linux/drivers/net/ethernet/cavium/thunder/nicvf_queues.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Cavium, Inc.
   4 */
   5
   6#include <linux/pci.h>
   7#include <linux/netdevice.h>
   8#include <linux/ip.h>
   9#include <linux/etherdevice.h>
  10#include <linux/iommu.h>
  11#include <net/ip.h>
  12#include <net/tso.h>
  13#include <uapi/linux/bpf.h>
  14
  15#include "nic_reg.h"
  16#include "nic.h"
  17#include "q_struct.h"
  18#include "nicvf_queues.h"
  19
  20static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
  21                                               int size, u64 data);
  22static void nicvf_get_page(struct nicvf *nic)
  23{
  24        if (!nic->rb_pageref || !nic->rb_page)
  25                return;
  26
  27        page_ref_add(nic->rb_page, nic->rb_pageref);
  28        nic->rb_pageref = 0;
  29}
  30
  31/* Poll a register for a specific value */
  32static int nicvf_poll_reg(struct nicvf *nic, int qidx,
  33                          u64 reg, int bit_pos, int bits, int val)
  34{
  35        u64 bit_mask;
  36        u64 reg_val;
  37        int timeout = 10;
  38
  39        bit_mask = (1ULL << bits) - 1;
  40        bit_mask = (bit_mask << bit_pos);
  41
  42        while (timeout) {
  43                reg_val = nicvf_queue_reg_read(nic, reg, qidx);
  44                if (((reg_val & bit_mask) >> bit_pos) == val)
  45                        return 0;
  46                usleep_range(1000, 2000);
  47                timeout--;
  48        }
  49        netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
  50        return 1;
  51}
  52
  53/* Allocate memory for a queue's descriptors */
  54static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
  55                                  int q_len, int desc_size, int align_bytes)
  56{
  57        dmem->q_len = q_len;
  58        dmem->size = (desc_size * q_len) + align_bytes;
  59        /* Save address, need it while freeing */
  60        dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size,
  61                                                &dmem->dma, GFP_KERNEL);
  62        if (!dmem->unalign_base)
  63                return -ENOMEM;
  64
  65        /* Align memory address for 'align_bytes' */
  66        dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
  67        dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
  68        return 0;
  69}
  70
  71/* Free queue's descriptor memory */
  72static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
  73{
  74        if (!dmem)
  75                return;
  76
  77        dma_free_coherent(&nic->pdev->dev, dmem->size,
  78                          dmem->unalign_base, dmem->dma);
  79        dmem->unalign_base = NULL;
  80        dmem->base = NULL;
  81}
  82
  83#define XDP_PAGE_REFCNT_REFILL 256
  84
  85/* Allocate a new page or recycle one if possible
  86 *
  87 * We cannot optimize dma mapping here, since
  88 * 1. It's only one RBDR ring for 8 Rx queues.
  89 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
  90 *    and not idx into RBDR ring, so can't refer to saved info.
  91 * 3. There are multiple receive buffers per page
  92 */
  93static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
  94                                               struct rbdr *rbdr, gfp_t gfp)
  95{
  96        int ref_count;
  97        struct page *page = NULL;
  98        struct pgcache *pgcache, *next;
  99
 100        /* Check if page is already allocated */
 101        pgcache = &rbdr->pgcache[rbdr->pgidx];
 102        page = pgcache->page;
 103        /* Check if page can be recycled */
 104        if (page) {
 105                ref_count = page_ref_count(page);
 106                /* This page can be recycled if internal ref_count and page's
 107                 * ref_count are equal, indicating that the page has been used
 108                 * once for packet transmission. For non-XDP mode, internal
 109                 * ref_count is always '1'.
 110                 */
 111                if (rbdr->is_xdp) {
 112                        if (ref_count == pgcache->ref_count)
 113                                pgcache->ref_count--;
 114                        else
 115                                page = NULL;
 116                } else if (ref_count != 1) {
 117                        page = NULL;
 118                }
 119        }
 120
 121        if (!page) {
 122                page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
 123                if (!page)
 124                        return NULL;
 125
 126                this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
 127
 128                /* Check for space */
 129                if (rbdr->pgalloc >= rbdr->pgcnt) {
 130                        /* Page can still be used */
 131                        nic->rb_page = page;
 132                        return NULL;
 133                }
 134
 135                /* Save the page in page cache */
 136                pgcache->page = page;
 137                pgcache->dma_addr = 0;
 138                pgcache->ref_count = 0;
 139                rbdr->pgalloc++;
 140        }
 141
 142        /* Take additional page references for recycling */
 143        if (rbdr->is_xdp) {
 144                /* Since there is single RBDR (i.e single core doing
 145                 * page recycling) per 8 Rx queues, in XDP mode adjusting
 146                 * page references atomically is the biggest bottleneck, so
 147                 * take bunch of references at a time.
 148                 *
 149                 * So here, below reference counts defer by '1'.
 150                 */
 151                if (!pgcache->ref_count) {
 152                        pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
 153                        page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
 154                }
 155        } else {
 156                /* In non-XDP case, single 64K page is divided across multiple
 157                 * receive buffers, so cost of recycling is less anyway.
 158                 * So we can do with just one extra reference.
 159                 */
 160                page_ref_add(page, 1);
 161        }
 162
 163        rbdr->pgidx++;
 164        rbdr->pgidx &= (rbdr->pgcnt - 1);
 165
 166        /* Prefetch refcount of next page in page cache */
 167        next = &rbdr->pgcache[rbdr->pgidx];
 168        page = next->page;
 169        if (page)
 170                prefetch(&page->_refcount);
 171
 172        return pgcache;
 173}
 174
 175/* Allocate buffer for packet reception */
 176static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
 177                                         gfp_t gfp, u32 buf_len, u64 *rbuf)
 178{
 179        struct pgcache *pgcache = NULL;
 180
 181        /* Check if request can be accomodated in previous allocated page.
 182         * But in XDP mode only one buffer per page is permitted.
 183         */
 184        if (!rbdr->is_xdp && nic->rb_page &&
 185            ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
 186                nic->rb_pageref++;
 187                goto ret;
 188        }
 189
 190        nicvf_get_page(nic);
 191        nic->rb_page = NULL;
 192
 193        /* Get new page, either recycled or new one */
 194        pgcache = nicvf_alloc_page(nic, rbdr, gfp);
 195        if (!pgcache && !nic->rb_page) {
 196                this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
 197                return -ENOMEM;
 198        }
 199
 200        nic->rb_page_offset = 0;
 201
 202        /* Reserve space for header modifications by BPF program */
 203        if (rbdr->is_xdp)
 204                buf_len += XDP_PACKET_HEADROOM;
 205
 206        /* Check if it's recycled */
 207        if (pgcache)
 208                nic->rb_page = pgcache->page;
 209ret:
 210        if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
 211                *rbuf = pgcache->dma_addr;
 212        } else {
 213                /* HW will ensure data coherency, CPU sync not required */
 214                *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
 215                                                nic->rb_page_offset, buf_len,
 216                                                DMA_FROM_DEVICE,
 217                                                DMA_ATTR_SKIP_CPU_SYNC);
 218                if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
 219                        if (!nic->rb_page_offset)
 220                                __free_pages(nic->rb_page, 0);
 221                        nic->rb_page = NULL;
 222                        return -ENOMEM;
 223                }
 224                if (pgcache)
 225                        pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
 226                nic->rb_page_offset += buf_len;
 227        }
 228
 229        return 0;
 230}
 231
 232/* Build skb around receive buffer */
 233static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
 234                                           u64 rb_ptr, int len)
 235{
 236        void *data;
 237        struct sk_buff *skb;
 238
 239        data = phys_to_virt(rb_ptr);
 240
 241        /* Now build an skb to give to stack */
 242        skb = build_skb(data, RCV_FRAG_LEN);
 243        if (!skb) {
 244                put_page(virt_to_page(data));
 245                return NULL;
 246        }
 247
 248        prefetch(skb->data);
 249        return skb;
 250}
 251
 252/* Allocate RBDR ring and populate receive buffers */
 253static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
 254                            int ring_len, int buf_size)
 255{
 256        int idx;
 257        u64 rbuf;
 258        struct rbdr_entry_t *desc;
 259        int err;
 260
 261        err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
 262                                     sizeof(struct rbdr_entry_t),
 263                                     NICVF_RCV_BUF_ALIGN_BYTES);
 264        if (err)
 265                return err;
 266
 267        rbdr->desc = rbdr->dmem.base;
 268        /* Buffer size has to be in multiples of 128 bytes */
 269        rbdr->dma_size = buf_size;
 270        rbdr->enable = true;
 271        rbdr->thresh = RBDR_THRESH;
 272        rbdr->head = 0;
 273        rbdr->tail = 0;
 274
 275        /* Initialize page recycling stuff.
