linux/drivers/net/ethernet/chelsio/cxgb4vf/sge.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#include <linux/skbuff.h>
  37#include <linux/netdevice.h>
  38#include <linux/etherdevice.h>
  39#include <linux/if_vlan.h>
  40#include <linux/ip.h>
  41#include <net/ipv6.h>
  42#include <net/tcp.h>
  43#include <linux/dma-mapping.h>
  44#include <linux/prefetch.h>
  45
  46#include "t4vf_common.h"
  47#include "t4vf_defs.h"
  48
  49#include "../cxgb4/t4_regs.h"
  50#include "../cxgb4/t4_values.h"
  51#include "../cxgb4/t4fw_api.h"
  52#include "../cxgb4/t4_msg.h"
  53
  54/*
  55 * Constants ...
  56 */
  57enum {
  58        /*
  59         * Egress Queue sizes, producer and consumer indices are all in units
  60         * of Egress Context Units bytes.  Note that as far as the hardware is
  61         * concerned, the free list is an Egress Queue (the host produces free
  62         * buffers which the hardware consumes) and free list entries are
  63         * 64-bit PCI DMA addresses.
  64         */
  65        EQ_UNIT = SGE_EQ_IDXSIZE,
  66        FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
  67        TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
  68
  69        /*
  70         * Max number of TX descriptors we clean up at a time.  Should be
  71         * modest as freeing skbs isn't cheap and it happens while holding
  72         * locks.  We just need to free packets faster than they arrive, we
  73         * eventually catch up and keep the amortized cost reasonable.
  74         */
  75        MAX_TX_RECLAIM = 16,
  76
  77        /*
  78         * Max number of Rx buffers we replenish at a time.  Again keep this
  79         * modest, allocating buffers isn't cheap either.
  80         */
  81        MAX_RX_REFILL = 16,
  82
  83        /*
  84         * Period of the Rx queue check timer.  This timer is infrequent as it
  85         * has something to do only when the system experiences severe memory
  86         * shortage.
  87         */
  88        RX_QCHECK_PERIOD = (HZ / 2),
  89
  90        /*
  91         * Period of the TX queue check timer and the maximum number of TX
  92         * descriptors to be reclaimed by the TX timer.
  93         */
  94        TX_QCHECK_PERIOD = (HZ / 2),
  95        MAX_TIMER_TX_RECLAIM = 100,
  96
  97        /*
  98         * Suspend an Ethernet TX queue with fewer available descriptors than
  99         * this.  We always want to have room for a maximum sized packet:
 100         * inline immediate data + MAX_SKB_FRAGS. This is the same as
 101         * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
 102         * (see that function and its helpers for a description of the
 103         * calculation).
 104         */
 105        ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
 106        ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
 107                                   ((ETHTXQ_MAX_FRAGS-1) & 1) +
 108                                   2),
 109        ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 110                          sizeof(struct cpl_tx_pkt_lso_core) +
 111                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
 112        ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
 113
 114        ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
 115
 116        /*
 117         * Max TX descriptor space we allow for an Ethernet packet to be
 118         * inlined into a WR.  This is limited by the maximum value which
 119         * we can specify for immediate data in the firmware Ethernet TX
 120         * Work Request.
 121         */
 122        MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
 123
 124        /*
 125         * Max size of a WR sent through a control TX queue.
 126         */
 127        MAX_CTRL_WR_LEN = 256,
 128
 129        /*
 130         * Maximum amount of data which we'll ever need to inline into a
 131         * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
 132         */
 133        MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
 134                          ? MAX_IMM_TX_PKT_LEN
 135                          : MAX_CTRL_WR_LEN),
 136
 137        /*
 138         * For incoming packets less than RX_COPY_THRES, we copy the data into
 139         * an skb rather than referencing the data.  We allocate enough
 140         * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
 141         * of the data (header).
 142         */
 143        RX_COPY_THRES = 256,
 144        RX_PULL_LEN = 128,
 145
 146        /*
 147         * Main body length for sk_buffs used for RX Ethernet packets with
 148         * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
 149         * pskb_may_pull() some room.
 150         */
 151        RX_SKB_LEN = 512,
 152};
 153
 154/*
 155 * Software state per TX descriptor.
 156 */
 157struct tx_sw_desc {
 158        struct sk_buff *skb;            /* socket buffer of TX data source */
 159        struct ulptx_sgl *sgl;          /* scatter/gather list in TX Queue */
 160};
 161
 162/*
 163 * Software state per RX Free List descriptor.  We keep track of the allocated
 164 * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
 165 * page size and its PCI DMA mapped state are stored in the low bits of the
 166 * PCI DMA address as per below.
 167 */
 168struct rx_sw_desc {
 169        struct page *page;              /* Free List page buffer */
 170        dma_addr_t dma_addr;            /* PCI DMA address (if mapped) */
 171                                        /*   and flags (see below) */
 172};
 173
 174/*
 175 * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
 176 * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
 177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
 178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
 179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
 180 * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
 181 * maintained in an inverse sense so the hardware never sees that bit high.
 182 */
 183enum {
 184        RX_LARGE_BUF    = 1 << 0,       /* buffer is SGE_FL_BUFFER_SIZE[1] */
 185        RX_UNMAPPED_BUF = 1 << 1,       /* buffer is not mapped */
 186};
 187
 188/**
 189 *      get_buf_addr - return DMA buffer address of software descriptor
 190 *      @sdesc: pointer to the software buffer descriptor
 191 *
 192 *      Return the DMA buffer address of a software descriptor (stripping out
 193 *      our low-order flag bits).
 194 */
 195static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
 196{
 197        return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
 198}
 199
 200/**
 201 *      is_buf_mapped - is buffer mapped for DMA?
 202 *      @sdesc: pointer to the software buffer descriptor
 203 *
 204 *      Determine whether the buffer associated with a software descriptor in
 205 *      mapped for DMA or not.
 206 */
 207static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
 208{
 209        return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
 210}
 211
 212/**
 213 *      need_skb_unmap - does the platform need unmapping of sk_buffs?
 214 *
 215 *      Returns true if the platform needs sk_buff unmapping.  The compiler
 216 *      optimizes away unnecessary code if this returns true.
 217 */
 218static inline int need_skb_unmap(void)
 219{
 220#ifdef CONFIG_NEED_DMA_MAP_STATE
 221        return 1;
 222#else
 223        return 0;
 224#endif
 225}
 226
 227/**
 228 *      txq_avail - return the number of available slots in a TX queue
 229 *      @tq: the TX queue
 230 *
 231 *      Returns the number of available descriptors in a TX queue.
 232 */
 233static inline unsigned int txq_avail(const struct sge_txq *tq)
 234{
 235        return tq->size - 1 - tq->in_use;
 236}
 237
 238/**
 239 *      fl_cap - return the capacity of a Free List
 240 *      @fl: the Free List
 241 *
 242 *      Returns the capacity of a Free List.  The capacity is less than the
 243 *      size because an Egress Queue Index Unit worth of descriptors needs to
 244 *      be left unpopulated, otherwise the Producer and Consumer indices PIDX
 245 *      and CIDX will match and the hardware will think the FL is empty.
 246 */
 247static inline unsigned int fl_cap(const struct sge_fl *fl)
 248{
 249        return fl->size - FL_PER_EQ_UNIT;
 250}
 251
 252/**
 253 *      fl_starving - return whether a Free List is starving.
 254 *      @adapter: pointer to the adapter
 255 *      @fl: the Free List
 256 *
 257 *      Tests specified Free List to see whether the number of buffers
 258 *      available to the hardware has falled below our "starvation"
 259 *      threshold.
 260 */
 261static inline bool fl_starving(const struct adapter *adapter,
 262                               const struct sge_fl *fl)
 263{
 264        const struct sge *s = &adapter->sge;
 265
 266        return fl->avail - fl->pend_cred <= s->fl_starve_thres;
 267}
 268
 269/**
 270 *      map_skb -  map an skb for DMA to the device
 271 *      @dev: the egress net device
 272 *      @skb: the packet to map
 273 *      @addr: a pointer to the base of the DMA mapping array
 274 *
 275 *      Map an skb for DMA to the device and return an array of DMA addresses.
 276 */
 277static int map_skb(struct device *dev, const struct sk_buff *skb,
 278                   dma_addr_t *addr)
 279{
 280        const skb_frag_t *fp, *end;
 281        const struct skb_shared_info *si;
 282
 283        *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 284        if (dma_mapping_error(dev, *addr))
 285                goto out_err;
 286
 287        si = skb_shinfo(skb);
 288        end = &si->frags[si->nr_frags];
 289        for (fp = si->frags; fp < end; fp++) {
 290                *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
 291                                           DMA_TO_DEVICE);
 292                if (dma_mapping_error(dev, *addr))
 293                        goto unwind;
 294        }
 295        return 0;
 296
 297unwind:
 298        while (fp-- > si->frags)
 299                dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
 300        dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 301
 302out_err:
 303        return -ENOMEM;
 304}
 305
 306static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
 307                      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
 308{
 309        const struct ulptx_sge_pair *p;
 310        unsigned int nfrags = skb_shinfo(skb)->nr_frags;
 311
 312        if (likely(skb_headlen(skb)))
 313                dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
 314                                 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
 315        else {
 316                dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
 317                               be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
 318                nfrags--;
 319        }
 320
 321        /*
 322         * the complexity below is because of the possibility of a wrap-around
 323         * in the middle of an SGL
 324         */
 325        for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
 326                if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
 327unmap:
 328                        dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 329                                       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
 330                        dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
 331                                       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
 332                        p++;
 333                } else if ((u8 *)p == (u8 *)tq->stat) {
 334                        p = (const struct ulptx_sge_pair *)tq->desc;
 335                        goto unmap;
 336                } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
 337                        const __be64 *addr = (const __be64 *)tq->desc;
 338
 339                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 340                                       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
 341                        dma_unmap_page(dev, be64_to_cpu(addr[1]),
 342                                       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
 343                        p = (const struct ulptx_sge_pair *)&addr[2];
 344                } else {
 345                        const __be64 *addr = (const __be64 *)tq->desc;
 346
 347                        dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 348                                       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
 349                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 350                                       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
 351                        p = (const struct ulptx_sge_pair *)&addr[1];
 352                }
 353        }
 354        if (nfrags) {
 355                __be64 addr;
 356
 357                if ((u8 *)p == (u8 *)tq->stat)
 358                        p = (const struct ulptx_sge_pair *)tq->desc;
 359                addr = ((u8 *)p + 16 <= (u8 *)tq->stat
 360                        ? p->addr[0]
 361                        : *(const __be64 *)tq->desc);
 362                dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
 363                               DMA_TO_DEVICE);
 364        }
 365}
 366
 367/**
 368 *      free_tx_desc - reclaims TX descriptors and their buffers
 369 *      @adapter: the adapter
 370 *      @tq: the TX queue to reclaim descriptors from
 371 *      @n: the number of descriptors to reclaim
 372 *      @unmap: whether the buffers should be unmapped for DMA
 373 *
 374 *      Reclaims TX descriptors from an SGE TX queue and frees the associated
 375 *      TX buffers.  Called with the TX queue lock held.
 376 */
 377static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
 378                         unsigned int n, bool unmap)
 379{
 380        struct tx_sw_desc *sdesc;
 381        unsigned int cidx = tq->cidx;
 382        struct device *dev = adapter->pdev_dev;
 383
 384        const int need_unmap = need_skb_unmap() && unmap;
 385
 386        sdesc = &tq->sdesc[cidx];
 387        while (n--) {
 388                /*
 389                 * If we kept a reference to the original TX skb, we need to
 390                 * unmap it from PCI DMA space (if required) and free it.
