linux/drivers/net/ethernet/sfc/tx_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2018 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include "net_driver.h"
  12#include "efx.h"
  13#include "nic_common.h"
  14#include "tx_common.h"
  15
  16static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
  17{
  18        return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
  19                            PAGE_SIZE >> EFX_TX_CB_ORDER);
  20}
  21
  22int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
  23{
  24        struct efx_nic *efx = tx_queue->efx;
  25        unsigned int entries;
  26        int rc;
  27
  28        /* Create the smallest power-of-two aligned ring */
  29        entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
  30        EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
  31        tx_queue->ptr_mask = entries - 1;
  32
  33        netif_dbg(efx, probe, efx->net_dev,
  34                  "creating TX queue %d size %#x mask %#x\n",
  35                  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
  36
  37        /* Allocate software ring */
  38        tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
  39                                   GFP_KERNEL);
  40        if (!tx_queue->buffer)
  41                return -ENOMEM;
  42
  43        tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
  44                                    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
  45        if (!tx_queue->cb_page) {
  46                rc = -ENOMEM;
  47                goto fail1;
  48        }
  49
  50        /* Allocate hardware ring, determine TXQ type */
  51        rc = efx_nic_probe_tx(tx_queue);
  52        if (rc)
  53                goto fail2;
  54
  55        tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
  56        return 0;
  57
  58fail2:
  59        kfree(tx_queue->cb_page);
  60        tx_queue->cb_page = NULL;
  61fail1:
  62        kfree(tx_queue->buffer);
  63        tx_queue->buffer = NULL;
  64        return rc;
  65}
  66
  67void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
  68{
  69        struct efx_nic *efx = tx_queue->efx;
  70
  71        netif_dbg(efx, drv, efx->net_dev,
  72                  "initialising TX queue %d\n", tx_queue->queue);
  73
  74        tx_queue->insert_count = 0;
  75        tx_queue->notify_count = 0;
  76        tx_queue->write_count = 0;
  77        tx_queue->packet_write_count = 0;
  78        tx_queue->old_write_count = 0;
  79        tx_queue->read_count = 0;
  80        tx_queue->old_read_count = 0;
  81        tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
  82        tx_queue->xmit_pending = false;
  83        tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
  84                                  tx_queue->channel == efx_ptp_channel(efx));
  85        tx_queue->completed_timestamp_major = 0;
  86        tx_queue->completed_timestamp_minor = 0;
  87
  88        tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
  89        tx_queue->tso_version = 0;
  90
  91        /* Set up TX descriptor ring */
  92        efx_nic_init_tx(tx_queue);
  93
  94        tx_queue->initialised = true;
  95}
  96
  97void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
  98{
  99        struct efx_tx_buffer *buffer;
 100
 101        netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 102                  "shutting down TX queue %d\n", tx_queue->queue);
 103
 104        tx_queue->initialised = false;
 105
 106        if (!tx_queue->buffer)
 107                return;
 108
 109        /* Free any buffers left in the ring */
 110        while (tx_queue->read_count != tx_queue->write_count) {
 111                unsigned int pkts_compl = 0, bytes_compl = 0;
 112
 113                buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
 114                efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 115
 116                ++tx_queue->read_count;
 117        }
 118        tx_queue->xmit_pending = false;
 119        netdev_tx_reset_queue(tx_queue->core_txq);
 120}
 121
 122void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
 123{
 124        int i;
 125
 126        if (!tx_queue->buffer)
 127                return;
 128
 129        netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 130                  "destroying TX queue %d\n", tx_queue->queue);
 131        efx_nic_remove_tx(tx_queue);
 132
 133        if (tx_queue->cb_page) {
 134                for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
 135                        efx_nic_free_buffer(tx_queue->efx,
 136                                            &tx_queue->cb_page[i]);
 137                kfree(tx_queue->cb_page);
 138                tx_queue->cb_page = NULL;
 139        }
 140
 141        kfree(tx_queue->buffer);
 142        tx_queue->buffer = NULL;
 143        tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
 144}
 145
 146void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
 147                        struct efx_tx_buffer *buffer,
 148                        unsigned int *pkts_compl,
 149                        unsigned int *bytes_compl)
 150{
 151        if (buffer->unmap_len) {
 152                struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
 153                dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
 154
 155                if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
 156                        dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
 157                                         DMA_TO_DEVICE);
 158                else
 159                        dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
 160                                       DMA_TO_DEVICE);
 161                buffer->unmap_len = 0;
 162        }
 163
 164        if (buffer->flags & EFX_TX_BUF_SKB) {
 165                struct sk_buff *skb = (struct sk_buff *)buffer->skb;
 166
 167                EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
 168                (*pkts_compl)++;
 169                (*bytes_compl) += skb->len;
 170                if (tx_queue->timestamping &&
 171                    (tx_queue->completed_timestamp_major ||
 172                     tx_queue->completed_timestamp_minor)) {
 173                        struct skb_shared_hwtstamps hwtstamp;
 174
 175                        hwtstamp.hwtstamp =
 176                                efx_ptp_nic_to_kernel_time(tx_queue);
 177                        skb_tstamp_tx(skb, &hwtstamp);
 178
 179                        tx_queue->completed_timestamp_major = 0;
 180                        tx_queue->completed_timestamp_minor = 0;
 181                }
 182                dev_consume_skb_any((struct sk_buff *)buffer->skb);
 183                netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
 184                           "TX queue %d transmission id %x complete\n",
 185                           tx_queue->queue, tx_queue->read_count);
 186        } else if (buffer->flags & EFX_TX_BUF_XDP) {
 187                xdp_return_frame_rx_napi(buffer->xdpf);
 188        }
 189
 190        buffer->len = 0;
 191        buffer->flags = 0;
 192}
 193
 194/* Remove packets from the TX queue
 195 *
 196 * This removes packets from the TX queue, up to and including the
 197 * specified index.