 276         *
 277         * Can't use single buffer per page especially with 64K pages.
 278         * On embedded platforms i.e 81xx/83xx available memory itself
 279         * is low and minimum ring size of RBDR is 8K, that takes away
 280         * lots of memory.
 281         *
 282         * But for XDP it has to be a single buffer per page.
 283         */
 284        if (!nic->pnicvf->xdp_prog) {
 285                rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
 286                rbdr->is_xdp = false;
 287        } else {
 288                rbdr->pgcnt = ring_len;
 289                rbdr->is_xdp = true;
 290        }
 291        rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
 292        rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
 293                                GFP_KERNEL);
 294        if (!rbdr->pgcache)
 295                return -ENOMEM;
 296        rbdr->pgidx = 0;
 297        rbdr->pgalloc = 0;
 298
 299        nic->rb_page = NULL;
 300        for (idx = 0; idx < ring_len; idx++) {
 301                err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
 302                                             RCV_FRAG_LEN, &rbuf);
 303                if (err) {
 304                        /* To free already allocated and mapped ones */
 305                        rbdr->tail = idx - 1;
 306                        return err;
 307                }
 308
 309                desc = GET_RBDR_DESC(rbdr, idx);
 310                desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
 311        }
 312
 313        nicvf_get_page(nic);
 314
 315        return 0;
 316}
 317
 318/* Free RBDR ring and its receive buffers */
 319static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
 320{
 321        int head, tail;
 322        u64 buf_addr, phys_addr;
 323        struct pgcache *pgcache;
 324        struct rbdr_entry_t *desc;
 325
 326        if (!rbdr)
 327                return;
 328
 329        rbdr->enable = false;
 330        if (!rbdr->dmem.base)
 331                return;
 332
 333        head = rbdr->head;
 334        tail = rbdr->tail;
 335
 336        /* Release page references */
 337        while (head != tail) {
 338                desc = GET_RBDR_DESC(rbdr, head);
 339                buf_addr = desc->buf_addr;
 340                phys_addr = nicvf_iova_to_phys(nic, buf_addr);
 341                dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
 342                                     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
 343                if (phys_addr)
 344                        put_page(virt_to_page(phys_to_virt(phys_addr)));
 345                head++;
 346                head &= (rbdr->dmem.q_len - 1);
 347        }
 348        /* Release buffer of tail desc */
 349        desc = GET_RBDR_DESC(rbdr, tail);
 350        buf_addr = desc->buf_addr;
 351        phys_addr = nicvf_iova_to_phys(nic, buf_addr);
 352        dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
 353                             DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
 354        if (phys_addr)
 355                put_page(virt_to_page(phys_to_virt(phys_addr)));
 356
 357        /* Sync page cache info */
 358        smp_rmb();
 359
 360        /* Release additional page references held for recycling */
 361        head = 0;
 362        while (head < rbdr->pgcnt) {
 363                pgcache = &rbdr->pgcache[head];
 364                if (pgcache->page && page_ref_count(pgcache->page) != 0) {
 365                        if (rbdr->is_xdp) {
 366                                page_ref_sub(pgcache->page,
 367                                             pgcache->ref_count - 1);
 368                        }
 369                        put_page(pgcache->page);
 370                }
 371                head++;
 372        }
 373
 374        /* Free RBDR ring */
 375        nicvf_free_q_desc_mem(nic, &rbdr->dmem);
 376}
 377
 378/* Refill receive buffer descriptors with new buffers.
 379 */
 380static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
 381{
 382        struct queue_set *qs = nic->qs;
 383        int rbdr_idx = qs->rbdr_cnt;
 384        int tail, qcount;
 385        int refill_rb_cnt;
 386        struct rbdr *rbdr;
 387        struct rbdr_entry_t *desc;
 388        u64 rbuf;
 389        int new_rb = 0;
 390
 391refill:
 392        if (!rbdr_idx)
 393                return;
 394        rbdr_idx--;
 395        rbdr = &qs->rbdr[rbdr_idx];
 396        /* Check if it's enabled */
 397        if (!rbdr->enable)
 398                goto next_rbdr;
 399
 400        /* Get no of desc's to be refilled */
 401        qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
 402        qcount &= 0x7FFFF;
 403        /* Doorbell can be ringed with a max of ring size minus 1 */
 404        if (qcount >= (qs->rbdr_len - 1))
 405                goto next_rbdr;
 406        else
 407                refill_rb_cnt = qs->rbdr_len - qcount - 1;
 408
 409        /* Sync page cache info */
 410        smp_rmb();
 411
 412        /* Start filling descs from tail */
 413        tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
 414        while (refill_rb_cnt) {
 415                tail++;
 416                tail &= (rbdr->dmem.q_len - 1);
 417
 418                if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
 419                        break;
 420
 421                desc = GET_RBDR_DESC(rbdr, tail);
 422                desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
 423                refill_rb_cnt--;
 424                new_rb++;
 425        }
 426
 427        nicvf_get_page(nic);
 428
 429        /* make sure all memory stores are done before ringing doorbell */
 430        smp_wmb();
 431
 432        /* Check if buffer allocation failed */
 433        if (refill_rb_cnt)
 434                nic->rb_alloc_fail = true;
 435        else
 436                nic->rb_alloc_fail = false;
 437
 438        /* Notify HW */
 439        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
 440                              rbdr_idx, new_rb);
 441next_rbdr:
 442        /* Re-enable RBDR interrupts only if buffer allocation is success */
 443        if (!nic->rb_alloc_fail && rbdr->enable &&
 444            netif_running(nic->pnicvf->netdev))
 445                nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
 446
 447        if (rbdr_idx)
 448                goto refill;
 449}
 450
 451/* Alloc rcv buffers in non-atomic mode for better success */
 452void nicvf_rbdr_work(struct work_struct *work)
 453{
 454        struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
 455
 456        nicvf_refill_rbdr(nic, GFP_KERNEL);
 457        if (nic->rb_alloc_fail)
 458                schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
 459        else
 460                nic->rb_work_scheduled = false;
 461}
 462
 463/* In Softirq context, alloc rcv buffers in atomic mode */
 464void nicvf_rbdr_task(struct tasklet_struct *t)
 465{
 466        struct nicvf *nic = from_tasklet(nic, t, rbdr_task);
 467
 468        nicvf_refill_rbdr(nic, GFP_ATOMIC);
 469        if (nic->rb_alloc_fail) {
 470                nic->rb_work_scheduled = true;
 471                schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
 472        }
 473}
 474
 475/* Initialize completion queue */
 476static int nicvf_init_cmp_queue(struct nicvf *nic,
 477                                struct cmp_queue *cq, int q_len)
 478{
 479        int err;
 480
 481        err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
