}
5566EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5567
5568int rawnand_sw_bch_init(struct nand_chip *chip)
5569{
5570        struct nand_device *base = &chip->base;
5571        const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5572        int ret;
5573
5574        base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5575        base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5576        base->ecc.user_conf.step_size = chip->ecc.size;
5577        base->ecc.user_conf.strength = chip->ecc.strength;
5578
5579        ret = nand_ecc_sw_bch_init_ctx(base);
5580        if (ret)
5581                return ret;
5582
5583        chip->ecc.size = ecc_conf->step_size;
5584        chip->ecc.strength = ecc_conf->strength;
5585        chip->ecc.total = base->ecc.ctx.total;
5586        chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5587        chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5588
5589        return 0;
5590}
5591EXPORT_SYMBOL(rawnand_sw_bch_init);
5592
5593static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5594                                    const unsigned char *buf,
5595                                    unsigned char *code)
5596{
5597        struct nand_device *base = &chip->base;
5598
5599        return nand_ecc_sw_bch_calculate(base, buf, code);
5600}
5601
5602int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5603                           unsigned char *read_ecc, unsigned char *calc_ecc)
5604{
5605        struct nand_device *base = &chip->base;
5606
5607        return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5608}
5609EXPORT_SYMBOL(rawnand_sw_bch_correct);
5610
5611void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5612{
5613        struct nand_device *base = &chip->base;
5614
5615        nand_ecc_sw_bch_cleanup_ctx(base);
5616}
5617EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5618
5619static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5620{
5621        struct nand_ecc_ctrl *ecc = &chip->ecc;
5622
5623        switch (ecc->placement) {
5624        case NAND_ECC_PLACEMENT_UNKNOWN:
5625        case NAND_ECC_PLACEMENT_OOB:
5626                /* Use standard hwecc read page function? */
5627                if (!ecc->read_page)
5628                        ecc->read_page = nand_read_page_hwecc;
5629                if (!ecc->write_page)
5630                        ecc->write_page = nand_write_page_hwecc;
5631                if (!ecc->read_page_raw)
5632                        ecc->read_page_raw = nand_read_page_raw;
5633                if (!ecc->write_page_raw)
5634                        ecc->write_page_raw = nand_write_page_raw;
5635                if (!ecc->read_oob)
5636                        ecc->read_oob = nand_read_oob_std;
5637                if (!ecc->write_oob)
5638                        ecc->write_oob = nand_write_oob_std;
5639                if (!ecc->read_subpage)
5640                        ecc->read_subpage = nand_read_subpage;
5641                if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5642                        ecc->write_subpage = nand_write_subpage_hwecc;
5643                fallthrough;
5644
5645        case NAND_ECC_PLACEMENT_INTERLEAVED:
5646                if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5647                    (!ecc->read_page ||
5648                     ecc->read_page == nand_read_page_hwecc ||
5649                     !ecc->write_page ||
5650                     ecc->write_page == nand_write_page_hwecc)) {
5651                        WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5652                        return -EINVAL;
5653                }
5654                /* Use standard syndrome read/write page function? */
5655                if (!ecc->read_page)
5656                        ecc->read_page = nand_read_page_syndrome;
5657                if (!ecc->write_page)
5658                        ecc->write_page = nand_write_page_syndrome;
5659                if (!ecc->read_page_raw)
5660                        ecc->read_page_raw = nand_read_page_raw_syndrome;
5661                if (!ecc->write_page_raw)
5662                        ecc->write_page_raw = nand_write_page_raw_syndrome;
5663                if (!ecc->read_oob)
5664                        ecc->read_oob = nand_read_oob_syndrome;
5665                if (!ecc->write_oob)
5666                        ecc->write_oob = nand_write_oob_syndrome;
5667                break;
5668
5669        default:
5670                pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5671                        ecc->placement);
5672                return -EINVAL;
5673        }
5674
5675        return 0;
5676}
5677
5678static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5679{
5680        struct mtd_info *mtd = nand_to_mtd(chip);
5681        struct nand_device *nanddev = mtd_to_nanddev(mtd);
5682        struct nand_ecc_ctrl *ecc = &chip->ecc;
5683        int ret;
5684
5685        if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5686                return -EINVAL;
5687
5688        switch (ecc->algo) {
5689        case NAND_ECC_ALGO_HAMMING:
5690                ecc->calculate = rawnand_sw_hamming_calculate;
5691                ecc->correct = rawnand_sw_hamming_correct;
5692                ecc->read_page = nand_read_page_swecc;
5693                ecc->read_subpage = nand_read_subpage;