 391                 */
 392                if (sdesc->skb) {
 393                        if (need_unmap)
 394                                unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
 395                        dev_consume_skb_any(sdesc->skb);
 396                        sdesc->skb = NULL;
 397                }
 398
 399                sdesc++;
 400                if (++cidx == tq->size) {
 401                        cidx = 0;
 402                        sdesc = tq->sdesc;
 403                }
 404        }
 405        tq->cidx = cidx;
 406}
 407
 408/*
 409 * Return the number of reclaimable descriptors in a TX queue.
 410 */
 411static inline int reclaimable(const struct sge_txq *tq)
 412{
 413        int hw_cidx = be16_to_cpu(tq->stat->cidx);
 414        int reclaimable = hw_cidx - tq->cidx;
 415        if (reclaimable < 0)
 416                reclaimable += tq->size;
 417        return reclaimable;
 418}
 419
 420/**
 421 *      reclaim_completed_tx - reclaims completed TX descriptors
 422 *      @adapter: the adapter
 423 *      @tq: the TX queue to reclaim completed descriptors from
 424 *      @unmap: whether the buffers should be unmapped for DMA
 425 *
 426 *      Reclaims TX descriptors that the SGE has indicated it has processed,
 427 *      and frees the associated buffers if possible.  Called with the TX
 428 *      queue locked.
 429 */
 430static inline void reclaim_completed_tx(struct adapter *adapter,
 431                                        struct sge_txq *tq,
 432                                        bool unmap)
 433{
 434        int avail = reclaimable(tq);
 435
 436        if (avail) {
 437                /*
 438                 * Limit the amount of clean up work we do at a time to keep
 439                 * the TX lock hold time O(1).
 440                 */
 441                if (avail > MAX_TX_RECLAIM)
 442                        avail = MAX_TX_RECLAIM;
 443
 444                free_tx_desc(adapter, tq, avail, unmap);
 445                tq->in_use -= avail;
 446        }
 447}
 448
 449/**
 450 *      get_buf_size - return the size of an RX Free List buffer.
 451 *      @adapter: pointer to the associated adapter
 452 *      @sdesc: pointer to the software buffer descriptor
 453 */
 454static inline int get_buf_size(const struct adapter *adapter,
 455                               const struct rx_sw_desc *sdesc)
 456{
 457        const struct sge *s = &adapter->sge;
 458
 459        return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
 460                ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
 461}
 462
 463/**
 464 *      free_rx_bufs - free RX buffers on an SGE Free List
 465 *      @adapter: the adapter
 466 *      @fl: the SGE Free List to free buffers from
 467 *      @n: how many buffers to free
 468 *
 469 *      Release the next @n buffers on an SGE Free List RX queue.   The
 470 *      buffers must be made inaccessible to hardware before calling this
 471 *      function.
 472 */
 473static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
 474{
 475        while (n--) {
 476                struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
 477
 478                if (is_buf_mapped(sdesc))
 479                        dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
 480                                       get_buf_size(adapter, sdesc),
 481                                       DMA_FROM_DEVICE);
 482                put_page(sdesc->page);
 483                sdesc->page = NULL;
 484                if (++fl->cidx == fl->size)
 485                        fl->cidx = 0;
 486                fl->avail--;
 487        }
 488}
 489
 490/**
 491 *      unmap_rx_buf - unmap the current RX buffer on an SGE Free List
 492 *      @adapter: the adapter
 493 *      @fl: the SGE Free List
 494 *
 495 *      Unmap the current buffer on an SGE Free List RX queue.   The
 496 *      buffer must be made inaccessible to HW before calling this function.
 497 *
 498 *      This is similar to @free_rx_bufs above but does not free the buffer.
 499 *      Do note that the FL still loses any further access to the buffer.
 500 *      This is used predominantly to "transfer ownership" of an FL buffer
 501 *      to another entity (typically an skb's fragment list).
 502 */
 503static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
 504{
 505        struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
 506
 507        if (is_buf_mapped(sdesc))
 508                dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
 509                               get_buf_size(adapter, sdesc),
 510                               DMA_FROM_DEVICE);
 511        sdesc->page = NULL;
 512        if (++fl->cidx == fl->size)
 513                fl->cidx = 0;
 514        fl->avail--;
 515}
 516
 517/**
 518 *      ring_fl_db - righ doorbell on free list
 519 *      @adapter: the adapter
 520 *      @fl: the Free List whose doorbell should be rung ...
 521 *
 522 *      Tell the Scatter Gather Engine that there are new free list entries
 523 *      available.
 524 */
 525static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
 526{
 527        u32 val = adapter->params.arch.sge_fl_db;
 528
 529        /* The SGE keeps track of its Producer and Consumer Indices in terms
 530         * of Egress Queue Units so we can only tell it about integral numbers
 531         * of multiples of Free List Entries per Egress Queue Units ...
 532         */
 533        if (fl->pend_cred >= FL_PER_EQ_UNIT) {
 534                if (is_t4(adapter->params.chip))
 535                        val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
 536                else
 537                        val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT);
 538
 539                /* Make sure all memory writes to the Free List queue are
 540                 * committed before we tell the hardware about them.
 541                 */
 542                wmb();
 543
 544                /* If we don't have access to the new User Doorbell (T5+), use
 545                 * the old doorbell mechanism; otherwise use the new BAR2
 546                 * mechanism.
 547                 */
 548                if (unlikely(fl->bar2_addr == NULL)) {
 549                        t4_write_reg(adapter,
 550                                     T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
 551                                     QID_V(fl->cntxt_id) | val);
 552                } else {
 553                        writel(val | QID_V(fl->bar2_qid),
 554                               fl->bar2_addr + SGE_UDB_KDOORBELL);
 555
 556                        /* This Write memory Barrier will force the write to
 557                         * the User Doorbell area to be flushed.
 558                         */
 559                        wmb();
 560                }
 561                fl->pend_cred %= FL_PER_EQ_UNIT;
 562        }
 563}
 564
 565/**
 566 *      set_rx_sw_desc - initialize software RX buffer descriptor
 567 *      @sdesc: pointer to the softwore RX buffer descriptor
 568 *      @page: pointer to the page data structure backing the RX buffer
 569 *      @dma_addr: PCI DMA address (possibly with low-bit flags)
 570 */
 571static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
 572                                  dma_addr_t dma_addr)
 573{
 574        sdesc->page = page;
 575        sdesc->dma_addr = dma_addr;
 576}
 577
 578/*
 579 * Support for poisoning RX buffers ...
 580 */
 581#define POISON_BUF_VAL -1
 582
 583static inline void poison_buf(struct page *page, size_t sz)
 584{
 585#if POISON_BUF_VAL >= 0
 586        memset(page_address(page), POISON_BUF_VAL, sz);
 587#endif
 588}
 589
 590/**
 591 *      refill_fl - refill an SGE RX buffer ring
 592 *      @adapter: the adapter
 593 *      @fl: the Free List ring to refill
 594 *      @n: the number of new buffers to allocate
 595 *      @gfp: the gfp flags for the allocations
 596 *
 597 *      (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 598 *      allocated with the supplied gfp flags.  The caller must assure that
 599 *      @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
 600 *      EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
 601 *      of buffers allocated.  If afterwards the queue is found critically low,
 602 *      mark it as starving in the bitmap of starving FLs.
 603 */
 604static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
 605                              int n, gfp_t gfp)
 606{
 607        struct sge *s = &adapter->sge;
 608        struct page *page;
 609        dma_addr_t dma_addr;
 610        unsigned int cred = fl->avail;
 611        __be64 *d = &fl->desc[fl->pidx];
 612        struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
 613
 614        /*
 615         * Sanity: ensure that the result of adding n Free List buffers
 616         * won't result in wrapping the SGE's Producer Index around to
 617         * it's Consumer Index thereby indicating an empty Free List ...
 618         */
 619        BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
 620
 621        gfp |= __GFP_NOWARN;
 622
 623        /*
 624         * If we support large pages, prefer large buffers and fail over to
 625         * small pages if we can't allocate large pages to satisfy the refill.
 626         * If we don't support large pages, drop directly into the small page
 627         * allocation code.
 628         */
 629        if (s->fl_pg_order == 0)
 630                goto alloc_small_pages;
 631
 632        while (n) {
 633                page = __dev_alloc_pages(gfp, s->fl_pg_order);
 634                if (unlikely(!page)) {
 635                        /*
 636                         * We've failed inour attempt to allocate a "large
 637                         * page".  Fail over to the "small page" allocation
 638                         * below.
 639                         */
 640                        fl->large_alloc_failed++;
 641                        break;
 642                }
 643                poison_buf(page, PAGE_SIZE << s->fl_pg_order);
 644
 645                dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
 646                                        PAGE_SIZE << s->fl_pg_order,
 647                                        DMA_FROM_DEVICE);
 648                if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
 649                        /*
 650                         * We've run out of DMA mapping space.  Free up the
 651                         * buffer and return with what we've managed to put
 652                         * into the free list.  We don't want to fail over to
 653                         * the small page allocation below in this case
 654                         * because DMA mapping resources are typically
 655                         * critical resources once they become scarse.
 656                         */
 657                        __free_pages(page, s->fl_pg_order);
 658                        goto out;
 659                }
 660                dma_addr |= RX_LARGE_BUF;
 661                *d++ = cpu_to_be64(dma_addr);
 662
 663                set_rx_sw_desc(sdesc, page, dma_addr);
 664                sdesc++;
 665
 666                fl->avail++;
 667                if (++fl->pidx == fl->size) {
 668                        fl->pidx = 0;
 669                        sdesc = fl->sdesc;
 670                        d = fl->desc;
 671                }
 672                n--;
 673        }
 674
 675alloc_small_pages:
 676        while (n--) {
 677                page = __dev_alloc_page(gfp);
 678                if (unlikely(!page)) {
 679                        fl->alloc_failed++;
 680                        break;
 681                }
 682                poison_buf(page, PAGE_SIZE);
 683
 684                dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
 685                                       DMA_FROM_DEVICE);
 686                if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
 687                        put_page(page);
 688                        break;
 689                }
 690                *d++ = cpu_to_be64(dma_addr);
 691
 692                set_rx_sw_desc(sdesc, page, dma_addr);
 693                sdesc++;
 694
 695                fl->avail++;
 696                if (++fl->pidx == fl->size) {
 697                        fl->pidx = 0;
 698                        sdesc = fl->sdesc;
 699                        d = fl->desc;
 700                }
 701        }
 702
 703out:
 704        /*
 705         * Update our accounting state to incorporate the new Free List
 706         * buffers, tell the hardware about them and return the number of
 707         * buffers which we were able to allocate.
 708         */
 709        cred = fl->avail - cred;
 710        fl->pend_cred += cred;
 711        ring_fl_db(adapter, fl);
 712
 713        if (unlikely(fl_starving(adapter, fl))) {
 714                smp_wmb();
 715                set_bit(fl->cntxt_id, adapter->sge.starving_fl);
 716        }
 717
 718        return cred;
 719}
 720
 721/*
 722 * Refill a Free List to its capacity or the Maximum Refill Increment,
 723 * whichever is smaller ...