 482                                     NICVF_CQ_BASE_ALIGN_BYTES);
 483        if (err)
 484                return err;
 485
 486        cq->desc = cq->dmem.base;
 487        cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
 488        nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
 489
 490        return 0;
 491}
 492
 493static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
 494{
 495        if (!cq)
 496                return;
 497        if (!cq->dmem.base)
 498                return;
 499
 500        nicvf_free_q_desc_mem(nic, &cq->dmem);
 501}
 502
 503/* Initialize transmit queue */
 504static int nicvf_init_snd_queue(struct nicvf *nic,
 505                                struct snd_queue *sq, int q_len, int qidx)
 506{
 507        int err;
 508
 509        err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
 510                                     NICVF_SQ_BASE_ALIGN_BYTES);
 511        if (err)
 512                return err;
 513
 514        sq->desc = sq->dmem.base;
 515        sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
 516        if (!sq->skbuff)
 517                return -ENOMEM;
 518
 519        sq->head = 0;
 520        sq->tail = 0;
 521        sq->thresh = SND_QUEUE_THRESH;
 522
 523        /* Check if this SQ is a XDP TX queue */
 524        if (nic->sqs_mode)
 525                qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
 526        if (qidx < nic->pnicvf->xdp_tx_queues) {
 527                /* Alloc memory to save page pointers for XDP_TX */
 528                sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
 529                if (!sq->xdp_page)
 530                        return -ENOMEM;
 531                sq->xdp_desc_cnt = 0;
 532                sq->xdp_free_cnt = q_len - 1;
 533                sq->is_xdp = true;
 534        } else {
 535                sq->xdp_page = NULL;
 536                sq->xdp_desc_cnt = 0;
 537                sq->xdp_free_cnt = 0;
 538                sq->is_xdp = false;
 539
 540                atomic_set(&sq->free_cnt, q_len - 1);
 541
 542                /* Preallocate memory for TSO segment's header */
 543                sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
 544                                                  q_len * TSO_HEADER_SIZE,
 545                                                  &sq->tso_hdrs_phys,
 546                                                  GFP_KERNEL);
 547                if (!sq->tso_hdrs)
 548                        return -ENOMEM;
 549        }
 550
 551        return 0;
 552}
 553
 554void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
 555                              int hdr_sqe, u8 subdesc_cnt)
 556{
 557        u8 idx;
 558        struct sq_gather_subdesc *gather;
 559
 560        /* Unmap DMA mapped skb data buffers */
 561        for (idx = 0; idx < subdesc_cnt; idx++) {
 562                hdr_sqe++;
 563                hdr_sqe &= (sq->dmem.q_len - 1);
 564                gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
 565                /* HW will ensure data coherency, CPU sync not required */
 566                dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
 567                                     gather->size, DMA_TO_DEVICE,
 568                                     DMA_ATTR_SKIP_CPU_SYNC);
 569        }
 570}
 571
 572static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
 573{
 574        struct sk_buff *skb;
 575        struct page *page;
 576        struct sq_hdr_subdesc *hdr;
 577        struct sq_hdr_subdesc *tso_sqe;
 578
 579        if (!sq)
 580                return;
 581        if (!sq->dmem.base)
 582                return;
 583
 584        if (sq->tso_hdrs) {
 585                dma_free_coherent(&nic->pdev->dev,
 586                                  sq->dmem.q_len * TSO_HEADER_SIZE,
 587                                  sq->tso_hdrs, sq->tso_hdrs_phys);
 588                sq->tso_hdrs = NULL;
 589        }
 590
 591        /* Free pending skbs in the queue */
 592        smp_rmb();
 593        while (sq->head != sq->tail) {
 594                skb = (struct sk_buff *)sq->skbuff[sq->head];
 595                if (!skb || !sq->xdp_page)
 596                        goto next;
 597
 598                page = (struct page *)sq->xdp_page[sq->head];
 599                if (!page)
 600                        goto next;
 601                else
 602                        put_page(page);
 603
 604                hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
 605                /* Check for dummy descriptor used for HW TSO offload on 88xx */
 606                if (hdr->dont_send) {
 607                        /* Get actual TSO descriptors and unmap them */
 608                        tso_sqe =
 609                         (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
 610                        nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
 611                                                 tso_sqe->subdesc_cnt);
 612                } else {
 613                        nicvf_unmap_sndq_buffers(nic, sq, sq->head,
 614                                                 hdr->subdesc_cnt);
 615                }
 616                if (skb)
 617                        dev_kfree_skb_any(skb);
 618next:
 619                sq->head++;
 620                sq->head &= (sq->dmem.q_len - 1);
 621        }
 622        kfree(sq->skbuff);
 623        kfree(sq->xdp_page);
 624        nicvf_free_q_desc_mem(nic, &sq->dmem);
 625}
 626
 627static void nicvf_reclaim_snd_queue(struct nicvf *nic,
 628                                    struct queue_set *qs, int qidx)
 629{
 630        /* Disable send queue */
 631        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
 632        /* Check if SQ is stopped */
 633        if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
 634                return;
 635        /* Reset send queue */
 636        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
 637}
 638
 639static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
 640                                    struct queue_set *qs, int qidx)
 641{
 642        union nic_mbx mbx = {};
 643
 644        /* Make sure all packets in the pipeline are written back into mem */
 645        mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
 646        nicvf_send_msg_to_pf(nic, &mbx);
 647}
 648
 649static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
 650                                    struct queue_set *qs, int qidx)
 651{
 652        /* Disable timer threshold (doesn't get reset upon CQ reset */
 653        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
 654        /* Disable completion queue */
 655        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
 656        /* Reset completion queue */
 657        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
 658}
 659
 660static void nicvf_reclaim_rbdr(struct nicvf *nic,
 661                               struct rbdr *rbdr, int qidx)
 662{
 663        u64 tmp, fifo_state;
 664        int timeout = 10;
 665
 666        /* Save head and tail pointers for feeing up buffers */
 667        rbdr->head = nicvf_queue_reg_read(nic,
 668                                          NIC_QSET_RBDR_0_1_HEAD,
 669                                          qidx) >> 3;
 670        rbdr->tail = nicvf_queue_reg_read(nic,
 671                                          NIC_QSET_RBDR_0_1_TAIL,
 672                                          qidx) >> 3;
 673
 674        /* If RBDR FIFO is in 'FAIL' state then do a reset first
 675         * before relaiming.
