linux/drivers/mtd/nand/raw/omap2.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   4 * Copyright © 2004 Micron Technology Inc.
   5 * Copyright © 2004 David Brownell
   6 */
   7
   8#include <linux/platform_device.h>
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/delay.h>
  12#include <linux/gpio/consumer.h>
  13#include <linux/module.h>
  14#include <linux/interrupt.h>
  15#include <linux/jiffies.h>
  16#include <linux/sched.h>
  17#include <linux/mtd/mtd.h>
  18#include <linux/mtd/nand-ecc-sw-bch.h>
  19#include <linux/mtd/rawnand.h>
  20#include <linux/mtd/partitions.h>
  21#include <linux/omap-dma.h>
  22#include <linux/iopoll.h>
  23#include <linux/slab.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26
  27#include <linux/platform_data/elm.h>
  28
  29#include <linux/omap-gpmc.h>
  30#include <linux/platform_data/mtd-nand-omap2.h>
  31
  32#define DRIVER_NAME     "omap2-nand"
  33#define OMAP_NAND_TIMEOUT_MS    5000
  34
  35#define NAND_Ecc_P1e            (1 << 0)
  36#define NAND_Ecc_P2e            (1 << 1)
  37#define NAND_Ecc_P4e            (1 << 2)
  38#define NAND_Ecc_P8e            (1 << 3)
  39#define NAND_Ecc_P16e           (1 << 4)
  40#define NAND_Ecc_P32e           (1 << 5)
  41#define NAND_Ecc_P64e           (1 << 6)
  42#define NAND_Ecc_P128e          (1 << 7)
  43#define NAND_Ecc_P256e          (1 << 8)
  44#define NAND_Ecc_P512e          (1 << 9)
  45#define NAND_Ecc_P1024e         (1 << 10)
  46#define NAND_Ecc_P2048e         (1 << 11)
  47
  48#define NAND_Ecc_P1o            (1 << 16)
  49#define NAND_Ecc_P2o            (1 << 17)
  50#define NAND_Ecc_P4o            (1 << 18)
  51#define NAND_Ecc_P8o            (1 << 19)
  52#define NAND_Ecc_P16o           (1 << 20)
  53#define NAND_Ecc_P32o           (1 << 21)
  54#define NAND_Ecc_P64o           (1 << 22)
  55#define NAND_Ecc_P128o          (1 << 23)
  56#define NAND_Ecc_P256o          (1 << 24)
  57#define NAND_Ecc_P512o          (1 << 25)
  58#define NAND_Ecc_P1024o         (1 << 26)
  59#define NAND_Ecc_P2048o         (1 << 27)
  60
  61#define TF(value)       (value ? 1 : 0)
  62
  63#define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
  64#define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
  65#define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
  66#define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
  67#define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
  68#define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
  69#define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
  70#define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
  71
  72#define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
  73#define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
  74#define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
  75#define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
  76#define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
  77#define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
  78#define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
  79#define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
  80
  81#define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
  82#define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
  83#define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
  84#define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
  85#define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
  86#define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
  87#define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
  88#define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
  89
  90#define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
  91#define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
  92#define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
  93#define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
  94#define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
  95#define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
  96#define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
  97#define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
  98
  99#define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
 100#define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
 101
 102#define PREFETCH_CONFIG1_CS_SHIFT       24
 103#define ECC_CONFIG_CS_SHIFT             1
 104#define CS_MASK                         0x7
 105#define ENABLE_PREFETCH                 (0x1 << 7)
 106#define DMA_MPU_MODE_SHIFT              2
 107#define ECCSIZE0_SHIFT                  12
 108#define ECCSIZE1_SHIFT                  22
 109#define ECC1RESULTSIZE                  0x1
 110#define ECCCLEAR                        0x100
 111#define ECC1                            0x1
 112#define PREFETCH_FIFOTHRESHOLD_MAX      0x40
 113#define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
 114#define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
 115#define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
 116#define STATUS_BUFF_EMPTY               0x00000001
 117
 118#define SECTOR_BYTES            512
 119/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 120#define BCH4_BIT_PAD            4
 121
 122/* GPMC ecc engine settings for read */
 123#define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
 124#define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
 125#define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
 126#define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
 127#define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
 128
 129/* GPMC ecc engine settings for write */
 130#define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
 131#define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
 132#define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
 133
 134#define BBM_LEN                 2
 135
 136static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 137                                0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 138                                0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 139                                0x07, 0x0e};
 140static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 141        0xac, 0x6b, 0xff, 0x99, 0x7b};
 142static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 143
 144struct omap_nand_info {
 145        struct nand_chip                nand;
 146        struct platform_device          *pdev;
 147
 148        int                             gpmc_cs;
 149        bool                            dev_ready;
 150        enum nand_io                    xfer_type;
 151        enum omap_ecc                   ecc_opt;
 152        struct device_node              *elm_of_node;
 153
 154        unsigned long                   phys_base;
 155        struct completion               comp;
 156        struct dma_chan                 *dma;
 157        int                             gpmc_irq_fifo;
 158        int                             gpmc_irq_count;
 159        enum {
 160                OMAP_NAND_IO_READ = 0,  /* read */
 161                OMAP_NAND_IO_WRITE,     /* write */
 162        } iomode;
 163        u_char                          *buf;
 164        int                                     buf_len;
 165        /* Interface to GPMC */
 166        void __iomem                    *fifo;
 167        struct gpmc_nand_regs           reg;
 168        struct gpmc_nand_ops            *ops;
 169        bool                            flash_bbt;
 170        /* fields specific for BCHx_HW ECC scheme */
 171        struct device                   *elm_dev;
 172        /* NAND ready gpio */
 173        struct gpio_desc                *ready_gpiod;
 174        unsigned int                    neccpg;
 175        unsigned int                    nsteps_per_eccpg;
 176        unsigned int                    eccpg_size;
 177        unsigned int                    eccpg_bytes;
 178        void (*data_in)(struct nand_chip *chip, void *buf,
 179                        unsigned int len, bool force_8bit);
 180        void (*data_out)(struct nand_chip *chip,
 181                         const void *buf, unsigned int len,
 182                         bool force_8bit);
 183};
 184
 185static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
 186{
 187        return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
 188}
 189
 190static void omap_nand_data_in(struct nand_chip *chip, void *buf,
 191                              unsigned int len, bool force_8bit);
 192
 193static void omap_nand_data_out(struct nand_chip *chip,
 194                               const void *buf, unsigned int len,
 195                               bool force_8bit);
 196
 197/**
 198 * omap_prefetch_enable - configures and starts prefetch transfer
 199 * @cs: cs (chip select) number
 200 * @fifo_th: fifo threshold to be used for read/ write
 201 * @dma_mode: dma mode enable (1) or disable (0)
 202 * @u32_count: number of bytes to be transferred
 203 * @is_write: prefetch read(0) or write post(1) mode
 204 * @info: NAND device structure containing platform data
 205 */
 206static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 207        unsigned int u32_count, int is_write, struct omap_nand_info *info)
 208{
 209        u32 val;
 210
 211        if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 212                return -1;
 213
 214        if (readl(info->reg.gpmc_prefetch_control))
 215                return -EBUSY;
 216
 217        /* Set the amount of bytes to be prefetched */
 218        writel(u32_count, info->reg.gpmc_prefetch_config2);
 219
 220        /* Set dma/mpu mode, the prefetch read / post write and
 221         * enable the engine. Set which cs is has requested for.
