linux/drivers/net/ethernet/qlogic/qed/qed_init_fw_funcs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
   2/* QLogic qed NIC Driver
   3 * Copyright (c) 2015-2017  QLogic Corporation
   4 * Copyright (c) 2019-2021 Marvell International Ltd.
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/crc8.h>
   9#include <linux/delay.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/string.h>
  13#include "qed_hsi.h"
  14#include "qed_hw.h"
  15#include "qed_init_ops.h"
  16#include "qed_iro_hsi.h"
  17#include "qed_reg_addr.h"
  18
  19#define CDU_VALIDATION_DEFAULT_CFG CDU_CONTEXT_VALIDATION_DEFAULT_CFG
  20
  21static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES] = {
  22        {400, 336, 352, 368, 304, 384, 416, 352},       /* region 3 offsets */
  23        {528, 496, 416, 512, 448, 512, 544, 480},       /* region 4 offsets */
  24        {608, 544, 496, 576, 576, 592, 624, 560}        /* region 5 offsets */
  25};
  26
  27static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES] = {
  28        {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
  29};
  30
  31/* General constants */
  32#define QM_PQ_MEM_4KB(pq_size)  (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
  33                                                        QM_PQ_ELEMENT_SIZE, \
  34                                                        0x1000) : 0)
  35#define QM_PQ_SIZE_256B(pq_size)        (pq_size ? DIV_ROUND_UP(pq_size, \
  36                                                                0x100) - 1 : 0)
  37#define QM_INVALID_PQ_ID                0xffff
  38
  39/* Max link speed (in Mbps) */
  40#define QM_MAX_LINK_SPEED               100000
  41
  42/* Feature enable */
  43#define QM_BYPASS_EN    1
  44#define QM_BYTE_CRD_EN  1
  45
  46/* Initial VOQ byte credit */
  47#define QM_INITIAL_VOQ_BYTE_CRD         98304
  48/* Other PQ constants */
  49#define QM_OTHER_PQS_PER_PF     4
  50
  51/* VOQ constants */
  52#define MAX_NUM_VOQS    (MAX_NUM_PORTS_K2 * NUM_TCS_4PORT_K2)
  53#define VOQS_BIT_MASK   (BIT(MAX_NUM_VOQS) - 1)
  54
  55/* WFQ constants */
  56
  57/* PF WFQ increment value, 0x9000 = 4*9*1024 */
  58#define QM_PF_WFQ_INC_VAL(weight)       ((weight) * 0x9000)
  59
  60/* PF WFQ Upper bound, in MB, 10 * burst size of 1ms in 50Gbps */
  61#define QM_PF_WFQ_UPPER_BOUND           62500000
  62
  63/* PF WFQ max increment value, 0.7 * upper bound */
  64#define QM_PF_WFQ_MAX_INC_VAL           ((QM_PF_WFQ_UPPER_BOUND * 7) / 10)
  65
  66/* Number of VOQs in E5 PF WFQ credit register (QmWfqCrd) */
  67#define QM_PF_WFQ_CRD_E5_NUM_VOQS       16
  68
  69/* VP WFQ increment value */
  70#define QM_VP_WFQ_INC_VAL(weight)       ((weight) * QM_VP_WFQ_MIN_INC_VAL)
  71
  72/* VP WFQ min increment value */
  73#define QM_VP_WFQ_MIN_INC_VAL           10800
  74
  75/* VP WFQ max increment value, 2^30 */
  76#define QM_VP_WFQ_MAX_INC_VAL           0x40000000
  77
  78/* VP WFQ bypass threshold */
  79#define QM_VP_WFQ_BYPASS_THRESH         (QM_VP_WFQ_MIN_INC_VAL - 100)
  80
  81/* VP RL credit task cost */
  82#define QM_VP_RL_CRD_TASK_COST          9700
  83
  84/* Bit of VOQ in VP WFQ PQ map */
  85#define QM_VP_WFQ_PQ_VOQ_SHIFT          0
  86
  87/* Bit of PF in VP WFQ PQ map */
  88#define QM_VP_WFQ_PQ_PF_SHIFT   5
  89
  90/* RL constants */
  91
  92/* Period in us */
  93#define QM_RL_PERIOD    5
  94
  95/* Period in 25MHz cycles */
  96#define QM_RL_PERIOD_CLK_25M    (25 * QM_RL_PERIOD)
  97
  98/* RL increment value - rate is specified in mbps */
  99#define QM_RL_INC_VAL(rate)                     ({      \
 100                                                typeof(rate) __rate = (rate); \
 101                                                max_t(u32,              \
 102                                                (u32)(((__rate ? __rate : \
 103                                                100000) *               \
 104                                                QM_RL_PERIOD *          \
 105                                                101) / (8 * 100)), 1); })
 106
 107/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
 108#define QM_PF_RL_UPPER_BOUND    62500000
 109
 110/* Max PF RL increment value is 0.7 * upper bound */
 111#define QM_PF_RL_MAX_INC_VAL    ((QM_PF_RL_UPPER_BOUND * 7) / 10)
 112
 113/* QCN RL Upper bound, speed is in Mpbs */
 114#define QM_GLOBAL_RL_UPPER_BOUND(speed)         ((u32)max_t( \
 115                u32,                                        \
 116                (u32)(((speed) *                            \
 117                       QM_RL_PERIOD * 101) / (8 * 100)),    \
 118                QM_VP_RL_CRD_TASK_COST                      \
 119                + 1000))
 120
 121/* AFullOprtnstcCrdMask constants */
 122#define QM_OPPOR_LINE_VOQ_DEF   1
 123#define QM_OPPOR_FW_STOP_DEF    0
 124#define QM_OPPOR_PQ_EMPTY_DEF   1
 125
 126/* Command Queue constants */
 127
 128/* Pure LB CmdQ lines (+spare) */
 129#define PBF_CMDQ_PURE_LB_LINES  150
 130
 131#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
 132        (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
 133         (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
 134                PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
 135
 136#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
 137        (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
 138         (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
 139                PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
 140
 141/* Returns the VOQ line credit for the specified number of PBF command lines.
 142 * PBF lines are specified in 256b units.