5694                ecc->write_page = nand_write_page_swecc;
5695                if (!ecc->read_page_raw)
5696                        ecc->read_page_raw = nand_read_page_raw;
5697                if (!ecc->write_page_raw)
5698                        ecc->write_page_raw = nand_write_page_raw;
5699                ecc->read_oob = nand_read_oob_std;
5700                ecc->write_oob = nand_write_oob_std;
5701                if (!ecc->size)
5702                        ecc->size = 256;
5703                ecc->bytes = 3;
5704                ecc->strength = 1;
5705
5706                if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5707                        ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5708
5709                ret = rawnand_sw_hamming_init(chip);
5710                if (ret) {
5711                        WARN(1, "Hamming ECC initialization failed!\n");
5712                        return ret;
5713                }
5714
5715                return 0;
5716        case NAND_ECC_ALGO_BCH:
5717                if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5718                        WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5719                        return -EINVAL;
5720                }
5721                ecc->calculate = rawnand_sw_bch_calculate;
5722                ecc->correct = rawnand_sw_bch_correct;
5723                ecc->read_page = nand_read_page_swecc;
5724                ecc->read_subpage = nand_read_subpage;
5725                ecc->write_page = nand_write_page_swecc;
5726                if (!ecc->read_page_raw)
5727                        ecc->read_page_raw = nand_read_page_raw;
5728                if (!ecc->write_page_raw)
5729                        ecc->write_page_raw = nand_write_page_raw;
5730                ecc->read_oob = nand_read_oob_std;
5731                ecc->write_oob = nand_write_oob_std;
5732
5733                /*
5734                 * We can only maximize ECC config when the default layout is
5735                 * used, otherwise we don't know how many bytes can really be
5736                 * used.
5737                 */
5738                if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5739                    mtd->ooblayout != nand_get_large_page_ooblayout())
5740                        nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5741
5742                ret = rawnand_sw_bch_init(chip);
5743                if (ret) {
5744                        WARN(1, "BCH ECC initialization failed!\n");
5745                        return ret;
5746                }
5747
5748                return 0;
5749        default:
5750                WARN(1, "Unsupported ECC algorithm!\n");
5751                return -EINVAL;
5752        }
5753}
5754
5755/**
5756 * nand_check_ecc_caps - check the sanity of preset ECC settings
5757 * @chip: nand chip info structure
5758 * @caps: ECC caps info structure
5759 * @oobavail: OOB size that the ECC engine can use
5760 *
5761 * When ECC step size and strength are already set, check if they are supported
5762 * by the controller and the calculated ECC bytes fit within the chip's OOB.
5763 * On success, the calculated ECC bytes is set.
5764 */
5765static int
5766nand_check_ecc_caps(struct nand_chip *chip,
5767                    const struct nand_ecc_caps *caps, int oobavail)
5768{
5769        struct mtd_info *mtd = nand_to_mtd(chip);
5770        const struct nand_ecc_step_info *stepinfo;
5771        int preset_step = chip->ecc.size;
5772        int preset_strength = chip->ecc.strength;
5773        int ecc_bytes, nsteps = mtd->writesize / preset_step;
5774        int i, j;
5775
5776        for (i = 0; i < caps->nstepinfos; i++) {
5777                stepinfo = &caps->stepinfos[i];
5778
5779                if (stepinfo->stepsize != preset_step)
5780                        continue;
5781
5782                for (j = 0; j < stepinfo->nstrengths; j++) {
5783                        if (stepinfo->strengths[j] != preset_strength)
5784                                continue;
5785
5786                        ecc_bytes = caps->calc_ecc_bytes(preset_step,
5787                                                         preset_strength);
5788                        if (WARN_ON_ONCE(ecc_bytes < 0))
5789                                return ecc_bytes;
5790
5791                        if (ecc_bytes * nsteps > oobavail) {
5792                                pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5793                                       preset_step, preset_strength);
5794                                return -ENOSPC;
5795                        }
5796
5797                        chip->ecc.bytes = ecc_bytes;
5798
5799                        return 0;
5800                }
5801        }
5802
5803        pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5804               preset_step, preset_strength);
5805
5806        return -ENOTSUPP;
5807}
5808
5809/**
5810 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5811 * @chip: nand chip info structure
5812 * @caps: ECC engine caps info structure
5813 * @oobavail: OOB size that the ECC engine can use
5814 *
5815 * If a chip's ECC requirement is provided, try to meet it with the least
5816 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5817 * On success, the chosen ECC settings are set.