 222         */
 223        val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 224                PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 225                (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
 226        writel(val, info->reg.gpmc_prefetch_config1);
 227
 228        /*  Start the prefetch engine */
 229        writel(0x1, info->reg.gpmc_prefetch_control);
 230
 231        return 0;
 232}
 233
 234/*
 235 * omap_prefetch_reset - disables and stops the prefetch engine
 236 */
 237static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 238{
 239        u32 config1;
 240
 241        /* check if the same module/cs is trying to reset */
 242        config1 = readl(info->reg.gpmc_prefetch_config1);
 243        if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 244                return -EINVAL;
 245
 246        /* Stop the PFPW engine */
 247        writel(0x0, info->reg.gpmc_prefetch_control);
 248
 249        /* Reset/disable the PFPW engine */
 250        writel(0x0, info->reg.gpmc_prefetch_config1);
 251
 252        return 0;
 253}
 254
 255/**
 256 * omap_nand_data_in_pref - NAND data in using prefetch engine
 257 */
 258static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf,
 259                                   unsigned int len, bool force_8bit)
 260{
 261        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 262        uint32_t r_count = 0;
 263        int ret = 0;
 264        u32 *p = (u32 *)buf;
 265        unsigned int pref_len;
 266
 267        if (force_8bit) {
 268                omap_nand_data_in(chip, buf, len, force_8bit);
 269                return;
 270        }
 271
 272        /* read 32-bit words using prefetch and remaining bytes normally */
 273
 274        /* configure and start prefetch transfer */
 275        pref_len = len - (len & 3);
 276        ret = omap_prefetch_enable(info->gpmc_cs,
 277                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info);
 278        if (ret) {
 279                /* prefetch engine is busy, use CPU copy method */
 280                omap_nand_data_in(chip, buf, len, false);
 281        } else {
 282                do {
 283                        r_count = readl(info->reg.gpmc_prefetch_status);
 284                        r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 285                        r_count = r_count >> 2;
 286                        ioread32_rep(info->fifo, p, r_count);
 287                        p += r_count;
 288                        pref_len -= r_count << 2;
 289                } while (pref_len);
 290                /* disable and stop the Prefetch engine */
 291                omap_prefetch_reset(info->gpmc_cs, info);
 292                /* fetch any remaining bytes */
 293                if (len & 3)
 294                        omap_nand_data_in(chip, p, len & 3, false);
 295        }
 296}
 297
 298/**
 299 * omap_nand_data_out_pref - NAND data out using Write Posting engine
 300 */
 301static void omap_nand_data_out_pref(struct nand_chip *chip,
 302                                    const void *buf, unsigned int len,
 303                                    bool force_8bit)
 304{
 305        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 306        uint32_t w_count = 0;
 307        int i = 0, ret = 0;
 308        u16 *p = (u16 *)buf;
 309        unsigned long tim, limit;
 310        u32 val;
 311
 312        if (force_8bit) {
 313                omap_nand_data_out(chip, buf, len, force_8bit);
 314                return;
 315        }
 316
 317        /* take care of subpage writes */
 318        if (len % 2 != 0) {
 319                writeb(*(u8 *)buf, info->fifo);
 320                p = (u16 *)(buf + 1);
 321                len--;
 322        }
 323
 324        /*  configure and start prefetch transfer */
 325        ret = omap_prefetch_enable(info->gpmc_cs,
 326                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 327        if (ret) {
 328                /* write posting engine is busy, use CPU copy method */
 329                omap_nand_data_out(chip, buf, len, false);
 330        } else {
 331                while (len) {
 332                        w_count = readl(info->reg.gpmc_prefetch_status);
 333                        w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 334                        w_count = w_count >> 1;
 335                        for (i = 0; (i < w_count) && len; i++, len -= 2)
 336                                iowrite16(*p++, info->fifo);
 337                }
 338                /* wait for data to flushed-out before reset the prefetch */
 339                tim = 0;
 340                limit = (loops_per_jiffy *
 341                                        msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 342                do {
 343                        cpu_relax();
 344                        val = readl(info->reg.gpmc_prefetch_status);
 345                        val = PREFETCH_STATUS_COUNT(val);
 346                } while (val && (tim++ < limit));
 347
 348                /* disable and stop the PFPW engine */
 349                omap_prefetch_reset(info->gpmc_cs, info);
 350        }
 351}
 352
 353/*
 354 * omap_nand_dma_callback: callback on the completion of dma transfer
 355 * @data: pointer to completion data structure
 356 */
 357static void omap_nand_dma_callback(void *data)
 358{
 359        complete((struct completion *) data);
 360}
 361
 362/*
 363 * omap_nand_dma_transfer: configure and start dma transfer
 364 * @chip: nand chip structure
 365 * @addr: virtual address in RAM of source/destination
 366 * @len: number of data bytes to be transferred
 367 * @is_write: flag for read/write operation
 368 */
 369static inline int omap_nand_dma_transfer(struct nand_chip *chip,
 370                                         const void *addr, unsigned int len,
 371                                         int is_write)
 372{
 373        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 374        struct dma_async_tx_descriptor *tx;
 375        enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 376                                                        DMA_FROM_DEVICE;
 377        struct scatterlist sg;
 378        unsigned long tim, limit;
 379        unsigned n;
 380        int ret;
 381        u32 val;
 382
 383        if (!virt_addr_valid(addr))
 384                goto out_copy;
 385
 386        sg_init_one(&sg, addr, len);
 387        n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 388        if (n == 0) {
 389                dev_err(&info->pdev->dev,
 390                        "Couldn't DMA map a %d byte buffer\n", len);
 391                goto out_copy;
 392        }
 393
 394        tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 395                is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 396                DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 397        if (!tx)
 398                goto out_copy_unmap;
 399
 400        tx->callback = omap_nand_dma_callback;
 401        tx->callback_param = &info->comp;
 402        dmaengine_submit(tx);
 403
 404        init_completion(&info->comp);
 405
 406        /* setup and start DMA using dma_addr */
 407        dma_async_issue_pending(info->dma);
 408
 409        /*  configure and start prefetch transfer */
 410        ret = omap_prefetch_enable(info->gpmc_cs,
 411                PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 412        if (ret)
 413                /* PFPW engine is busy, use cpu copy method */
 414                goto out_copy_unmap;
 415
 416        wait_for_completion(&info->comp);
 417        tim = 0;
 418        limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 419
 420        do {
 421                cpu_relax();
 422                val = readl(info->reg.gpmc_prefetch_status);
 423                val = PREFETCH_STATUS_COUNT(val);
 424        } while (val && (tim++ < limit));
 425
 426        /* disable and stop the PFPW engine */
 427        omap_prefetch_reset(info->gpmc_cs, info);
 428
 429        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 430        return 0;
 431
 432out_copy_unmap:
 433        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 434out_copy:
 435        is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false)
 436                      : omap_nand_data_out(chip, addr, len, false);
 437
 438        return 0;
 439}
 440
 441/**
 442 * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch
 443 */
 444static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf,
 445                                       unsigned int len, bool force_8bit)
 446{
 447        struct mtd_info *mtd = nand_to_mtd(chip);
 448
 449        if (force_8bit) {
 450                omap_nand_data_in(chip, buf, len, force_8bit);
 451                return;
 452        }
 453
 454        if (len <= mtd->oobsize)
 455                omap_nand_data_in_pref(chip, buf, len, false);
 456        else
 457                /* start transfer in DMA mode */
 458                omap_nand_dma_transfer(chip, buf, len, 0x0);
 459}
 460
 461/**
 462 * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting
 463 */
 464static void omap_nand_data_out_dma_pref(struct nand_chip *chip,
 465                                        const void *buf, unsigned int len,
 466                                        bool force_8bit)
 467{
 468        struct mtd_info *mtd = nand_to_mtd(chip);
 469
 470        if (force_8bit) {
 471                omap_nand_data_out(chip, buf, len, force_8bit);
 472                return;
 473        }
 474
 475        if (len <= mtd->oobsize)
 476                omap_nand_data_out_pref(chip, buf, len, false);
 477        else
 478                /* start transfer in DMA mode */
 479                omap_nand_dma_transfer(chip, buf, len, 0x1);
 480}
 481
 482/*
 483 * omap_nand_irq - GPMC irq handler
 484 * @this_irq: gpmc irq number
 485 * @dev: omap_nand_info structure pointer is passed here
 486 */
 487static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 488{
 489        struct omap_nand_info *info = (struct omap_nand_info *) dev;
 490        u32 bytes;
 491
 492        bytes = readl(info->reg.gpmc_prefetch_status);
 493        bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 494        bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 495        if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 496                if (this_irq == info->gpmc_irq_count)
 497                        goto done;
 498
 499                if (info->buf_len && (info->buf_len < bytes))
 500                        bytes = info->buf_len;
 501                else if (!info->buf_len)
 502                        bytes = 0;
 503                iowrite32_rep(info->fifo, (u32 *)info->buf,
 504                              bytes >> 2);
 505                info->buf = info->buf + bytes;
 506                info->buf_len -= bytes;
 507
 508        } else {
 509                ioread32_rep(info->fifo, (u32 *)info->buf,
 510                             bytes >> 2);
 511                info->buf = info->buf + bytes;
 512
 513                if (this_irq == info->gpmc_irq_count)
 514                        goto done;
 515        }
 516
 517        return IRQ_HANDLED;
 518
 519done:
 520        complete(&info->comp);
 521
 522        disable_irq_nosync(info->gpmc_irq_fifo);
 523        disable_irq_nosync(info->gpmc_irq_count);
 524
 525        return IRQ_HANDLED;
 526}
 527
 528/*
 529 * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ
 530 */
 531static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf,
 532                                       unsigned int len, bool force_8bit)
 533{
 534        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 535        struct mtd_info *mtd = nand_to_mtd(&info->nand);
 536        int ret = 0;
 537
 538        if (len <= mtd->oobsize || force_8bit) {
 539                omap_nand_data_in(chip, buf, len, force_8bit);
 540                return;
 541        }
 542
 543        info->iomode = OMAP_NAND_IO_READ;
 544        info->buf = buf;
 545        init_completion(&info->comp);
 546
 547        /*  configure and start prefetch transfer */
 548        ret = omap_prefetch_enable(info->gpmc_cs,
 549                        PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 550        if (ret) {
 551                /* PFPW engine is busy, use cpu copy method */
 552                omap_nand_data_in(chip, buf, len, false);
 553                return;
 554        }
 555
 556        info->buf_len = len;
 557
 558        enable_irq(info->gpmc_irq_count);
 559        enable_irq(info->gpmc_irq_fifo);
 560
 561        /* waiting for read to complete */
 562        wait_for_completion(&info->comp);
 563
 564        /* disable and stop the PFPW engine */
 565        omap_prefetch_reset(info->gpmc_cs, info);
 566        return;
 567}
 568
 569/*
 570 * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ
 571 */
 572static void omap_nand_data_out_irq_pref(struct nand_chip *chip,
 573                                        const void *buf, unsigned int len,
 574                                        bool force_8bit)
 575{
 576        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 577        struct mtd_info *mtd = nand_to_mtd(&info->nand);
 578        int ret = 0;
 579        unsigned long tim, limit;
 580        u32 val;
 581
 582        if (len <= mtd->oobsize || force_8bit) {
 583                omap_nand_data_out(chip, buf, len, force_8bit);
 584                return;
 585        }
 586
 587        info->iomode = OMAP_NAND_IO_WRITE;
 588        info->buf = (u_char *) buf;
 589        init_completion(&info->comp);
 590
 591        /* configure and start prefetch transfer : size=24 */
 592        ret = omap_prefetch_enable(info->gpmc_cs,
 593                (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 594        if (ret) {
 595                /* PFPW engine is busy, use cpu copy method */
 596                omap_nand_data_out(chip, buf, len, false);
 597                return;
 598        }
 599
 600        info->buf_len = len;
 601
 602        enable_irq(info->gpmc_irq_count);
 603        enable_irq(info->gpmc_irq_fifo);
 604
 605        /* waiting for write to complete */
 606        wait_for_completion(&info->comp);
 607
 608        /* wait for data to flushed-out before reset the prefetch */
 609        tim = 0;
 610        limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 611        do {
 612                val = readl(info->reg.gpmc_prefetch_status);
 613                val = PREFETCH_STATUS_COUNT(val);
 614                cpu_relax();
 615        } while (val && (tim++ < limit));
 616
 617        /* disable and stop the PFPW engine */
 618        omap_prefetch_reset(info->gpmc_cs, info);
 619        return;
 620}
 621
 622/**
 623 * gen_true_ecc - This function will generate true ECC value
 624 * @ecc_buf: buffer to store ecc code
 625 *
 626 * This generated true ECC value can be used when correcting
 627 * data read from NAND flash memory core
 628 */
 629static void gen_true_ecc(u8 *ecc_buf)
 630{
 631        u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 632                ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 633
 634        ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 635                        P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 636        ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 637                        P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 638        ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 639                        P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 640}
 641
 642/**
 643 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 644 * @ecc_data1:  ecc code from nand spare area
 645 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 646 * @page_data:  page data
 647 *
 648 * This function compares two ECC's and indicates if there is an error.