 676         */
 677        fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
 678        if (((fifo_state >> 62) & 0x03) == 0x3)
 679                nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
 680                                      qidx, NICVF_RBDR_RESET);
 681
 682        /* Disable RBDR */
 683        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
 684        if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
 685                return;
 686        while (1) {
 687                tmp = nicvf_queue_reg_read(nic,
 688                                           NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
 689                                           qidx);
 690                if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
 691                        break;
 692                usleep_range(1000, 2000);
 693                timeout--;
 694                if (!timeout) {
 695                        netdev_err(nic->netdev,
 696                                   "Failed polling on prefetch status\n");
 697                        return;
 698                }
 699        }
 700        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
 701                              qidx, NICVF_RBDR_RESET);
 702
 703        if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
 704                return;
 705        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
 706        if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
 707                return;
 708}
 709
 710void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
 711{
 712        u64 rq_cfg;
 713        int sqs;
 714
 715        rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
 716
 717        /* Enable first VLAN stripping */
 718        if (features & NETIF_F_HW_VLAN_CTAG_RX)
 719                rq_cfg |= (1ULL << 25);
 720        else
 721                rq_cfg &= ~(1ULL << 25);
 722        nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
 723
 724        /* Configure Secondary Qsets, if any */
 725        for (sqs = 0; sqs < nic->sqs_count; sqs++)
 726                if (nic->snicvf[sqs])
 727                        nicvf_queue_reg_write(nic->snicvf[sqs],
 728                                              NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
 729}
 730
 731static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
 732{
 733        union nic_mbx mbx = {};
 734
 735        /* Reset all RQ/SQ and VF stats */
 736        mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
 737        mbx.reset_stat.rx_stat_mask = 0x3FFF;
 738        mbx.reset_stat.tx_stat_mask = 0x1F;
 739        mbx.reset_stat.rq_stat_mask = 0xFFFF;
 740        mbx.reset_stat.sq_stat_mask = 0xFFFF;
 741        nicvf_send_msg_to_pf(nic, &mbx);
 742}
 743
 744/* Configures receive queue */
 745static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
 746                                   int qidx, bool enable)
 747{
 748        union nic_mbx mbx = {};
 749        struct rcv_queue *rq;
 750        struct rq_cfg rq_cfg;
 751
 752        rq = &qs->rq[qidx];
 753        rq->enable = enable;
 754
 755        /* Disable receive queue */
 756        nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
 757
 758        if (!rq->enable) {
 759                nicvf_reclaim_rcv_queue(nic, qs, qidx);
 760                xdp_rxq_info_unreg(&rq->xdp_rxq);
 761                return;
 762        }
 763
 764        rq->cq_qs = qs->vnic_id;
 765        rq->cq_idx = qidx;
 766        rq->start_rbdr_qs = qs->vnic_id;
 767        rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
 768        rq->cont_rbdr_qs = qs->vnic_id;
 769        rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
 770        /* all writes of RBDR data to be loaded into L2 Cache as well*/
 771        rq->caching = 1;
 772
 773        /* Driver have no proper error path for failed XDP RX-queue info reg */
 774        WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx, 0) < 0);
 775
 776        /* Send a mailbox msg to PF to config RQ */
 777        mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
 778        mbx.rq.qs_num = qs->vnic_id;
 779        mbx.rq.rq_num = qidx;
 780        mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) |
 781                          (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
 782                          (rq->cont_qs_rbdr_idx << 8) |
 783                          (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
 784        nicvf_send_msg_to_pf(nic, &mbx);
 785
 786        mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
 787        mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
 788                     (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
 789                     (qs->vnic_id << 0);
 790        nicvf_send_msg_to_pf(nic, &mbx);
 791
 792        /* RQ drop config
 793         * Enable CQ drop to reserve sufficient CQEs for all tx packets
 794         */
 795        mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
 796        mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
 797                     (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
 798                     (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
 799        nicvf_send_msg_to_pf(nic, &mbx);
 800
 801        if (!nic->sqs_mode && (qidx == 0)) {
 802                /* Enable checking L3/L4 length and TCP/UDP checksums
 803                 * Also allow IPv6 pkts with zero UDP checksum.
 804                 */
 805                nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
 806                                      (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
 807                nicvf_config_vlan_stripping(nic, nic->netdev->features);
 808        }
 809
 810        /* Enable Receive queue */
 811        memset(&rq_cfg, 0, sizeof(struct rq_cfg));
 812        rq_cfg.ena = 1;
 813        rq_cfg.tcp_ena = 0;
 814        nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
 815}
 816
 817/* Configures completion queue */
 818void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
 819                            int qidx, bool enable)
 820{
 821        struct cmp_queue *cq;
 822        struct cq_cfg cq_cfg;
 823
 824        cq = &qs->cq[qidx];
 825        cq->enable = enable;
 826
 827        if (!cq->enable) {
 828                nicvf_reclaim_cmp_queue(nic, qs, qidx);
 829                return;
 830        }
 831
 832        /* Reset completion queue */
 833        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
 834
 835        if (!cq->enable)
 836                return;
 837
 838        spin_lock_init(&cq->lock);
 839        /* Set completion queue base address */
 840        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
 841                              qidx, (u64)(cq->dmem.phys_base));
 842
 843        /* Enable Completion queue */
 844        memset(&cq_cfg, 0, sizeof(struct cq_cfg));
 845        cq_cfg.ena = 1;
 846        cq_cfg.reset = 0;
 847        cq_cfg.caching = 0;
 848        cq_cfg.qsize = ilog2(qs->cq_len >> 10);
 849        cq_cfg.avg_con = 0;
 850        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
 851
 852        /* Set threshold value for interrupt generation */
 853        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
 854        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
 855                              qidx, CMP_QUEUE_TIMER_THRESH);
 856}
 857
 858/* Configures transmit queue */
 859static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
 860                                   int qidx, bool enable)
 861{
 862        union nic_mbx mbx = {};
 863        struct snd_queue *sq;
 864        struct sq_cfg sq_cfg;
 865
 866        sq = &qs->sq[qidx];
 867        sq->enable = enable;
 868
 869        if (!sq->enable) {
 870                nicvf_reclaim_snd_queue(nic, qs, qidx);
 871                return;
 872        }
 873
 874        /* Reset send queue */
 875        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
 876
 877        sq->cq_qs = qs->vnic_id;
 878        sq->cq_idx = qidx;
 879
 880        /* Send a mailbox msg to PF to config SQ */
 881        mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
 882        mbx.sq.qs_num = qs->vnic_id;
 883        mbx.sq.sq_num = qidx;
 884        mbx.sq.sqs_mode = nic->sqs_mode;
 885        mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
 886        nicvf_send_msg_to_pf(nic, &mbx);
 887
 888        /* Set queue base address */
 889        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
 890                              qidx, (u64)(sq->dmem.phys_base));
 891
 892        /* Enable send queue  & set queue size */
 893        memset(&sq_cfg, 0, sizeof(struct sq_cfg));
 894        sq_cfg.ena = 1;
 895        sq_cfg.reset = 0;
 896        sq_cfg.ldwb = 0;
 897        sq_cfg.qsize = ilog2(qs->sq_len >> 10);
 898        sq_cfg.tstmp_bgx_intf = 0;
 899        /* CQ's level at which HW will stop processing SQEs to avoid
 900         * transmitting a pkt with no space in CQ to post CQE_TX.