 724 */
 725static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
 726{
 727        refill_fl(adapter, fl,
 728                  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 729                  GFP_ATOMIC);
 730}
 731
 732/**
 733 *      alloc_ring - allocate resources for an SGE descriptor ring
 734 *      @dev: the PCI device's core device
 735 *      @nelem: the number of descriptors
 736 *      @hwsize: the size of each hardware descriptor
 737 *      @swsize: the size of each software descriptor
 738 *      @busaddrp: the physical PCI bus address of the allocated ring
 739 *      @swringp: return address pointer for software ring
 740 *      @stat_size: extra space in hardware ring for status information
 741 *
 742 *      Allocates resources for an SGE descriptor ring, such as TX queues,
 743 *      free buffer lists, response queues, etc.  Each SGE ring requires
 744 *      space for its hardware descriptors plus, optionally, space for software
 745 *      state associated with each hardware entry (the metadata).  The function
 746 *      returns three values: the virtual address for the hardware ring (the
 747 *      return value of the function), the PCI bus address of the hardware
 748 *      ring (in *busaddrp), and the address of the software ring (in swringp).
 749 *      Both the hardware and software rings are returned zeroed out.
 750 */
 751static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
 752                        size_t swsize, dma_addr_t *busaddrp, void *swringp,
 753                        size_t stat_size)
 754{
 755        /*
 756         * Allocate the hardware ring and PCI DMA bus address space for said.
 757         */
 758        size_t hwlen = nelem * hwsize + stat_size;
 759        void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
 760
 761        if (!hwring)
 762                return NULL;
 763
 764        /*
 765         * If the caller wants a software ring, allocate it and return a
 766         * pointer to it in *swringp.
 767         */
 768        BUG_ON((swsize != 0) != (swringp != NULL));
 769        if (swsize) {
 770                void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
 771
 772                if (!swring) {
 773                        dma_free_coherent(dev, hwlen, hwring, *busaddrp);
 774                        return NULL;
 775                }
 776                *(void **)swringp = swring;
 777        }
 778
 779        return hwring;
 780}
 781
 782/**
 783 *      sgl_len - calculates the size of an SGL of the given capacity
 784 *      @n: the number of SGL entries
 785 *
 786 *      Calculates the number of flits (8-byte units) needed for a Direct
 787 *      Scatter/Gather List that can hold the given number of entries.
 788 */
 789static inline unsigned int sgl_len(unsigned int n)
 790{
 791        /*
 792         * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
 793         * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
 794         * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
 795         * repeated sequences of { Length[i], Length[i+1], Address[i],
 796         * Address[i+1] } (this ensures that all addresses are on 64-bit
 797         * boundaries).  If N is even, then Length[N+1] should be set to 0 and
 798         * Address[N+1] is omitted.
 799         *
 800         * The following calculation incorporates all of the above.  It's
 801         * somewhat hard to follow but, briefly: the "+2" accounts for the
 802         * first two flits which include the DSGL header, Length0 and
 803         * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
 804         * flits for every pair of the remaining N) +1 if (n-1) is odd; and
 805         * finally the "+((n-1)&1)" adds the one remaining flit needed if
 806         * (n-1) is odd ...
 807         */
 808        n--;
 809        return (3 * n) / 2 + (n & 1) + 2;
 810}
 811
 812/**
 813 *      flits_to_desc - returns the num of TX descriptors for the given flits
 814 *      @flits: the number of flits
 815 *
 816 *      Returns the number of TX descriptors needed for the supplied number
 817 *      of flits.
 818 */
 819static inline unsigned int flits_to_desc(unsigned int flits)
 820{
 821        BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
 822        return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
 823}
 824
 825/**
 826 *      is_eth_imm - can an Ethernet packet be sent as immediate data?
 827 *      @skb: the packet
 828 *
 829 *      Returns whether an Ethernet packet is small enough to fit completely as
 830 *      immediate data.
 831 */
 832static inline int is_eth_imm(const struct sk_buff *skb)
 833{
 834        /*
 835         * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
 836         * which does not accommodate immediate data.  We could dike out all
 837         * of the support code for immediate data but that would tie our hands
 838         * too much if we ever want to enhace the firmware.  It would also
 839         * create more differences between the PF and VF Drivers.
 840         */
 841        return false;
 842}
 843
 844/**
 845 *      calc_tx_flits - calculate the number of flits for a packet TX WR
 846 *      @skb: the packet
 847 *
 848 *      Returns the number of flits needed for a TX Work Request for the
 849 *      given Ethernet packet, including the needed WR and CPL headers.
 850 */
 851static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
 852{
 853        unsigned int flits;
 854
 855        /*
 856         * If the skb is small enough, we can pump it out as a work request
 857         * with only immediate data.  In that case we just have to have the
 858         * TX Packet header plus the skb data in the Work Request.
 859         */
 860        if (is_eth_imm(skb))
 861                return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
 862                                    sizeof(__be64));
 863
 864        /*
 865         * Otherwise, we're going to have to construct a Scatter gather list
 866         * of the skb body and fragments.  We also include the flits necessary
 867         * for the TX Packet Work Request and CPL.  We always have a firmware
 868         * Write Header (incorporated as part of the cpl_tx_pkt_lso and
 869         * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
 870         * message or, if we're doing a Large Send Offload, an LSO CPL message
 871         * with an embedded TX Packet Write CPL message.
 872         */
 873        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
 874        if (skb_shinfo(skb)->gso_size)
 875                flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 876                          sizeof(struct cpl_tx_pkt_lso_core) +
 877                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 878        else
 879                flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 880                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 881        return flits;
 882}
 883
 884/**
 885 *      write_sgl - populate a Scatter/Gather List for a packet
 886 *      @skb: the packet
 887 *      @tq: the TX queue we are writing into
 888 *      @sgl: starting location for writing the SGL
 889 *      @end: points right after the end of the SGL
 890 *      @start: start offset into skb main-body data to include in the SGL
 891 *      @addr: the list of DMA bus addresses for the SGL elements
 892 *
 893 *      Generates a Scatter/Gather List for the buffers that make up a packet.
 894 *      The caller must provide adequate space for the SGL that will be written.
 895 *      The SGL includes all of the packet's page fragments and the data in its
 896 *      main body except for the first @start bytes.  @pos must be 16-byte
 897 *      aligned and within a TX descriptor with available space.  @end points
 898 *      write after the end of the SGL but does not account for any potential
 899 *      wrap around, i.e., @end > @tq->stat.
 900 */
 901static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
 902                      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 903                      const dma_addr_t *addr)
 904{
 905        unsigned int i, len;
 906        struct ulptx_sge_pair *to;
 907        const struct skb_shared_info *si = skb_shinfo(skb);
 908        unsigned int nfrags = si->nr_frags;
 909        struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 910
 911        len = skb_headlen(skb) - start;
 912        if (likely(len)) {
 913                sgl->len0 = htonl(len);
 914                sgl->addr0 = cpu_to_be64(addr[0] + start);
 915                nfrags++;
 916        } else {
 917                sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
 918                sgl->addr0 = cpu_to_be64(addr[1]);
 919        }
 920
 921        sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
 922                              ULPTX_NSGE_V(nfrags));
 923        if (likely(--nfrags == 0))
 924                return;
 925        /*
 926         * Most of the complexity below deals with the possibility we hit the
 927         * end of the queue in the middle of writing the SGL.  For this case
 928         * only we create the SGL in a temporary buffer and then copy it.
 929         */
 930        to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
 931
 932        for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 933                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 934                to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
 935                to->addr[0] = cpu_to_be64(addr[i]);
 936                to->addr[1] = cpu_to_be64(addr[++i]);
 937        }
 938        if (nfrags) {
 939                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 940                to->len[1] = cpu_to_be32(0);
 941                to->addr[0] = cpu_to_be64(addr[i + 1]);
 942        }
 943        if (unlikely((u8 *)end > (u8 *)tq->stat)) {
 944                unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
 945
 946                if (likely(part0))
 947                        memcpy(sgl->sge, buf, part0);
 948                part1 = (u8 *)end - (u8 *)tq->stat;
 949                memcpy(tq->desc, (u8 *)buf + part0, part1);
 950                end = (void *)tq->desc + part1;
 951        }
 952        if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 953                *end = 0;
 954}
 955
 956/**
 957 *      ring_tx_db - check and potentially ring a TX queue's doorbell
 958 *      @adapter: the adapter
 959 *      @tq: the TX queue
 960 *      @n: number of new descriptors to give to HW
 961 *
 962 *      Ring the doorbel for a TX queue.
 963 */
 964static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
 965                              int n)
 966{
 967        /* Make sure that all writes to the TX Descriptors are committed
 968         * before we tell the hardware about them.
 969         */
 970        wmb();
 971
 972        /* If we don't have access to the new User Doorbell (T5+), use the old
 973         * doorbell mechanism; otherwise use the new BAR2 mechanism.
 974         */
 975        if (unlikely(tq->bar2_addr == NULL)) {
 976                u32 val = PIDX_V(n);
 977
 978                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
 979                             QID_V(tq->cntxt_id) | val);
 980        } else {
 981                u32 val = PIDX_T5_V(n);
 982
 983                /* T4 and later chips share the same PIDX field offset within
 984                 * the doorbell, but T5 and later shrank the field in order to
 985                 * gain a bit for Doorbell Priority.  The field was absurdly
 986                 * large in the first place (14 bits) so we just use the T5
 987                 * and later limits and warn if a Queue ID is too large.
 988                 */
 989                WARN_ON(val & DBPRIO_F);
 990
 991                /* If we're only writing a single Egress Unit and the BAR2
 992                 * Queue ID is 0, we can use the Write Combining Doorbell
 993                 * Gather Buffer; otherwise we use the simple doorbell.
 994                 */
 995                if (n == 1 && tq->bar2_qid == 0) {
 996                        unsigned int index = (tq->pidx
 997                                              ? (tq->pidx - 1)
 998                                              : (tq->size - 1));
 999                        __be64 *src = (__be64 *)&tq->desc[index];
1000                        __be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
1001                                                         SGE_UDB_WCDOORBELL);
1002                        unsigned int count = EQ_UNIT / sizeof(__be64);
1003
1004                        /* Copy the TX Descriptor in a tight loop in order to
1005                         * try to get it to the adapter in a single Write
1006                         * Combined transfer on the PCI-E Bus.  If the Write
1007                         * Combine fails (say because of an interrupt, etc.)
1008                         * the hardware will simply take the last write as a
1009                         * simple doorbell write with a PIDX Increment of 1
1010                         * and will fetch the TX Descriptor from memory via
1011                         * DMA.
1012                         */
1013                        while (count) {
1014                                /* the (__force u64) is because the compiler
1015                                 * doesn't understand the endian swizzling
1016                                 * going on
1017                                 */
1018                                writeq((__force u64)*src, dst);
1019                                src++;
1020                                dst++;
1021                                count--;
1022                        }
1023                } else
1024                        writel(val | QID_V(tq->bar2_qid),
1025                               tq->bar2_addr + SGE_UDB_KDOORBELL);
1026
1027                /* This Write Memory Barrier will force the write to the User
1028                 * Doorbell area to be flushed.  This is needed to prevent
1029                 * writes on different CPUs for the same queue from hitting
1030                 * the adapter out of order.  This is required when some Work
1031                 * Requests take the Write Combine Gather Buffer path (user
1032                 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1033                 * take the traditional path where we simply increment the
1034                 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1035                 * hardware DMA read the actual Work Request.
1036                 */
1037                wmb();
1038        }
1039}
1040
1041/**
1042 *      inline_tx_skb - inline a packet's data into TX descriptors
1043 *      @skb: the packet
1044 *      @tq: the TX queue where the packet will be inlined
1045 *      @pos: starting position in the TX queue to inline the packet
1046 *
1047 *      Inline a packet's contents directly into TX descriptors, starting at
1048 *      the given position within the TX DMA ring.
1049 *      Most of the complexity of this operation is dealing with wrap arounds
1050 *      in the middle of the packet we want to inline.