 649 * If the error can be corrected it will be corrected to the buffer.
 650 * If there is no error, %0 is returned. If there is an error but it
 651 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 652 */
 653static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
 654                            u8 *ecc_data2,      /* read from register */
 655                            u8 *page_data)
 656{
 657        uint    i;
 658        u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 659        u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
 660        u8      ecc_bit[24];
 661        u8      ecc_sum = 0;
 662        u8      find_bit = 0;
 663        uint    find_byte = 0;
 664        int     isEccFF;
 665
 666        isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 667
 668        gen_true_ecc(ecc_data1);
 669        gen_true_ecc(ecc_data2);
 670
 671        for (i = 0; i <= 2; i++) {
 672                *(ecc_data1 + i) = ~(*(ecc_data1 + i));
 673                *(ecc_data2 + i) = ~(*(ecc_data2 + i));
 674        }
 675
 676        for (i = 0; i < 8; i++) {
 677                tmp0_bit[i]     = *ecc_data1 % 2;
 678                *ecc_data1      = *ecc_data1 / 2;
 679        }
 680
 681        for (i = 0; i < 8; i++) {
 682                tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
 683                *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 684        }
 685
 686        for (i = 0; i < 8; i++) {
 687                tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
 688                *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 689        }
 690
 691        for (i = 0; i < 8; i++) {
 692                comp0_bit[i]     = *ecc_data2 % 2;
 693                *ecc_data2       = *ecc_data2 / 2;
 694        }
 695
 696        for (i = 0; i < 8; i++) {
 697                comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 698                *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 699        }
 700
 701        for (i = 0; i < 8; i++) {
 702                comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 703                *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 704        }
 705
 706        for (i = 0; i < 6; i++)
 707                ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 708
 709        for (i = 0; i < 8; i++)
 710                ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 711
 712        for (i = 0; i < 8; i++)
 713                ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 714
 715        ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 716        ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 717
 718        for (i = 0; i < 24; i++)
 719                ecc_sum += ecc_bit[i];
 720
 721        switch (ecc_sum) {
 722        case 0:
 723                /* Not reached because this function is not called if
 724                 *  ECC values are equal
 725                 */
 726                return 0;
 727
 728        case 1:
 729                /* Uncorrectable error */
 730                pr_debug("ECC UNCORRECTED_ERROR 1\n");
 731                return -EBADMSG;
 732
 733        case 11:
 734                /* UN-Correctable error */
 735                pr_debug("ECC UNCORRECTED_ERROR B\n");
 736                return -EBADMSG;
 737
 738        case 12:
 739                /* Correctable error */
 740                find_byte = (ecc_bit[23] << 8) +
 741                            (ecc_bit[21] << 7) +
 742                            (ecc_bit[19] << 6) +
 743                            (ecc_bit[17] << 5) +
 744                            (ecc_bit[15] << 4) +
 745                            (ecc_bit[13] << 3) +
 746                            (ecc_bit[11] << 2) +
 747                            (ecc_bit[9]  << 1) +
 748                            ecc_bit[7];
 749
 750                find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 751
 752                pr_debug("Correcting single bit ECC error at offset: "
 753                                "%d, bit: %d\n", find_byte, find_bit);
 754
 755                page_data[find_byte] ^= (1 << find_bit);
 756
 757                return 1;
 758        default:
 759                if (isEccFF) {
 760                        if (ecc_data2[0] == 0 &&
 761                            ecc_data2[1] == 0 &&
 762                            ecc_data2[2] == 0)
 763                                return 0;
 764                }
 765                pr_debug("UNCORRECTED_ERROR default\n");
 766                return -EBADMSG;
 767        }
 768}
 769
 770/**
 771 * omap_correct_data - Compares the ECC read with HW generated ECC
 772 * @chip: NAND chip object
 773 * @dat: page data
 774 * @read_ecc: ecc read from nand flash
 775 * @calc_ecc: ecc read from HW ECC registers
 776 *
 777 * Compares the ecc read from nand spare area with ECC registers values
 778 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 779 * detection and correction. If there are no errors, %0 is returned. If
 780 * there were errors and all of the errors were corrected, the number of
 781 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 782 * returned.
 783 */
 784static int omap_correct_data(struct nand_chip *chip, u_char *dat,
 785                             u_char *read_ecc, u_char *calc_ecc)
 786{
 787        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 788        int blockCnt = 0, i = 0, ret = 0;
 789        int stat = 0;
 790
 791        /* Ex NAND_ECC_HW12_2048 */
 792        if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
 793            info->nand.ecc.size == 2048)
 794                blockCnt = 4;
 795        else
 796                blockCnt = 1;
 797
 798        for (i = 0; i < blockCnt; i++) {
 799                if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 800                        ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 801                        if (ret < 0)
 802                                return ret;
 803                        /* keep track of the number of corrected errors */
 804                        stat += ret;
 805                }
 806                read_ecc += 3;
 807                calc_ecc += 3;
 808                dat      += 512;
 809        }
 810        return stat;
 811}
 812
 813/**
 814 * omap_calculate_ecc - Generate non-inverted ECC bytes.
 815 * @chip: NAND chip object
 816 * @dat: The pointer to data on which ecc is computed
 817 * @ecc_code: The ecc_code buffer
 818 *
 819 * Using noninverted ECC can be considered ugly since writing a blank
 820 * page ie. padding will clear the ECC bytes. This is no problem as long
 821 * nobody is trying to write data on the seemingly unused page. Reading
 822 * an erased page will produce an ECC mismatch between generated and read
 823 * ECC bytes that has to be dealt with separately.