5818 */
5819static int
5820nand_match_ecc_req(struct nand_chip *chip,
5821                   const struct nand_ecc_caps *caps, int oobavail)
5822{
5823        const struct nand_ecc_props *requirements =
5824                nanddev_get_ecc_requirements(&chip->base);
5825        struct mtd_info *mtd = nand_to_mtd(chip);
5826        const struct nand_ecc_step_info *stepinfo;
5827        int req_step = requirements->step_size;
5828        int req_strength = requirements->strength;
5829        int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5830        int best_step, best_strength, best_ecc_bytes;
5831        int best_ecc_bytes_total = INT_MAX;
5832        int i, j;
5833
5834        /* No information provided by the NAND chip */
5835        if (!req_step || !req_strength)
5836                return -ENOTSUPP;
5837
5838        /* number of correctable bits the chip requires in a page */
5839        req_corr = mtd->writesize / req_step * req_strength;
5840
5841        for (i = 0; i < caps->nstepinfos; i++) {
5842                stepinfo = &caps->stepinfos[i];
5843                step_size = stepinfo->stepsize;
5844
5845                for (j = 0; j < stepinfo->nstrengths; j++) {
5846                        strength = stepinfo->strengths[j];
5847
5848                        /*
5849                         * If both step size and strength are smaller than the
5850                         * chip's requirement, it is not easy to compare the
5851                         * resulted reliability.
5852                         */
5853                        if (step_size < req_step && strength < req_strength)
5854                                continue;
5855
5856                        if (mtd->writesize % step_size)
5857                                continue;
5858
5859                        nsteps = mtd->writesize / step_size;
5860
5861                        ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5862                        if (WARN_ON_ONCE(ecc_bytes < 0))
5863                                continue;
5864                        ecc_bytes_total = ecc_bytes * nsteps;
5865
5866                        if (ecc_bytes_total > oobavail ||
5867                            strength * nsteps < req_corr)
5868                                continue;
5869
5870                        /*
5871                         * We assume the best is to meet the chip's requrement
5872                         * with the least number of ECC bytes.
5873                         */
5874                        if (ecc_bytes_total < best_ecc_bytes_total) {
5875                                best_ecc_bytes_total = ecc_bytes_total;
5876                                best_step = step_size;
5877                                best_strength = strength;
5878                                best_ecc_bytes = ecc_bytes;
5879                        }
5880                }
5881        }
5882
5883        if (best_ecc_bytes_total == INT_MAX)
5884                return -ENOTSUPP;
5885
5886        chip->ecc.size = best_step;
5887        chip->ecc.strength = best_strength;
5888        chip->ecc.bytes = best_ecc_bytes;
5889
5890        return 0;
5891}
5892
5893/**
5894 * nand_maximize_ecc - choose the max ECC strength available
5895 * @chip: nand chip info structure
5896 * @caps: ECC engine caps info structure
5897 * @oobavail: OOB size that the ECC engine can use
5898 *
5899 * Choose the max ECC strength that is supported on the controller, and can fit
5900 * within the chip's OOB.  On success, the chosen ECC settings are set.
5901 */
5902static int
5903nand_maximize_ecc(struct nand_chip *chip,
5904                  const struct nand_ecc_caps *caps, int oobavail)
5905{
5906        struct mtd_info *mtd = nand_to_mtd(chip);
5907        const struct nand_ecc_step_info *stepinfo;
5908        int step_size, strength, nsteps, ecc_bytes, corr;
5909        int best_corr = 0;
5910        int best_step = 0;
5911        int best_strength, best_ecc_bytes;
5912        int i, j;
5913
5914        for (i = 0; i < caps->nstepinfos; i++) {
5915                stepinfo = &caps->stepinfos[i];
5916                step_size = stepinfo->stepsize;
5917
5918                /* If chip->ecc.size is already set, respect it */
5919                if (chip->ecc.size && step_size != chip->ecc.size)
5920                        continue;
5921
5922                for (j = 0; j < stepinfo->nstrengths; j++) {
5923                        strength = stepinfo->strengths[j];
5924
5925                        if (mtd->writesize % step_size)
5926                                continue;
5927
5928                        nsteps = mtd->writesize / step_size;
5929
5930                        ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5931                        if (WARN_ON_ONCE(ecc_bytes < 0))
5932                                continue;
5933
5934                        if (ecc_bytes * nsteps > oobavail)
5935                                continue;
5936
5937                        corr = strength * nsteps;
5938
5939                        /*
5940                         * If the number of correctable bits is the same,
5941                         * bigger step_size has more reliability.