 143 */
 144#define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
 145        ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
 146
 147/* BTB: blocks constants (block size = 256B) */
 148
 149/* 256B blocks in 9700B packet */
 150#define BTB_JUMBO_PKT_BLOCKS    38
 151
 152/* Headroom per-port */
 153#define BTB_HEADROOM_BLOCKS     BTB_JUMBO_PKT_BLOCKS
 154#define BTB_PURE_LB_FACTOR      10
 155
 156/* Factored (hence really 0.7) */
 157#define BTB_PURE_LB_RATIO       7
 158
 159/* QM stop command constants */
 160#define QM_STOP_PQ_MASK_WIDTH           32
 161#define QM_STOP_CMD_ADDR                2
 162#define QM_STOP_CMD_STRUCT_SIZE         2
 163#define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
 164#define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
 165#define QM_STOP_CMD_PAUSE_MASK_MASK     -1
 166#define QM_STOP_CMD_GROUP_ID_OFFSET     1
 167#define QM_STOP_CMD_GROUP_ID_SHIFT      16
 168#define QM_STOP_CMD_GROUP_ID_MASK       15
 169#define QM_STOP_CMD_PQ_TYPE_OFFSET      1
 170#define QM_STOP_CMD_PQ_TYPE_SHIFT       24
 171#define QM_STOP_CMD_PQ_TYPE_MASK        1
 172#define QM_STOP_CMD_MAX_POLL_COUNT      100
 173#define QM_STOP_CMD_POLL_PERIOD_US      500
 174
 175/* QM command macros */
 176#define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
 177#define QM_CMD_SET_FIELD(var, cmd, field, value) \
 178        SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
 179                  cmd ## _ ## field, \
 180                  value)
 181
 182#define QM_INIT_TX_PQ_MAP(p_hwfn, map, pq_id, vp_pq_id, rl_valid,             \
 183                          rl_id, ext_voq, wrr)                                \
 184        do {                                                                  \
 185                u32 __reg = 0;                                                \
 186                                                                              \
 187                BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg));             \
 188                memset(&(map), 0, sizeof(map));                               \
 189                SET_FIELD(__reg, QM_RF_PQ_MAP_PQ_VALID, 1);           \
 190                SET_FIELD(__reg, QM_RF_PQ_MAP_RL_VALID,       \
 191                          !!(rl_valid));                                      \
 192                SET_FIELD(__reg, QM_RF_PQ_MAP_VP_PQ_ID, (vp_pq_id)); \
 193                SET_FIELD(__reg, QM_RF_PQ_MAP_RL_ID, (rl_id));        \
 194                SET_FIELD(__reg, QM_RF_PQ_MAP_VOQ, (ext_voq));        \
 195                SET_FIELD(__reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,      \
 196                          (wrr));                                             \
 197                                                                              \
 198                STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id),    \
 199                             __reg);                                          \
 200                (map).reg = cpu_to_le32(__reg);                               \
 201        } while (0)
 202
 203#define WRITE_PQ_INFO_TO_RAM    1
 204#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
 205        (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
 206        ((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
 207        (((rl) >> 8) << 9))
 208
 209#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
 210        (XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
 211        XSTORM_PQ_INFO_OFFSET(pq_id))
 212
 213static const char * const s_protocol_types[] = {
 214        "PROTOCOLID_ISCSI", "PROTOCOLID_FCOE", "PROTOCOLID_ROCE",
 215        "PROTOCOLID_CORE", "PROTOCOLID_ETH", "PROTOCOLID_IWARP",
 216        "PROTOCOLID_TOE", "PROTOCOLID_PREROCE", "PROTOCOLID_COMMON",
 217        "PROTOCOLID_TCP", "PROTOCOLID_RDMA", "PROTOCOLID_SCSI",
 218};
 219
 220static const char *s_ramrod_cmd_ids[][28] = {
 221        {
 222        "ISCSI_RAMROD_CMD_ID_UNUSED", "ISCSI_RAMROD_CMD_ID_INIT_FUNC",
 223         "ISCSI_RAMROD_CMD_ID_DESTROY_FUNC",
 224         "ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN",
 225         "ISCSI_RAMROD_CMD_ID_UPDATE_CONN",
 226         "ISCSI_RAMROD_CMD_ID_TERMINATION_CONN",
 227         "ISCSI_RAMROD_CMD_ID_CLEAR_SQ", "ISCSI_RAMROD_CMD_ID_MAC_UPDATE",
 228         "ISCSI_RAMROD_CMD_ID_CONN_STATS", },
 229        { "FCOE_RAMROD_CMD_ID_INIT_FUNC", "FCOE_RAMROD_CMD_ID_DESTROY_FUNC",
 230         "FCOE_RAMROD_CMD_ID_STAT_FUNC",
 231         "FCOE_RAMROD_CMD_ID_OFFLOAD_CONN",
 232         "FCOE_RAMROD_CMD_ID_TERMINATE_CONN", },
 233        { "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
 234         "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
 235         "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
 236         "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
 237         "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
 238         "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
 239         "RDMA_RAMROD_STOP_NS_TRACKING", "ROCE_RAMROD_CREATE_QP",
 240         "ROCE_RAMROD_MODIFY_QP", "ROCE_RAMROD_QUERY_QP",
 241         "ROCE_RAMROD_DESTROY_QP", "ROCE_RAMROD_CREATE_UD_QP",
 242         "ROCE_RAMROD_DESTROY_UD_QP", "ROCE_RAMROD_FUNC_UPDATE",
 243         "ROCE_RAMROD_SUSPEND_QP", "ROCE_RAMROD_QUERY_SUSPENDED_QP",
 244         "ROCE_RAMROD_CREATE_SUSPENDED_QP", "ROCE_RAMROD_RESUME_QP",
 245         "ROCE_RAMROD_SUSPEND_UD_QP", "ROCE_RAMROD_RESUME_UD_QP",
 246         "ROCE_RAMROD_CREATE_SUSPENDED_UD_QP", "ROCE_RAMROD_FLUSH_DPT_QP", },
 247        { "CORE_RAMROD_UNUSED", "CORE_RAMROD_RX_QUEUE_START",
 248         "CORE_RAMROD_TX_QUEUE_START", "CORE_RAMROD_RX_QUEUE_STOP",
 249         "CORE_RAMROD_TX_QUEUE_STOP",
 250         "CORE_RAMROD_RX_QUEUE_FLUSH",
 251         "CORE_RAMROD_TX_QUEUE_UPDATE", "CORE_RAMROD_QUEUE_STATS_QUERY", },
 252        { "ETH_RAMROD_UNUSED", "ETH_RAMROD_VPORT_START",
 253         "ETH_RAMROD_VPORT_UPDATE", "ETH_RAMROD_VPORT_STOP",
 254         "ETH_RAMROD_RX_QUEUE_START", "ETH_RAMROD_RX_QUEUE_STOP",
 255         "ETH_RAMROD_TX_QUEUE_START", "ETH_RAMROD_TX_QUEUE_STOP",
 256         "ETH_RAMROD_FILTERS_UPDATE", "ETH_RAMROD_RX_QUEUE_UPDATE",
 257         "ETH_RAMROD_RX_CREATE_OPENFLOW_ACTION",
 258         "ETH_RAMROD_RX_ADD_OPENFLOW_FILTER",
 259         "ETH_RAMROD_RX_DELETE_OPENFLOW_FILTER",
 260         "ETH_RAMROD_RX_ADD_UDP_FILTER",
 261         "ETH_RAMROD_RX_DELETE_UDP_FILTER",
 262         "ETH_RAMROD_RX_CREATE_GFT_ACTION",
 263         "ETH_RAMROD_RX_UPDATE_GFT_FILTER", "ETH_RAMROD_TX_QUEUE_UPDATE",
 264         "ETH_RAMROD_RGFS_FILTER_ADD", "ETH_RAMROD_RGFS_FILTER_DEL",
 265         "ETH_RAMROD_TGFS_FILTER_ADD", "ETH_RAMROD_TGFS_FILTER_DEL",
 266         "ETH_RAMROD_GFS_COUNTERS_REPORT_REQUEST", },
 267        { "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
 268         "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
 269         "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
 270         "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
 271         "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
 272         "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
 273         "RDMA_RAMROD_STOP_NS_TRACKING",
 274         "IWARP_RAMROD_CMD_ID_TCP_OFFLOAD",
 275         "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD",
 276         "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD_SEND_RTR",
 277         "IWARP_RAMROD_CMD_ID_CREATE_QP", "IWARP_RAMROD_CMD_ID_QUERY_QP",
 278         "IWARP_RAMROD_CMD_ID_MODIFY_QP",
 279         "IWARP_RAMROD_CMD_ID_DESTROY_QP",
 280         "IWARP_RAMROD_CMD_ID_ABORT_TCP_OFFLOAD", },
 281        { NULL }, /*TOE*/
 282        { NULL }, /*PREROCE*/
 283        { "COMMON_RAMROD_UNUSED", "COMMON_RAMROD_PF_START",
 284             "COMMON_RAMROD_PF_STOP", "COMMON_RAMROD_VF_START",
 285             "COMMON_RAMROD_VF_STOP", "COMMON_RAMROD_PF_UPDATE",
 286             "COMMON_RAMROD_RL_UPDATE", "COMMON_RAMROD_EMPTY", }
 287};
 288
 289/******************** INTERNAL IMPLEMENTATION *********************/
 290
 291/* Returns the external VOQ number */
 292static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
 293                          u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
 294{
 295        if (tc == PURE_LB_TC)
 296                return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
 297        else
 298                return port_id * max_phys_tcs_per_port + tc;
 299}
 300
 301/* Prepare PF RL enable/disable runtime init values */
 302static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
 303{
 304        STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
 305        if (pf_rl_en) {
 306                u8 num_ext_voqs = MAX_NUM_VOQS;
 307                u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
 308
 309                /* Enable RLs for all VOQs */
 310                STORE_RT_REG(p_hwfn,
 311                             QM_REG_RLPFVOQENABLE_RT_OFFSET,
 312                             (u32)voq_bit_mask);
 313
 314                /* Write RL period */
 315                STORE_RT_REG(p_hwfn,
 316                             QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
 317                STORE_RT_REG(p_hwfn,
 318                             QM_REG_RLPFPERIODTIMER_RT_OFFSET,
 319                             QM_RL_PERIOD_CLK_25M);
 320
 321                /* Set credit threshold for QM bypass flow */
 322                if (QM_BYPASS_EN)
 323                        STORE_RT_REG(p_hwfn,
 324                                     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
 325                                     QM_PF_RL_UPPER_BOUND);
 326        }
 327}
 328
 329/* Prepare PF WFQ enable/disable runtime init values */
 330static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
 331{
 332        STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
 333
 334        /* Set credit threshold for QM bypass flow */
 335        if (pf_wfq_en && QM_BYPASS_EN)
 336                STORE_RT_REG(p_hwfn,
 337                             QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
 338                             QM_PF_WFQ_UPPER_BOUND);
 339}
 340
 341/* Prepare global RL enable/disable runtime init values */
 342static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
 343{
 344        STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
 345                     global_rl_en ? 1 : 0);
 346        if (global_rl_en) {
 347                /* Write RL period (use timer 0 only) */
 348                STORE_RT_REG(p_hwfn,
 349                             QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
 350                             QM_RL_PERIOD_CLK_25M);
 351                STORE_RT_REG(p_hwfn,
 352                             QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
 353                             QM_RL_PERIOD_CLK_25M);
 354
 355                /* Set credit threshold for QM bypass flow */
 356                if (QM_BYPASS_EN)
 357                        STORE_RT_REG(p_hwfn,
 358                                     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
 359                                     QM_GLOBAL_RL_UPPER_BOUND(10000) - 1);
 360        }
 361}
 362
 363/* Prepare VPORT WFQ enable/disable runtime init values */
 364static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
 365{
 366        STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
 367                     vport_wfq_en ? 1 : 0);
 368
 369        /* Set credit threshold for QM bypass flow */
 370        if (vport_wfq_en && QM_BYPASS_EN)
 371                STORE_RT_REG(p_hwfn,
 372                             QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
 373                             QM_VP_WFQ_BYPASS_THRESH);
 374}
 375
 376/* Prepare runtime init values to allocate PBF command queue lines for
 377 * the specified VOQ.