 824 */
 825static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
 826                              u_char *ecc_code)
 827{
 828        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 829        u32 val;
 830
 831        val = readl(info->reg.gpmc_ecc_config);
 832        if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 833                return -EINVAL;
 834
 835        /* read ecc result */
 836        val = readl(info->reg.gpmc_ecc1_result);
 837        *ecc_code++ = val;          /* P128e, ..., P1e */
 838        *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 839        /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 840        *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 841
 842        return 0;
 843}
 844
 845/**
 846 * omap_enable_hwecc - This function enables the hardware ecc functionality
 847 * @chip: NAND chip object
 848 * @mode: Read/Write mode
 849 */
 850static void omap_enable_hwecc(struct nand_chip *chip, int mode)
 851{
 852        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 853        unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 854        u32 val;
 855
 856        /* clear ecc and enable bits */
 857        val = ECCCLEAR | ECC1;
 858        writel(val, info->reg.gpmc_ecc_control);
 859
 860        /* program ecc and result sizes */
 861        val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 862                         ECC1RESULTSIZE);
 863        writel(val, info->reg.gpmc_ecc_size_config);
 864
 865        switch (mode) {
 866        case NAND_ECC_READ:
 867        case NAND_ECC_WRITE:
 868                writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 869                break;
 870        case NAND_ECC_READSYN:
 871                writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 872                break;
 873        default:
 874                dev_info(&info->pdev->dev,
 875                        "error: unrecognized Mode[%d]!\n", mode);
 876                break;
 877        }
 878
 879        /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 880        val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 881        writel(val, info->reg.gpmc_ecc_config);
 882}
 883
 884/**
 885 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
 886 * @chip: NAND chip object
 887 * @mode: Read/Write mode
 888 *
 889 * When using BCH with SW correction (i.e. no ELM), sector size is set
 890 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
 891 * for both reading and writing with:
 892 * eccsize0 = 0  (no additional protected byte in spare area)
 893 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
 894 */
 895static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
 896                                                 int mode)
 897{
 898        unsigned int bch_type;
 899        unsigned int dev_width, nsectors;
 900        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 901        enum omap_ecc ecc_opt = info->ecc_opt;
 902        u32 val, wr_mode;
 903        unsigned int ecc_size1, ecc_size0;
 904
 905        /* GPMC configurations for calculating ECC */
 906        switch (ecc_opt) {
 907        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
 908                bch_type = 0;
 909                nsectors = 1;
 910                wr_mode   = BCH_WRAPMODE_6;
 911                ecc_size0 = BCH_ECC_SIZE0;
 912                ecc_size1 = BCH_ECC_SIZE1;
 913                break;
 914        case OMAP_ECC_BCH4_CODE_HW:
 915                bch_type = 0;
 916                nsectors = chip->ecc.steps;
 917                if (mode == NAND_ECC_READ) {
 918                        wr_mode   = BCH_WRAPMODE_1;
 919                        ecc_size0 = BCH4R_ECC_SIZE0;
 920                        ecc_size1 = BCH4R_ECC_SIZE1;
 921                } else {
 922                        wr_mode   = BCH_WRAPMODE_6;
 923                        ecc_size0 = BCH_ECC_SIZE0;
 924                        ecc_size1 = BCH_ECC_SIZE1;
 925                }
 926                break;
 927        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 928                bch_type = 1;
 929                nsectors = 1;
 930                wr_mode   = BCH_WRAPMODE_6;
 931                ecc_size0 = BCH_ECC_SIZE0;
 932                ecc_size1 = BCH_ECC_SIZE1;
 933                break;
 934        case OMAP_ECC_BCH8_CODE_HW:
 935                bch_type = 1;
 936                nsectors = chip->ecc.steps;
 937                if (mode == NAND_ECC_READ) {
 938                        wr_mode   = BCH_WRAPMODE_1;
 939                        ecc_size0 = BCH8R_ECC_SIZE0;
 940                        ecc_size1 = BCH8R_ECC_SIZE1;
 941                } else {
 942                        wr_mode   = BCH_WRAPMODE_6;
 943                        ecc_size0 = BCH_ECC_SIZE0;
 944                        ecc_size1 = BCH_ECC_SIZE1;
 945                }
 946                break;
 947        case OMAP_ECC_BCH16_CODE_HW:
 948                bch_type = 0x2;
 949                nsectors = chip->ecc.steps;
 950                if (mode == NAND_ECC_READ) {
 951                        wr_mode   = 0x01;
 952                        ecc_size0 = 52; /* ECC bits in nibbles per sector */
 953                        ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
 954                } else {
 955                        wr_mode   = 0x01;
 956                        ecc_size0 = 0;  /* extra bits in nibbles per sector */
 957                        ecc_size1 = 52; /* OOB bits in nibbles per sector */
 958                }
 959                break;
 960        default:
 961                return;
 962        }
 963
 964        writel(ECC1, info->reg.gpmc_ecc_control);
 965
 966        /* Configure ecc size for BCH */
 967        val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
 968        writel(val, info->reg.gpmc_ecc_size_config);
 969
 970        dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 971
 972        /* BCH configuration */
 973        val = ((1                        << 16) | /* enable BCH */
 974               (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
 975               (wr_mode                  <<  8) | /* wrap mode */
 976               (dev_width                <<  7) | /* bus width */
 977               (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
 978               (info->gpmc_cs            <<  1) | /* ECC CS */
 979               (0x1));                            /* enable ECC */
 980
 981        writel(val, info->reg.gpmc_ecc_config);
 982
 983        /* Clear ecc and enable bits */
 984        writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 985}
 986
 987static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
 988static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
 989                                0x97, 0x79, 0xe5, 0x24, 0xb5};
 990
 991/**
 992 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
 993 * @mtd:        MTD device structure
 994 * @dat:        The pointer to data on which ecc is computed
 995 * @ecc_calc:   The ecc_code buffer
 996 * @i:          The sector number (for a multi sector page)
 997 *
 998 * Support calculating of BCH4/8/16 ECC vectors for one sector
 999 * within a page. Sector number is in @i.
1000 */
1001static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1002                                   const u_char *dat, u_char *ecc_calc, int i)
1003{
1004        struct omap_nand_info *info = mtd_to_omap(mtd);
1005        int eccbytes    = info->nand.ecc.bytes;
1006        struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1007        u8 *ecc_code;
1008        unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1009        u32 val;
1010        int j;
1011
1012        ecc_code = ecc_calc;
1013        switch (info->ecc_opt) {
1014        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1015        case OMAP_ECC_BCH8_CODE_HW:
1016                bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1017                bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1018                bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1019                bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1020                *ecc_code++ = (bch_val4 & 0xFF);
1021                *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1022                *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1023                *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1024                *ecc_code++ = (bch_val3 & 0xFF);
1025                *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1026                *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1027                *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1028                *ecc_code++ = (bch_val2 & 0xFF);
1029                *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1030                *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1031                *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1032                *ecc_code++ = (bch_val1 & 0xFF);
1033                break;
1034        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1035        case OMAP_ECC_BCH4_CODE_HW:
1036                bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1037                bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1038                *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1039                *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1040                *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1041                        ((bch_val1 >> 28) & 0xF);
1042                *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1043                *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1044                *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1045                *ecc_code++ = ((bch_val1 & 0xF) << 4);
1046                break;
1047        case OMAP_ECC_BCH16_CODE_HW:
1048                val = readl(gpmc_regs->gpmc_bch_result6[i]);
1049                ecc_code[0]  = ((val >>  8) & 0xFF);
1050                ecc_code[1]  = ((val >>  0) & 0xFF);
1051                val = readl(gpmc_regs->gpmc_bch_result5[i]);
1052                ecc_code[2]  = ((val >> 24) & 0xFF);
1053                ecc_code[3]  = ((val >> 16) & 0xFF);
1054                ecc_code[4]  = ((val >>  8) & 0xFF);
1055                ecc_code[5]  = ((val >>  0) & 0xFF);
1056                val = readl(gpmc_regs->gpmc_bch_result4[i]);
1057                ecc_code[6]  = ((val >> 24) & 0xFF);
1058                ecc_code[7]  = ((val >> 16) & 0xFF);
1059                ecc_code[8]  = ((val >>  8) & 0xFF);
1060                ecc_code[9]  = ((val >>  0) & 0xFF);
1061                val = readl(gpmc_regs->gpmc_bch_result3[i]);
1062                ecc_code[10] = ((val >> 24) & 0xFF);
1063                ecc_code[11] = ((val >> 16) & 0xFF);
1064                ecc_code[12] = ((val >>  8) & 0xFF);
1065                ecc_code[13] = ((val >>  0) & 0xFF);
1066                val = readl(gpmc_regs->gpmc_bch_result2[i]);
1067                ecc_code[14] = ((val >> 24) & 0xFF);
1068                ecc_code[15] = ((val >> 16) & 0xFF);
1069                ecc_code[16] = ((val >>  8) & 0xFF);
1070                ecc_code[17] = ((val >>  0) & 0xFF);
1071                val = readl(gpmc_regs->gpmc_bch_result1[i]);
1072                ecc_code[18] = ((val >> 24) & 0xFF);
1073                ecc_code[19] = ((val >> 16) & 0xFF);
1074                ecc_code[20] = ((val >>  8) & 0xFF);
1075                ecc_code[21] = ((val >>  0) & 0xFF);
1076                val = readl(gpmc_regs->gpmc_bch_result0[i]);
1077                ecc_code[22] = ((val >> 24) & 0xFF);
1078                ecc_code[23] = ((val >> 16) & 0xFF);
1079                ecc_code[24] = ((val >>  8) & 0xFF);
1080                ecc_code[25] = ((val >>  0) & 0xFF);
1081                break;
1082        default:
1083                return -EINVAL;
1084        }
1085
1086        /* ECC scheme specific syndrome customizations */
1087        switch (info->ecc_opt) {
1088        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1089                /* Add constant polynomial to remainder, so that
1090                 * ECC of blank pages results in 0x0 on reading back
1091                 */
1092                for (j = 0; j < eccbytes; j++)
1093                        ecc_calc[j] ^= bch4_polynomial[j];
1094                break;
1095        case OMAP_ECC_BCH4_CODE_HW:
1096                /* Set  8th ECC byte as 0x0 for ROM compatibility */
1097                ecc_calc[eccbytes - 1] = 0x0;
1098                break;
1099        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1100                /* Add constant polynomial to remainder, so that
1101                 * ECC of blank pages results in 0x0 on reading back
1102                 */
1103                for (j = 0; j < eccbytes; j++)
1104                        ecc_calc[j] ^= bch8_polynomial[j];
1105                break;
1106        case OMAP_ECC_BCH8_CODE_HW:
1107                /* Set 14th ECC byte as 0x0 for ROM compatibility */
1108                ecc_calc[eccbytes - 1] = 0x0;
1109                break;
1110        case OMAP_ECC_BCH16_CODE_HW:
1111                break;
1112        default:
1113                return -EINVAL;
1114        }
1115
1116        return 0;
1117}
1118
1119/**
1120 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1121 * @chip:       NAND chip object
1122 * @dat:        The pointer to data on which ecc is computed
1123 * @ecc_calc:   Buffer storing the calculated ECC bytes
1124 *
1125 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1126 * when SW based correction is required as ECC is required for one sector
1127 * at a time.
1128 */
1129static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1130                                     const u_char *dat, u_char *ecc_calc)
1131{
1132        return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1133}
1134
1135/**
1136 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1137 * @mtd:        MTD device structure
1138 * @dat:        The pointer to data on which ecc is computed
1139 * @ecc_calc:   Buffer storing the calculated ECC bytes
1140 *
1141 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1142 */
1143static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1144                                        const u_char *dat, u_char *ecc_calc)
1145{
1146        struct omap_nand_info *info = mtd_to_omap(mtd);
1147        int eccbytes = info->nand.ecc.bytes;
1148        unsigned long nsectors;
1149        int i, ret;
1150
1151        nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1152        for (i = 0; i < nsectors; i++) {
1153                ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1154                if (ret)
1155                        return ret;
1156
1157                ecc_calc += eccbytes;
1158        }
1159
1160        return 0;
1161}
1162
1163/**
1164 * erased_sector_bitflips - count bit flips
1165 * @data:       data sector buffer
1166 * @oob:        oob buffer
1167 * @info:       omap_nand_info
1168 *
1169 * Check the bit flips in erased page falls below correctable level.