 901         */
 902        sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
 903        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
 904
 905        /* Set threshold value for interrupt generation */
 906        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
 907
 908        /* Set queue:cpu affinity for better load distribution */
 909        if (cpu_online(qidx)) {
 910                cpumask_set_cpu(qidx, &sq->affinity_mask);
 911                netif_set_xps_queue(nic->netdev,
 912                                    &sq->affinity_mask, qidx);
 913        }
 914}
 915
 916/* Configures receive buffer descriptor ring */
 917static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
 918                              int qidx, bool enable)
 919{
 920        struct rbdr *rbdr;
 921        struct rbdr_cfg rbdr_cfg;
 922
 923        rbdr = &qs->rbdr[qidx];
 924        nicvf_reclaim_rbdr(nic, rbdr, qidx);
 925        if (!enable)
 926                return;
 927
 928        /* Set descriptor base address */
 929        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
 930                              qidx, (u64)(rbdr->dmem.phys_base));
 931
 932        /* Enable RBDR  & set queue size */
 933        /* Buffer size should be in multiples of 128 bytes */
 934        memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
 935        rbdr_cfg.ena = 1;
 936        rbdr_cfg.reset = 0;
 937        rbdr_cfg.ldwb = 0;
 938        rbdr_cfg.qsize = RBDR_SIZE;
 939        rbdr_cfg.avg_con = 0;
 940        rbdr_cfg.lines = rbdr->dma_size / 128;
 941        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
 942                              qidx, *(u64 *)&rbdr_cfg);
 943
 944        /* Notify HW */
 945        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
 946                              qidx, qs->rbdr_len - 1);
 947
 948        /* Set threshold value for interrupt generation */
 949        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
 950                              qidx, rbdr->thresh - 1);
 951}
 952
 953/* Requests PF to assign and enable Qset */
 954void nicvf_qset_config(struct nicvf *nic, bool enable)
 955{
 956        union nic_mbx mbx = {};
 957        struct queue_set *qs = nic->qs;
 958        struct qs_cfg *qs_cfg;
 959
 960        if (!qs) {
 961                netdev_warn(nic->netdev,
 962                            "Qset is still not allocated, don't init queues\n");
 963                return;
 964        }
 965
 966        qs->enable = enable;
 967        qs->vnic_id = nic->vf_id;
 968
 969        /* Send a mailbox msg to PF to config Qset */
 970        mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
 971        mbx.qs.num = qs->vnic_id;
 972        mbx.qs.sqs_count = nic->sqs_count;
 973
 974        mbx.qs.cfg = 0;
 975        qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
 976        if (qs->enable) {
 977                qs_cfg->ena = 1;
 978#ifdef __BIG_ENDIAN
 979                qs_cfg->be = 1;
 980#endif
 981                qs_cfg->vnic = qs->vnic_id;
 982                /* Enable Tx timestamping capability */
 983                if (nic->ptp_clock)
 984                        qs_cfg->send_tstmp_ena = 1;
 985        }
 986        nicvf_send_msg_to_pf(nic, &mbx);
 987}
 988
 989static void nicvf_free_resources(struct nicvf *nic)
 990{
 991        int qidx;
 992        struct queue_set *qs = nic->qs;
 993
 994        /* Free receive buffer descriptor ring */
 995        for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
 996                nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
 997
 998        /* Free completion queue */
 999        for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1000                nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1001
1002        /* Free send queue */
1003        for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1004                nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1005}
1006
1007static int nicvf_alloc_resources(struct nicvf *nic)
1008{
1009        int qidx;
1010        struct queue_set *qs = nic->qs;
1011
1012        /* Alloc receive buffer descriptor ring */
1013        for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1014                if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1015                                    DMA_BUFFER_LEN))
1016                        goto alloc_fail;
1017        }
1018
1019        /* Alloc send queue */
1020        for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1021                if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1022                        goto alloc_fail;
1023        }
1024
1025        /* Alloc completion queue */
1026        for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1027                if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1028                        goto alloc_fail;
1029        }
1030
1031        return 0;
1032alloc_fail:
1033        nicvf_free_resources(nic);
1034        return -ENOMEM;
1035}
1036
1037int nicvf_set_qset_resources(struct nicvf *nic)
1038{
1039        struct queue_set *qs;
1040
1041        qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1042        if (!qs)
1043                return -ENOMEM;
1044        nic->qs = qs;
1045
1046        /* Set count of each queue */
1047        qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1048        qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1049        qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1050        qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1051
1052        /* Set queue lengths */
1053        qs->rbdr_len = RCV_BUF_COUNT;
1054        qs->sq_len = SND_QUEUE_LEN;
1055        qs->cq_len = CMP_QUEUE_LEN;
1056
1057        nic->rx_queues = qs->rq_cnt;
1058        nic->tx_queues = qs->sq_cnt;
1059        nic->xdp_tx_queues = 0;
1060
1061        return 0;
1062}
1063
1064int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1065{
1066        bool disable = false;
1067        struct queue_set *qs = nic->qs;
1068        struct queue_set *pqs = nic->pnicvf->qs;
1069        int qidx;
1070
1071        if (!qs)
1072                return 0;
1073
1074        /* Take primary VF's queue lengths.
1075         * This is needed to take queue lengths set from ethtool
1076         * into consideration.
1077         */
1078        if (nic->sqs_mode && pqs) {
1079                qs->cq_len = pqs->cq_len;
1080                qs->sq_len = pqs->sq_len;
1081        }
1082
1083        if (enable) {
1084                if (nicvf_alloc_resources(nic))
1085                        return -ENOMEM;
1086
1087                for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1088                        nicvf_snd_queue_config(nic, qs, qidx, enable);
1089                for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1090                        nicvf_cmp_queue_config(nic, qs, qidx, enable);
1091                for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1092                        nicvf_rbdr_config(nic, qs, qidx, enable);
1093                for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1094                        nicvf_rcv_queue_config(nic, qs, qidx, enable);
1095        } else {
1096                for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1097                        nicvf_rcv_queue_config(nic, qs, qidx, disable);
1098                for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1099                        nicvf_rbdr_config(nic, qs, qidx, disable);
1100                for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1101                        nicvf_snd_queue_config(nic, qs, qidx, disable);
1102                for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1103                        nicvf_cmp_queue_config(nic, qs, qidx, disable);
1104
1105                nicvf_free_resources(nic);
1106        }
1107
1108        /* Reset RXQ's stats.
1109         * SQ's stats will get reset automatically once SQ is reset.
1110         */
1111        nicvf_reset_rcv_queue_stats(nic);
1112
1113        return 0;
1114}
1115
1116/* Get a free desc from SQ
1117 * returns descriptor ponter & descriptor number
1118 */
1119static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1120{
1121        int qentry;
1122
1123        qentry = sq->tail;
1124        if (!sq->is_xdp)
1125                atomic_sub(desc_cnt, &sq->free_cnt);
1126        else
1127                sq->xdp_free_cnt -= desc_cnt;
1128        sq->tail += desc_cnt;
1129        sq->tail &= (sq->dmem.q_len - 1);
1130
1131        return qentry;
1132}
1133
1134/* Rollback to previous tail pointer when descriptors not used */
1135static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1136                                          int qentry, int desc_cnt)
1137{
1138        sq->tail = qentry;
1139        atomic_add(desc_cnt, &sq->free_cnt);
1140}
1141
1142/* Free descriptor back to SQ for future use */
1143void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1144{
1145        if (!sq->is_xdp)
1146                atomic_add(desc_cnt, &sq->free_cnt);
1147        else
1148                sq->xdp_free_cnt += desc_cnt;
1149        sq->head += desc_cnt;
1150        sq->head &= (sq->dmem.q_len - 1);
1151}
1152
1153static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1154{
1155        qentry++;
1156        qentry &= (sq->dmem.q_len - 1);
1157        return qentry;
1158}
1159
1160void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1161{
1162        u64 sq_cfg;
1163
1164        sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1165        sq_cfg |= NICVF_SQ_EN;
1166        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1167        /* Ring doorbell so that H/W restarts processing SQEs */
1168        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1169}
1170
1171void nicvf_sq_disable(struct nicvf *nic, int qidx)
1172{
1173        u64 sq_cfg;
1174
1175        sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1176        sq_cfg &= ~NICVF_SQ_EN;
1177        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1178}
1179
1180void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1181                              int qidx)
1182{
1183        u64 head;
1184        struct sk_buff *skb;
1185        struct nicvf *nic = netdev_priv(netdev);
1186        struct sq_hdr_subdesc *hdr;
1187
1188        head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1189        while (sq->head != head) {
1190                hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1191                if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1192                        nicvf_put_sq_desc(sq, 1);
1193                        continue;
1194                }
1195                skb = (struct sk_buff *)sq->skbuff[sq->head];
1196                if (skb)
1197                        dev_kfree_skb_any(skb);
1198                atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1199                atomic64_add(hdr->tot_len,
1200                             (atomic64_t *)&netdev->stats.tx_bytes);
1201                nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1202        }
1203}
1204
1205/* XDP Transmit APIs */
1206void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1207                           struct snd_queue *sq, int sq_num)
1208{
1209        if (!sq->xdp_desc_cnt)
1210                return;
1211
1212        /* make sure all memory stores are done before ringing doorbell */
1213        wmb();
1214
1215        /* Inform HW to xmit all TSO segments */
1216        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1217                              sq_num, sq->xdp_desc_cnt);
1218        sq->xdp_desc_cnt = 0;
1219}
1220
1221static inline void
1222nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1223                             int subdesc_cnt, u64 data, int len)
1224{
1225        struct sq_hdr_subdesc *hdr;
1226
1227        hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1228        memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1229        hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1230        hdr->subdesc_cnt = subdesc_cnt;
1231        hdr->tot_len = len;
1232        hdr->post_cqe = 1;
1233        sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1234}
1235
1236int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1237                            u64 bufaddr, u64 dma_addr, u16 len)
1238{
1239        int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1240        int qentry;
1241
1242        if (subdesc_cnt > sq->xdp_free_cnt)
1243                return 0;
1244
1245        qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1246
1247        nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1248
1249        qentry = nicvf_get_nxt_sqentry(sq, qentry);
1250        nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1251
1252        sq->xdp_desc_cnt += subdesc_cnt;
1253
1254        return 1;
1255}
1256
1257/* Calculate no of SQ subdescriptors needed to transmit all
1258 * segments of this TSO packet.