 378 */
 379static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
 380                                       u8 ext_voq, u16 cmdq_lines)
 381{
 382        u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
 383
 384        OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
 385                         (u32)cmdq_lines);
 386        STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
 387                     qm_line_crd);
 388        STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
 389                     qm_line_crd);
 390}
 391
 392/* Prepare runtime init values to allocate PBF command queue lines. */
 393static void
 394qed_cmdq_lines_rt_init(struct qed_hwfn *p_hwfn,
 395                       u8 max_ports_per_engine,
 396                       u8 max_phys_tcs_per_port,
 397                       struct init_qm_port_params port_params[MAX_NUM_PORTS])
 398{
 399        u8 tc, ext_voq, port_id, num_tcs_in_port;
 400        u8 num_ext_voqs = MAX_NUM_VOQS;
 401
 402        /* Clear PBF lines of all VOQs */
 403        for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
 404                STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
 405
 406        for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
 407                u16 phys_lines, phys_lines_per_tc;
 408
 409                if (!port_params[port_id].active)
 410                        continue;
 411
 412                /* Find number of command queue lines to divide between the
 413                 * active physical TCs.
 414                 */
 415                phys_lines = port_params[port_id].num_pbf_cmd_lines;
 416                phys_lines -= PBF_CMDQ_PURE_LB_LINES;
 417
 418                /* Find #lines per active physical TC */
 419                num_tcs_in_port = 0;
 420                for (tc = 0; tc < max_phys_tcs_per_port; tc++)
 421                        if (((port_params[port_id].active_phys_tcs >>
 422                              tc) & 0x1) == 1)
 423                                num_tcs_in_port++;
 424                phys_lines_per_tc = phys_lines / num_tcs_in_port;
 425
 426                /* Init registers per active TC */
 427                for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
 428                        ext_voq = qed_get_ext_voq(p_hwfn,
 429                                                  port_id,
 430                                                  tc, max_phys_tcs_per_port);
 431                        if (((port_params[port_id].active_phys_tcs >>
 432                              tc) & 0x1) == 1)
 433                                qed_cmdq_lines_voq_rt_init(p_hwfn,
 434                                                           ext_voq,
 435                                                           phys_lines_per_tc);
 436                }
 437
 438                /* Init registers for pure LB TC */
 439                ext_voq = qed_get_ext_voq(p_hwfn,
 440                                          port_id,
 441                                          PURE_LB_TC, max_phys_tcs_per_port);
 442                qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
 443                                           PBF_CMDQ_PURE_LB_LINES);
 444        }
 445}
 446
 447/* Prepare runtime init values to allocate guaranteed BTB blocks for the
 448 * specified port. The guaranteed BTB space is divided between the TCs as
 449 * follows (shared space Is currently not used):
 450 * 1. Parameters:
 451 *    B - BTB blocks for this port
 452 *    C - Number of physical TCs for this port
 453 * 2. Calculation:
 454 *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
 455 *       headroom.
 456 *    b. B = B - 38 (remainder after global headroom allocation).
 457 *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
 458 *    d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
 459 *    e. B/C blocks are allocated for each physical TC.
 460 * Assumptions:
 461 * - MTU is up to 9700 bytes (38 blocks)
 462 * - All TCs are considered symmetrical (same rate and packet size)
 463 * - No optimization for lossy TC (all are considered lossless). Shared space
 464 *   is not enabled and allocated for each TC.
 465 */
 466static void
 467qed_btb_blocks_rt_init(struct qed_hwfn *p_hwfn,
 468                       u8 max_ports_per_engine,
 469                       u8 max_phys_tcs_per_port,
 470                       struct init_qm_port_params port_params[MAX_NUM_PORTS])
 471{
 472        u32 usable_blocks, pure_lb_blocks, phys_blocks;
 473        u8 tc, ext_voq, port_id, num_tcs_in_port;
 474
 475        for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
 476                if (!port_params[port_id].active)
 477                        continue;
 478
 479                /* Subtract headroom blocks */
 480                usable_blocks = port_params[port_id].num_btb_blocks -
 481                                BTB_HEADROOM_BLOCKS;
 482
 483                /* Find blocks per physical TC. Use factor to avoid floating
 484                 * arithmethic.
 485                 */
 486                num_tcs_in_port = 0;
 487                for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
 488                        if (((port_params[port_id].active_phys_tcs >>
 489                              tc) & 0x1) == 1)
 490                                num_tcs_in_port++;
 491
 492                pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
 493                                 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
 494                                  BTB_PURE_LB_RATIO);
 495                pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
 496                                       pure_lb_blocks / BTB_PURE_LB_FACTOR);
 497                phys_blocks = (usable_blocks - pure_lb_blocks) /
 498                              num_tcs_in_port;
 499
 500                /* Init physical TCs */
 501                for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
 502                        if (((port_params[port_id].active_phys_tcs >>
 503                              tc) & 0x1) == 1) {
 504                                ext_voq =
 505                                        qed_get_ext_voq(p_hwfn,
 506                                                        port_id,
 507                                                        tc,
 508                                                        max_phys_tcs_per_port);
 509                                STORE_RT_REG(p_hwfn,
 510                                             PBF_BTB_GUARANTEED_RT_OFFSET
 511                                             (ext_voq), phys_blocks);
 512                        }
 513                }
 514
 515                /* Init pure LB TC */
 516                ext_voq = qed_get_ext_voq(p_hwfn,
 517                                          port_id,
 518                                          PURE_LB_TC, max_phys_tcs_per_port);
 519                STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
 520                             pure_lb_blocks);
 521        }
 522}
 523
 524/* Prepare runtime init values for the specified RL.
 525 * Set max link speed (100Gbps) per rate limiter.
 526 * Return -1 on error.
 527 */
 528static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
 529{
 530        u32 upper_bound = QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
 531                          (u32)QM_RL_CRD_REG_SIGN_BIT;
 532        u32 inc_val;
 533        u16 rl_id;
 534
 535        /* Go over all global RLs */
 536        for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
 537                inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
 538
 539                STORE_RT_REG(p_hwfn,
 540                             QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
 541                             (u32)QM_RL_CRD_REG_SIGN_BIT);
 542                STORE_RT_REG(p_hwfn,
 543                             QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
 544                             upper_bound);
 545                STORE_RT_REG(p_hwfn,
 546                             QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
 547        }
 548
 549        return 0;
 550}
 551
 552/* Returns the upper bound for the specified Vport RL parameters.