5942                         */
5943                        if (corr > best_corr ||
5944                            (corr == best_corr && step_size > best_step)) {
5945                                best_corr = corr;
5946                                best_step = step_size;
5947                                best_strength = strength;
5948                                best_ecc_bytes = ecc_bytes;
5949                        }
5950                }
5951        }
5952
5953        if (!best_corr)
5954                return -ENOTSUPP;
5955
5956        chip->ecc.size = best_step;
5957        chip->ecc.strength = best_strength;
5958        chip->ecc.bytes = best_ecc_bytes;
5959
5960        return 0;
5961}
5962
5963/**
5964 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5965 * @chip: nand chip info structure
5966 * @caps: ECC engine caps info structure
5967 * @oobavail: OOB size that the ECC engine can use
5968 *
5969 * Choose the ECC configuration according to following logic.
5970 *
5971 * 1. If both ECC step size and ECC strength are already set (usually by DT)
5972 *    then check if it is supported by this controller.
5973 * 2. If the user provided the nand-ecc-maximize property, then select maximum
5974 *    ECC strength.
5975 * 3. Otherwise, try to match the ECC step size and ECC strength closest
5976 *    to the chip's requirement. If available OOB size can't fit the chip
5977 *    requirement then fallback to the maximum ECC step size and ECC strength.
5978 *
5979 * On success, the chosen ECC settings are set.
5980 */
5981int nand_ecc_choose_conf(struct nand_chip *chip,
5982                         const struct nand_ecc_caps *caps, int oobavail)
5983{
5984        struct mtd_info *mtd = nand_to_mtd(chip);
5985        struct nand_device *nanddev = mtd_to_nanddev(mtd);
5986
5987        if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5988                return -EINVAL;
5989
5990        if (chip->ecc.size && chip->ecc.strength)
5991                return nand_check_ecc_caps(chip, caps, oobavail);
5992
5993        if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
5994                return nand_maximize_ecc(chip, caps, oobavail);
5995
5996        if (!nand_match_ecc_req(chip, caps, oobavail))
5997                return 0;
5998
5999        return nand_maximize_ecc(chip, caps, oobavail);
6000}
6001EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6002
6003static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6004{
6005        struct nand_chip *chip = container_of(nand, struct nand_chip,
6006                                              base);
6007        unsigned int eb = nanddev_pos_to_row(nand, pos);
6008        int ret;
6009
6010        eb >>= nand->rowconv.eraseblock_addr_shift;
6011
6012        nand_select_target(chip, pos->target);
6013        ret = nand_erase_op(chip, eb);
6014        nand_deselect_target(chip);
6015
6016        return ret;
6017}
6018
6019static int rawnand_markbad(struct nand_device *nand,
6020                           const struct nand_pos *pos)
6021{
6022        struct nand_chip *chip = container_of(nand, struct nand_chip,
6023                                              base);
6024
6025        return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6026}
6027
6028static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6029{
6030        struct nand_chip *chip = container_of(nand, struct nand_chip,
6031                                              base);
6032        int ret;
6033
6034        nand_select_target(chip, pos->target);
6035        ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6036        nand_deselect_target(chip);
6037
6038        return ret;
6039}
6040
6041static const struct nand_ops rawnand_ops = {
6042        .erase = rawnand_erase,
6043        .markbad = rawnand_markbad,
6044        .isbad = rawnand_isbad,
6045};
6046
6047/**
6048 * nand_scan_tail - Scan for the NAND device
6049 * @chip: NAND chip object
6050 *
6051 * This is the second phase of the normal nand_scan() function. It fills out
6052 * all the uninitialized function pointers with the defaults and scans for a
6053 * bad block table if appropriate.
