linux/drivers/soc/fsl/qbman/qman_test_stash.c
<<
>>
Prefs
   1/* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
   2 *
   3 * Redistribution and use in source and binary forms, with or without
   4 * modification, are permitted provided that the following conditions are met:
   5 *     * Redistributions of source code must retain the above copyright
   6 *       notice, this list of conditions and the following disclaimer.
   7 *     * Redistributions in binary form must reproduce the above copyright
   8 *       notice, this list of conditions and the following disclaimer in the
   9 *       documentation and/or other materials provided with the distribution.
  10 *     * Neither the name of Freescale Semiconductor nor the
  11 *       names of its contributors may be used to endorse or promote products
  12 *       derived from this software without specific prior written permission.
  13 *
  14 * ALTERNATIVELY, this software may be distributed under the terms of the
  15 * GNU General Public License ("GPL") as published by the Free Software
  16 * Foundation, either version 2 of that License or (at your option) any
  17 * later version.
  18 *
  19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
  20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
  23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29 */
  30
  31#include "qman_test.h"
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/delay.h>
  35
  36/*
  37 * Algorithm:
  38 *
  39 * Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
  40 * an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
  41 * organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
  42 * shuttle a "hot potato" frame around them such that every forwarding action
  43 * moves it from one cpu to another. (The use of more than one handler per cpu
  44 * is to allow enough handlers/FQs to truly test the significance of caching -
  45 * ie. when cache-expiries are occurring.)
  46 *
  47 * The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
  48 * first and last words of the frame data will undergo a transformation step on
  49 * each forwarding action. To achieve this, each handler will be assigned a
  50 * 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
  51 * received by a handler, the mixer of the expected sender is XOR'd into all
  52 * words of the entire frame, which is then validated against the original
  53 * values. Then, before forwarding, the entire frame is XOR'd with the mixer of
  54 * the current handler. Apart from validating that the frame is taking the
  55 * expected path, this also provides some quasi-realistic overheads to each
  56 * forwarding action - dereferencing *all* the frame data, computation, and
  57 * conditional branching. There is a "special" handler designated to act as the
  58 * instigator of the test by creating an enqueuing the "hot potato" frame, and
  59 * to determine when the test has completed by counting HP_LOOPS iterations.
  60 *
  61 * Init phases:
  62 *
  63 * 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
  64 *    into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
  65 *    handlers and link-list them (but do no other handler setup).
  66 *
  67 * 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
  68 *    hp_cpu's 'iterator' to point to its first handler. With each loop,
  69 *    allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
  70 *    and advance the iterator for the next loop. This includes a final fixup,
  71 *    which connects the last handler to the first (and which is why phase 2
  72 *    and 3 are separate).
  73 *
  74 * 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
  75 *    hp_cpu's 'iterator' to point to its first handler. With each loop,
  76 *    initialise FQ objects and advance the iterator for the next loop.
  77 *    Moreover, do this initialisation on the cpu it applies to so that Rx FQ
  78 *    initialisation targets the correct cpu.
  79 */
  80
  81/*
  82 * helper to run something on all cpus (can't use on_each_cpu(), as that invokes
  83 * the fn from irq context, which is too restrictive).
  84 */
  85struct bstrap {
  86        int (*fn)(void);
  87        atomic_t started;
  88};
  89static int bstrap_fn(void *bs)
  90{
  91        struct bstrap *bstrap = bs;
  92        int err;
  93
  94        atomic_inc(&bstrap->started);
  95        err = bstrap->fn();
  96        if (err)
  97                return err;
  98        while (!kthread_should_stop())
  99                msleep(20);
 100        return 0;
 101}
 102static int on_all_cpus(int (*fn)(void))
 103{
 104        int cpu;
 105
 106        for_each_cpu(cpu, cpu_online_mask) {
 107                struct bstrap bstrap = {
 108                        .fn = fn,
 109                        .started = ATOMIC_INIT(0)
 110                };
 111                struct task_struct *k = kthread_create(bstrap_fn, &bstrap,
 112                        "hotpotato%d", cpu);
 113                int ret;
 114
 115                if (IS_ERR(k))
 116                        return -ENOMEM;
 117                kthread_bind(k, cpu);
 118                wake_up_process(k);
 119                /*
 120                 * If we call kthread_stop() before the "wake up" has had an
 121                 * effect, then the thread may exit with -EINTR without ever
 122                 * running the function. So poll until it's started before
 123                 * requesting it to stop.