1051 */
1052static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1053                          void *pos)
1054{
1055        u64 *p;
1056        int left = (void *)tq->stat - pos;
1057
1058        if (likely(skb->len <= left)) {
1059                if (likely(!skb->data_len))
1060                        skb_copy_from_linear_data(skb, pos, skb->len);
1061                else
1062                        skb_copy_bits(skb, 0, pos, skb->len);
1063                pos += skb->len;
1064        } else {
1065                skb_copy_bits(skb, 0, pos, left);
1066                skb_copy_bits(skb, left, tq->desc, skb->len - left);
1067                pos = (void *)tq->desc + (skb->len - left);
1068        }
1069
1070        /* 0-pad to multiple of 16 */
1071        p = PTR_ALIGN(pos, 8);
1072        if ((uintptr_t)p & 8)
1073                *p = 0;
1074}
1075
1076/*
1077 * Figure out what HW csum a packet wants and return the appropriate control
1078 * bits.
1079 */
1080static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1081{
1082        int csum_type;
1083        const struct iphdr *iph = ip_hdr(skb);
1084
1085        if (iph->version == 4) {
1086                if (iph->protocol == IPPROTO_TCP)
1087                        csum_type = TX_CSUM_TCPIP;
1088                else if (iph->protocol == IPPROTO_UDP)
1089                        csum_type = TX_CSUM_UDPIP;
1090                else {
1091nocsum:
1092                        /*
1093                         * unknown protocol, disable HW csum
1094                         * and hope a bad packet is detected
1095                         */
1096                        return TXPKT_L4CSUM_DIS_F;
1097                }
1098        } else {
1099                /*
1100                 * this doesn't work with extension headers
1101                 */
1102                const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1103
1104                if (ip6h->nexthdr == IPPROTO_TCP)
1105                        csum_type = TX_CSUM_TCPIP6;
1106                else if (ip6h->nexthdr == IPPROTO_UDP)
1107                        csum_type = TX_CSUM_UDPIP6;
1108                else
1109                        goto nocsum;
1110        }
1111
1112        if (likely(csum_type >= TX_CSUM_TCPIP)) {
1113                u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1114                int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1115
1116                if (chip <= CHELSIO_T5)
1117                        hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1118                else
1119                        hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1120                return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1121        } else {
1122                int start = skb_transport_offset(skb);
1123
1124                return TXPKT_CSUM_TYPE_V(csum_type) |
1125                        TXPKT_CSUM_START_V(start) |
1126                        TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1127        }
1128}
1129
1130/*
1131 * Stop an Ethernet TX queue and record that state change.
1132 */
1133static void txq_stop(struct sge_eth_txq *txq)
1134{
1135        netif_tx_stop_queue(txq->txq);
1136        txq->q.stops++;
1137}
1138
1139/*
1140 * Advance our software state for a TX queue by adding n in use descriptors.
1141 */
1142static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1143{
1144        tq->in_use += n;
1145        tq->pidx += n;
1146        if (tq->pidx >= tq->size)
1147                tq->pidx -= tq->size;
1148}
1149
1150/**
1151 *      t4vf_eth_xmit - add a packet to an Ethernet TX queue
1152 *      @skb: the packet
1153 *      @dev: the egress net device
1154 *
1155 *      Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1156 */
1157netdev_tx_t t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1158{
1159        u32 wr_mid;
1160        u64 cntrl, *end;
1161        int qidx, credits, max_pkt_len;
1162        unsigned int flits, ndesc;
1163        struct adapter *adapter;
1164        struct sge_eth_txq *txq;
1165        const struct port_info *pi;
1166        struct fw_eth_tx_pkt_vm_wr *wr;
1167        struct cpl_tx_pkt_core *cpl;
1168        const struct skb_shared_info *ssi;
1169        dma_addr_t addr[MAX_SKB_FRAGS + 1];
1170        const size_t fw_hdr_copy_len = sizeof(wr->firmware);
1171
1172        /*
1173         * The chip minimum packet length is 10 octets but the firmware
1174         * command that we are using requires that we copy the Ethernet header
1175         * (including the VLAN tag) into the header so we reject anything
1176         * smaller than that ...
1177         */
1178        if (unlikely(skb->len < fw_hdr_copy_len))
1179                goto out_free;
1180
1181        /* Discard the packet if the length is greater than mtu */
1182        max_pkt_len = ETH_HLEN + dev->mtu;
1183        if (skb_vlan_tagged(skb))
1184                max_pkt_len += VLAN_HLEN;
1185        if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1186                goto out_free;
1187
1188        /*
1189         * Figure out which TX Queue we're going to use.
1190         */
1191        pi = netdev_priv(dev);
1192        adapter = pi->adapter;
1193        qidx = skb_get_queue_mapping(skb);
1194        BUG_ON(qidx >= pi->nqsets);
1195        txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1196
1197        if (pi->vlan_id && !skb_vlan_tag_present(skb))
1198                __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1199                                       pi->vlan_id);
1200
1201        /*
1202         * Take this opportunity to reclaim any TX Descriptors whose DMA
1203         * transfers have completed.
1204         */
1205        reclaim_completed_tx(adapter, &txq->q, true);
1206
1207        /*
1208         * Calculate the number of flits and TX Descriptors we're going to
1209         * need along with how many TX Descriptors will be left over after
1210         * we inject our Work Request.
1211         */
1212        flits = calc_tx_flits(skb);
1213        ndesc = flits_to_desc(flits);
1214        credits = txq_avail(&txq->q) - ndesc;
1215
1216        if (unlikely(credits < 0)) {
1217                /*
1218                 * Not enough room for this packet's Work Request.  Stop the
1219                 * TX Queue and return a "busy" condition.  The queue will get
1220                 * started later on when the firmware informs us that space
1221                 * has opened up.
1222                 */
1223                txq_stop(txq);
1224                dev_err(adapter->pdev_dev,
1225                        "%s: TX ring %u full while queue awake!\n",
1226                        dev->name, qidx);
1227                return NETDEV_TX_BUSY;
1228        }
1229
1230        if (!is_eth_imm(skb) &&
1231            unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1232                /*
1233                 * We need to map the skb into PCI DMA space (because it can't
1234                 * be in-lined directly into the Work Request) and the mapping
1235                 * operation failed.  Record the error and drop the packet.
1236                 */
1237                txq->mapping_err++;
1238                goto out_free;
1239        }
1240
1241        wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1242        if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1243                /*
1244                 * After we're done injecting the Work Request for this
1245                 * packet, we'll be below our "stop threshold" so stop the TX
1246                 * Queue now and schedule a request for an SGE Egress Queue
1247                 * Update message.  The queue will get started later on when
1248                 * the firmware processes this Work Request and sends us an
1249                 * Egress Queue Status Update message indicating that space
1250                 * has opened up.
1251                 */
1252                txq_stop(txq);
1253                wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1254        }
1255
1256        /*
1257         * Start filling in our Work Request.  Note that we do _not_ handle
1258         * the WR Header wrapping around the TX Descriptor Ring.  If our
1259         * maximum header size ever exceeds one TX Descriptor, we'll need to
1260         * do something else here.
1261         */
1262        BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1263        wr = (void *)&txq->q.desc[txq->q.pidx];
1264        wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1265        wr->r3[0] = cpu_to_be32(0);
1266        wr->r3[1] = cpu_to_be32(0);
1267        skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
1268        end = (u64 *)wr + flits;
1269
1270        /*
1271         * If this is a Large Send Offload packet we'll put in an LSO CPL
1272         * message with an encapsulated TX Packet CPL message.  Otherwise we
1273         * just use a TX Packet CPL message.
1274         */
1275        ssi = skb_shinfo(skb);
1276        if (ssi->gso_size) {
1277                struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1278                bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1279                int l3hdr_len = skb_network_header_len(skb);
1280                int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1281
1282                wr->op_immdlen =
1283                        cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1284                                    FW_WR_IMMDLEN_V(sizeof(*lso) +
1285                                                    sizeof(*cpl)));
1286                /*
1287                 * Fill in the LSO CPL message.
1288                 */
1289                lso->lso_ctrl =
1290                        cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1291                                    LSO_FIRST_SLICE_F |
1292                                    LSO_LAST_SLICE_F |
1293                                    LSO_IPV6_V(v6) |
1294                                    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1295                                    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1296                                    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1297                lso->ipid_ofst = cpu_to_be16(0);
1298                lso->mss = cpu_to_be16(ssi->gso_size);
1299                lso->seqno_offset = cpu_to_be32(0);
1300                if (is_t4(adapter->params.chip))
1301                        lso->len = cpu_to_be32(skb->len);
1302                else
1303                        lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1304
1305                /*
1306                 * Set up TX Packet CPL pointer, control word and perform
1307                 * accounting.
1308                 */
1309                cpl = (void *)(lso + 1);
1310
1311                if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1312                        cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1313                else
1314                        cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1315
1316                cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1317                                           TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1318                         TXPKT_IPHDR_LEN_V(l3hdr_len);
1319                txq->tso++;
1320                txq->tx_cso += ssi->gso_segs;
1321        } else {
1322                int len;
1323
1324                len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1325                wr->op_immdlen =
1326                        cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1327                                    FW_WR_IMMDLEN_V(len));
1328
1329                /*
1330                 * Set up TX Packet CPL pointer, control word and perform
1331                 * accounting.
1332                 */
1333                cpl = (void *)(wr + 1);
1334                if (skb->ip_summed == CHECKSUM_PARTIAL) {
1335                        cntrl = hwcsum(adapter->params.chip, skb) |
1336                                TXPKT_IPCSUM_DIS_F;
1337                        txq->tx_cso++;
1338                } else
1339                        cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1340        }
1341
1342        /*
1343         * If there's a VLAN tag present, add that to the list of things to
1344         * do in this Work Request.
1345         */
1346        if (skb_vlan_tag_present(skb)) {
1347                txq->vlan_ins++;
1348                cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1349        }
1350
1351        /*
1352         * Fill in the TX Packet CPL message header.
1353         */
1354        cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1355                                 TXPKT_INTF_V(pi->port_id) |
1356                                 TXPKT_PF_V(0));
1357        cpl->pack = cpu_to_be16(0);
1358        cpl->len = cpu_to_be16(skb->len);
1359        cpl->ctrl1 = cpu_to_be64(cntrl);
1360
1361#ifdef T4_TRACE
1362        T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1363                  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1364                  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1365#endif
1366
1367        /*
1368         * Fill in the body of the TX Packet CPL message with either in-lined
1369         * data or a Scatter/Gather List.
1370         */
1371        if (is_eth_imm(skb)) {
1372                /*
1373                 * In-line the packet's data and free the skb since we don't
1374                 * need it any longer.
1375                 */
1376                inline_tx_skb(skb, &txq->q, cpl + 1);
1377                dev_consume_skb_any(skb);
1378        } else {
1379                /*
1380                 * Write the skb's Scatter/Gather list into the TX Packet CPL
1381                 * message and retain a pointer to the skb so we can free it
1382                 * later when its DMA completes.  (We store the skb pointer
1383                 * in the Software Descriptor corresponding to the last TX
1384                 * Descriptor used by the Work Request.)
1385                 *
1386                 * The retained skb will be freed when the corresponding TX
1387                 * Descriptors are reclaimed after their DMAs complete.
1388                 * However, this could take quite a while since, in general,
1389                 * the hardware is set up to be lazy about sending DMA
1390                 * completion notifications to us and we mostly perform TX
1391                 * reclaims in the transmit routine.
1392                 *
1393                 * This is good for performamce but means that we rely on new
1394                 * TX packets arriving to run the destructors of completed
1395                 * packets, which open up space in their sockets' send queues.
