linux/drivers/pwm/pwm-xilinx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2021 Sean Anderson <sean.anderson@seco.com>
   4 *
   5 * Limitations:
   6 * - When changing both duty cycle and period, we may end up with one cycle
   7 *   with the old duty cycle and the new period. This is because the counters
   8 *   may only be reloaded by first stopping them, or by letting them be
   9 *   automatically reloaded at the end of a cycle. If this automatic reload
  10 *   happens after we set TLR0 but before we set TLR1 then we will have a
  11 *   bad cycle. This could probably be fixed by reading TCR0 just before
  12 *   reprogramming, but I think it would add complexity for little gain.
  13 * - Cannot produce 100% duty cycle by configuring the TLRs. This might be
  14 *   possible by stopping the counters at an appropriate point in the cycle,
  15 *   but this is not (yet) implemented.
  16 * - Only produces "normal" output.
  17 * - Always produces low output if disabled.
  18 */
  19
  20#include <clocksource/timer-xilinx.h>
  21#include <linux/clk.h>
  22#include <linux/clk-provider.h>
  23#include <linux/device.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/platform_device.h>
  27#include <linux/pwm.h>
  28#include <linux/regmap.h>
  29
  30/*
  31 * The following functions are "common" to drivers for this device, and may be
  32 * exported at a future date.
  33 */
  34u32 xilinx_timer_tlr_cycles(struct xilinx_timer_priv *priv, u32 tcsr,
  35                            u64 cycles)
  36{
  37        WARN_ON(cycles < 2 || cycles - 2 > priv->max);
  38
  39        if (tcsr & TCSR_UDT)
  40                return cycles - 2;
  41        return priv->max - cycles + 2;
  42}
  43
  44unsigned int xilinx_timer_get_period(struct xilinx_timer_priv *priv,
  45                                     u32 tlr, u32 tcsr)
  46{
  47        u64 cycles;
  48
  49        if (tcsr & TCSR_UDT)
  50                cycles = tlr + 2;
  51        else
  52                cycles = (u64)priv->max - tlr + 2;
  53
  54        /* cycles has a max of 2^32 + 2, so we can't overflow */
  55        return DIV64_U64_ROUND_UP(cycles * NSEC_PER_SEC,
  56                                  clk_get_rate(priv->clk));
  57}
  58
  59/*
  60 * The idea here is to capture whether the PWM is actually running (e.g.
  61 * because we or the bootloader set it up) and we need to be careful to ensure
  62 * we don't cause a glitch. According to the data sheet, to enable the PWM we
  63 * need to
  64 *
  65 * - Set both timers to generate mode (MDT=1)
  66 * - Set both timers to PWM mode (PWMA=1)
  67 * - Enable the generate out signals (GENT=1)
  68 *
  69 * In addition,
  70 *
  71 * - The timer must be running (ENT=1)
  72 * - The timer must auto-reload TLR into TCR (ARHT=1)
  73 * - We must not be in the process of loading TLR into TCR (LOAD=0)
  74 * - Cascade mode must be disabled (CASC=0)
  75 *
  76 * If any of these differ from usual, then the PWM is either disabled, or is
  77 * running in a mode that this driver does not support.
  78 */
  79#define TCSR_PWM_SET (TCSR_GENT | TCSR_ARHT | TCSR_ENT | TCSR_PWMA)
  80#define TCSR_PWM_CLEAR (TCSR_MDT | TCSR_LOAD)
  81#define TCSR_PWM_MASK (TCSR_PWM_SET | TCSR_PWM_CLEAR)
  82
  83struct xilinx_pwm_device {
  84        struct pwm_chip chip;
  85        struct xilinx_timer_priv priv;
  86};
  87
  88static inline struct xilinx_timer_priv
  89*xilinx_pwm_chip_to_priv(struct pwm_chip *chip)
  90{
  91        return &container_of(chip, struct xilinx_pwm_device, chip)->priv;
  92}
  93
  94static bool xilinx_timer_pwm_enabled(u32 tcsr0, u32 tcsr1)
  95{
  96        return ((TCSR_PWM_MASK | TCSR_CASC) & tcsr0) == TCSR_PWM_SET &&
  97                (TCSR_PWM_MASK & tcsr1) == TCSR_PWM_SET;
  98}
  99
 100static int xilinx_pwm_apply(struct pwm_chip *chip, struct pwm_device *unused,
 101                            const struct pwm_state *state)
 102{
 103        struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
 104        u32 tlr0, tlr1, tcsr0, tcsr1;
 105        u64 period_cycles, duty_cycles;
 106        unsigned long rate;
 107
 108        if (state->polarity != PWM_POLARITY_NORMAL)
 109                return -EINVAL;
 110
 111        /*
 112         * To be representable by TLR, cycles must be between 2 and
 113         * priv->max + 2. To enforce this we can reduce the cycles, but we may
 114         * not increase them. Caveat emptor: while this does result in more
 115         * predictable rounding, it may also result in a completely different
 116         * duty cycle (% high time) than what was requested.