 198 */
 199static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
 200                                unsigned int index,
 201                                unsigned int *pkts_compl,
 202                                unsigned int *bytes_compl)
 203{
 204        struct efx_nic *efx = tx_queue->efx;
 205        unsigned int stop_index, read_ptr;
 206
 207        stop_index = (index + 1) & tx_queue->ptr_mask;
 208        read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 209
 210        while (read_ptr != stop_index) {
 211                struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 212
 213                if (!efx_tx_buffer_in_use(buffer)) {
 214                        netif_err(efx, tx_err, efx->net_dev,
 215                                  "TX queue %d spurious TX completion id %d\n",
 216                                  tx_queue->queue, read_ptr);
 217                        efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
 218                        return;
 219                }
 220
 221                efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
 222
 223                ++tx_queue->read_count;
 224                read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 225        }
 226}
 227
 228void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
 229{
 230        if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
 231                tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
 232                if (tx_queue->read_count == tx_queue->old_write_count) {
 233                        /* Ensure that read_count is flushed. */
 234                        smp_mb();
 235                        tx_queue->empty_read_count =
 236                                tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
 237                }
 238        }
 239}
 240
 241void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
 242{
 243        unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
 244        struct efx_nic *efx = tx_queue->efx;
 245
 246        EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
 247
 248        efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
 249        tx_queue->pkts_compl += pkts_compl;
 250        tx_queue->bytes_compl += bytes_compl;
 251
 252        if (pkts_compl > 1)
 253                ++tx_queue->merge_events;
 254
 255        /* See if we need to restart the netif queue.  This memory
 256         * barrier ensures that we write read_count (inside
 257         * efx_dequeue_buffers()) before reading the queue status.
 258         */
 259        smp_mb();
 260        if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
 261            likely(efx->port_enabled) &&
 262            likely(netif_device_present(efx->net_dev))) {
 263                fill_level = efx_channel_tx_fill_level(tx_queue->channel);
 264                if (fill_level <= efx->txq_wake_thresh)
 265                        netif_tx_wake_queue(tx_queue->core_txq);
 266        }
 267
 268        efx_xmit_done_check_empty(tx_queue);
 269}
 270
 271/* Remove buffers put into a tx_queue for the current packet.
 272 * None of the buffers must have an skb attached.