1396                 * Sometimes we do not get such new packets causing TX to
1397                 * stall.  A single UDP transmitter is a good example of this
1398                 * situation.  We have a clean up timer that periodically
1399                 * reclaims completed packets but it doesn't run often enough
1400                 * (nor do we want it to) to prevent lengthy stalls.  A
1401                 * solution to this problem is to run the destructor early,
1402                 * after the packet is queued but before it's DMAd.  A con is
1403                 * that we lie to socket memory accounting, but the amount of
1404                 * extra memory is reasonable (limited by the number of TX
1405                 * descriptors), the packets do actually get freed quickly by
1406                 * new packets almost always, and for protocols like TCP that
1407                 * wait for acks to really free up the data the extra memory
1408                 * is even less.  On the positive side we run the destructors
1409                 * on the sending CPU rather than on a potentially different
1410                 * completing CPU, usually a good thing.
1411                 *
1412                 * Run the destructor before telling the DMA engine about the
1413                 * packet to make sure it doesn't complete and get freed
1414                 * prematurely.
1415                 */
1416                struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1417                struct sge_txq *tq = &txq->q;
1418                int last_desc;
1419
1420                /*
1421                 * If the Work Request header was an exact multiple of our TX
1422                 * Descriptor length, then it's possible that the starting SGL
1423                 * pointer lines up exactly with the end of our TX Descriptor
1424                 * ring.  If that's the case, wrap around to the beginning
1425                 * here ...
1426                 */
1427                if (unlikely((void *)sgl == (void *)tq->stat)) {
1428                        sgl = (void *)tq->desc;
1429                        end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1430                }
1431
1432                write_sgl(skb, tq, sgl, end, 0, addr);
1433                skb_orphan(skb);
1434
1435                last_desc = tq->pidx + ndesc - 1;
1436                if (last_desc >= tq->size)
1437                        last_desc -= tq->size;
1438                tq->sdesc[last_desc].skb = skb;
1439                tq->sdesc[last_desc].sgl = sgl;
1440        }
1441
1442        /*
1443         * Advance our internal TX Queue state, tell the hardware about
1444         * the new TX descriptors and return success.
1445         */
1446        txq_advance(&txq->q, ndesc);
1447        netif_trans_update(dev);
1448        ring_tx_db(adapter, &txq->q, ndesc);
1449        return NETDEV_TX_OK;
1450
1451out_free:
1452        /*
1453         * An error of some sort happened.  Free the TX skb and tell the
1454         * OS that we've "dealt" with the packet ...
1455         */
1456        dev_kfree_skb_any(skb);
1457        return NETDEV_TX_OK;
1458}
1459
1460/**
1461 *      copy_frags - copy fragments from gather list into skb_shared_info
1462 *      @skb: destination skb
1463 *      @gl: source internal packet gather list
1464 *      @offset: packet start offset in first page
1465 *
1466 *      Copy an internal packet gather list into a Linux skb_shared_info
1467 *      structure.
1468 */
1469static inline void copy_frags(struct sk_buff *skb,
1470                              const struct pkt_gl *gl,
1471                              unsigned int offset)
1472{
1473        int i;
1474
1475        /* usually there's just one frag */
1476        __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1477                             gl->frags[0].offset + offset,
1478                             gl->frags[0].size - offset);
1479        skb_shinfo(skb)->nr_frags = gl->nfrags;
1480        for (i = 1; i < gl->nfrags; i++)
1481                __skb_fill_page_desc(skb, i, gl->frags[i].page,
1482                                     gl->frags[i].offset,
1483                                     gl->frags[i].size);
1484
1485        /* get a reference to the last page, we don't own it */
1486        get_page(gl->frags[gl->nfrags - 1].page);
1487}
1488
1489/**
1490 *      t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1491 *      @gl: the gather list
1492 *      @skb_len: size of sk_buff main body if it carries fragments
1493 *      @pull_len: amount of data to move to the sk_buff's main body
1494 *
1495 *      Builds an sk_buff from the given packet gather list.  Returns the
1496 *      sk_buff or %NULL if sk_buff allocation failed.
1497 */
1498static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1499                                         unsigned int skb_len,
1500                                         unsigned int pull_len)
1501{
1502        struct sk_buff *skb;
1503
1504        /*
1505         * If the ingress packet is small enough, allocate an skb large enough
1506         * for all of the data and copy it inline.  Otherwise, allocate an skb
1507         * with enough room to pull in the header and reference the rest of
1508         * the data via the skb fragment list.
1509         *
1510         * Below we rely on RX_COPY_THRES being less than the smallest Rx
1511         * buff!  size, which is expected since buffers are at least
1512         * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1513         * fragment.
1514         */
1515        if (gl->tot_len <= RX_COPY_THRES) {
1516                /* small packets have only one fragment */
1517                skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1518                if (unlikely(!skb))
1519                        goto out;
1520                __skb_put(skb, gl->tot_len);
1521                skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1522        } else {
1523                skb = alloc_skb(skb_len, GFP_ATOMIC);
1524                if (unlikely(!skb))
1525                        goto out;
1526                __skb_put(skb, pull_len);
1527                skb_copy_to_linear_data(skb, gl->va, pull_len);
1528
1529                copy_frags(skb, gl, pull_len);
1530                skb->len = gl->tot_len;
1531                skb->data_len = skb->len - pull_len;
1532                skb->truesize += skb->data_len;
1533        }
1534
1535out:
1536        return skb;
1537}
1538
1539/**
1540 *      t4vf_pktgl_free - free a packet gather list
1541 *      @gl: the gather list
1542 *
1543 *      Releases the pages of a packet gather list.  We do not own the last
1544 *      page on the list and do not free it.
1545 */
1546static void t4vf_pktgl_free(const struct pkt_gl *gl)
1547{
1548        int frag;
1549
1550        frag = gl->nfrags - 1;
1551        while (frag--)
1552                put_page(gl->frags[frag].page);
1553}
1554
1555/**
1556 *      do_gro - perform Generic Receive Offload ingress packet processing
1557 *      @rxq: ingress RX Ethernet Queue
1558 *      @gl: gather list for ingress packet
1559 *      @pkt: CPL header for last packet fragment
1560 *
1561 *      Perform Generic Receive Offload (GRO) ingress packet processing.
1562 *      We use the standard Linux GRO interfaces for this.
1563 */
1564static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1565                   const struct cpl_rx_pkt *pkt)
1566{
1567        struct adapter *adapter = rxq->rspq.adapter;
1568        struct sge *s = &adapter->sge;
1569        struct port_info *pi;
1570        int ret;
1571        struct sk_buff *skb;
1572
1573        skb = napi_get_frags(&rxq->rspq.napi);
1574        if (unlikely(!skb)) {
1575                t4vf_pktgl_free(gl);
1576                rxq->stats.rx_drops++;
1577                return;
1578        }
1579
1580        copy_frags(skb, gl, s->pktshift);
1581        skb->len = gl->tot_len - s->pktshift;
1582        skb->data_len = skb->len;
1583        skb->truesize += skb->data_len;
1584        skb->ip_summed = CHECKSUM_UNNECESSARY;
1585        skb_record_rx_queue(skb, rxq->rspq.idx);
1586        pi = netdev_priv(skb->dev);
1587
1588        if (pkt->vlan_ex && !pi->vlan_id) {
1589                __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1590                                        be16_to_cpu(pkt->vlan));
1591                rxq->stats.vlan_ex++;
1592        }
1593        ret = napi_gro_frags(&rxq->rspq.napi);
1594
1595        if (ret == GRO_HELD)
1596                rxq->stats.lro_pkts++;
1597        else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1598                rxq->stats.lro_merged++;
1599        rxq->stats.pkts++;
1600        rxq->stats.rx_cso++;
1601}
1602
1603/**
1604 *      t4vf_ethrx_handler - process an ingress ethernet packet
1605 *      @rspq: the response queue that received the packet
1606 *      @rsp: the response queue descriptor holding the RX_PKT message
1607 *      @gl: the gather list of packet fragments
1608 *
1609 *      Process an ingress ethernet packet and deliver it to the stack.
1610 */
1611int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1612                       const struct pkt_gl *gl)
1613{
1614        struct sk_buff *skb;
1615        const struct cpl_rx_pkt *pkt = (void *)rsp;
1616        bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1617                       (rspq->netdev->features & NETIF_F_RXCSUM);
1618        struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1619        struct adapter *adapter = rspq->adapter;
1620        struct sge *s = &adapter->sge;
1621        struct port_info *pi;
1622
1623        /*
1624         * If this is a good TCP packet and we have Generic Receive Offload
1625         * enabled, handle the packet in the GRO path.
1626         */
1627        if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1628            (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1629            !pkt->ip_frag) {
1630                do_gro(rxq, gl, pkt);
1631                return 0;
1632        }
1633
1634        /*
1635         * Convert the Packet Gather List into an skb.
1636         */
1637        skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1638        if (unlikely(!skb)) {
1639                t4vf_pktgl_free(gl);
1640                rxq->stats.rx_drops++;
1641                return 0;
1642        }
1643        __skb_pull(skb, s->pktshift);
1644        skb->protocol = eth_type_trans(skb, rspq->netdev);
1645        skb_record_rx_queue(skb, rspq->idx);
1646        pi = netdev_priv(skb->dev);
1647        rxq->stats.pkts++;
1648
1649        if (csum_ok && !pkt->err_vec &&
1650            (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
1651                if (!pkt->ip_frag) {
1652                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1653                        rxq->stats.rx_cso++;
1654                } else if (pkt->l2info & htonl(RXF_IP_F)) {
1655                        __sum16 c = (__force __sum16)pkt->csum;
1656                        skb->csum = csum_unfold(c);
1657                        skb->ip_summed = CHECKSUM_COMPLETE;
1658                        rxq->stats.rx_cso++;
1659                }
1660        } else
1661                skb_checksum_none_assert(skb);
1662
1663        if (pkt->vlan_ex && !pi->vlan_id) {
1664                rxq->stats.vlan_ex++;
1665                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1666                                       be16_to_cpu(pkt->vlan));
1667        }
1668
1669        netif_receive_skb(skb);
1670
1671        return 0;
1672}
1673
1674/**
1675 *      is_new_response - check if a response is newly written
1676 *      @rc: the response control descriptor
1677 *      @rspq: the response queue
1678 *
1679 *      Returns true if a response descriptor contains a yet unprocessed
1680 *      response.
1681 */
1682static inline bool is_new_response(const struct rsp_ctrl *rc,
1683                                   const struct sge_rspq *rspq)
1684{
1685        return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen;
1686}
1687
1688/**
1689 *      restore_rx_bufs - put back a packet's RX buffers
1690 *      @gl: the packet gather list
1691 *      @fl: the SGE Free List
1692 *      @frags: how many fragments in @si
1693 *
1694 *      Called when we find out that the current packet, @si, can't be
1695 *      processed right away for some reason.  This is a very rare event and
1696 *      there's no effort to make this suspension/resumption process
1697 *      particularly efficient.
1698 *
1699 *      We implement the suspension by putting all of the RX buffers associated
1700 *      with the current packet back on the original Free List.  The buffers
1701 *      have already been unmapped and are left unmapped, we mark them as
1702 *      unmapped in order to prevent further unmapping attempts.  (Effectively
1703 *      this function undoes the series of @unmap_rx_buf calls which were done
1704 *      to create the current packet's gather list.)  This leaves us ready to
1705 *      restart processing of the packet the next time we start processing the
1706 *      RX Queue ...