 553 * link_speed is in Mbps.
 554 * Returns 0 in case of error.
 555 */
 556static u32 qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,
 557                                        u32 link_speed)
 558{
 559        switch (vport_rl_type) {
 560        case QM_RL_TYPE_NORMAL:
 561                return QM_INITIAL_VOQ_BYTE_CRD;
 562        case QM_RL_TYPE_QCN:
 563                return QM_GLOBAL_RL_UPPER_BOUND(link_speed);
 564        default:
 565                return 0;
 566        }
 567}
 568
 569/* Prepare VPORT RL runtime init values.
 570 * Return -1 on error.
 571 */
 572static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
 573                                u16 start_rl,
 574                                u16 num_rls,
 575                                u32 link_speed,
 576                                struct init_qm_rl_params *rl_params)
 577{
 578        u16 i, rl_id;
 579
 580        if (num_rls && start_rl + num_rls >= MAX_QM_GLOBAL_RLS) {
 581                DP_NOTICE(p_hwfn, "Invalid rate limiter configuration\n");
 582                return -1;
 583        }
 584
 585        /* Go over all PF VPORTs */
 586        for (i = 0, rl_id = start_rl; i < num_rls; i++, rl_id++) {
 587                u32 upper_bound, inc_val;
 588
 589                upper_bound =
 590                    qed_get_vport_rl_upper_bound((enum init_qm_rl_type)
 591                                                 rl_params[i].vport_rl_type,
 592                                                 link_speed);
 593
 594                inc_val =
 595                    QM_RL_INC_VAL(rl_params[i].vport_rl ?
 596                                  rl_params[i].vport_rl : link_speed);
 597                if (inc_val > upper_bound) {
 598                        DP_NOTICE(p_hwfn,
 599                                  "Invalid RL rate - limit configuration\n");
 600                        return -1;
 601                }
 602
 603                STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
 604                             (u32)QM_RL_CRD_REG_SIGN_BIT);
 605                STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
 606                             upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
 607                STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id,
 608                             inc_val);
 609        }
 610
 611        return 0;
 612}
 613
 614/* Prepare Tx PQ mapping runtime init values for the specified PF */
 615static int qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
 616                                 struct qed_ptt *p_ptt,
 617                                 struct qed_qm_pf_rt_init_params *p_params,
 618                                 u32 base_mem_addr_4kb)
 619{
 620        u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
 621        struct init_qm_vport_params *vport_params = p_params->vport_params;
 622        u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
 623        u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
 624        struct init_qm_pq_params *pq_params = p_params->pq_params;
 625        u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
 626
 627        num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
 628
 629        first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
 630        last_pq_group = (p_params->start_pq + num_pqs - 1) /
 631                        QM_PF_QUEUE_GROUP_SIZE;
 632
 633        pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
 634        vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
 635        mem_addr_4kb = base_mem_addr_4kb;
 636
 637        /* Set mapping from PQ group to PF */
 638        for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
 639                STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
 640                             (u32)(p_params->pf_id));
 641
 642        /* Set PQ sizes */
 643        STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
 644                     QM_PQ_SIZE_256B(p_params->num_pf_cids));
 645        STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
 646                     QM_PQ_SIZE_256B(p_params->num_vf_cids));
 647
 648        /* Go over all Tx PQs */
 649        for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
 650                u16 *p_first_tx_pq_id, vport_id_in_pf;
 651                struct qm_rf_pq_map tx_pq_map;
 652                u8 tc_id = pq_params[i].tc_id;
 653                bool is_vf_pq;
 654                u8 ext_voq;
 655
 656                ext_voq = qed_get_ext_voq(p_hwfn,
 657                                          pq_params[i].port_id,
 658                                          tc_id,
 659                                          p_params->max_phys_tcs_per_port);
 660                is_vf_pq = (i >= p_params->num_pf_pqs);
 661
 662                /* Update first Tx PQ of VPORT/TC */
 663                vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
 664                p_first_tx_pq_id =
 665                    &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
 666                if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
 667                        u32 map_val =
 668                                (ext_voq << QM_VP_WFQ_PQ_VOQ_SHIFT) |
 669                                (p_params->pf_id << QM_VP_WFQ_PQ_PF_SHIFT);
 670
 671                        /* Create new VP PQ */
 672                        *p_first_tx_pq_id = pq_id;
 673
 674                        /* Map VP PQ to VOQ and PF */
 675                        STORE_RT_REG(p_hwfn,
 676                                     QM_REG_WFQVPMAP_RT_OFFSET +
 677                                     *p_first_tx_pq_id,
 678                                     map_val);
 679                }
 680
 681                /* Prepare PQ map entry */
 682                QM_INIT_TX_PQ_MAP(p_hwfn,
 683                                  tx_pq_map,
 684                                  pq_id,
 685                                  *p_first_tx_pq_id,
 686                                  pq_params[i].rl_valid,
 687                                  pq_params[i].rl_id,
 688                                  ext_voq, pq_params[i].wrr_group);
 689
 690                /* Set PQ base address */
 691                STORE_RT_REG(p_hwfn,
 692                             QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
 693                             mem_addr_4kb);
 694
 695                /* Clear PQ pointer table entry (64 bit) */
 696                if (p_params->is_pf_loading)
 697                        for (j = 0; j < 2; j++)
 698                                STORE_RT_REG(p_hwfn,
 699                                             QM_REG_PTRTBLTX_RT_OFFSET +
 700                                             (pq_id * 2) + j, 0);
 701
 702                /* Write PQ info to RAM */
 703                if (WRITE_PQ_INFO_TO_RAM != 0) {
 704                        u32 pq_info = 0;
 705
 706                        pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
 707                                                  p_params->pf_id,
 708                                                  tc_id,
 709                                                  pq_params[i].port_id,
 710                                                  pq_params[i].rl_valid,
 711                                                  pq_params[i].rl_id);
 712                        qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
 713                               pq_info);
 714                }
 715
 716                /* If VF PQ, add indication to PQ VF mask */
 717                if (is_vf_pq) {
 718                        tx_pq_vf_mask[pq_id /
 719                                      QM_PF_QUEUE_GROUP_SIZE] |=
 720                            BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
 721                        mem_addr_4kb += vport_pq_mem_4kb;
 722                } else {
 723                        mem_addr_4kb += pq_mem_4kb;
 724                }
 725        }
 726
 727        /* Store Tx PQ VF mask to size select register */
 728        for (i = 0; i < num_tx_pq_vf_masks; i++)
 729                if (tx_pq_vf_mask[i])
 730                        STORE_RT_REG(p_hwfn,
 731                                     QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
 732                                     tx_pq_vf_mask[i]);
 733
 734        return 0;
 735}
 736
 737/* Prepare Other PQ mapping runtime init values for the specified PF */
 738static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
 739                                     u8 pf_id,
 740                                     bool is_pf_loading,
 741                                     u32 num_pf_cids,
 742                                     u32 num_tids, u32 base_mem_addr_4kb)
 743{
 744        u32 pq_size, pq_mem_4kb, mem_addr_4kb;
 745        u16 i, j, pq_id, pq_group;
 746
 747        /* A single other PQ group is used in each PF, where PQ group i is used
 748         * in PF i.
 749         */
 750        pq_group = pf_id;
 751        pq_size = num_pf_cids + num_tids;
 752        pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
 753        mem_addr_4kb = base_mem_addr_4kb;
 754
 755        /* Map PQ group to PF */
 756        STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
 757                     (u32)(pf_id));
 758
 759        /* Set PQ sizes */
 760        STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
 761                     QM_PQ_SIZE_256B(pq_size));
 762
 763        for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
 764             i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
 765                /* Set PQ base address */
 766                STORE_RT_REG(p_hwfn,
 767                             QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
 768                             mem_addr_4kb);
 769
 770                /* Clear PQ pointer table entry */
 771                if (is_pf_loading)
 772                        for (j = 0; j < 2; j++)
 773                                STORE_RT_REG(p_hwfn,
 774                                             QM_REG_PTRTBLOTHER_RT_OFFSET +
 775                                             (pq_id * 2) + j, 0);
 776
 777                mem_addr_4kb += pq_mem_4kb;
 778        }
 779}
 780
 781/* Prepare PF WFQ runtime init values for the specified PF.