6054 */
6055static int nand_scan_tail(struct nand_chip *chip)
6056{
6057        struct mtd_info *mtd = nand_to_mtd(chip);
6058        struct nand_ecc_ctrl *ecc = &chip->ecc;
6059        int ret, i;
6060
6061        /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6062        if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6063                   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6064                return -EINVAL;
6065        }
6066
6067        chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6068        if (!chip->data_buf)
6069                return -ENOMEM;
6070
6071        /*
6072         * FIXME: some NAND manufacturer drivers expect the first die to be
6073         * selected when manufacturer->init() is called. They should be fixed
6074         * to explictly select the relevant die when interacting with the NAND
6075         * chip.
6076         */
6077        nand_select_target(chip, 0);
6078        ret = nand_manufacturer_init(chip);
6079        nand_deselect_target(chip);
6080        if (ret)
6081                goto err_free_buf;
6082
6083        /* Set the internal oob buffer location, just after the page data */
6084        chip->oob_poi = chip->data_buf + mtd->writesize;
6085
6086        /*
6087         * If no default placement scheme is given, select an appropriate one.
6088         */
6089        if (!mtd->ooblayout &&
6090            !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6091              ecc->algo == NAND_ECC_ALGO_BCH) &&
6092            !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6093              ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6094                switch (mtd->oobsize) {
6095                case 8:
6096                case 16:
6097                        mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6098                        break;
6099                case 64:
6100                case 128:
6101                        mtd_set_ooblayout(mtd,
6102                                          nand_get_large_page_hamming_ooblayout());
6103                        break;
6104                default:
6105                        /*
6106                         * Expose the whole OOB area to users if ECC_NONE
6107                         * is passed. We could do that for all kind of
6108                         * ->oobsize, but we must keep the old large/small
6109                         * page with ECC layout when ->oobsize <= 128 for
6110                         * compatibility reasons.
6111                         */
6112                        if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6113                                mtd_set_ooblayout(mtd,
6114                                                  nand_get_large_page_ooblayout());
6115                                break;
6116                        }
6117
6118                        WARN(1, "No oob scheme defined for oobsize %d\n",
6119                                mtd->oobsize);
6120                        ret = -EINVAL;
6121                        goto err_nand_manuf_cleanup;
6122                }
6123        }
6124
6125        /*
6126         * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6127         * selected and we have 256 byte pagesize fallback to software ECC
6128         */
6129
6130        switch (ecc->engine_type) {
6131        case NAND_ECC_ENGINE_TYPE_ON_HOST:
6132                ret = nand_set_ecc_on_host_ops(chip);
6133                if (ret)
6134                        goto err_nand_manuf_cleanup;
6135
6136                if (mtd->writesize >= ecc->size) {
6137                        if (!ecc->strength) {
6138                                WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6139                                ret = -EINVAL;
6140                                goto err_nand_manuf_cleanup;
6141                        }
6142                        break;
6143                }
6144                pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6145                        ecc->size, mtd->writesize);
6146                ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6147                ecc->algo = NAND_ECC_ALGO_HAMMING;
6148                fallthrough;
6149
6150        case NAND_ECC_ENGINE_TYPE_SOFT:
6151                ret = nand_set_ecc_soft_ops(chip);
6152                if (ret)
6153                        goto err_nand_manuf_cleanup;
6154                break;
6155
6156        case NAND_ECC_ENGINE_TYPE_ON_DIE:
6157                if (!ecc->read_page || !ecc->write_page) {
6158                        WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6159                        ret = -EINVAL;
6160                        goto err_nand_manuf_cleanup;
6161                }
6162                if (!ecc->read_oob)
6163                        ecc->read_oob = nand_read_oob_std;
6164                if (!ecc->write_oob)
6165                        ecc->write_oob = nand_write_oob_std;
6166                break;
6167
6168        case NAND_ECC_ENGINE_TYPE_NONE:
6169                pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6170                ecc->read_page = nand_read_page_raw;
6171                ecc->write_page = nand_write_page_raw;
6172                ecc->read_oob = nand_read_oob_std;
6173                ecc->read_page_raw = nand_read_page_raw;
6174                ecc->write_page_raw = nand_write_page_raw;
6175                ecc->write_oob = nand_write_oob_std;
6176                ecc->size = mtd->writesize;
6177                ecc->bytes = 0;
6178                ecc->strength = 0;
6179                break;
6180
6181        default:
6182                WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6183                ret = -EINVAL;
6184                goto err_nand_manuf_cleanup;
6185        }
6186
6187        if (ecc->correct || ecc->calculate) {
6188                ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6189                ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6190                if (!ecc->calc_buf || !ecc->code_buf) {
6191                        ret = -ENOMEM;
6192                        goto err_nand_manuf_cleanup;
6193                }
6194        }
6195
6196        /* For many systems, the standard OOB write also works for raw */
6197        if (!ecc->read_oob_raw)
6198                ecc->read_oob_raw = ecc->read_oob;
6199        if (!ecc->write_oob_raw)
6200                ecc->write_oob_raw = ecc->write_oob;
6201
6202        /* propagate ecc info to mtd_info */
6203        mtd->ecc_strength = ecc->strength;
6204        mtd->ecc_step_size = ecc->size;
6205
6206        /*
6207         * Set the number of read / write steps for one page depending on ECC
6208         * mode.