1707 */
1708static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1709                            int frags)
1710{
1711        struct rx_sw_desc *sdesc;
1712
1713        while (frags--) {
1714                if (fl->cidx == 0)
1715                        fl->cidx = fl->size - 1;
1716                else
1717                        fl->cidx--;
1718                sdesc = &fl->sdesc[fl->cidx];
1719                sdesc->page = gl->frags[frags].page;
1720                sdesc->dma_addr |= RX_UNMAPPED_BUF;
1721                fl->avail++;
1722        }
1723}
1724
1725/**
1726 *      rspq_next - advance to the next entry in a response queue
1727 *      @rspq: the queue
1728 *
1729 *      Updates the state of a response queue to advance it to the next entry.
1730 */
1731static inline void rspq_next(struct sge_rspq *rspq)
1732{
1733        rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1734        if (unlikely(++rspq->cidx == rspq->size)) {
1735                rspq->cidx = 0;
1736                rspq->gen ^= 1;
1737                rspq->cur_desc = rspq->desc;
1738        }
1739}
1740
1741/**
1742 *      process_responses - process responses from an SGE response queue
1743 *      @rspq: the ingress response queue to process
1744 *      @budget: how many responses can be processed in this round
1745 *
1746 *      Process responses from a Scatter Gather Engine response queue up to
1747 *      the supplied budget.  Responses include received packets as well as
1748 *      control messages from firmware or hardware.
1749 *
1750 *      Additionally choose the interrupt holdoff time for the next interrupt
1751 *      on this queue.  If the system is under memory shortage use a fairly
1752 *      long delay to help recovery.
1753 */
1754static int process_responses(struct sge_rspq *rspq, int budget)
1755{
1756        struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1757        struct adapter *adapter = rspq->adapter;
1758        struct sge *s = &adapter->sge;
1759        int budget_left = budget;
1760
1761        while (likely(budget_left)) {
1762                int ret, rsp_type;
1763                const struct rsp_ctrl *rc;
1764
1765                rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1766                if (!is_new_response(rc, rspq))
1767                        break;
1768
1769                /*
1770                 * Figure out what kind of response we've received from the
1771                 * SGE.
1772                 */
1773                dma_rmb();
1774                rsp_type = RSPD_TYPE_G(rc->type_gen);
1775                if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
1776                        struct page_frag *fp;
1777                        struct pkt_gl gl;
1778                        const struct rx_sw_desc *sdesc;
1779                        u32 bufsz, frag;
1780                        u32 len = be32_to_cpu(rc->pldbuflen_qid);
1781
1782                        /*
1783                         * If we get a "new buffer" message from the SGE we
1784                         * need to move on to the next Free List buffer.
1785                         */
1786                        if (len & RSPD_NEWBUF_F) {
1787                                /*
1788                                 * We get one "new buffer" message when we
1789                                 * first start up a queue so we need to ignore
1790                                 * it when our offset into the buffer is 0.
1791                                 */
1792                                if (likely(rspq->offset > 0)) {
1793                                        free_rx_bufs(rspq->adapter, &rxq->fl,
1794                                                     1);
1795                                        rspq->offset = 0;
1796                                }
1797                                len = RSPD_LEN_G(len);
1798                        }
1799                        gl.tot_len = len;
1800
1801                        /*
1802                         * Gather packet fragments.
1803                         */
1804                        for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1805                                BUG_ON(frag >= MAX_SKB_FRAGS);
1806                                BUG_ON(rxq->fl.avail == 0);
1807                                sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1808                                bufsz = get_buf_size(adapter, sdesc);
1809                                fp->page = sdesc->page;
1810                                fp->offset = rspq->offset;
1811                                fp->size = min(bufsz, len);
1812                                len -= fp->size;
1813                                if (!len)
1814                                        break;
1815                                unmap_rx_buf(rspq->adapter, &rxq->fl);
1816                        }
1817                        gl.nfrags = frag+1;
1818
1819                        /*
1820                         * Last buffer remains mapped so explicitly make it
1821                         * coherent for CPU access and start preloading first
1822                         * cache line ...
1823                         */
1824                        dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1825                                                get_buf_addr(sdesc),
1826                                                fp->size, DMA_FROM_DEVICE);
1827                        gl.va = (page_address(gl.frags[0].page) +
1828                                 gl.frags[0].offset);
1829                        prefetch(gl.va);
1830
1831                        /*
1832                         * Hand the new ingress packet to the handler for
1833                         * this Response Queue.
1834                         */
1835                        ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1836                        if (likely(ret == 0))
1837                                rspq->offset += ALIGN(fp->size, s->fl_align);
1838                        else
1839                                restore_rx_bufs(&gl, &rxq->fl, frag);
1840                } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
1841                        ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1842                } else {
1843                        WARN_ON(rsp_type > RSPD_TYPE_CPL_X);
1844                        ret = 0;
1845                }
1846
1847                if (unlikely(ret)) {
1848                        /*
1849                         * Couldn't process descriptor, back off for recovery.
1850                         * We use the SGE's last timer which has the longest
1851                         * interrupt coalescing value ...
1852                         */
1853                        const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1854                        rspq->next_intr_params =
1855                                QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX);
1856                        break;
1857                }
1858
1859                rspq_next(rspq);
1860                budget_left--;
1861        }
1862
1863        /*
1864         * If this is a Response Queue with an associated Free List and
1865         * at least two Egress Queue units available in the Free List
1866         * for new buffer pointers, refill the Free List.
1867         */
1868        if (rspq->offset >= 0 &&
1869            fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1870                __refill_fl(rspq->adapter, &rxq->fl);
1871        return budget - budget_left;
1872}
1873
1874/**
1875 *      napi_rx_handler - the NAPI handler for RX processing
1876 *      @napi: the napi instance
1877 *      @budget: how many packets we can process in this round
1878 *
1879 *      Handler for new data events when using NAPI.  This does not need any
1880 *      locking or protection from interrupts as data interrupts are off at
1881 *      this point and other adapter interrupts do not interfere (the latter
1882 *      in not a concern at all with MSI-X as non-data interrupts then have
1883 *      a separate handler).
1884 */
1885static int napi_rx_handler(struct napi_struct *napi, int budget)
1886{
1887        unsigned int intr_params;
1888        struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1889        int work_done = process_responses(rspq, budget);
1890        u32 val;
1891
1892        if (likely(work_done < budget)) {
1893                napi_complete_done(napi, work_done);
1894                intr_params = rspq->next_intr_params;
1895                rspq->next_intr_params = rspq->intr_params;
1896        } else
1897                intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX);
1898
1899        if (unlikely(work_done == 0))
1900                rspq->unhandled_irqs++;
1901
1902        val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
1903        /* If we don't have access to the new User GTS (T5+), use the old
1904         * doorbell mechanism; otherwise use the new BAR2 mechanism.
1905         */
1906        if (unlikely(!rspq->bar2_addr)) {
1907                t4_write_reg(rspq->adapter,
1908                             T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1909                             val | INGRESSQID_V((u32)rspq->cntxt_id));
1910        } else {
1911                writel(val | INGRESSQID_V(rspq->bar2_qid),
1912                       rspq->bar2_addr + SGE_UDB_GTS);
1913                wmb();
1914        }
1915        return work_done;
1916}
1917
1918/*
1919 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1920 * (i.e., response queue serviced by NAPI polling).
1921 */
1922irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1923{
1924        struct sge_rspq *rspq = cookie;
1925
1926        napi_schedule(&rspq->napi);
1927        return IRQ_HANDLED;
1928}
1929
1930/*
1931 * Process the indirect interrupt entries in the interrupt queue and kick off
1932 * NAPI for each queue that has generated an entry.
1933 */
1934static unsigned int process_intrq(struct adapter *adapter)
1935{
1936        struct sge *s = &adapter->sge;
1937        struct sge_rspq *intrq = &s->intrq;
1938        unsigned int work_done;
1939        u32 val;
1940
1941        spin_lock(&adapter->sge.intrq_lock);
1942        for (work_done = 0; ; work_done++) {
1943                const struct rsp_ctrl *rc;
1944                unsigned int qid, iq_idx;
1945                struct sge_rspq *rspq;
1946
1947                /*
1948                 * Grab the next response from the interrupt queue and bail
1949                 * out if it's not a new response.
1950                 */
1951                rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1952                if (!is_new_response(rc, intrq))
1953                        break;
1954
1955                /*
1956                 * If the response isn't a forwarded interrupt message issue a
1957                 * error and go on to the next response message.  This should
1958                 * never happen ...
1959                 */
1960                dma_rmb();
1961                if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) {
1962                        dev_err(adapter->pdev_dev,
1963                                "Unexpected INTRQ response type %d\n",
1964                                RSPD_TYPE_G(rc->type_gen));
1965                        continue;
1966                }
1967
1968                /*
1969                 * Extract the Queue ID from the interrupt message and perform
1970                 * sanity checking to make sure it really refers to one of our
1971                 * Ingress Queues which is active and matches the queue's ID.
1972                 * None of these error conditions should ever happen so we may
1973                 * want to either make them fatal and/or conditionalized under
1974                 * DEBUG.
1975                 */
1976                qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid));
1977                iq_idx = IQ_IDX(s, qid);
1978                if (unlikely(iq_idx >= MAX_INGQ)) {
1979                        dev_err(adapter->pdev_dev,
1980                                "Ingress QID %d out of range\n", qid);
1981                        continue;
1982                }
1983                rspq = s->ingr_map[iq_idx];
1984                if (unlikely(rspq == NULL)) {
1985                        dev_err(adapter->pdev_dev,
1986                                "Ingress QID %d RSPQ=NULL\n", qid);
1987                        continue;
1988                }
1989                if (unlikely(rspq->abs_id != qid)) {
1990                        dev_err(adapter->pdev_dev,
1991                                "Ingress QID %d refers to RSPQ %d\n",
1992                                qid, rspq->abs_id);
1993                        continue;
1994                }
1995
1996                /*
1997                 * Schedule NAPI processing on the indicated Response Queue
1998                 * and move on to the next entry in the Forwarded Interrupt
1999                 * Queue.
2000                 */
2001                napi_schedule(&rspq->napi);
2002                rspq_next(intrq);
2003        }
2004
2005        val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
2006        /* If we don't have access to the new User GTS (T5+), use the old
2007         * doorbell mechanism; otherwise use the new BAR2 mechanism.
2008         */
2009        if (unlikely(!intrq->bar2_addr)) {
2010                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
2011                             val | INGRESSQID_V(intrq->cntxt_id));
2012        } else {
2013                writel(val | INGRESSQID_V(intrq->bar2_qid),
2014                       intrq->bar2_addr + SGE_UDB_GTS);
2015                wmb();
2016        }
2017
2018        spin_unlock(&adapter->sge.intrq_lock);
2019
2020        return work_done;
2021}
2022
2023/*
2024 * The MSI interrupt handler handles data events from SGE response queues as
2025 * well as error and other async events as they all use the same MSI vector.
2026 */
2027static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
2028{
2029        struct adapter *adapter = cookie;
2030
2031        process_intrq(adapter);
2032        return IRQ_HANDLED;
2033}
2034
2035/**
2036 *      t4vf_intr_handler - select the top-level interrupt handler
2037 *      @adapter: the adapter
2038 *
2039 *      Selects the top-level interrupt handler based on the type of interrupts
2040 *      (MSI-X or MSI).
2041 */
2042irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2043{
2044        BUG_ON((adapter->flags &
2045               (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2046        if (adapter->flags & CXGB4VF_USING_MSIX)
2047                return t4vf_sge_intr_msix;
2048        else
2049                return t4vf_intr_msi;
2050}
2051
2052/**
2053 *      sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2054 *      @t: Rx timer
2055 *
2056 *      Runs periodically from a timer to perform maintenance of SGE RX queues.