 117         */
 118        rate = clk_get_rate(priv->clk);
 119        /* Avoid overflow */
 120        period_cycles = min_t(u64, state->period, U32_MAX * NSEC_PER_SEC);
 121        period_cycles = mul_u64_u32_div(period_cycles, rate, NSEC_PER_SEC);
 122        period_cycles = min_t(u64, period_cycles, priv->max + 2);
 123        if (period_cycles < 2)
 124                return -ERANGE;
 125
 126        /* Same thing for duty cycles */
 127        duty_cycles = min_t(u64, state->duty_cycle, U32_MAX * NSEC_PER_SEC);
 128        duty_cycles = mul_u64_u32_div(duty_cycles, rate, NSEC_PER_SEC);
 129        duty_cycles = min_t(u64, duty_cycles, priv->max + 2);
 130
 131        /*
 132         * If we specify 100% duty cycle, we will get 0% instead, so decrease
 133         * the duty cycle count by one.
 134         */
 135        if (duty_cycles >= period_cycles)
 136                duty_cycles = period_cycles - 1;
 137
 138        /* Round down to 0% duty cycle for unrepresentable duty cycles */
 139        if (duty_cycles < 2)
 140                duty_cycles = period_cycles;
 141
 142        regmap_read(priv->map, TCSR0, &tcsr0);
 143        regmap_read(priv->map, TCSR1, &tcsr1);
 144        tlr0 = xilinx_timer_tlr_cycles(priv, tcsr0, period_cycles);
 145        tlr1 = xilinx_timer_tlr_cycles(priv, tcsr1, duty_cycles);
 146        regmap_write(priv->map, TLR0, tlr0);
 147        regmap_write(priv->map, TLR1, tlr1);
 148
 149        if (state->enabled) {
 150                /*
 151                 * If the PWM is already running, then the counters will be
 152                 * reloaded at the end of the current cycle.
 153                 */
 154                if (!xilinx_timer_pwm_enabled(tcsr0, tcsr1)) {
 155                        /* Load TLR into TCR */
 156                        regmap_write(priv->map, TCSR0, tcsr0 | TCSR_LOAD);
 157                        regmap_write(priv->map, TCSR1, tcsr1 | TCSR_LOAD);
 158                        /* Enable timers all at once with ENALL */
 159                        tcsr0 = (TCSR_PWM_SET & ~TCSR_ENT) | (tcsr0 & TCSR_UDT);
 160                        tcsr1 = TCSR_PWM_SET | TCSR_ENALL | (tcsr1 & TCSR_UDT);
 161                        regmap_write(priv->map, TCSR0, tcsr0);
 162                        regmap_write(priv->map, TCSR1, tcsr1);
 163                }
 164        } else {
 165                regmap_write(priv->map, TCSR0, 0);
 166                regmap_write(priv->map, TCSR1, 0);
 167        }
 168
 169        return 0;
 170}
 171
 172static void xilinx_pwm_get_state(struct pwm_chip *chip,
 173                                 struct pwm_device *unused,
 174                                 struct pwm_state *state)
 175{
 176        struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
 177        u32 tlr0, tlr1, tcsr0, tcsr1;
 178
 179        regmap_read(priv->map, TLR0, &tlr0);
 180        regmap_read(priv->map, TLR1, &tlr1);
 181        regmap_read(priv->map, TCSR0, &tcsr0);
 182        regmap_read(priv->map, TCSR1, &tcsr1);
 183        state->period = xilinx_timer_get_period(priv, tlr0, tcsr0);
 184        state->duty_cycle = xilinx_timer_get_period(priv, tlr1, tcsr1);
 185        state->enabled = xilinx_timer_pwm_enabled(tcsr0, tcsr1);
 186        state->polarity = PWM_POLARITY_NORMAL;
 187
 188        /*
 189         * 100% duty cycle results in constant low output. This may be (very)
 190         * wrong if rate > 1 GHz, so fix this if you have such hardware :)
 191         */
 192        if (state->period == state->duty_cycle)
 193                state->duty_cycle = 0;
 194}
 195
 196static const struct pwm_ops xilinx_pwm_ops = {
 197        .apply = xilinx_pwm_apply,
 198        .get_state = xilinx_pwm_get_state,
 199        .owner = THIS_MODULE,
 200};
 201
 202static const struct regmap_config xilinx_pwm_regmap_config = {
 203        .reg_bits = 32,
 204        .reg_stride = 4,
 205        .val_bits = 32,
 206        .val_format_endian = REGMAP_ENDIAN_LITTLE,
 207        .max_register = TCR1,
 208};
 209
 210static int xilinx_pwm_probe(struct platform_device *pdev)
 211{
 212        int ret;
 213        struct device *dev = &pdev->dev;
 214        struct device_node *np = dev->of_node;
 215        struct xilinx_timer_priv *priv;