6209         */
6210        if (!ecc->steps)
6211                ecc->steps = mtd->writesize / ecc->size;
6212        if (ecc->steps * ecc->size != mtd->writesize) {
6213                WARN(1, "Invalid ECC parameters\n");
6214                ret = -EINVAL;
6215                goto err_nand_manuf_cleanup;
6216        }
6217
6218        if (!ecc->total) {
6219                ecc->total = ecc->steps * ecc->bytes;
6220                chip->base.ecc.ctx.total = ecc->total;
6221        }
6222
6223        if (ecc->total > mtd->oobsize) {
6224                WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6225                ret = -EINVAL;
6226                goto err_nand_manuf_cleanup;
6227        }
6228
6229        /*
6230         * The number of bytes available for a client to place data into
6231         * the out of band area.
6232         */
6233        ret = mtd_ooblayout_count_freebytes(mtd);
6234        if (ret < 0)
6235                ret = 0;
6236
6237        mtd->oobavail = ret;
6238
6239        /* ECC sanity check: warn if it's too weak */
6240        if (!nand_ecc_is_strong_enough(&chip->base))
6241                pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6242                        mtd->name, chip->ecc.strength, chip->ecc.size,
6243                        nanddev_get_ecc_requirements(&chip->base)->strength,
6244                        nanddev_get_ecc_requirements(&chip->base)->step_size);
6245
6246        /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6247        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6248                switch (ecc->steps) {
6249                case 2:
6250                        mtd->subpage_sft = 1;
6251                        break;
6252                case 4:
6253                case 8:
6254                case 16:
6255                        mtd->subpage_sft = 2;
6256                        break;
6257                }
6258        }
6259        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6260
6261        /* Invalidate the pagebuffer reference */
6262        chip->pagecache.page = -1;
6263
6264        /* Large page NAND with SOFT_ECC should support subpage reads */
6265        switch (ecc->engine_type) {
6266        case NAND_ECC_ENGINE_TYPE_SOFT:
6267                if (chip->page_shift > 9)
6268                        chip->options |= NAND_SUBPAGE_READ;
6269                break;
6270
6271        default:
6272                break;
6273        }
6274
6275        ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6276        if (ret)
6277                goto err_nand_manuf_cleanup;
6278
6279        /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6280        if (chip->options & NAND_ROM)
6281                mtd->flags = MTD_CAP_ROM;
6282
6283        /* Fill in remaining MTD driver data */
6284        mtd->_erase = nand_erase;
6285        mtd->_point = NULL;
6286        mtd->_unpoint = NULL;
6287        mtd->_panic_write = panic_nand_write;
6288        mtd->_read_oob = nand_read_oob;
6289        mtd->_write_oob = nand_write_oob;
6290        mtd->_sync = nand_sync;
6291        mtd->_lock = nand_lock;
6292        mtd->_unlock = nand_unlock;
6293        mtd->_suspend = nand_suspend;
6294        mtd->_resume = nand_resume;
6295        mtd->_reboot = nand_shutdown;
6296        mtd->_block_isreserved = nand_block_isreserved;
6297        mtd->_block_isbad = nand_block_isbad;
6298        mtd->_block_markbad = nand_block_markbad;
6299        mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6300
6301        /*
6302         * Initialize bitflip_threshold to its default prior scan_bbt() call.
6303         * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6304         * properly set.
6305         */
6306        if (!mtd->bitflip_threshold)
6307                mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6308
6309        /* Find the fastest data interface for this chip */
6310        ret = nand_choose_interface_config(chip);
6311        if (ret)
6312                goto err_nanddev_cleanup;
6313
6314        /* Enter fastest possible mode on all dies. */
6315        for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6316                ret = nand_setup_interface(chip, i);
6317                if (ret)
6318                        goto err_free_interface_config;
6319        }
6320
6321        /*
6322         * Look for secure regions in the NAND chip. These regions are supposed
6323         * to be protected by a secure element like Trustzone. So the read/write
6324         * accesses to these regions will be blocked in the runtime by this
6325         * driver.