 273 */
 274void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
 275                        unsigned int insert_count)
 276{
 277        struct efx_tx_buffer *buffer;
 278        unsigned int bytes_compl = 0;
 279        unsigned int pkts_compl = 0;
 280
 281        /* Work backwards until we hit the original insert pointer value */
 282        while (tx_queue->insert_count != insert_count) {
 283                --tx_queue->insert_count;
 284                buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
 285                efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 286        }
 287}
 288
 289struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
 290                                       dma_addr_t dma_addr, size_t len)
 291{
 292        const struct efx_nic_type *nic_type = tx_queue->efx->type;
 293        struct efx_tx_buffer *buffer;
 294        unsigned int dma_len;
 295
 296        /* Map the fragment taking account of NIC-dependent DMA limits. */
 297        do {
 298                buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 299
 300                if (nic_type->tx_limit_len)
 301                        dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
 302                else
 303                        dma_len = len;
 304
 305                buffer->len = dma_len;
 306                buffer->dma_addr = dma_addr;
 307                buffer->flags = EFX_TX_BUF_CONT;
 308                len -= dma_len;
 309                dma_addr += dma_len;
 310                ++tx_queue->insert_count;
 311        } while (len);
 312
 313        return buffer;
 314}
 315
 316int efx_tx_tso_header_length(struct sk_buff *skb)
 317{
 318        size_t header_len;
 319
 320        if (skb->encapsulation)
 321                header_len = skb_inner_transport_header(skb) -
 322                                skb->data +
 323                                (inner_tcp_hdr(skb)->doff << 2u);
 324        else
 325                header_len = skb_transport_header(skb) - skb->data +
 326                                (tcp_hdr(skb)->doff << 2u);
 327        return header_len;
 328}
 329
 330/* Map all data from an SKB for DMA and create descriptors on the queue. */
 331int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
 332                    unsigned int segment_count)
 333{
 334        struct efx_nic *efx = tx_queue->efx;
 335        struct device *dma_dev = &efx->pci_dev->dev;
 336        unsigned int frag_index, nr_frags;
 337        dma_addr_t dma_addr, unmap_addr;
 338        unsigned short dma_flags;
 339        size_t len, unmap_len;
 340
 341        nr_frags = skb_shinfo(skb)->nr_frags;
 342        frag_index = 0;
 343
 344        /* Map header data. */
 345        len = skb_headlen(skb);
 346        dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
 347        dma_flags = EFX_TX_BUF_MAP_SINGLE;
 348        unmap_len = len;
 349        unmap_addr = dma_addr;
 350
 351        if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 352                return -EIO;
 353
 354        if (segment_count) {
 355                /* For TSO we need to put the header in to a separate
 356                 * descriptor. Map this separately if necessary.
 357                 */
 358                size_t header_len = efx_tx_tso_header_length(skb);
 359
 360                if (header_len != len) {
 361                        tx_queue->tso_long_headers++;
 362                        efx_tx_map_chunk(tx_queue, dma_addr, header_len);
 363                        len -= header_len;
 364                        dma_addr += header_len;
 365                }
 366        }
 367
 368        /* Add descriptors for each fragment. */
 369        do {
 370                struct efx_tx_buffer *buffer;
 371                skb_frag_t *fragment;
 372
 373                buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
 374
 375                /* The final descriptor for a fragment is responsible for
 376                 * unmapping the whole fragment.
 377                 */
 378                buffer->flags = EFX_TX_BUF_CONT | dma_flags;
 379                buffer->unmap_len = unmap_len;
 380                buffer->dma_offset = buffer->dma_addr - unmap_addr;
 381
 382                if (frag_index >= nr_frags) {
 383                        /* Store SKB details with the final buffer for
 384                         * the completion.
 385                         */
 386                        buffer->skb = skb;
 387                        buffer->flags = EFX_TX_BUF_SKB | dma_flags;
 388                        return 0;
 389                }
 390
 391                /* Move on to the next fragment. */
 392                fragment = &skb_shinfo(skb)->frags[frag_index++];
 393                len = skb_frag_size(fragment);
 394                dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
 395                                            DMA_TO_DEVICE);
 396                dma_flags = 0;
 397                unmap_len = len;
 398                unmap_addr = dma_addr;
 399
 400                if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 401                        return -EIO;
 402        } while (1);
 403}
 404
 405unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
 406{
 407        /* Header and payload descriptor for each output segment, plus
 408         * one for every input fragment boundary within a segment
 409         */
 410        unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
 411
 412        /* Possibly one more per segment for option descriptors */
 413        if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 414                max_descs += EFX_TSO_MAX_SEGS;
 415
 416        /* Possibly more for PCIe page boundaries within input fragments */
 417        if (PAGE_SIZE > EFX_PAGE_SIZE)
 418                max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
 419                                   DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
 420                                                EFX_PAGE_SIZE));
 421
 422        return max_descs;
 423}
 424
 425/*
 426 * Fallback to software TSO.
 427 *
 428 * This is used if we are unable to send a GSO packet through hardware TSO.
 429 * This should only ever happen due to per-queue restrictions - unsupported
 430 * packets should first be filtered by the feature flags.
 431 *
 432 * Returns 0 on success, error code otherwise.
 433 */
 434int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
 435{
 436        struct sk_buff *segments, *next;
 437
 438        segments = skb_gso_segment(skb, 0);
 439        if (IS_ERR(segments))
 440                return PTR_ERR(segments);
 441
 442        dev_consume_skb_any(skb);
 443
 444        skb_list_walk_safe(segments, skb, next) {
 445                skb_mark_not_on_list(skb);
 446                efx_enqueue_skb(tx_queue, skb);
 447        }
 448
 449        return 0;
 450}
 451