2057 *
2058 *      a) Replenishes RX queues that have run out due to memory shortage.
2059 *      Normally new RX buffers are added when existing ones are consumed but
2060 *      when out of memory a queue can become empty.  We schedule NAPI to do
2061 *      the actual refill.
2062 */
2063static void sge_rx_timer_cb(struct timer_list *t)
2064{
2065        struct adapter *adapter = from_timer(adapter, t, sge.rx_timer);
2066        struct sge *s = &adapter->sge;
2067        unsigned int i;
2068
2069        /*
2070         * Scan the "Starving Free Lists" flag array looking for any Free
2071         * Lists in need of more free buffers.  If we find one and it's not
2072         * being actively polled, then bump its "starving" counter and attempt
2073         * to refill it.  If we're successful in adding enough buffers to push
2074         * the Free List over the starving threshold, then we can clear its
2075         * "starving" status.
2076         */
2077        for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2078                unsigned long m;
2079
2080                for (m = s->starving_fl[i]; m; m &= m - 1) {
2081                        unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2082                        struct sge_fl *fl = s->egr_map[id];
2083
2084                        clear_bit(id, s->starving_fl);
2085                        smp_mb__after_atomic();
2086
2087                        /*
2088                         * Since we are accessing fl without a lock there's a
2089                         * small probability of a false positive where we
2090                         * schedule napi but the FL is no longer starving.
2091                         * No biggie.
2092                         */
2093                        if (fl_starving(adapter, fl)) {
2094                                struct sge_eth_rxq *rxq;
2095
2096                                rxq = container_of(fl, struct sge_eth_rxq, fl);
2097                                if (napi_reschedule(&rxq->rspq.napi))
2098                                        fl->starving++;
2099                                else
2100                                        set_bit(id, s->starving_fl);
2101                        }
2102                }
2103        }
2104
2105        /*
2106         * Reschedule the next scan for starving Free Lists ...
2107         */
2108        mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2109}
2110
2111/**
2112 *      sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2113 *      @t: Tx timer
2114 *
2115 *      Runs periodically from a timer to perform maintenance of SGE TX queues.
2116 *
2117 *      b) Reclaims completed Tx packets for the Ethernet queues.  Normally
2118 *      packets are cleaned up by new Tx packets, this timer cleans up packets
2119 *      when no new packets are being submitted.  This is essential for pktgen,
2120 *      at least.
2121 */
2122static void sge_tx_timer_cb(struct timer_list *t)
2123{
2124        struct adapter *adapter = from_timer(adapter, t, sge.tx_timer);
2125        struct sge *s = &adapter->sge;
2126        unsigned int i, budget;
2127
2128        budget = MAX_TIMER_TX_RECLAIM;
2129        i = s->ethtxq_rover;
2130        do {
2131                struct sge_eth_txq *txq = &s->ethtxq[i];
2132
2133                if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2134                        int avail = reclaimable(&txq->q);
2135
2136                        if (avail > budget)
2137                                avail = budget;
2138
2139                        free_tx_desc(adapter, &txq->q, avail, true);
2140                        txq->q.in_use -= avail;
2141                        __netif_tx_unlock(txq->txq);
2142
2143                        budget -= avail;
2144                        if (!budget)
2145                                break;
2146                }
2147
2148                i++;
2149                if (i >= s->ethqsets)
2150                        i = 0;
2151        } while (i != s->ethtxq_rover);
2152        s->ethtxq_rover = i;
2153
2154        /*
2155         * If we found too many reclaimable packets schedule a timer in the
2156         * near future to continue where we left off.  Otherwise the next timer
2157         * will be at its normal interval.
2158         */
2159        mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2160}
2161
2162/**
2163 *      bar2_address - return the BAR2 address for an SGE Queue's Registers
2164 *      @adapter: the adapter
2165 *      @qid: the SGE Queue ID
2166 *      @qtype: the SGE Queue Type (Egress or Ingress)
2167 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2168 *
2169 *      Returns the BAR2 address for the SGE Queue Registers associated with
2170 *      @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2171 *      returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2172 *      Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2173 *      Registers are supported (e.g. the Write Combining Doorbell Buffer).
2174 */
2175static void __iomem *bar2_address(struct adapter *adapter,
2176                                  unsigned int qid,
2177                                  enum t4_bar2_qtype qtype,
2178                                  unsigned int *pbar2_qid)
2179{
2180        u64 bar2_qoffset;
2181        int ret;
2182
2183        ret = t4vf_bar2_sge_qregs(adapter, qid, qtype,
2184                                  &bar2_qoffset, pbar2_qid);
2185        if (ret)
2186                return NULL;
2187
2188        return adapter->bar2 + bar2_qoffset;
2189}
2190
2191/**
2192 *      t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2193 *      @adapter: the adapter
2194 *      @rspq: pointer to to the new rxq's Response Queue to be filled in
2195 *      @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2196 *      @dev: the network device associated with the new rspq
2197 *      @intr_dest: MSI-X vector index (overriden in MSI mode)
2198 *      @fl: pointer to the new rxq's Free List to be filled in
2199 *      @hnd: the interrupt handler to invoke for the rspq
2200 */
2201int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2202                       bool iqasynch, struct net_device *dev,
2203                       int intr_dest,
2204                       struct sge_fl *fl, rspq_handler_t hnd)
2205{
2206        struct sge *s = &adapter->sge;
2207        struct port_info *pi = netdev_priv(dev);
2208        struct fw_iq_cmd cmd, rpl;
2209        int ret, iqandst, flsz = 0;
2210        int relaxed = !(adapter->flags & CXGB4VF_ROOT_NO_RELAXED_ORDERING);
2211
2212        /*
2213         * If we're using MSI interrupts and we're not initializing the
2214         * Forwarded Interrupt Queue itself, then set up this queue for
2215         * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2216         * the Forwarded Interrupt Queue must be set up before any other
2217         * ingress queue ...
2218         */
2219        if ((adapter->flags & CXGB4VF_USING_MSI) &&
2220            rspq != &adapter->sge.intrq) {
2221                iqandst = SGE_INTRDST_IQ;
2222                intr_dest = adapter->sge.intrq.abs_id;
2223        } else
2224                iqandst = SGE_INTRDST_PCI;
2225
2226        /*
2227         * Allocate the hardware ring for the Response Queue.  The size needs
2228         * to be a multiple of 16 which includes the mandatory status entry
2229         * (regardless of whether the Status Page capabilities are enabled or
2230         * not).
2231         */
2232        rspq->size = roundup(rspq->size, 16);
2233        rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2234                                0, &rspq->phys_addr, NULL, 0);
2235        if (!rspq->desc)
2236                return -ENOMEM;
2237
2238        /*
2239         * Fill in the Ingress Queue Command.  Note: Ideally this code would
2240         * be in t4vf_hw.c but there are so many parameters and dependencies
2241         * on our Linux SGE state that we would end up having to pass tons of
2242         * parameters.  We'll have to think about how this might be migrated
2243         * into OS-independent common code ...
2244         */
2245        memset(&cmd, 0, sizeof(cmd));
2246        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2247                                    FW_CMD_REQUEST_F |
2248                                    FW_CMD_WRITE_F |
2249                                    FW_CMD_EXEC_F);
2250        cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2251                                         FW_IQ_CMD_IQSTART_F |
2252                                         FW_LEN16(cmd));
2253        cmd.type_to_iqandstindex =
2254                cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2255                            FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2256                            FW_IQ_CMD_VIID_V(pi->viid) |
2257                            FW_IQ_CMD_IQANDST_V(iqandst) |
2258                            FW_IQ_CMD_IQANUS_V(1) |
2259                            FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2260                            FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2261        cmd.iqdroprss_to_iqesize =
2262                cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2263                            FW_IQ_CMD_IQGTSMODE_F |
2264                            FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2265                            FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2266        cmd.iqsize = cpu_to_be16(rspq->size);
2267        cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2268
2269        if (fl) {
2270                unsigned int chip_ver =
2271                        CHELSIO_CHIP_VERSION(adapter->params.chip);
2272                /*
2273                 * Allocate the ring for the hardware free list (with space
2274                 * for its status page) along with the associated software
2275                 * descriptor ring.  The free list size needs to be a multiple
2276                 * of the Egress Queue Unit and at least 2 Egress Units larger
2277                 * than the SGE's Egress Congrestion Threshold
2278                 * (fl_starve_thres - 1).
2279                 */
2280                if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT)
2281                        fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT;
2282                fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2283                fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2284                                      sizeof(__be64), sizeof(struct rx_sw_desc),
2285                                      &fl->addr, &fl->sdesc, s->stat_len);
2286                if (!fl->desc) {
2287                        ret = -ENOMEM;
2288                        goto err;
2289                }
2290
2291                /*
2292                 * Calculate the size of the hardware free list ring plus
2293                 * Status Page (which the SGE will place after the end of the
2294                 * free list ring) in Egress Queue Units.
2295                 */
2296                flsz = (fl->size / FL_PER_EQ_UNIT +
2297                        s->stat_len / EQ_UNIT);
2298
2299                /*
2300                 * Fill in all the relevant firmware Ingress Queue Command
2301                 * fields for the free list.
2302                 */
2303                cmd.iqns_to_fl0congen =
2304                        cpu_to_be32(
2305                                FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2306                                FW_IQ_CMD_FL0PACKEN_F |
2307                                FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
2308                                FW_IQ_CMD_FL0DATARO_V(relaxed) |
2309                                FW_IQ_CMD_FL0PADEN_F);
2310
2311                /* In T6, for egress queue type FL there is internal overhead
2312                 * of 16B for header going into FLM module.  Hence the maximum
2313                 * allowed burst size is 448 bytes.  For T4/T5, the hardware
2314                 * doesn't coalesce fetch requests if more than 64 bytes of
2315                 * Free List pointers are provided, so we use a 128-byte Fetch
2316                 * Burst Minimum there (T6 implements coalescing so we can use
2317                 * the smaller 64-byte value there).
2318                 */
2319                cmd.fl0dcaen_to_fl0cidxfthresh =
2320                        cpu_to_be16(
2321                                FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5
2322                                                     ? FETCHBURSTMIN_128B_X
2323                                                     : FETCHBURSTMIN_64B_T6_X) |
2324                                FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
2325                                                     FETCHBURSTMAX_512B_X :
2326                                                     FETCHBURSTMAX_256B_X));
2327                cmd.fl0size = cpu_to_be16(flsz);
2328                cmd.fl0addr = cpu_to_be64(fl->addr);
2329        }
2330
2331        /*
2332         * Issue the firmware Ingress Queue Command and extract the results if
2333         * it completes successfully.
2334         */
2335        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2336        if (ret)
2337                goto err;
2338
2339        netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2340        rspq->cur_desc = rspq->desc;
2341        rspq->cidx = 0;
2342        rspq->gen = 1;
2343        rspq->next_intr_params = rspq->intr_params;
2344        rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2345        rspq->bar2_addr = bar2_address(adapter,
2346                                       rspq->cntxt_id,
2347                                       T4_BAR2_QTYPE_INGRESS,
2348                                       &rspq->bar2_qid);
2349        rspq->abs_id = be16_to_cpu(rpl.physiqid);
2350        rspq->size--;                   /* subtract status entry */
2351        rspq->adapter = adapter;
2352        rspq->netdev = dev;
2353        rspq->handler = hnd;
2354
2355        /* set offset to -1 to distinguish ingress queues without FL */
2356        rspq->offset = fl ? 0 : -1;
2357
2358        if (fl) {
2359                fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2360                fl->avail = 0;
2361                fl->pend_cred = 0;
2362                fl->pidx = 0;
2363                fl->cidx = 0;
2364                fl->alloc_failed = 0;
2365                fl->large_alloc_failed = 0;
2366                fl->starving = 0;
2367
2368                /* Note, we must initialize the BAR2 Free List User Doorbell
2369                 * information before refilling the Free List!