1259 * Taken from 'Tilera network driver' with a minor modification.
1260 */
1261static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1262{
1263        struct skb_shared_info *sh = skb_shinfo(skb);
1264        unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1265        unsigned int data_len = skb->len - sh_len;
1266        unsigned int p_len = sh->gso_size;
1267        long f_id = -1;    /* id of the current fragment */
1268        long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1269        long f_used = 0;  /* bytes used from the current fragment */
1270        long n;            /* size of the current piece of payload */
1271        int num_edescs = 0;
1272        int segment;
1273
1274        for (segment = 0; segment < sh->gso_segs; segment++) {
1275                unsigned int p_used = 0;
1276
1277                /* One edesc for header and for each piece of the payload. */
1278                for (num_edescs++; p_used < p_len; num_edescs++) {
1279                        /* Advance as needed. */
1280                        while (f_used >= f_size) {
1281                                f_id++;
1282                                f_size = skb_frag_size(&sh->frags[f_id]);
1283                                f_used = 0;
1284                        }
1285
1286                        /* Use bytes from the current fragment. */
1287                        n = p_len - p_used;
1288                        if (n > f_size - f_used)
1289                                n = f_size - f_used;
1290                        f_used += n;
1291                        p_used += n;
1292                }
1293
1294                /* The last segment may be less than gso_size. */
1295                data_len -= p_len;
1296                if (data_len < p_len)
1297                        p_len = data_len;
1298        }
1299
1300        /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1301        return num_edescs + sh->gso_segs;
1302}
1303
1304#define POST_CQE_DESC_COUNT 2
1305
1306/* Get the number of SQ descriptors needed to xmit this skb */
1307static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1308{
1309        int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1310
1311        if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1312                subdesc_cnt = nicvf_tso_count_subdescs(skb);
1313                return subdesc_cnt;
1314        }
1315
1316        /* Dummy descriptors to get TSO pkt completion notification */
1317        if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1318                subdesc_cnt += POST_CQE_DESC_COUNT;
1319
1320        if (skb_shinfo(skb)->nr_frags)
1321                subdesc_cnt += skb_shinfo(skb)->nr_frags;
1322
1323        return subdesc_cnt;
1324}
1325
1326/* Add SQ HEADER subdescriptor.
1327 * First subdescriptor for every send descriptor.
1328 */
1329static inline void
1330nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1331                         int subdesc_cnt, struct sk_buff *skb, int len)
1332{
1333        int proto;
1334        struct sq_hdr_subdesc *hdr;
1335        union {
1336                struct iphdr *v4;
1337                struct ipv6hdr *v6;
1338                unsigned char *hdr;
1339        } ip;
1340
1341        ip.hdr = skb_network_header(skb);
1342        hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1343        memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1344        hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1345
1346        if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1347                /* post_cqe = 0, to avoid HW posting a CQE for every TSO
1348                 * segment transmitted on 88xx.
1349                 */
1350                hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1351        } else {
1352                sq->skbuff[qentry] = (u64)skb;
1353                /* Enable notification via CQE after processing SQE */
1354                hdr->post_cqe = 1;
1355                /* No of subdescriptors following this */
1356                hdr->subdesc_cnt = subdesc_cnt;
1357        }
1358        hdr->tot_len = len;
1359
1360        /* Offload checksum calculation to HW */
1361        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1362                if (ip.v4->version == 4)
1363                        hdr->csum_l3 = 1; /* Enable IP csum calculation */
1364                hdr->l3_offset = skb_network_offset(skb);
1365                hdr->l4_offset = skb_transport_offset(skb);
1366
1367                proto = (ip.v4->version == 4) ? ip.v4->protocol :
1368                        ip.v6->nexthdr;
1369
1370                switch (proto) {
1371                case IPPROTO_TCP:
1372                        hdr->csum_l4 = SEND_L4_CSUM_TCP;
1373                        break;
1374                case IPPROTO_UDP:
1375                        hdr->csum_l4 = SEND_L4_CSUM_UDP;
1376                        break;
1377                case IPPROTO_SCTP:
1378                        hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1379                        break;
1380                }
1381        }
1382
1383        if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1384                hdr->tso = 1;
1385                hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1386                hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1387                /* For non-tunneled pkts, point this to L2 ethertype */
1388                hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1389                this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1390        }
1391
1392        /* Check if timestamp is requested */
1393        if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1394                skb_tx_timestamp(skb);
1395                return;
1396        }
1397
1398        /* Tx timestamping not supported along with TSO, so ignore request */
1399        if (skb_shinfo(skb)->gso_size)
1400                return;
1401
1402        /* HW supports only a single outstanding packet to timestamp */
1403        if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
1404                return;
1405
1406        /* Mark the SKB for later reference */
1407        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1408
1409        /* Finally enable timestamp generation
1410         * Since 'post_cqe' is also set, two CQEs will be posted
1411         * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
1412         */
1413        hdr->tstmp = 1;
1414}
1415
1416/* SQ GATHER subdescriptor
1417 * Must follow HDR descriptor
1418 */
1419static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1420                                               int size, u64 data)
1421{
1422        struct sq_gather_subdesc *gather;
1423
1424        qentry &= (sq->dmem.q_len - 1);
1425        gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1426
1427        memset(gather, 0, SND_QUEUE_DESC_SIZE);
1428        gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1429        gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1430        gather->size = size;
1431        gather->addr = data;
1432}
1433
1434/* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1435 * packet so that a CQE is posted as a notifation for transmission of
1436 * TSO packet.