1170 * If falls below, report the page as erased with correctable bit
1171 * flip, else report as uncorrectable page.
1172 */
1173static int erased_sector_bitflips(u_char *data, u_char *oob,
1174                struct omap_nand_info *info)
1175{
1176        int flip_bits = 0, i;
1177
1178        for (i = 0; i < info->nand.ecc.size; i++) {
1179                flip_bits += hweight8(~data[i]);
1180                if (flip_bits > info->nand.ecc.strength)
1181                        return 0;
1182        }
1183
1184        for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1185                flip_bits += hweight8(~oob[i]);
1186                if (flip_bits > info->nand.ecc.strength)
1187                        return 0;
1188        }
1189
1190        /*
1191         * Bit flips falls in correctable level.
1192         * Fill data area with 0xFF
1193         */
1194        if (flip_bits) {
1195                memset(data, 0xFF, info->nand.ecc.size);
1196                memset(oob, 0xFF, info->nand.ecc.bytes);
1197        }
1198
1199        return flip_bits;
1200}
1201
1202/**
1203 * omap_elm_correct_data - corrects page data area in case error reported
1204 * @chip:       NAND chip object
1205 * @data:       page data
1206 * @read_ecc:   ecc read from nand flash
1207 * @calc_ecc:   ecc read from HW ECC registers
1208 *
1209 * Calculated ecc vector reported as zero in case of non-error pages.
1210 * In case of non-zero ecc vector, first filter out erased-pages, and
1211 * then process data via ELM to detect bit-flips.
1212 */
1213static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1214                                 u_char *read_ecc, u_char *calc_ecc)
1215{
1216        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1217        struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1218        int eccsteps = info->nsteps_per_eccpg;
1219        int i , j, stat = 0;
1220        int eccflag, actual_eccbytes;
1221        struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1222        u_char *ecc_vec = calc_ecc;
1223        u_char *spare_ecc = read_ecc;
1224        u_char *erased_ecc_vec;
1225        u_char *buf;
1226        int bitflip_count;
1227        bool is_error_reported = false;
1228        u32 bit_pos, byte_pos, error_max, pos;
1229        int err;
1230
1231        switch (info->ecc_opt) {
1232        case OMAP_ECC_BCH4_CODE_HW:
1233                /* omit  7th ECC byte reserved for ROM code compatibility */
1234                actual_eccbytes = ecc->bytes - 1;
1235                erased_ecc_vec = bch4_vector;
1236                break;
1237        case OMAP_ECC_BCH8_CODE_HW:
1238                /* omit 14th ECC byte reserved for ROM code compatibility */
1239                actual_eccbytes = ecc->bytes - 1;
1240                erased_ecc_vec = bch8_vector;
1241                break;
1242        case OMAP_ECC_BCH16_CODE_HW:
1243                actual_eccbytes = ecc->bytes;
1244                erased_ecc_vec = bch16_vector;
1245                break;
1246        default:
1247                dev_err(&info->pdev->dev, "invalid driver configuration\n");
1248                return -EINVAL;
1249        }
1250
1251        /* Initialize elm error vector to zero */
1252        memset(err_vec, 0, sizeof(err_vec));
1253
1254        for (i = 0; i < eccsteps ; i++) {
1255                eccflag = 0;    /* initialize eccflag */
1256
1257                /*
1258                 * Check any error reported,
1259                 * In case of error, non zero ecc reported.
1260                 */
1261                for (j = 0; j < actual_eccbytes; j++) {
1262                        if (calc_ecc[j] != 0) {
1263                                eccflag = 1; /* non zero ecc, error present */
1264                                break;
1265                        }
1266                }
1267
1268                if (eccflag == 1) {
1269                        if (memcmp(calc_ecc, erased_ecc_vec,
1270                                                actual_eccbytes) == 0) {
1271                                /*
1272                                 * calc_ecc[] matches pattern for ECC(all 0xff)
1273                                 * so this is definitely an erased-page
1274                                 */
1275                        } else {
1276                                buf = &data[info->nand.ecc.size * i];
1277                                /*
1278                                 * count number of 0-bits in read_buf.
1279                                 * This check can be removed once a similar
1280                                 * check is introduced in generic NAND driver
1281                                 */
1282                                bitflip_count = erased_sector_bitflips(
1283                                                buf, read_ecc, info);
1284                                if (bitflip_count) {
1285                                        /*
1286                                         * number of 0-bits within ECC limits
1287                                         * So this may be an erased-page
1288                                         */
1289                                        stat += bitflip_count;
1290                                } else {
1291                                        /*
1292                                         * Too many 0-bits. It may be a
1293                                         * - programmed-page, OR
1294                                         * - erased-page with many bit-flips
1295                                         * So this page requires check by ELM
1296                                         */
1297                                        err_vec[i].error_reported = true;
1298                                        is_error_reported = true;
1299                                }
1300                        }
1301                }
1302
1303                /* Update the ecc vector */
1304                calc_ecc += ecc->bytes;
1305                read_ecc += ecc->bytes;
1306        }
1307
1308        /* Check if any error reported */
1309        if (!is_error_reported)
1310                return stat;
1311
1312        /* Decode BCH error using ELM module */
1313        elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1314
1315        err = 0;
1316        for (i = 0; i < eccsteps; i++) {
1317                if (err_vec[i].error_uncorrectable) {
1318                        dev_err(&info->pdev->dev,
1319                                "uncorrectable bit-flips found\n");
1320                        err = -EBADMSG;
1321                } else if (err_vec[i].error_reported) {
1322                        for (j = 0; j < err_vec[i].error_count; j++) {
1323                                switch (info->ecc_opt) {
1324                                case OMAP_ECC_BCH4_CODE_HW:
1325                                        /* Add 4 bits to take care of padding */
1326                                        pos = err_vec[i].error_loc[j] +
1327                                                BCH4_BIT_PAD;
1328                                        break;
1329                                case OMAP_ECC_BCH8_CODE_HW:
1330                                case OMAP_ECC_BCH16_CODE_HW:
1331                                        pos = err_vec[i].error_loc[j];
1332                                        break;
1333                                default:
1334                                        return -EINVAL;
1335                                }
1336                                error_max = (ecc->size + actual_eccbytes) * 8;
1337                                /* Calculate bit position of error */
1338                                bit_pos = pos % 8;
1339
1340                                /* Calculate byte position of error */
1341                                byte_pos = (error_max - pos - 1) / 8;
1342
1343                                if (pos < error_max) {
1344                                        if (byte_pos < 512) {
1345                                                pr_debug("bitflip@dat[%d]=%x\n",
1346                                                     byte_pos, data[byte_pos]);
1347                                                data[byte_pos] ^= 1 << bit_pos;
1348                                        } else {
1349                                                pr_debug("bitflip@oob[%d]=%x\n",
1350                                                        (byte_pos - 512),
1351                                                     spare_ecc[byte_pos - 512]);
1352                                                spare_ecc[byte_pos - 512] ^=
1353                                                        1 << bit_pos;
1354                                        }
1355                                } else {
1356                                        dev_err(&info->pdev->dev,
1357                                                "invalid bit-flip @ %d:%d\n",
1358                                                byte_pos, bit_pos);
1359                                        err = -EBADMSG;
1360                                }
1361                        }
1362                }
1363
1364                /* Update number of correctable errors */
1365                stat = max_t(unsigned int, stat, err_vec[i].error_count);
1366
1367                /* Update page data with sector size */
1368                data += ecc->size;
1369                spare_ecc += ecc->bytes;
1370        }
1371
1372        return (err) ? err : stat;
1373}
1374
1375/**
1376 * omap_write_page_bch - BCH ecc based write page function for entire page
1377 * @chip:               nand chip info structure
1378 * @buf:                data buffer
1379 * @oob_required:       must write chip->oob_poi to OOB
1380 * @page:               page
1381 *
1382 * Custom write page method evolved to support multi sector writing in one shot
1383 */
1384static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1385                               int oob_required, int page)
1386{
1387        struct mtd_info *mtd = nand_to_mtd(chip);
1388        struct omap_nand_info *info = mtd_to_omap(mtd);
1389        uint8_t *ecc_calc = chip->ecc.calc_buf;
1390        unsigned int eccpg;
1391        int ret;
1392
1393        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1394        if (ret)
1395                return ret;
1396
1397        for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1398                /* Enable GPMC ecc engine */
1399                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1400
1401                /* Write data */
1402                info->data_out(chip, buf + (eccpg * info->eccpg_size),
1403                               info->eccpg_size, false);
1404
1405                /* Update ecc vector from GPMC result registers */
1406                ret = omap_calculate_ecc_bch_multi(mtd,
1407                                                   buf + (eccpg * info->eccpg_size),
1408                                                   ecc_calc);
1409                if (ret)
1410                        return ret;
1411
1412                ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
1413                                                 chip->oob_poi,
1414                                                 eccpg * info->eccpg_bytes,
1415                                                 info->eccpg_bytes);
1416                if (ret)
1417                        return ret;
1418        }
1419
1420        /* Write ecc vector to OOB area */
1421        info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1422
1423        return nand_prog_page_end_op(chip);
1424}
1425
1426/**
1427 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1428 * @chip:       nand chip info structure
1429 * @offset:     column address of subpage within the page
1430 * @data_len:   data length
1431 * @buf:        data buffer
1432 * @oob_required: must write chip->oob_poi to OOB
1433 * @page: page number to write
1434 *
1435 * OMAP optimized subpage write method.