 782 * Return -1 on error.
 783 */
 784static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
 785                              struct qed_qm_pf_rt_init_params *p_params)
 786{
 787        u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
 788        struct init_qm_pq_params *pq_params = p_params->pq_params;
 789        u32 inc_val, crd_reg_offset;
 790        u8 ext_voq;
 791        u16 i;
 792
 793        inc_val = QM_PF_WFQ_INC_VAL(p_params->pf_wfq);
 794        if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
 795                DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
 796                return -1;
 797        }
 798
 799        for (i = 0; i < num_tx_pqs; i++) {
 800                ext_voq = qed_get_ext_voq(p_hwfn,
 801                                          pq_params[i].port_id,
 802                                          pq_params[i].tc_id,
 803                                          p_params->max_phys_tcs_per_port);
 804                crd_reg_offset =
 805                        (p_params->pf_id < MAX_NUM_PFS_BB ?
 806                         QM_REG_WFQPFCRD_RT_OFFSET :
 807                         QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
 808                        ext_voq * MAX_NUM_PFS_BB +
 809                        (p_params->pf_id % MAX_NUM_PFS_BB);
 810                OVERWRITE_RT_REG(p_hwfn,
 811                                 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
 812        }
 813
 814        STORE_RT_REG(p_hwfn,
 815                     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
 816                     QM_PF_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
 817        STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
 818                     inc_val);
 819
 820        return 0;
 821}
 822
 823/* Prepare PF RL runtime init values for the specified PF.
 824 * Return -1 on error.
 825 */
 826static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
 827{
 828        u32 inc_val = QM_RL_INC_VAL(pf_rl);
 829
 830        if (inc_val > QM_PF_RL_MAX_INC_VAL) {
 831                DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
 832                return -1;
 833        }
 834
 835        STORE_RT_REG(p_hwfn,
 836                     QM_REG_RLPFCRD_RT_OFFSET + pf_id,
 837                     (u32)QM_RL_CRD_REG_SIGN_BIT);
 838        STORE_RT_REG(p_hwfn,
 839                     QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
 840                     QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
 841        STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
 842
 843        return 0;
 844}
 845
 846/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
 847 * Return -1 on error.
 848 */
 849static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
 850                              u16 num_vports,
 851                              struct init_qm_vport_params *vport_params)
 852{
 853        u16 vport_pq_id, wfq, i;
 854        u32 inc_val;
 855        u8 tc;
 856
 857        /* Go over all PF VPORTs */
 858        for (i = 0; i < num_vports; i++) {
 859                /* Each VPORT can have several VPORT PQ IDs for various TCs */
 860                for (tc = 0; tc < NUM_OF_TCS; tc++) {
 861                        /* Check if VPORT/TC is valid */
 862                        vport_pq_id = vport_params[i].first_tx_pq_id[tc];
 863                        if (vport_pq_id == QM_INVALID_PQ_ID)
 864                                continue;
 865
 866                        /* Find WFQ weight (per VPORT or per VPORT+TC) */
 867                        wfq = vport_params[i].wfq;
 868                        wfq = wfq ? wfq : vport_params[i].tc_wfq[tc];
 869                        inc_val = QM_VP_WFQ_INC_VAL(wfq);
 870                        if (inc_val > QM_VP_WFQ_MAX_INC_VAL) {
 871                                DP_NOTICE(p_hwfn,
 872                                          "Invalid VPORT WFQ weight configuration\n");
 873                                return -1;
 874                        }
 875
 876                        /* Config registers */
 877                        STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET +
 878                                     vport_pq_id,
 879                                     (u32)QM_WFQ_CRD_REG_SIGN_BIT);
 880                        STORE_RT_REG(p_hwfn, QM_REG_WFQVPUPPERBOUND_RT_OFFSET +
 881                                     vport_pq_id,
 882                                     inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
 883                        STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET +
 884                                     vport_pq_id, inc_val);
 885                }
 886        }
 887
 888        return 0;
 889}
 890
 891static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
 892                                     struct qed_ptt *p_ptt)
 893{
 894        u32 reg_val, i;
 895
 896        for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
 897             i++) {
 898                udelay(QM_STOP_CMD_POLL_PERIOD_US);
 899                reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
 900        }
 901
 902        /* Check if timeout while waiting for SDM command ready */
 903        if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
 904                DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
 905                           "Timeout when waiting for QM SDM command ready signal\n");
 906                return false;
 907        }
 908
 909        return true;
 910}
 911
 912static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
 913                            struct qed_ptt *p_ptt,
 914                            u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
 915{
 916        if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
 917                return false;
 918
 919        qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
 920        qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
 921        qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
 922        qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
 923        qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
 924
 925        return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
 926}
 927
 928/******************** INTERFACE IMPLEMENTATION *********************/
 929
 930u32 qed_qm_pf_mem_size(u32 num_pf_cids,
 931                       u32 num_vf_cids,
 932                       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
 933{
 934        return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
 935               QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
 936               QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
 937}
 938
 939int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
 940                          struct qed_qm_common_rt_init_params *p_params)
 941{
 942        u32 mask = 0;
 943
 944        /* Init AFullOprtnstcCrdMask */
 945        SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
 946                  QM_OPPOR_LINE_VOQ_DEF);
 947        SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
 948        SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ,
 949                  p_params->pf_wfq_en ? 1 : 0);
 950        SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ,
 951                  p_params->vport_wfq_en ? 1 : 0);
 952        SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL,
 953                  p_params->pf_rl_en ? 1 : 0);
 954        SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
 955                  p_params->global_rl_en ? 1 : 0);
 956        SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
 957        SET_FIELD(mask,
 958                  QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
 959        STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
 960
 961        /* Enable/disable PF RL */
 962        qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
 963
 964        /* Enable/disable PF WFQ */
 965        qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
 966
 967        /* Enable/disable global RL */
 968        qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
 969
 970        /* Enable/disable VPORT WFQ */
 971        qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
 972
 973        /* Init PBF CMDQ line credit */
 974        qed_cmdq_lines_rt_init(p_hwfn,
 975                               p_params->max_ports_per_engine,
 976                               p_params->max_phys_tcs_per_port,
 977                               p_params->port_params);
 978
 979        /* Init BTB blocks in PBF */
 980        qed_btb_blocks_rt_init(p_hwfn,
 981                               p_params->max_ports_per_engine,
 982                               p_params->max_phys_tcs_per_port,
 983                               p_params->port_params);
 984
 985        qed_global_rl_rt_init(p_hwfn);
 986
 987        return 0;
 988}
 989
 990int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
 991                      struct qed_ptt *p_ptt,
 992                      struct qed_qm_pf_rt_init_params *p_params)
 993{
 994        struct init_qm_vport_params *vport_params = p_params->vport_params;
 995        u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
 996                                               p_params->num_tids) *
 997                                 QM_OTHER_PQS_PER_PF;
 998        u16 i;
 999        u8 tc;
1000
1001        /* Clear first Tx PQ ID array for each VPORT */
1002        for (i = 0; i < p_params->num_vports; i++)
1003                for (tc = 0; tc < NUM_OF_TCS; tc++)
1004                        vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
1005
1006        /* Map Other PQs (if any) */
1007        qed_other_pq_map_rt_init(p_hwfn,
1008                                 p_params->pf_id,
1009                                 p_params->is_pf_loading, p_params->num_pf_cids,
1010                                 p_params->num_tids, 0);
1011
1012        /* Map Tx PQs */
1013        if (qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb))
1014                return -1;
1015
1016        /* Init PF WFQ */
1017        if (p_params->pf_wfq)
1018                if (qed_pf_wfq_rt_init(p_hwfn, p_params))
1019                        return -1;
1020
1021        /* Init PF RL */
1022        if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
1023                return -1;
1024
1025        /* Init VPORT WFQ */
1026        if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
1027                return -1;
1028
1029        /* Set VPORT RL */
1030        if (qed_vport_rl_rt_init(p_hwfn, p_params->start_rl,
1031                                 p_params->num_rls, p_params->link_speed,
1032                                 p_params->rl_params))
1033                return -1;
1034
1035        return 0;
1036}
1037
1038int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
1039                    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
1040{
1041        u32 inc_val = QM_PF_WFQ_INC_VAL(pf_wfq);
1042
1043        if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
1044                DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
1045                return -1;
1046        }
1047
1048        qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
1049
1050        return 0;
1051}
1052
1053int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
1054                   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
1055{
1056        u32 inc_val = QM_RL_INC_VAL(pf_rl);
1057
1058        if (inc_val > QM_PF_RL_MAX_INC_VAL) {
1059                DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
1060                return -1;
1061        }
1062
1063        qed_wr(p_hwfn,
1064               p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1065        qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