6326         */
6327        ret = of_get_nand_secure_regions(chip);
6328        if (ret)
6329                goto err_free_interface_config;
6330
6331        /* Check, if we should skip the bad block table scan */
6332        if (chip->options & NAND_SKIP_BBTSCAN)
6333                return 0;
6334
6335        /* Build bad block table */
6336        ret = nand_create_bbt(chip);
6337        if (ret)
6338                goto err_free_secure_regions;
6339
6340        return 0;
6341
6342err_free_secure_regions:
6343        kfree(chip->secure_regions);
6344
6345err_free_interface_config:
6346        kfree(chip->best_interface_config);
6347
6348err_nanddev_cleanup:
6349        nanddev_cleanup(&chip->base);
6350
6351err_nand_manuf_cleanup:
6352        nand_manufacturer_cleanup(chip);
6353
6354err_free_buf:
6355        kfree(chip->data_buf);
6356        kfree(ecc->code_buf);
6357        kfree(ecc->calc_buf);
6358
6359        return ret;
6360}
6361
6362static int nand_attach(struct nand_chip *chip)
6363{
6364        if (chip->controller->ops && chip->controller->ops->attach_chip)
6365                return chip->controller->ops->attach_chip(chip);
6366
6367        return 0;
6368}
6369
6370static void nand_detach(struct nand_chip *chip)
6371{
6372        if (chip->controller->ops && chip->controller->ops->detach_chip)
6373                chip->controller->ops->detach_chip(chip);
6374}
6375
6376/**
6377 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6378 * @chip: NAND chip object
6379 * @maxchips: number of chips to scan for.
6380 * @ids: optional flash IDs table
6381 *
6382 * This fills out all the uninitialized function pointers with the defaults.
6383 * The flash ID is read and the mtd/chip structures are filled with the
6384 * appropriate values.
6385 */
6386int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6387                       struct nand_flash_dev *ids)
6388{
6389        int ret;
6390
6391        if (!maxchips)
6392                return -EINVAL;
6393
6394        ret = nand_scan_ident(chip, maxchips, ids);
6395        if (ret)
6396                return ret;
6397
6398        ret = nand_attach(chip);
6399        if (ret)
6400                goto cleanup_ident;
6401
6402        ret = nand_scan_tail(chip);
6403        if (ret)
6404                goto detach_chip;
6405
6406        return 0;
6407
6408detach_chip:
6409        nand_detach(chip);
6410cleanup_ident:
6411        nand_scan_ident_cleanup(chip);
6412
6413        return ret;
6414}
6415EXPORT_SYMBOL(nand_scan_with_ids);
6416
6417/**
6418 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6419 * @chip: NAND chip object
6420 */
6421void nand_cleanup(struct nand_chip *chip)
6422{
6423        if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6424                if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6425                        rawnand_sw_hamming_cleanup(chip);
6426                else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6427                        rawnand_sw_bch_cleanup(chip);
6428        }
6429
6430        nanddev_cleanup(&chip->base);
6431
6432        /* Free secure regions data */
6433        kfree(chip->secure_regions);
6434
6435        /* Free bad block table memory */
6436        kfree(chip->bbt);
6437        kfree(chip->data_buf);
6438        kfree(chip->ecc.code_buf);
6439        kfree(chip->ecc.calc_buf);
6440
6441        /* Free bad block descriptor memory */
6442        if (chip->badblock_pattern && chip->badblock_pattern->options
6443                        & NAND_BBT_DYNAMICSTRUCT)
6444                kfree(chip->badblock_pattern);
6445
6446        /* Free the data interface */
6447        kfree(chip->best_interface_config);
6448
6449        /* Free manufacturer priv data. */
6450        nand_manufacturer_cleanup(chip);
6451
6452        /* Free controller specific allocations after chip identification */
6453        nand_detach(chip);
6454
6455        /* Free identification phase allocations */
6456        nand_scan_ident_cleanup(chip);
6457}
6458
6459EXPORT_SYMBOL_GPL(nand_cleanup);
6460
6461MODULE_LICENSE("GPL");
6462MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6463MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6464MODULE_DESCRIPTION("Generic NAND flash driver code");
6465