1436 */
1437static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1438                                  u32 data_len, const u8 *buf,
1439                                  int oob_required, int page)
1440{
1441        struct mtd_info *mtd = nand_to_mtd(chip);
1442        struct omap_nand_info *info = mtd_to_omap(mtd);
1443        u8 *ecc_calc = chip->ecc.calc_buf;
1444        int ecc_size      = chip->ecc.size;
1445        int ecc_bytes     = chip->ecc.bytes;
1446        u32 start_step = offset / ecc_size;
1447        u32 end_step   = (offset + data_len - 1) / ecc_size;
1448        unsigned int eccpg;
1449        int step, ret = 0;
1450
1451        /*
1452         * Write entire page at one go as it would be optimal
1453         * as ECC is calculated by hardware.
1454         * ECC is calculated for all subpages but we choose
1455         * only what we want.
1456         */
1457        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1458        if (ret)
1459                return ret;
1460
1461        for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1462                /* Enable GPMC ECC engine */
1463                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1464
1465                /* Write data */
1466                info->data_out(chip, buf + (eccpg * info->eccpg_size),
1467                               info->eccpg_size, false);
1468
1469                for (step = 0; step < info->nsteps_per_eccpg; step++) {
1470                        unsigned int base_step = eccpg * info->nsteps_per_eccpg;
1471                        const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
1472
1473                        /* Mask ECC of un-touched subpages with 0xFFs */
1474                        if ((step + base_step) < start_step ||
1475                            (step + base_step) > end_step)
1476                                memset(ecc_calc + (step * ecc_bytes), 0xff,
1477                                       ecc_bytes);
1478                        else
1479                                ret = _omap_calculate_ecc_bch(mtd,
1480                                                              bufoffs + (step * ecc_size),
1481                                                              ecc_calc + (step * ecc_bytes),
1482                                                              step);
1483
1484                        if (ret)
1485                                return ret;
1486                }
1487
1488                /*
1489                 * Copy the calculated ECC for the whole page including the
1490                 * masked values (0xFF) corresponding to unwritten subpages.
1491                 */
1492                ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
1493                                                 eccpg * info->eccpg_bytes,
1494                                                 info->eccpg_bytes);
1495                if (ret)
1496                        return ret;
1497        }
1498
1499        /* write OOB buffer to NAND device */
1500        info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1501
1502        return nand_prog_page_end_op(chip);
1503}
1504
1505/**
1506 * omap_read_page_bch - BCH ecc based page read function for entire page
1507 * @chip:               nand chip info structure
1508 * @buf:                buffer to store read data
1509 * @oob_required:       caller requires OOB data read to chip->oob_poi
1510 * @page:               page number to read
1511 *
1512 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1513 * used for error correction.
1514 * Custom method evolved to support ELM error correction & multi sector
1515 * reading. On reading page data area is read along with OOB data with
1516 * ecc engine enabled. ecc vector updated after read of OOB data.
1517 * For non error pages ecc vector reported as zero.
1518 */
1519static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1520                              int oob_required, int page)
1521{
1522        struct mtd_info *mtd = nand_to_mtd(chip);
1523        struct omap_nand_info *info = mtd_to_omap(mtd);
1524        uint8_t *ecc_calc = chip->ecc.calc_buf;
1525        uint8_t *ecc_code = chip->ecc.code_buf;
1526        unsigned int max_bitflips = 0, eccpg;
1527        int stat, ret;
1528
1529        ret = nand_read_page_op(chip, page, 0, NULL, 0);
1530        if (ret)
1531                return ret;
1532
1533        for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1534                /* Enable GPMC ecc engine */
1535                chip->ecc.hwctl(chip, NAND_ECC_READ);
1536
1537                /* Read data */
1538                ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
1539                                                 buf + (eccpg * info->eccpg_size),
1540                                                 info->eccpg_size, false);
1541                if (ret)
1542                        return ret;
1543
1544                /* Read oob bytes */
1545                ret = nand_change_read_column_op(chip,
1546                                                 mtd->writesize + BBM_LEN +
1547                                                 (eccpg * info->eccpg_bytes),
1548                                                 chip->oob_poi + BBM_LEN +
1549                                                 (eccpg * info->eccpg_bytes),
1550                                                 info->eccpg_bytes, false);
1551                if (ret)
1552                        return ret;
1553
1554                /* Calculate ecc bytes */
1555                ret = omap_calculate_ecc_bch_multi(mtd,
1556                                                   buf + (eccpg * info->eccpg_size),
1557                                                   ecc_calc);
1558                if (ret)
1559                        return ret;
1560
1561                ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
1562                                                 chip->oob_poi,
1563                                                 eccpg * info->eccpg_bytes,
1564                                                 info->eccpg_bytes);
1565                if (ret)
1566                        return ret;
1567
1568                stat = chip->ecc.correct(chip,
1569                                         buf + (eccpg * info->eccpg_size),
1570                                         ecc_code, ecc_calc);
1571                if (stat < 0) {
1572                        mtd->ecc_stats.failed++;
1573                } else {
1574                        mtd->ecc_stats.corrected += stat;
1575                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1576                }
1577        }
1578
1579        return max_bitflips;
1580}
1581
1582/**
1583 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1584 * @info: NAND device structure containing platform data
1585 * @elm_node: ELM's DT node
1586 */
1587static bool is_elm_present(struct omap_nand_info *info,
1588                           struct device_node *elm_node)
1589{
1590        struct platform_device *pdev;
1591
1592        /* check whether elm-id is passed via DT */
1593        if (!elm_node) {
1594                dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1595                return false;
1596        }
1597        pdev = of_find_device_by_node(elm_node);
1598        /* check whether ELM device is registered */
1599        if (!pdev) {
1600                dev_err(&info->pdev->dev, "ELM device not found\n");
1601                return false;
1602        }
1603        /* ELM module available, now configure it */
1604        info->elm_dev = &pdev->dev;
1605        return true;
1606}
1607
1608static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1609{
1610        bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1611
1612        switch (info->ecc_opt) {
1613        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1614        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1615                ecc_needs_omap_bch = false;
1616                ecc_needs_bch = true;
1617                ecc_needs_elm = false;
1618                break;
1619        case OMAP_ECC_BCH4_CODE_HW:
1620        case OMAP_ECC_BCH8_CODE_HW:
1621        case OMAP_ECC_BCH16_CODE_HW:
1622                ecc_needs_omap_bch = true;
1623                ecc_needs_bch = false;
1624                ecc_needs_elm = true;
1625                break;
1626        default:
1627                ecc_needs_omap_bch = false;
1628                ecc_needs_bch = false;
1629                ecc_needs_elm = false;
1630                break;
1631        }
1632
1633        if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1634                dev_err(&info->pdev->dev,
1635                        "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1636                return false;
1637        }
1638        if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1639                dev_err(&info->pdev->dev,
1640                        "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1641                return false;
1642        }
1643        if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1644                dev_err(&info->pdev->dev, "ELM not available\n");
1645                return false;
1646        }
1647
1648        return true;
1649}
1650
1651static const char * const nand_xfer_types[] = {
1652        [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1653        [NAND_OMAP_POLLED] = "polled",
1654        [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1655        [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1656};
1657
1658static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1659{
1660        struct device_node *child = dev->of_node;
1661        int i;
1662        const char *s;
1663        u32 cs;
1664
1665        if (of_property_read_u32(child, "reg", &cs) < 0) {
1666                dev_err(dev, "reg not found in DT\n");
1667                return -EINVAL;
1668        }
1669
1670        info->gpmc_cs = cs;
1671
1672        /* detect availability of ELM module. Won't be present pre-OMAP4 */
1673        info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1674        if (!info->elm_of_node) {
1675                info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1676                if (!info->elm_of_node)
1677                        dev_dbg(dev, "ti,elm-id not in DT\n");
1678        }
1679
1680        /* select ecc-scheme for NAND */
1681        if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1682                dev_err(dev, "ti,nand-ecc-opt not found\n");
1683                return -EINVAL;
1684        }
1685
1686        if (!strcmp(s, "sw")) {
1687                info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1688        } else if (!strcmp(s, "ham1") ||
1689                   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1690                info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1691        } else if (!strcmp(s, "bch4")) {
1692                if (info->elm_of_node)
1693                        info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1694                else
1695                        info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1696        } else if (!strcmp(s, "bch8")) {
1697                if (info->elm_of_node)
1698                        info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1699                else
1700                        info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1701        } else if (!strcmp(s, "bch16")) {
1702                info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1703        } else {
1704                dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1705                return -EINVAL;
1706        }
1707
1708        /* select data transfer mode */
1709        if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1710                for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1711                        if (!strcasecmp(s, nand_xfer_types[i])) {
1712                                info->xfer_type = i;
1713                                return 0;
1714                        }
1715                }
1716
1717                dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1718                return -EINVAL;
1719        }
1720
1721        return 0;
1722}
1723
1724static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1725                              struct mtd_oob_region *oobregion)
1726{
1727        struct omap_nand_info *info = mtd_to_omap(mtd);
1728        struct nand_chip *chip = &info->nand;
1729        int off = BBM_LEN;
1730
1731        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1732            !(chip->options & NAND_BUSWIDTH_16))
1733                off = 1;
1734
1735        if (section)
1736                return -ERANGE;
1737
1738        oobregion->offset = off;
1739        oobregion->length = chip->ecc.total;
1740
1741        return 0;
1742}
1743
1744static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1745                               struct mtd_oob_region *oobregion)
1746{
1747        struct omap_nand_info *info = mtd_to_omap(mtd);
1748        struct nand_chip *chip = &info->nand;
1749        int off = BBM_LEN;
1750
1751        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1752            !(chip->options & NAND_BUSWIDTH_16))
1753                off = 1;
1754
1755        if (section)
1756                return -ERANGE;
1757
1758        off += chip->ecc.total;
1759        if (off >= mtd->oobsize)
1760                return -ERANGE;
1761
1762        oobregion->offset = off;
1763        oobregion->length = mtd->oobsize - off;
1764
1765        return 0;
1766}
1767
1768static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1769        .ecc = omap_ooblayout_ecc,
1770        .free = omap_ooblayout_free,
1771};
1772
1773static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1774                                 struct mtd_oob_region *oobregion)
1775{
1776        struct nand_device *nand = mtd_to_nanddev(mtd);
1777        unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1778        unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1779        int off = BBM_LEN;
1780
1781        if (section >= nsteps)
1782                return -ERANGE;
1783
1784        /*
1785         * When SW correction is employed, one OMAP specific marker byte is
1786         * reserved after each ECC step.