1066
1067        return 0;
1068}
1069
1070int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
1071                       struct qed_ptt *p_ptt,
1072                       u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
1073{
1074        int result = 0;
1075        u16 vport_pq_id;
1076        u8 tc;
1077
1078        for (tc = 0; tc < NUM_OF_TCS && !result; tc++) {
1079                vport_pq_id = first_tx_pq_id[tc];
1080                if (vport_pq_id != QM_INVALID_PQ_ID)
1081                        result = qed_init_vport_tc_wfq(p_hwfn, p_ptt,
1082                                                       vport_pq_id, wfq);
1083        }
1084
1085        return result;
1086}
1087
1088int qed_init_vport_tc_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1089                          u16 first_tx_pq_id, u16 wfq)
1090{
1091        u32 inc_val;
1092
1093        if (first_tx_pq_id == QM_INVALID_PQ_ID)
1094                return -1;
1095
1096        inc_val = QM_VP_WFQ_INC_VAL(wfq);
1097        if (!inc_val || inc_val > QM_VP_WFQ_MAX_INC_VAL) {
1098                DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
1099                return -1;
1100        }
1101
1102        qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPCRD + first_tx_pq_id * 4,
1103               (u32)QM_WFQ_CRD_REG_SIGN_BIT);
1104        qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPUPPERBOUND + first_tx_pq_id * 4,
1105               inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
1106        qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + first_tx_pq_id * 4,
1107               inc_val);
1108
1109        return 0;
1110}
1111
1112int qed_init_global_rl(struct qed_hwfn *p_hwfn,
1113                       struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit,
1114                       enum init_qm_rl_type vport_rl_type)
1115{
1116        u32 inc_val, upper_bound;
1117
1118        upper_bound =
1119            (vport_rl_type ==
1120             QM_RL_TYPE_QCN) ? QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) :
1121            QM_INITIAL_VOQ_BYTE_CRD;
1122        inc_val = QM_RL_INC_VAL(rate_limit);
1123        if (inc_val > upper_bound) {
1124                DP_NOTICE(p_hwfn, "Invalid VPORT rate limit configuration.\n");
1125                return -1;
1126        }
1127
1128        qed_wr(p_hwfn, p_ptt,
1129               QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1130        qed_wr(p_hwfn,
1131               p_ptt,
1132               QM_REG_RLGLBLUPPERBOUND + rl_id * 4,
1133               upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
1134        qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
1135
1136        return 0;
1137}
1138
1139bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
1140                          struct qed_ptt *p_ptt,
1141                          bool is_release_cmd,
1142                          bool is_tx_pq, u16 start_pq, u16 num_pqs)
1143{
1144        u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
1145        u32 pq_mask = 0, last_pq, pq_id;
1146
1147        last_pq = start_pq + num_pqs - 1;
1148
1149        /* Set command's PQ type */
1150        QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
1151
1152        /* Go over requested PQs */
1153        for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
1154                /* Set PQ bit in mask (stop command only) */
1155                if (!is_release_cmd)
1156                        pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
1157
1158                /* If last PQ or end of PQ mask, write command */
1159                if ((pq_id == last_pq) ||
1160                    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
1161                     (QM_STOP_PQ_MASK_WIDTH - 1))) {
1162                        QM_CMD_SET_FIELD(cmd_arr,
1163                                         QM_STOP_CMD, PAUSE_MASK, pq_mask);
1164                        QM_CMD_SET_FIELD(cmd_arr,
1165                                         QM_STOP_CMD,
1166                                         GROUP_ID,
1167                                         pq_id / QM_STOP_PQ_MASK_WIDTH);
1168                        if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
1169                                             cmd_arr[0], cmd_arr[1]))
1170                                return false;
1171                        pq_mask = 0;
1172                }
1173        }
1174
1175        return true;
1176}
1177
1178#define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1179        do { \
1180                typeof(var) *__p_var = &(var); \
1181                typeof(offset) __offset = offset; \
1182                *__p_var = (*__p_var & ~BIT(__offset)) | \
1183                           ((enable) ? BIT(__offset) : 0); \
1184        } while (0)
1185
1186#define PRS_ETH_TUNN_OUTPUT_FORMAT     0xF4DAB910
1187#define PRS_ETH_OUTPUT_FORMAT          0xFFFF4910
1188
1189#define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \
1190        do { \
1191                u32 i; \
1192                \
1193                for (i = 0; i < (arr_size); i++) \
1194                        qed_wr(dev, ptt, \
1195                               ((addr) + (4 * i)), \
1196                               ((u32 *)&(arr))[i]); \
1197        } while (0)
1198
1199/**
1200 * qed_dmae_to_grc() - Internal function for writing from host to
1201 * wide-bus registers (split registers are not supported yet).
1202 *
1203 * @p_hwfn: HW device data.
1204 * @p_ptt: PTT window used for writing the registers.
1205 * @p_data: Pointer to source data.
1206 * @addr: Destination register address.
1207 * @len_in_dwords: Data length in dwords (u32).
1208 *
1209 * Return: Length of the written data in dwords (u32) or -1 on invalid
1210 *         input.
1211 */
1212static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1213                           __le32 *p_data, u32 addr, u32 len_in_dwords)
1214{
1215        struct qed_dmae_params params = { 0 };
1216        u32 *data_cpu;
1217        int rc;
1218
1219        if (!p_data)
1220                return -1;
1221
1222        /* Set DMAE params */
1223        SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1224
1225        /* Execute DMAE command */
1226        rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1227                               (u64)(uintptr_t)(p_data),
1228                               addr, len_in_dwords, &params);
1229
1230        /* If not read using DMAE, read using GRC */
1231        if (rc) {
1232                DP_VERBOSE(p_hwfn,
1233                           QED_MSG_DEBUG,
1234                           "Failed writing to chip using DMAE, using GRC instead\n");
1235
1236                /* Swap to CPU byteorder and write to registers using GRC */
1237                data_cpu = (__force u32 *)p_data;
1238                le32_to_cpu_array(data_cpu, len_in_dwords);
1239
1240                ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1241                cpu_to_le32_array(data_cpu, len_in_dwords);
1242        }
1243
1244        return len_in_dwords;
1245}
1246
1247void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1248                             struct qed_ptt *p_ptt, u16 dest_port)
1249{
1250        /* Update PRS register */
1251        qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1252
1253        /* Update NIG register */
1254        qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1255
1256        /* Update PBF register */
1257        qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1258}
1259
1260void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1261                          struct qed_ptt *p_ptt, bool vxlan_enable)
1262{
1263        u32 reg_val;
1264        u8 shift;
1265
1266        /* Update PRS register */
1267        reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1268        SET_FIELD(reg_val,
1269                  PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE, vxlan_enable);
1270        qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1271        if (reg_val) {
1272                reg_val =
1273                    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1274
1275                /* Update output  only if tunnel blocks not included. */
1276                if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1277                        qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1278                               (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1279        }
1280
1281        /* Update NIG register */
1282        reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1283        shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1284        SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1285        qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1286
1287        /* Update DORQ register */
1288        qed_wr(p_hwfn,
1289               p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1290}
1291
1292void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1293                        struct qed_ptt *p_ptt,
1294                        bool eth_gre_enable, bool ip_gre_enable)
1295{
1296        u32 reg_val;
1297        u8 shift;
1298
1299        /* Update PRS register */
1300        reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1301        SET_FIELD(reg_val,
1302                  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE,
1303                  eth_gre_enable);
1304        SET_FIELD(reg_val,
1305                  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE,
1306                  ip_gre_enable);
1307        qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1308        if (reg_val) {
1309                reg_val =
1310                    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1311
1312                /* Update output  only if tunnel blocks not included. */
1313                if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1314                        qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1315                               (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1316        }
1317
1318        /* Update NIG register */
1319        reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1320        shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1321        SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1322        shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1323        SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1324        qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1325
1326        /* Update DORQ registers */
1327        qed_wr(p_hwfn,
1328               p_ptt,
1329               DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1330        qed_wr(p_hwfn,
1331               p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1332}
1333
1334void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1335                              struct qed_ptt *p_ptt, u16 dest_port)
1336{
1337        /* Update PRS register */
1338        qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1339
1340        /* Update NIG register */
1341        qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1342
1343        /* Update PBF register */
1344        qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1345}
1346
1347void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1348                           struct qed_ptt *p_ptt,
1349                           bool eth_geneve_enable, bool ip_geneve_enable)
1350{
1351        u32 reg_val;
1352
1353        /* Update PRS register */
1354        reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1355        SET_FIELD(reg_val,
1356                  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE,
1357                  eth_geneve_enable);
1358        SET_FIELD(reg_val,
1359                  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE,