2370                 */
2371                fl->bar2_addr = bar2_address(adapter,
2372                                             fl->cntxt_id,
2373                                             T4_BAR2_QTYPE_EGRESS,
2374                                             &fl->bar2_qid);
2375
2376                refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2377        }
2378
2379        return 0;
2380
2381err:
2382        /*
2383         * An error occurred.  Clean up our partial allocation state and
2384         * return the error.
2385         */
2386        if (rspq->desc) {
2387                dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2388                                  rspq->desc, rspq->phys_addr);
2389                rspq->desc = NULL;
2390        }
2391        if (fl && fl->desc) {
2392                kfree(fl->sdesc);
2393                fl->sdesc = NULL;
2394                dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2395                                  fl->desc, fl->addr);
2396                fl->desc = NULL;
2397        }
2398        return ret;
2399}
2400
2401/**
2402 *      t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2403 *      @adapter: the adapter
2404 *      @txq: pointer to the new txq to be filled in
2405 *      @dev: the network device
2406 *      @devq: the network TX queue associated with the new txq
2407 *      @iqid: the relative ingress queue ID to which events relating to
2408 *              the new txq should be directed
2409 */
2410int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2411                           struct net_device *dev, struct netdev_queue *devq,
2412                           unsigned int iqid)
2413{
2414        unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
2415        struct port_info *pi = netdev_priv(dev);
2416        struct fw_eq_eth_cmd cmd, rpl;
2417        struct sge *s = &adapter->sge;
2418        int ret, nentries;
2419
2420        /*
2421         * Calculate the size of the hardware TX Queue (including the Status
2422         * Page on the end of the TX Queue) in units of TX Descriptors.
2423         */
2424        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2425
2426        /*
2427         * Allocate the hardware ring for the TX ring (with space for its
2428         * status page) along with the associated software descriptor ring.
2429         */
2430        txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2431                                 sizeof(struct tx_desc),
2432                                 sizeof(struct tx_sw_desc),
2433                                 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2434        if (!txq->q.desc)
2435                return -ENOMEM;
2436
2437        /*
2438         * Fill in the Egress Queue Command.  Note: As with the direct use of
2439         * the firmware Ingress Queue COmmand above in our RXQ allocation
2440         * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2441         * have to see if there's some reasonable way to parameterize it
2442         * into the common code ...
2443         */
2444        memset(&cmd, 0, sizeof(cmd));
2445        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2446                                    FW_CMD_REQUEST_F |
2447                                    FW_CMD_WRITE_F |
2448                                    FW_CMD_EXEC_F);
2449        cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2450                                         FW_EQ_ETH_CMD_EQSTART_F |
2451                                         FW_LEN16(cmd));
2452        cmd.autoequiqe_to_viid = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2453                                             FW_EQ_ETH_CMD_VIID_V(pi->viid));
2454        cmd.fetchszm_to_iqid =
2455                cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2456                            FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2457                            FW_EQ_ETH_CMD_IQID_V(iqid));
2458        cmd.dcaen_to_eqsize =
2459                cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
2460                                                  ? FETCHBURSTMIN_64B_X
2461                                                  : FETCHBURSTMIN_64B_T6_X) |
2462                            FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2463                            FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2464                                                CIDXFLUSHTHRESH_32_X) |
2465                            FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2466        cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2467
2468        /*
2469         * Issue the firmware Egress Queue Command and extract the results if
2470         * it completes successfully.
2471         */
2472        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2473        if (ret) {
2474                /*
2475                 * The girmware Ingress Queue Command failed for some reason.
2476                 * Free up our partial allocation state and return the error.
2477                 */
2478                kfree(txq->q.sdesc);
2479                txq->q.sdesc = NULL;
2480                dma_free_coherent(adapter->pdev_dev,
2481                                  nentries * sizeof(struct tx_desc),
2482                                  txq->q.desc, txq->q.phys_addr);
2483                txq->q.desc = NULL;
2484                return ret;
2485        }
2486
2487        txq->q.in_use = 0;
2488        txq->q.cidx = 0;
2489        txq->q.pidx = 0;
2490        txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2491        txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2492        txq->q.bar2_addr = bar2_address(adapter,
2493                                        txq->q.cntxt_id,
2494                                        T4_BAR2_QTYPE_EGRESS,
2495                                        &txq->q.bar2_qid);
2496        txq->q.abs_id =
2497                FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2498        txq->txq = devq;
2499        txq->tso = 0;
2500        txq->tx_cso = 0;
2501        txq->vlan_ins = 0;
2502        txq->q.stops = 0;
2503        txq->q.restarts = 0;
2504        txq->mapping_err = 0;
2505        return 0;
2506}
2507
2508/*
2509 * Free the DMA map resources associated with a TX queue.
2510 */
2511static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2512{
2513        struct sge *s = &adapter->sge;
2514
2515        dma_free_coherent(adapter->pdev_dev,
2516                          tq->size * sizeof(*tq->desc) + s->stat_len,
2517                          tq->desc, tq->phys_addr);
2518        tq->cntxt_id = 0;
2519        tq->sdesc = NULL;
2520        tq->desc = NULL;
2521}
2522
2523/*
2524 * Free the resources associated with a response queue (possibly including a
2525 * free list).
2526 */
2527static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2528                         struct sge_fl *fl)
2529{
2530        struct sge *s = &adapter->sge;
2531        unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2532
2533        t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2534                     rspq->cntxt_id, flid, 0xffff);
2535        dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2536                          rspq->desc, rspq->phys_addr);
2537        netif_napi_del(&rspq->napi);
2538        rspq->netdev = NULL;
2539        rspq->cntxt_id = 0;
2540        rspq->abs_id = 0;
2541        rspq->desc = NULL;
2542
2543        if (fl) {
2544                free_rx_bufs(adapter, fl, fl->avail);
2545                dma_free_coherent(adapter->pdev_dev,
2546                                  fl->size * sizeof(*fl->desc) + s->stat_len,
2547                                  fl->desc, fl->addr);
2548                kfree(fl->sdesc);
2549                fl->sdesc = NULL;
2550                fl->cntxt_id = 0;
2551                fl->desc = NULL;
2552        }
2553}
2554
2555/**
2556 *      t4vf_free_sge_resources - free SGE resources
2557 *      @adapter: the adapter
2558 *
2559 *      Frees resources used by the SGE queue sets.
2560 */
2561void t4vf_free_sge_resources(struct adapter *adapter)
2562{
2563        struct sge *s = &adapter->sge;
2564        struct sge_eth_rxq *rxq = s->ethrxq;
2565        struct sge_eth_txq *txq = s->ethtxq;
2566        struct sge_rspq *evtq = &s->fw_evtq;
2567        struct sge_rspq *intrq = &s->intrq;
2568        int qs;
2569
2570        for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2571                if (rxq->rspq.desc)
2572                        free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2573                if (txq->q.desc) {
2574                        t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2575                        free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2576                        kfree(txq->q.sdesc);
2577                        free_txq(adapter, &txq->q);
2578                }
2579        }
2580        if (evtq->desc)
2581                free_rspq_fl(adapter, evtq, NULL);
2582        if (intrq->desc)
2583                free_rspq_fl(adapter, intrq, NULL);
2584}
2585
2586/**
2587 *      t4vf_sge_start - enable SGE operation
2588 *      @adapter: the adapter
2589 *
2590 *      Start tasklets and timers associated with the DMA engine.
2591 */
2592void t4vf_sge_start(struct adapter *adapter)
2593{
2594        adapter->sge.ethtxq_rover = 0;
2595        mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2596        mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2597}
2598
2599/**
2600 *      t4vf_sge_stop - disable SGE operation
2601 *      @adapter: the adapter
2602 *
2603 *      Stop tasklets and timers associated with the DMA engine.  Note that
2604 *      this is effective only if measures have been taken to disable any HW
2605 *      events that may restart them.
2606 */
2607void t4vf_sge_stop(struct adapter *adapter)
2608{
2609        struct sge *s = &adapter->sge;
2610
2611        if (s->rx_timer.function)
2612                del_timer_sync(&s->rx_timer);
2613        if (s->tx_timer.function)
2614                del_timer_sync(&s->tx_timer);
2615}
2616
2617/**
2618 *      t4vf_sge_init - initialize SGE
2619 *      @adapter: the adapter
2620 *
2621 *      Performs SGE initialization needed every time after a chip reset.
2622 *      We do not initialize any of the queue sets here, instead the driver
2623 *      top-level must request those individually.  We also do not enable DMA
2624 *      here, that should be done after the queues have been set up.
2625 */
2626int t4vf_sge_init(struct adapter *adapter)
2627{
2628        struct sge_params *sge_params = &adapter->params.sge;
2629        u32 fl_small_pg = sge_params->sge_fl_buffer_size[0];
2630        u32 fl_large_pg = sge_params->sge_fl_buffer_size[1];
2631        struct sge *s = &adapter->sge;
2632
2633        /*
2634         * Start by vetting the basic SGE parameters which have been set up by
2635         * the Physical Function Driver.  Ideally we should be able to deal
2636         * with _any_ configuration.  Practice is different ...
2637         */
2638
2639        /* We only bother using the Large Page logic if the Large Page Buffer
2640         * is larger than our Page Size Buffer.
2641         */
2642        if (fl_large_pg <= fl_small_pg)
2643                fl_large_pg = 0;
2644
2645        /* The Page Size Buffer must be exactly equal to our Page Size and the
2646         * Large Page Size Buffer should be 0 (per above) or a power of 2.
2647         */
2648        if (fl_small_pg != PAGE_SIZE ||
2649            (fl_large_pg & (fl_large_pg - 1)) != 0) {
2650                dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2651                        fl_small_pg, fl_large_pg);
2652                return -EINVAL;
2653        }
2654        if ((sge_params->sge_control & RXPKTCPLMODE_F) !=
2655            RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2656                dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2657                return -EINVAL;
2658        }
2659
2660        /*
2661         * Now translate the adapter parameters into our internal forms.
2662         */
2663        if (fl_large_pg)
2664                s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2665        s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
2666                        ? 128 : 64);
2667        s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2668        s->fl_align = t4vf_fl_pkt_align(adapter);
2669
2670        /* A FL with <= fl_starve_thres buffers is starving and a periodic
2671         * timer will attempt to refill it.  This needs to be larger than the
2672         * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2673         * stuck waiting for new packets while the SGE is waiting for us to
2674         * give it more Free List entries.  (Note that the SGE's Egress
2675         * Congestion Threshold is in units of 2 Free List pointers.)
2676         */
2677        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
2678        case CHELSIO_T4:
2679                s->fl_starve_thres =
2680                   EGRTHRESHOLD_G(sge_params->sge_congestion_control);
2681                break;
2682        case CHELSIO_T5:
2683                s->fl_starve_thres =
2684                   EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2685                break;
2686        case CHELSIO_T6:
2687        default:
2688                s->fl_starve_thres =
2689                   T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2690                break;
2691        }
2692        s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2693
2694        /*
2695         * Set up tasklet timers.
2696         */
2697        timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
2698        timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
2699
2700        /*
2701         * Initialize Forwarded Interrupt Queue lock.
2702         */
2703        spin_lock_init(&s->intrq_lock);
2704
2705        return 0;
2706}
2707