1787         */
1788        oobregion->offset = off + (section * (ecc_bytes + 1));
1789        oobregion->length = ecc_bytes;
1790
1791        return 0;
1792}
1793
1794static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1795                                  struct mtd_oob_region *oobregion)
1796{
1797        struct nand_device *nand = mtd_to_nanddev(mtd);
1798        unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1799        unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1800        int off = BBM_LEN;
1801
1802        if (section)
1803                return -ERANGE;
1804
1805        /*
1806         * When SW correction is employed, one OMAP specific marker byte is
1807         * reserved after each ECC step.
1808         */
1809        off += ((ecc_bytes + 1) * nsteps);
1810        if (off >= mtd->oobsize)
1811                return -ERANGE;
1812
1813        oobregion->offset = off;
1814        oobregion->length = mtd->oobsize - off;
1815
1816        return 0;
1817}
1818
1819static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1820        .ecc = omap_sw_ooblayout_ecc,
1821        .free = omap_sw_ooblayout_free,
1822};
1823
1824static int omap_nand_attach_chip(struct nand_chip *chip)
1825{
1826        struct mtd_info *mtd = nand_to_mtd(chip);
1827        struct omap_nand_info *info = mtd_to_omap(mtd);
1828        struct device *dev = &info->pdev->dev;
1829        int min_oobbytes = BBM_LEN;
1830        int elm_bch_strength = -1;
1831        int oobbytes_per_step;
1832        dma_cap_mask_t mask;
1833        int err;
1834
1835        if (chip->bbt_options & NAND_BBT_USE_FLASH)
1836                chip->bbt_options |= NAND_BBT_NO_OOB;
1837        else
1838                chip->options |= NAND_SKIP_BBTSCAN;
1839
1840        /* Re-populate low-level callbacks based on xfer modes */
1841        switch (info->xfer_type) {
1842        case NAND_OMAP_PREFETCH_POLLED:
1843                info->data_in = omap_nand_data_in_pref;
1844                info->data_out = omap_nand_data_out_pref;
1845                break;
1846
1847        case NAND_OMAP_POLLED:
1848                /* Use nand_base defaults for {read,write}_buf */
1849                break;
1850
1851        case NAND_OMAP_PREFETCH_DMA:
1852                dma_cap_zero(mask);
1853                dma_cap_set(DMA_SLAVE, mask);
1854                info->dma = dma_request_chan(dev->parent, "rxtx");
1855
1856                if (IS_ERR(info->dma)) {
1857                        dev_err(dev, "DMA engine request failed\n");
1858                        return PTR_ERR(info->dma);
1859                } else {
1860                        struct dma_slave_config cfg;
1861
1862                        memset(&cfg, 0, sizeof(cfg));
1863                        cfg.src_addr = info->phys_base;
1864                        cfg.dst_addr = info->phys_base;
1865                        cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1866                        cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1867                        cfg.src_maxburst = 16;
1868                        cfg.dst_maxburst = 16;
1869                        err = dmaengine_slave_config(info->dma, &cfg);
1870                        if (err) {
1871                                dev_err(dev,
1872                                        "DMA engine slave config failed: %d\n",
1873                                        err);
1874                                return err;
1875                        }
1876
1877                        info->data_in = omap_nand_data_in_dma_pref;
1878                        info->data_out = omap_nand_data_out_dma_pref;
1879                }
1880                break;
1881
1882        case NAND_OMAP_PREFETCH_IRQ:
1883                info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1884                if (info->gpmc_irq_fifo <= 0)
1885                        return -ENODEV;
1886                err = devm_request_irq(dev, info->gpmc_irq_fifo,
1887                                       omap_nand_irq, IRQF_SHARED,
1888                                       "gpmc-nand-fifo", info);
1889                if (err) {
1890                        dev_err(dev, "Requesting IRQ %d, error %d\n",
1891                                info->gpmc_irq_fifo, err);
1892                        info->gpmc_irq_fifo = 0;
1893                        return err;
1894                }
1895
1896                info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1897                if (info->gpmc_irq_count <= 0)
1898                        return -ENODEV;
1899                err = devm_request_irq(dev, info->gpmc_irq_count,
1900                                       omap_nand_irq, IRQF_SHARED,
1901                                       "gpmc-nand-count", info);
1902                if (err) {
1903                        dev_err(dev, "Requesting IRQ %d, error %d\n",
1904                                info->gpmc_irq_count, err);
1905                        info->gpmc_irq_count = 0;
1906                        return err;
1907                }
1908
1909                info->data_in = omap_nand_data_in_irq_pref;
1910                info->data_out = omap_nand_data_out_irq_pref;
1911                break;
1912
1913        default:
1914                dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
1915                return -EINVAL;
1916        }
1917
1918        if (!omap2_nand_ecc_check(info))
1919                return -EINVAL;
1920
1921        /*
1922         * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
1923         * ooblayout instead of using ours.
1924         */
1925        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
1926                chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1927                chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1928                return 0;
1929        }
1930
1931        /* Populate MTD interface based on ECC scheme */
1932        switch (info->ecc_opt) {
1933        case OMAP_ECC_HAM1_CODE_HW:
1934                dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
1935                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
1936                chip->ecc.bytes         = 3;
1937                chip->ecc.size          = 512;
1938                chip->ecc.strength      = 1;
1939                chip->ecc.calculate     = omap_calculate_ecc;
1940                chip->ecc.hwctl         = omap_enable_hwecc;
1941                chip->ecc.correct       = omap_correct_data;
1942                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1943                oobbytes_per_step       = chip->ecc.bytes;
1944
1945                if (!(chip->options & NAND_BUSWIDTH_16))
1946                        min_oobbytes    = 1;
1947
1948                break;
1949
1950        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1951                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1952                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
1953                chip->ecc.size          = 512;
1954                chip->ecc.bytes         = 7;
1955                chip->ecc.strength      = 4;
1956                chip->ecc.hwctl         = omap_enable_hwecc_bch;
1957                chip->ecc.correct       = rawnand_sw_bch_correct;
1958                chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
1959                mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
1960                /* Reserve one byte for the OMAP marker */
1961                oobbytes_per_step       = chip->ecc.bytes + 1;
1962                /* Software BCH library is used for locating errors */
1963                err = rawnand_sw_bch_init(chip);
1964                if (err) {
1965                        dev_err(dev, "Unable to use BCH library\n");
1966                        return err;
1967                }
1968                break;
1969
1970        case OMAP_ECC_BCH4_CODE_HW:
1971                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1972                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
1973                chip->ecc.size          = 512;
1974                /* 14th bit is kept reserved for ROM-code compatibility */
1975                chip->ecc.bytes         = 7 + 1;
1976                chip->ecc.strength      = 4;
1977                chip->ecc.hwctl         = omap_enable_hwecc_bch;
1978                chip->ecc.correct       = omap_elm_correct_data;
1979                chip->ecc.read_page     = omap_read_page_bch;
1980                chip->ecc.write_page    = omap_write_page_bch;
1981                chip->ecc.write_subpage = omap_write_subpage_bch;
1982                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1983                oobbytes_per_step       = chip->ecc.bytes;
1984                elm_bch_strength = BCH4_ECC;
1985                break;
1986
1987        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1988                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1989                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
1990                chip->ecc.size          = 512;
1991                chip->ecc.bytes         = 13;
1992                chip->ecc.strength      = 8;
1993                chip->ecc.hwctl         = omap_enable_hwecc_bch;
1994                chip->ecc.correct       = rawnand_sw_bch_correct;
1995                chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
1996                mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
1997                /* Reserve one byte for the OMAP marker */
1998                oobbytes_per_step       = chip->ecc.bytes + 1;
1999                /* Software BCH library is used for locating errors */
2000                err = rawnand_sw_bch_init(chip);
2001                if (err) {
2002                        dev_err(dev, "unable to use BCH library\n");
2003                        return err;
2004                }
2005                break;
2006
2007        case OMAP_ECC_BCH8_CODE_HW:
2008                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2009                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2010                chip->ecc.size          = 512;
2011                /* 14th bit is kept reserved for ROM-code compatibility */
2012                chip->ecc.bytes         = 13 + 1;
2013                chip->ecc.strength      = 8;
2014                chip->ecc.hwctl         = omap_enable_hwecc_bch;
2015                chip->ecc.correct       = omap_elm_correct_data;
2016                chip->ecc.read_page     = omap_read_page_bch;
2017                chip->ecc.write_page    = omap_write_page_bch;
2018                chip->ecc.write_subpage = omap_write_subpage_bch;
2019                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2020                oobbytes_per_step       = chip->ecc.bytes;