1360                  ip_geneve_enable);
1361        qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1362        if (reg_val) {
1363                reg_val =
1364                    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1365
1366                /* Update output  only if tunnel blocks not included. */
1367                if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1368                        qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1369                               (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1370        }
1371
1372        /* Update NIG register */
1373        qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1374               eth_geneve_enable ? 1 : 0);
1375        qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1376
1377        /* EDPM with geneve tunnel not supported in BB */
1378        if (QED_IS_BB_B0(p_hwfn->cdev))
1379                return;
1380
1381        /* Update DORQ registers */
1382        qed_wr(p_hwfn,
1383               p_ptt,
1384               DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2,
1385               eth_geneve_enable ? 1 : 0);
1386        qed_wr(p_hwfn,
1387               p_ptt,
1388               DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2,
1389               ip_geneve_enable ? 1 : 0);
1390}
1391
1392#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET      3
1393#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT   0xC8DAB910
1394
1395void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1396                                struct qed_ptt *p_ptt, bool enable)
1397{
1398        u32 reg_val, cfg_mask;
1399
1400        /* read PRS config register */
1401        reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1402
1403        /* set VXLAN_NO_L2_ENABLE mask */
1404        cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1405
1406        if (enable) {
1407                /* set VXLAN_NO_L2_ENABLE flag */
1408                reg_val |= cfg_mask;
1409
1410                /* update PRS FIC  register */
1411                qed_wr(p_hwfn,
1412                       p_ptt,
1413                       PRS_REG_OUTPUT_FORMAT_4_0,
1414                       (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1415        } else {
1416                /* clear VXLAN_NO_L2_ENABLE flag */
1417                reg_val &= ~cfg_mask;
1418        }
1419
1420        /* write PRS config register */
1421        qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1422}
1423
1424#define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1425#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1426#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1427#define PARSER_ETH_CONN_CM_HDR 0
1428#define CAM_LINE_SIZE sizeof(u32)
1429#define RAM_LINE_SIZE sizeof(u64)
1430#define REG_SIZE sizeof(u32)
1431
1432void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1433{
1434        struct regpair ram_line = { 0 };
1435
1436        /* Disable gft search for PF */
1437        qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1438
1439        /* Clean ram & cam for next gft session */
1440
1441        /* Zero camline */
1442        qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1443
1444        /* Zero ramline */
1445        qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1446                        PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1447                        sizeof(ram_line) / REG_SIZE);
1448}
1449
1450void qed_gft_config(struct qed_hwfn *p_hwfn,
1451                    struct qed_ptt *p_ptt,
1452                    u16 pf_id,
1453                    bool tcp,
1454                    bool udp,
1455                    bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1456{
1457        struct regpair ram_line;
1458        u32 search_non_ip_as_gft;
1459        u32 reg_val, cam_line;
1460        u32 lo = 0, hi = 0;
1461
1462        if (!ipv6 && !ipv4)
1463                DP_NOTICE(p_hwfn,
1464                          "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1465        if (!tcp && !udp)
1466                DP_NOTICE(p_hwfn,
1467                          "gft_config: must accept at least on of - udp or tcp\n");
1468        if (profile_type >= MAX_GFT_PROFILE_TYPE)
1469                DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1470
1471        /* Set RFS event ID to be awakened i Tstorm By Prs */
1472        reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1473                  PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1474        reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1475        qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1476
1477        /* Do not load context only cid in PRS on match. */
1478        qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1479
1480        /* Do not use tenant ID exist bit for gft search */
1481        qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1482
1483        /* Set Cam */
1484        cam_line = 0;
1485        SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1486
1487        /* Filters are per PF!! */
1488        SET_FIELD(cam_line,
1489                  GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1490                  GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1491        SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1492
1493        if (!(tcp && udp)) {
1494                SET_FIELD(cam_line,
1495                          GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1496                          GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1497                if (tcp)
1498                        SET_FIELD(cam_line,
1499                                  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1500                                  GFT_PROFILE_TCP_PROTOCOL);
1501                else
1502                        SET_FIELD(cam_line,
1503                                  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1504                                  GFT_PROFILE_UDP_PROTOCOL);
1505        }
1506
1507        if (!(ipv4 && ipv6)) {
1508                SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1509                if (ipv4)
1510                        SET_FIELD(cam_line,
1511                                  GFT_CAM_LINE_MAPPED_IP_VERSION,
1512                                  GFT_PROFILE_IPV4);
1513                else
1514                        SET_FIELD(cam_line,
1515                                  GFT_CAM_LINE_MAPPED_IP_VERSION,
1516                                  GFT_PROFILE_IPV6);
1517        }
1518
1519        /* Write characteristics to cam */
1520        qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1521               cam_line);
1522        cam_line =
1523            qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1524
1525        /* Write line to RAM - compare to filter 4 tuple */
1526
1527        /* Search no IP as GFT */
1528        search_non_ip_as_gft = 0;
1529
1530        /* Tunnel type */
1531        SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1532        SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1533
1534        if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1535                SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1536                SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1537                SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1538                SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1539                SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1540                SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1541        } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1542                SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1543                SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1544                SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1545        } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1546                SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1547                SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1548        } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1549                SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1550                SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1551        } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1552                SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1553
1554                /* Allow tunneled traffic without inner IP */
1555                search_non_ip_as_gft = 1;
1556        }
1557
1558        ram_line.lo = cpu_to_le32(lo);
1559        ram_line.hi = cpu_to_le32(hi);
1560
1561        qed_wr(p_hwfn,
1562               p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1563        qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1564                        PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1565                        sizeof(ram_line) / REG_SIZE);
1566
1567        /* Set default profile so that no filter match will happen */
1568        ram_line.lo = cpu_to_le32(0xffffffff);
1569        ram_line.hi = cpu_to_le32(0x3ff);
1570        qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1571                        PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1572                        PRS_GFT_CAM_LINES_NO_MATCH,
1573                        sizeof(ram_line) / REG_SIZE);
1574
1575        /* Enable gft search */
1576        qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1577}
1578
1579DECLARE_CRC8_TABLE(cdu_crc8_table);
1580
1581/* Calculate and return CDU validation byte per connection type/region/cid */
1582static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1583{
1584        const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1585        u8 crc, validation_byte = 0;
1586        static u8 crc8_table_valid; /* automatically initialized to 0 */
1587        u32 validation_string = 0;
1588        __be32 data_to_crc;
1589
1590        if (!crc8_table_valid) {
1591                crc8_populate_msb(cdu_crc8_table, 0x07);
1592                crc8_table_valid = 1;
1593        }
1594
1595        /* The CRC is calculated on the String-to-compress:
1596         * [31:8]  = {CID[31:20],CID[11:0]}
1597         * [7:4]   = Region
1598         * [3:0]   = Type
1599         */
1600        if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1601                validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1602
1603        if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1604                validation_string |= ((region & 0xF) << 4);
1605
1606        if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1607                validation_string |= (conn_type & 0xF);
1608
1609        /* Convert to big-endian and calculate CRC8 */
1610        data_to_crc = cpu_to_be32(validation_string);
1611        crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1612                   CRC8_INIT_VALUE);
1613
1614        /* The validation byte [7:0] is composed:
1615         * for type A validation
1616         * [7]          = active configuration bit
1617         * [6:0]        = crc[6:0]
1618         *
1619         * for type B validation
1620         * [7]          = active configuration bit
1621         * [6:3]        = connection_type[3:0]
1622         * [2:0]        = crc[2:0]
1623         */
1624        validation_byte |=
1625            ((validation_cfg >>
1626              CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1627
1628        if ((validation_cfg >>
1629             CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1630                validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1631        else
1632                validation_byte |= crc & 0x7F;
1633
1634        return validation_byte;
1635}
1636
1637/* Calcualte and set validation bytes for session context */