1437 */
1438static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1439                                            int tso_sqe, struct sk_buff *skb)
1440{
1441        struct sq_imm_subdesc *imm;
1442        struct sq_hdr_subdesc *hdr;
1443
1444        sq->skbuff[qentry] = (u64)skb;
1445
1446        hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1447        memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1448        hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1449        /* Enable notification via CQE after processing SQE */
1450        hdr->post_cqe = 1;
1451        /* There is no packet to transmit here */
1452        hdr->dont_send = 1;
1453        hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1454        hdr->tot_len = 1;
1455        /* Actual TSO header SQE index, needed for cleanup */
1456        hdr->rsvd2 = tso_sqe;
1457
1458        qentry = nicvf_get_nxt_sqentry(sq, qentry);
1459        imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1460        memset(imm, 0, SND_QUEUE_DESC_SIZE);
1461        imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1462        imm->len = 1;
1463}
1464
1465static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1466                                     int sq_num, int desc_cnt)
1467{
1468        struct netdev_queue *txq;
1469
1470        txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1471                                  skb_get_queue_mapping(skb));
1472
1473        netdev_tx_sent_queue(txq, skb->len);
1474
1475        /* make sure all memory stores are done before ringing doorbell */
1476        smp_wmb();
1477
1478        /* Inform HW to xmit all TSO segments */
1479        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1480                              sq_num, desc_cnt);
1481}
1482
1483/* Segment a TSO packet into 'gso_size' segments and append
1484 * them to SQ for transfer
1485 */
1486static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1487                               int sq_num, int qentry, struct sk_buff *skb)
1488{
1489        struct tso_t tso;
1490        int seg_subdescs = 0, desc_cnt = 0;
1491        int seg_len, total_len, data_left;
1492        int hdr_qentry = qentry;
1493        int hdr_len;
1494
1495        hdr_len = tso_start(skb, &tso);
1496
1497        total_len = skb->len - hdr_len;
1498        while (total_len > 0) {
1499                char *hdr;
1500
1501                /* Save Qentry for adding HDR_SUBDESC at the end */
1502                hdr_qentry = qentry;
1503
1504                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1505                total_len -= data_left;
1506
1507                /* Add segment's header */
1508                qentry = nicvf_get_nxt_sqentry(sq, qentry);
1509                hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1510                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1511                nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1512                                            sq->tso_hdrs_phys +
1513                                            qentry * TSO_HEADER_SIZE);
1514                /* HDR_SUDESC + GATHER */
1515                seg_subdescs = 2;
1516                seg_len = hdr_len;
1517
1518                /* Add segment's payload fragments */
1519                while (data_left > 0) {
1520                        int size;
1521
1522                        size = min_t(int, tso.size, data_left);
1523
1524                        qentry = nicvf_get_nxt_sqentry(sq, qentry);
1525                        nicvf_sq_add_gather_subdesc(sq, qentry, size,
1526                                                    virt_to_phys(tso.data));
1527                        seg_subdescs++;
1528                        seg_len += size;
1529
1530                        data_left -= size;
1531                        tso_build_data(skb, &tso, size);
1532                }
1533                nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1534                                         seg_subdescs - 1, skb, seg_len);
1535                sq->skbuff[hdr_qentry] = (u64)NULL;
1536                qentry = nicvf_get_nxt_sqentry(sq, qentry);
1537
1538                desc_cnt += seg_subdescs;
1539        }
1540        /* Save SKB in the last segment for freeing */
1541        sq->skbuff[hdr_qentry] = (u64)skb;
1542
1543        nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1544
1545        this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1546        return 1;
1547}
1548
1549/* Append an skb to a SQ for packet transfer. */
1550int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1551                        struct sk_buff *skb, u8 sq_num)
1552{
1553        int i, size;
1554        int subdesc_cnt, hdr_sqe = 0;
1555        int qentry;
1556        u64 dma_addr;
1557
1558        subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1559        if (subdesc_cnt > atomic_read(&sq->free_cnt))
1560                goto append_fail;
1561
1562        qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1563
1564        /* Check if its a TSO packet */
1565        if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1566                return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1567
1568        /* Add SQ header subdesc */
1569        nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1570                                 skb, skb->len);
1571        hdr_sqe = qentry;
1572
1573        /* Add SQ gather subdescs */
1574        qentry = nicvf_get_nxt_sqentry(sq, qentry);
1575        size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1576        /* HW will ensure data coherency, CPU sync not required */
1577        dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1578                                      offset_in_page(skb->data), size,
1579                                      DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1580        if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1581                nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1582                return 0;
1583        }
1584
1585        nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1586
1587        /* Check for scattered buffer */
1588        if (!skb_is_nonlinear(skb))
1589                goto doorbell;
1590
1591        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1592                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1593
1594                qentry = nicvf_get_nxt_sqentry(sq, qentry);
1595                size = skb_frag_size(frag);
1596                dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1597                                              skb_frag_page(frag),
1598                                              skb_frag_off(frag), size,
1599                                              DMA_TO_DEVICE,
1600                                              DMA_ATTR_SKIP_CPU_SYNC);
1601                if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1602                        /* Free entire chain of mapped buffers
1603                         * here 'i' = frags mapped + above mapped skb->data
1604                         */
1605                        nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1606                        nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1607                        return 0;
1608                }
1609                nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1610        }
1611
1612doorbell:
1613        if (nic->t88 && skb_shinfo(skb)->gso_size) {
1614                qentry = nicvf_get_nxt_sqentry(sq, qentry);
1615                nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1616        }
1617
1618        nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1619
1620        return 1;
1621
1622append_fail:
1623        /* Use original PCI dev for debug log */
1624        nic = nic->pnicvf;
1625        netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1626        return 0;
1627}
1628
1629static inline unsigned frag_num(unsigned i)
1630{
1631#ifdef __BIG_ENDIAN
1632        return (i & ~3) + 3 - (i & 3);
1633#else
1634        return i;
1635#endif
1636}
1637
1638static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1639                                   u64 buf_addr, bool xdp)
1640{
1641        struct page *page = NULL;
1642        int len = RCV_FRAG_LEN;
1643
1644        if (xdp) {
1645                page = virt_to_page(phys_to_virt(buf_addr));
1646                /* Check if it's a recycled page, if not
1647                 * unmap the DMA mapping.
1648                 *
1649                 * Recycled page holds an extra reference.
1650                 */
1651                if (page_ref_count(page) != 1)
1652                        return;
1653
1654                len += XDP_PACKET_HEADROOM;
1655                /* Receive buffers in XDP mode are mapped from page start */
1656                dma_addr &= PAGE_MASK;
1657        }
1658        dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1659                             DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1660}
1661
1662/* Returns SKB for a received packet */
1663struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1664                                  struct cqe_rx_t *cqe_rx, bool xdp)
1665{
1666        int frag;
1667        int payload_len = 0;
1668        struct sk_buff *skb = NULL;
1669        struct page *page;
1670        int offset;
1671        u16 *rb_lens = NULL;
1672        u64 *rb_ptrs = NULL;
1673        u64 phys_addr;
1674
1675        rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1676        /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1677         * CQE_RX at word6, hence buffer pointers move by word
1678         *
1679         * Use existing 'hw_tso' flag which will be set for all chips
1680         * except 88xx pass1 instead of a additional cache line
1681         * access (or miss) by using pci dev's revision.