 216        struct xilinx_pwm_device *xilinx_pwm;
 217        u32 pwm_cells, one_timer, width;
 218        void __iomem *regs;
 219
 220        /* If there are no PWM cells, this binding is for a timer */
 221        ret = of_property_read_u32(np, "#pwm-cells", &pwm_cells);
 222        if (ret == -EINVAL)
 223                return -ENODEV;
 224        if (ret)
 225                return dev_err_probe(dev, ret, "could not read #pwm-cells\n");
 226
 227        xilinx_pwm = devm_kzalloc(dev, sizeof(*xilinx_pwm), GFP_KERNEL);
 228        if (!xilinx_pwm)
 229                return -ENOMEM;
 230        platform_set_drvdata(pdev, xilinx_pwm);
 231        priv = &xilinx_pwm->priv;
 232
 233        regs = devm_platform_ioremap_resource(pdev, 0);
 234        if (IS_ERR(regs))
 235                return PTR_ERR(regs);
 236
 237        priv->map = devm_regmap_init_mmio(dev, regs,
 238                                          &xilinx_pwm_regmap_config);
 239        if (IS_ERR(priv->map))
 240                return dev_err_probe(dev, PTR_ERR(priv->map),
 241                                     "Could not create regmap\n");
 242
 243        ret = of_property_read_u32(np, "xlnx,one-timer-only", &one_timer);
 244        if (ret)
 245                return dev_err_probe(dev, ret,
 246                                     "Could not read xlnx,one-timer-only\n");
 247
 248        if (one_timer)
 249                return dev_err_probe(dev, -EINVAL,
 250                                     "Two timers required for PWM mode\n");
 251
 252        ret = of_property_read_u32(np, "xlnx,count-width", &width);
 253        if (ret == -EINVAL)
 254                width = 32;
 255        else if (ret)
 256                return dev_err_probe(dev, ret,
 257                                     "Could not read xlnx,count-width\n");
 258
 259        if (width != 8 && width != 16 && width != 32)
 260                return dev_err_probe(dev, -EINVAL,
 261                                     "Invalid counter width %d\n", width);
 262        priv->max = BIT_ULL(width) - 1;
 263
 264        /*
 265         * The polarity of the Generate Out signals must be active high for PWM
 266         * mode to work. We could determine this from the device tree, but
 267         * alas, such properties are not allowed to be used.
 268         */
 269
 270        priv->clk = devm_clk_get(dev, "s_axi_aclk");
 271        if (IS_ERR(priv->clk))
 272                return dev_err_probe(dev, PTR_ERR(priv->clk),
 273                                     "Could not get clock\n");
 274
 275        ret = clk_prepare_enable(priv->clk);
 276        if (ret)
 277                return dev_err_probe(dev, ret, "Clock enable failed\n");
 278        clk_rate_exclusive_get(priv->clk);
 279
 280        xilinx_pwm->chip.dev = dev;
 281        xilinx_pwm->chip.ops = &xilinx_pwm_ops;
 282        xilinx_pwm->chip.npwm = 1;
 283        ret = pwmchip_add(&xilinx_pwm->chip);
 284        if (ret) {
 285                clk_rate_exclusive_put(priv->clk);
 286                clk_disable_unprepare(priv->clk);
 287                return dev_err_probe(dev, ret, "Could not register PWM chip\n");
 288        }
 289
 290        return 0;
 291}
 292
 293static int xilinx_pwm_remove(struct platform_device *pdev)
 294{
 295        struct xilinx_pwm_device *xilinx_pwm = platform_get_drvdata(pdev);
 296
 297        pwmchip_remove(&xilinx_pwm->chip);
 298        clk_rate_exclusive_put(xilinx_pwm->priv.clk);
 299        clk_disable_unprepare(xilinx_pwm->priv.clk);
 300        return 0;
 301}
 302
 303static const struct of_device_id xilinx_pwm_of_match[] = {
 304        { .compatible = "xlnx,xps-timer-1.00.a", },
 305        {},
 306};
 307MODULE_DEVICE_TABLE(of, xilinx_pwm_of_match);
 308
 309static struct platform_driver xilinx_pwm_driver = {
 310        .probe = xilinx_pwm_probe,
 311        .remove = xilinx_pwm_remove,
 312        .driver = {
 313                .name = "xilinx-pwm",
 314                .of_match_table = of_match_ptr(xilinx_pwm_of_match),
 315        },
 316};
 317module_platform_driver(xilinx_pwm_driver);
 318
 319MODULE_ALIAS("platform:xilinx-pwm");
 320MODULE_DESCRIPTION("PWM driver for Xilinx LogiCORE IP AXI Timer");
 321MODULE_LICENSE("GPL");
 322