1638void qed_calc_session_ctx_validation(void *p_ctx_mem,
1639                                     u16 ctx_size, u8 ctx_type, u32 cid)
1640{
1641        u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1642
1643        p_ctx = (u8 * const)p_ctx_mem;
1644        x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1645        t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1646        u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1647
1648        memset(p_ctx, 0, ctx_size);
1649
1650        *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1651        *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1652        *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1653}
1654
1655/* Calcualte and set validation bytes for task context */
1656void qed_calc_task_ctx_validation(void *p_ctx_mem,
1657                                  u16 ctx_size, u8 ctx_type, u32 tid)
1658{
1659        u8 *p_ctx, *region1_val_ptr;
1660
1661        p_ctx = (u8 * const)p_ctx_mem;
1662        region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1663
1664        memset(p_ctx, 0, ctx_size);
1665
1666        *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1667}
1668
1669/* Memset session context to 0 while preserving validation bytes */
1670void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1671{
1672        u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1673        u8 x_val, t_val, u_val;
1674
1675        p_ctx = (u8 * const)p_ctx_mem;
1676        x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1677        t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1678        u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1679
1680        x_val = *x_val_ptr;
1681        t_val = *t_val_ptr;
1682        u_val = *u_val_ptr;
1683
1684        memset(p_ctx, 0, ctx_size);
1685
1686        *x_val_ptr = x_val;
1687        *t_val_ptr = t_val;
1688        *u_val_ptr = u_val;
1689}
1690
1691/* Memset task context to 0 while preserving validation bytes */
1692void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1693{
1694        u8 *p_ctx, *region1_val_ptr;
1695        u8 region1_val;
1696
1697        p_ctx = (u8 * const)p_ctx_mem;
1698        region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1699
1700        region1_val = *region1_val_ptr;
1701
1702        memset(p_ctx, 0, ctx_size);
1703
1704        *region1_val_ptr = region1_val;
1705}
1706
1707/* Enable and configure context validation */
1708void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1709                                   struct qed_ptt *p_ptt)
1710{
1711        u32 ctx_validation;
1712
1713        /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1714        ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1715        qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1716
1717        /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1718        ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1719        qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1720
1721        /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1722        ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1723        qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1724}
1725
1726const char *qed_get_protocol_type_str(u32 protocol_type)
1727{
1728        if (protocol_type >= ARRAY_SIZE(s_protocol_types))
1729                return "Invalid protocol type";
1730
1731        return s_protocol_types[protocol_type];
1732}
1733
1734const char *qed_get_ramrod_cmd_id_str(u32 protocol_type, u32 ramrod_cmd_id)
1735{
1736        const char *ramrod_cmd_id_str;
1737
1738        if (protocol_type >= ARRAY_SIZE(s_ramrod_cmd_ids))
1739                return "Invalid protocol type";
1740
1741        if (ramrod_cmd_id >= ARRAY_SIZE(s_ramrod_cmd_ids[0]))
1742                return "Invalid Ramrod command ID";
1743
1744        ramrod_cmd_id_str = s_ramrod_cmd_ids[protocol_type][ramrod_cmd_id];
1745
1746        if (!ramrod_cmd_id_str)
1747                return "Invalid Ramrod command ID";
1748
1749        return ramrod_cmd_id_str;
1750}
1751
1752static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1753{
1754        switch (storm_id) {
1755        case 0:
1756                return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1757                    TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1758        case 1:
1759                return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1760                    MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1761        case 2:
1762                return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1763                    USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1764        case 3:
1765                return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1766                    XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1767        case 4:
1768                return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1769                    YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1770        case 5:
1771                return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1772                    PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1773
1774        default:
1775                return 0;
1776        }
1777}
1778
1779void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1780                              struct qed_ptt *p_ptt,
1781                              u8 assert_level[NUM_STORMS])
1782{
1783        u8 storm_id;
1784
1785        for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1786                u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1787
1788                qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1789        }
1790}
1791
1792#define PHYS_ADDR_DWORDS        DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1793#define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1794
1795static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1796{
1797        switch (storm_id) {
1798        case 0:
1799                return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1800                    TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1801        case 1:
1802                return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1803                    MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1804        case 2:
1805                return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1806                    USTORM_OVERLAY_BUF_ADDR_OFFSET;
1807        case 3:
1808                return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1809                    XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1810        case 4:
1811                return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1812                    YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1813        case 5:
1814                return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1815                    PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1816
1817        default:
1818                return 0;
1819        }
1820}
1821
1822struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1823                                               const u32 * const
1824                                               fw_overlay_in_buf,
1825                                               u32 buf_size_in_bytes)
1826{
1827        u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1828        struct phys_mem_desc *allocated_mem;
1829
1830        if (!buf_size)
1831                return NULL;
1832
1833        allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1834                                GFP_KERNEL);
1835        if (!allocated_mem)
1836                return NULL;
1837
1838        /* For each Storm, set physical address in RAM */
1839        while (buf_offset < buf_size) {
1840                struct phys_mem_desc *storm_mem_desc;
1841                struct fw_overlay_buf_hdr *hdr;
1842                u32 storm_buf_size;
1843                u8 storm_id;
1844
1845                hdr =
1846                    (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1847                storm_buf_size = GET_FIELD(hdr->data,
1848                                           FW_OVERLAY_BUF_HDR_BUF_SIZE);
1849                storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1850                if (storm_id >= NUM_STORMS)
1851                        break;
1852                storm_mem_desc = allocated_mem + storm_id;
1853                storm_mem_desc->size = storm_buf_size * sizeof(u32);
1854
1855                /* Allocate physical memory for Storm's overlays buffer */
1856                storm_mem_desc->virt_addr =
1857                    dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1858                                       storm_mem_desc->size,
1859                                       &storm_mem_desc->phys_addr, GFP_KERNEL);
1860                if (!storm_mem_desc->virt_addr)
1861                        break;
1862
1863                /* Skip overlays buffer header */
1864                buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1865
1866                /* Copy Storm's overlays buffer to allocated memory */
1867                memcpy(storm_mem_desc->virt_addr,
1868                       &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1869
1870                /* Advance to next Storm */
1871                buf_offset += storm_buf_size;
1872        }
1873
1874        /* If memory allocation has failed, free all allocated memory */
1875        if (buf_offset < buf_size) {
1876                qed_fw_overlay_mem_free(p_hwfn, &allocated_mem);
1877                return NULL;
1878        }
1879
1880        return allocated_mem;
1881}
1882
1883void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1884                             struct qed_ptt *p_ptt,
1885                             struct phys_mem_desc *fw_overlay_mem)
1886{
1887        u8 storm_id;
1888
1889        for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1890                struct phys_mem_desc *storm_mem_desc =
1891                    (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1892                u32 ram_addr, i;
1893
1894                /* Skip Storms with no FW overlays */
1895                if (!storm_mem_desc->virt_addr)
1896                        continue;
1897
1898                /* Calculate overlay RAM GRC address of current PF */
1899                ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1900                           sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1901
1902                /* Write Storm's overlay physical address to RAM */
1903                for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1904                        qed_wr(p_hwfn, p_ptt, ram_addr,
1905                               ((u32 *)&storm_mem_desc->phys_addr)[i]);
1906        }
1907}
1908
1909void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1910                             struct phys_mem_desc **fw_overlay_mem)
1911{
1912        u8 storm_id;
1913
1914        if (!fw_overlay_mem || !(*fw_overlay_mem))
1915                return;
1916
1917        for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1918                struct phys_mem_desc *storm_mem_desc =
1919                    (struct phys_mem_desc *)*fw_overlay_mem + storm_id;
1920
1921                /* Free Storm's physical memory */
1922                if (storm_mem_desc->virt_addr)
1923                        dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1924                                          storm_mem_desc->size,
1925                                          storm_mem_desc->virt_addr,
1926                                          storm_mem_desc->phys_addr);
1927        }
1928
1929        /* Free allocated virtual memory */
1930        kfree(*fw_overlay_mem);
1931        *fw_overlay_mem = NULL;
1932}
1933