1682         */
1683        if (!nic->hw_tso)
1684                rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1685        else
1686                rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1687
1688        for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1689                payload_len = rb_lens[frag_num(frag)];
1690                phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1691                if (!phys_addr) {
1692                        if (skb)
1693                                dev_kfree_skb_any(skb);
1694                        return NULL;
1695                }
1696
1697                if (!frag) {
1698                        /* First fragment */
1699                        nicvf_unmap_rcv_buffer(nic,
1700                                               *rb_ptrs - cqe_rx->align_pad,
1701                                               phys_addr, xdp);
1702                        skb = nicvf_rb_ptr_to_skb(nic,
1703                                                  phys_addr - cqe_rx->align_pad,
1704                                                  payload_len);
1705                        if (!skb)
1706                                return NULL;
1707                        skb_reserve(skb, cqe_rx->align_pad);
1708                        skb_put(skb, payload_len);
1709                } else {
1710                        /* Add fragments */
1711                        nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1712                        page = virt_to_page(phys_to_virt(phys_addr));
1713                        offset = phys_to_virt(phys_addr) - page_address(page);
1714                        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1715                                        offset, payload_len, RCV_FRAG_LEN);
1716                }
1717                /* Next buffer pointer */
1718                rb_ptrs++;
1719        }
1720        return skb;
1721}
1722
1723static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1724{
1725        u64 reg_val;
1726
1727        switch (int_type) {
1728        case NICVF_INTR_CQ:
1729                reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1730                break;
1731        case NICVF_INTR_SQ:
1732                reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1733                break;
1734        case NICVF_INTR_RBDR:
1735                reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1736                break;
1737        case NICVF_INTR_PKT_DROP:
1738                reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1739                break;
1740        case NICVF_INTR_TCP_TIMER:
1741                reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1742                break;
1743        case NICVF_INTR_MBOX:
1744                reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1745                break;
1746        case NICVF_INTR_QS_ERR:
1747                reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1748                break;
1749        default:
1750                reg_val = 0;
1751        }
1752
1753        return reg_val;
1754}
1755
1756/* Enable interrupt */
1757void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1758{
1759        u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1760
1761        if (!mask) {
1762                netdev_dbg(nic->netdev,
1763                           "Failed to enable interrupt: unknown type\n");
1764                return;
1765        }
1766        nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1767                        nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1768}
1769
1770/* Disable interrupt */
1771void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1772{
1773        u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1774
1775        if (!mask) {
1776                netdev_dbg(nic->netdev,
1777                           "Failed to disable interrupt: unknown type\n");
1778                return;
1779        }
1780
1781        nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1782}
1783
1784/* Clear interrupt */
1785void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1786{
1787        u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1788
1789        if (!mask) {
1790                netdev_dbg(nic->netdev,
1791                           "Failed to clear interrupt: unknown type\n");
1792                return;
1793        }
1794
1795        nicvf_reg_write(nic, NIC_VF_INT, mask);
1796}
1797
1798/* Check if interrupt is enabled */
1799int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1800{
1801        u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1802        /* If interrupt type is unknown, we treat it disabled. */
1803        if (!mask) {
1804                netdev_dbg(nic->netdev,
1805                           "Failed to check interrupt enable: unknown type\n");
1806                return 0;
1807        }
1808
1809        return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1810}
1811
1812void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1813{
1814        struct rcv_queue *rq;
1815
1816#define GET_RQ_STATS(reg) \
1817        nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1818                            (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1819
1820        rq = &nic->qs->rq[rq_idx];
1821        rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1822        rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1823}
1824
1825void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1826{
1827        struct snd_queue *sq;
1828
1829#define GET_SQ_STATS(reg) \
1830        nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1831                            (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1832
1833        sq = &nic->qs->sq[sq_idx];
1834        sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1835        sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1836}
1837
1838/* Check for errors in the receive cmp.queue entry */
1839int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1840{
1841        netif_err(nic, rx_err, nic->netdev,
1842                  "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1843                  cqe_rx->err_level, cqe_rx->err_opcode);
1844
1845        switch (cqe_rx->err_opcode) {
1846        case CQ_RX_ERROP_RE_PARTIAL:
1847                this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1848                break;
1849        case CQ_RX_ERROP_RE_JABBER:
1850                this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1851                break;
1852        case CQ_RX_ERROP_RE_FCS:
1853                this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1854                break;
1855        case CQ_RX_ERROP_RE_RX_CTL:
1856                this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1857                break;
1858        case CQ_RX_ERROP_PREL2_ERR:
1859                this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1860                break;
1861        case CQ_RX_ERROP_L2_MAL:
1862                this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1863                break;
1864        case CQ_RX_ERROP_L2_OVERSIZE:
1865                this_cpu_inc(nic->drv_stats->rx_oversize);
1866                break;
1867        case CQ_RX_ERROP_L2_UNDERSIZE:
1868                this_cpu_inc(nic->drv_stats->rx_undersize);
1869                break;
1870        case CQ_RX_ERROP_L2_LENMISM:
1871                this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1872                break;
1873        case CQ_RX_ERROP_L2_PCLP:
1874                this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1875                break;
1876        case CQ_RX_ERROP_IP_NOT:
1877                this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1878                break;
1879        case CQ_RX_ERROP_IP_CSUM_ERR:
1880                this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1881                break;
1882        case CQ_RX_ERROP_IP_MAL:
1883                this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1884                break;
1885        case CQ_RX_ERROP_IP_MALD:
1886                this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1887                break;
1888        case CQ_RX_ERROP_IP_HOP:
1889                this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1890                break;
1891        case CQ_RX_ERROP_L3_PCLP:
1892                this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1893                break;
1894        case CQ_RX_ERROP_L4_MAL:
1895                this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1896                break;
1897        case CQ_RX_ERROP_L4_CHK:
1898                this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1899                break;
1900        case CQ_RX_ERROP_UDP_LEN:
1901                this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1902                break;
1903        case CQ_RX_ERROP_L4_PORT:
1904                this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1905                break;
1906        case CQ_RX_ERROP_TCP_FLAG:
1907                this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1908                break;
1909        case CQ_RX_ERROP_TCP_OFFSET:
1910                this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1911                break;
1912        case CQ_RX_ERROP_L4_PCLP:
1913                this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1914                break;
1915        case CQ_RX_ERROP_RBDR_TRUNC:
1916                this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1917                break;
1918        }
1919
1920        return 1;
1921}
1922
1923/* Check for errors in the send cmp.queue entry */
1924int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1925{
1926        switch (cqe_tx->send_status) {
1927        case CQ_TX_ERROP_DESC_FAULT:
1928                this_cpu_inc(nic->drv_stats->tx_desc_fault);
1929                break;
1930        case CQ_TX_ERROP_HDR_CONS_ERR:
1931                this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1932                break;
1933        case CQ_TX_ERROP_SUBDC_ERR:
1934                this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1935                break;
1936        case CQ_TX_ERROP_MAX_SIZE_VIOL:
1937                this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1938                break;
1939        case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1940                this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1941                break;
1942        case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1943                this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1944                break;
1945        case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1946                this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1947                break;
1948        case CQ_TX_ERROP_LOCK_VIOL:
1949                this_cpu_inc(nic->drv_stats->tx_lock_viol);
1950                break;
1951        case CQ_TX_ERROP_DATA_FAULT:
1952                this_cpu_inc(nic->drv_stats->tx_data_fault);
1953                break;
1954        case CQ_TX_ERROP_TSTMP_CONFLICT:
1955                this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1956                break;
1957        case CQ_TX_ERROP_TSTMP_TIMEOUT:
1958                this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1959                break;
1960        case CQ_TX_ERROP_MEM_FAULT:
1961                this_cpu_inc(nic->drv_stats->tx_mem_fault);
1962                break;
1963        case CQ_TX_ERROP_CK_OVERLAP:
1964                this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1965                break;
1966        case CQ_TX_ERROP_CK_OFLOW:
1967                this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1968                break;
1969        }
1970
1971        return 1;
1972}
1973