2021                elm_bch_strength = BCH8_ECC;
2022                break;
2023
2024        case OMAP_ECC_BCH16_CODE_HW:
2025                pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2026                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2027                chip->ecc.size          = 512;
2028                chip->ecc.bytes         = 26;
2029                chip->ecc.strength      = 16;
2030                chip->ecc.hwctl         = omap_enable_hwecc_bch;
2031                chip->ecc.correct       = omap_elm_correct_data;
2032                chip->ecc.read_page     = omap_read_page_bch;
2033                chip->ecc.write_page    = omap_write_page_bch;
2034                chip->ecc.write_subpage = omap_write_subpage_bch;
2035                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2036                oobbytes_per_step       = chip->ecc.bytes;
2037                elm_bch_strength = BCH16_ECC;
2038                break;
2039        default:
2040                dev_err(dev, "Invalid or unsupported ECC scheme\n");
2041                return -EINVAL;
2042        }
2043
2044        if (elm_bch_strength >= 0) {
2045                chip->ecc.steps = mtd->writesize / chip->ecc.size;
2046                info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
2047                if (info->neccpg) {
2048                        info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
2049                } else {
2050                        info->neccpg = 1;
2051                        info->nsteps_per_eccpg = chip->ecc.steps;
2052                }
2053                info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
2054                info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
2055
2056                err = elm_config(info->elm_dev, elm_bch_strength,
2057                                 info->nsteps_per_eccpg, chip->ecc.size,
2058                                 chip->ecc.bytes);
2059                if (err < 0)
2060                        return err;
2061        }
2062
2063        /* Check if NAND device's OOB is enough to store ECC signatures */
2064        min_oobbytes += (oobbytes_per_step *
2065                         (mtd->writesize / chip->ecc.size));
2066        if (mtd->oobsize < min_oobbytes) {
2067                dev_err(dev,
2068                        "Not enough OOB bytes: required = %d, available=%d\n",
2069                        min_oobbytes, mtd->oobsize);
2070                return -EINVAL;
2071        }
2072
2073        return 0;
2074}
2075
2076static void omap_nand_data_in(struct nand_chip *chip, void *buf,
2077                              unsigned int len, bool force_8bit)
2078{
2079        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2080        u32 alignment = ((uintptr_t)buf | len) & 3;
2081
2082        if (force_8bit || (alignment & 1))
2083                ioread8_rep(info->fifo, buf, len);
2084        else if (alignment & 3)
2085                ioread16_rep(info->fifo, buf, len >> 1);
2086        else
2087                ioread32_rep(info->fifo, buf, len >> 2);
2088}
2089
2090static void omap_nand_data_out(struct nand_chip *chip,
2091                               const void *buf, unsigned int len,
2092                               bool force_8bit)
2093{
2094        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2095        u32 alignment = ((uintptr_t)buf | len) & 3;
2096
2097        if (force_8bit || (alignment & 1))
2098                iowrite8_rep(info->fifo, buf, len);
2099        else if (alignment & 3)
2100                iowrite16_rep(info->fifo, buf, len >> 1);
2101        else
2102                iowrite32_rep(info->fifo, buf, len >> 2);
2103}
2104
2105static int omap_nand_exec_instr(struct nand_chip *chip,
2106                                const struct nand_op_instr *instr)
2107{
2108        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2109        unsigned int i;
2110        int ret;
2111
2112        switch (instr->type) {
2113        case NAND_OP_CMD_INSTR:
2114                iowrite8(instr->ctx.cmd.opcode,
2115                         info->reg.gpmc_nand_command);
2116                break;
2117
2118        case NAND_OP_ADDR_INSTR:
2119                for (i = 0; i < instr->ctx.addr.naddrs; i++) {
2120                        iowrite8(instr->ctx.addr.addrs[i],
2121                                 info->reg.gpmc_nand_address);
2122                }
2123                break;
2124
2125        case NAND_OP_DATA_IN_INSTR:
2126                info->data_in(chip, instr->ctx.data.buf.in,
2127                              instr->ctx.data.len,
2128                              instr->ctx.data.force_8bit);
2129                break;
2130
2131        case NAND_OP_DATA_OUT_INSTR:
2132                info->data_out(chip, instr->ctx.data.buf.out,
2133                               instr->ctx.data.len,
2134                               instr->ctx.data.force_8bit);
2135                break;
2136
2137        case NAND_OP_WAITRDY_INSTR:
2138                ret = info->ready_gpiod ?
2139                        nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) :
2140                        nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
2141                if (ret)
2142                        return ret;
2143                break;
2144        }
2145
2146        if (instr->delay_ns)
2147                ndelay(instr->delay_ns);
2148
2149        return 0;
2150}
2151
2152static int omap_nand_exec_op(struct nand_chip *chip,
2153                             const struct nand_operation *op,
2154                             bool check_only)
2155{
2156        unsigned int i;
2157
2158        if (check_only)
2159                return 0;
2160
2161        for (i = 0; i < op->ninstrs; i++) {
2162                int ret;
2163
2164                ret = omap_nand_exec_instr(chip, &op->instrs[i]);
2165                if (ret)
2166                        return ret;
2167        }
2168
2169        return 0;
2170}
2171
2172static const struct nand_controller_ops omap_nand_controller_ops = {
2173        .attach_chip = omap_nand_attach_chip,
2174        .exec_op = omap_nand_exec_op,
2175};
2176
2177/* Shared among all NAND instances to synchronize access to the ECC Engine */
2178static struct nand_controller omap_gpmc_controller;
2179static bool omap_gpmc_controller_initialized;
2180
2181static int omap_nand_probe(struct platform_device *pdev)
2182{
2183        struct omap_nand_info           *info;
2184        struct mtd_info                 *mtd;
2185        struct nand_chip                *nand_chip;
2186        int                             err;
2187        struct resource                 *res;
2188        struct device                   *dev = &pdev->dev;
2189        void __iomem *vaddr;
2190
2191        info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2192                                GFP_KERNEL);
2193        if (!info)
2194                return -ENOMEM;
2195
2196        info->pdev = pdev;
2197
2198        err = omap_get_dt_info(dev, info);
2199        if (err)
2200                return err;
2201
2202        info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2203        if (!info->ops) {
2204                dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2205                return -ENODEV;
2206        }
2207
2208        nand_chip               = &info->nand;
2209        mtd                     = nand_to_mtd(nand_chip);
2210        mtd->dev.parent         = &pdev->dev;
2211        nand_set_flash_node(nand_chip, dev->of_node);
2212
2213        if (!mtd->name) {
2214                mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2215                                           "omap2-nand.%d", info->gpmc_cs);
2216                if (!mtd->name) {
2217                        dev_err(&pdev->dev, "Failed to set MTD name\n");
2218                        return -ENOMEM;
2219                }
2220        }
2221
2222        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2223        vaddr = devm_ioremap_resource(&pdev->dev, res);
2224        if (IS_ERR(vaddr))
2225                return PTR_ERR(vaddr);
2226
2227        info->fifo = vaddr;
2228        info->phys_base = res->start;
2229
2230        if (!omap_gpmc_controller_initialized) {
2231                omap_gpmc_controller.ops = &omap_nand_controller_ops;
2232                nand_controller_init(&omap_gpmc_controller);
2233                omap_gpmc_controller_initialized = true;
2234        }
2235
2236        nand_chip->controller = &omap_gpmc_controller;
2237
2238        info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2239                                                    GPIOD_IN);
2240        if (IS_ERR(info->ready_gpiod)) {
2241                dev_err(dev, "failed to get ready gpio\n");
2242                return PTR_ERR(info->ready_gpiod);
2243        }
2244
2245        if (info->flash_bbt)
2246                nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2247
2248        /* default operations */
2249        info->data_in = omap_nand_data_in;
2250        info->data_out = omap_nand_data_out;
2251
2252        err = nand_scan(nand_chip, 1);
2253        if (err)
2254                goto return_error;
2255
2256        err = mtd_device_register(mtd, NULL, 0);
2257        if (err)
2258                goto cleanup_nand;
2259
2260        platform_set_drvdata(pdev, mtd);
2261
2262        return 0;
2263
2264cleanup_nand:
2265        nand_cleanup(nand_chip);
2266
2267return_error:
2268        if (!IS_ERR_OR_NULL(info->dma))
2269                dma_release_channel(info->dma);
2270
2271        rawnand_sw_bch_cleanup(nand_chip);
2272
2273        return err;
2274}
2275
2276static int omap_nand_remove(struct platform_device *pdev)
2277{
2278        struct mtd_info *mtd = platform_get_drvdata(pdev);
2279        struct nand_chip *nand_chip = mtd_to_nand(mtd);
2280        struct omap_nand_info *info = mtd_to_omap(mtd);
2281        int ret;
2282
2283        rawnand_sw_bch_cleanup(nand_chip);
2284
2285        if (info->dma)
2286                dma_release_channel(info->dma);
2287        ret = mtd_device_unregister(mtd);
2288        WARN_ON(ret);
2289        nand_cleanup(nand_chip);
2290        return ret;
2291}
2292
2293/* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */
2294MODULE_DEVICE_TABLE(of, omap_nand_ids);
2295
2296static struct platform_driver omap_nand_driver = {
2297        .probe          = omap_nand_probe,
2298        .remove         = omap_nand_remove,
2299        .driver         = {
2300                .name   = DRIVER_NAME,
2301                .of_match_table = omap_nand_ids,
2302        },
2303};
2304
2305module_platform_driver(omap_nand_driver);
2306
2307MODULE_ALIAS("platform:" DRIVER_NAME);
2308MODULE_LICENSE("GPL");
2309MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
2310