 124                 */
 125                while (!atomic_read(&bstrap.started))
 126                        msleep(20);
 127                ret = kthread_stop(k);
 128                if (ret)
 129                        return ret;
 130        }
 131        return 0;
 132}
 133
 134struct hp_handler {
 135
 136        /* The following data is stashed when 'rx' is dequeued; */
 137        /* -------------- */
 138        /* The Rx FQ, dequeues of which will stash the entire hp_handler */
 139        struct qman_fq rx;
 140        /* The Tx FQ we should forward to */
 141        struct qman_fq tx;
 142        /* The value we XOR post-dequeue, prior to validating */
 143        u32 rx_mixer;
 144        /* The value we XOR pre-enqueue, after validating */
 145        u32 tx_mixer;
 146        /* what the hotpotato address should be on dequeue */
 147        dma_addr_t addr;
 148        u32 *frame_ptr;
 149
 150        /* The following data isn't (necessarily) stashed on dequeue; */
 151        /* -------------- */
 152        u32 fqid_rx, fqid_tx;
 153        /* list node for linking us into 'hp_cpu' */
 154        struct list_head node;
 155        /* Just to check ... */
 156        unsigned int processor_id;
 157} ____cacheline_aligned;
 158
 159struct hp_cpu {
 160        /* identify the cpu we run on; */
 161        unsigned int processor_id;
 162        /* root node for the per-cpu list of handlers */
 163        struct list_head handlers;
 164        /* list node for linking us into 'hp_cpu_list' */
 165        struct list_head node;
 166        /*
 167         * when repeatedly scanning 'hp_list', each time linking the n'th
 168         * handlers together, this is used as per-cpu iterator state
 169         */
 170        struct hp_handler *iterator;
 171};
 172
 173/* Each cpu has one of these */
 174static DEFINE_PER_CPU(struct hp_cpu, hp_cpus);
 175
 176/* links together the hp_cpu structs, in first-come first-serve order. */
 177static LIST_HEAD(hp_cpu_list);
 178static DEFINE_SPINLOCK(hp_lock);
 179
 180static unsigned int hp_cpu_list_length;
 181
 182/* the "special" handler, that starts and terminates the test. */
 183static struct hp_handler *special_handler;
 184static int loop_counter;
 185
 186/* handlers are allocated out of this, so they're properly aligned. */
 187static struct kmem_cache *hp_handler_slab;
 188
 189/* this is the frame data */
 190static void *__frame_ptr;
 191static u32 *frame_ptr;
 192static dma_addr_t frame_dma;
 193
 194/* needed for dma_map*() */
 195static const struct qm_portal_config *pcfg;
 196
 197/* the main function waits on this */
 198static DECLARE_WAIT_QUEUE_HEAD(queue);
 199
 200#define HP_PER_CPU      2
 201#define HP_LOOPS        8
 202/* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
 203#define HP_NUM_WORDS    80
 204/* First word of the LFSR-based frame data */
 205#define HP_FIRST_WORD   0xabbaf00d
 206
 207static inline u32 do_lfsr(u32 prev)
 208{
 209        return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u);
 210}
 211
 212static int allocate_frame_data(void)
 213{
 214        u32 lfsr = HP_FIRST_WORD;
 215        int loop;
 216
 217        if (!qman_dma_portal) {
 218                pr_crit("portal not available\n");
 219                return -EIO;
 220        }
 221
 222        pcfg = qman_get_qm_portal_config(qman_dma_portal);
 223
 224        __frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL);
 225        if (!__frame_ptr)
 226                return -ENOMEM;
 227
 228        frame_ptr = PTR_ALIGN(__frame_ptr, 64);
 229        for (loop = 0; loop < HP_NUM_WORDS; loop++) {
 230                frame_ptr[loop] = lfsr;
 231                lfsr = do_lfsr(lfsr);
 232        }
 233
 234        frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS,
 235                                   DMA_BIDIRECTIONAL);
 236        if (dma_mapping_error(pcfg->dev, frame_dma)) {
 237                pr_crit("dma mapping failure\n");
 238                kfree(__frame_ptr);
 239                return -EIO;
 240        }
 241
 242        return 0;
 243}
 244
 245static void deallocate_frame_data(void)
 246{
 247        dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS,
 248                         DMA_BIDIRECTIONAL);
 249        kfree(__frame_ptr);
 250}
 251
 252static inline int process_frame_data(struct hp_handler *handler,
 253                                     const struct qm_fd *fd)
 254{
 255        u32 *p = handler->frame_ptr;
 256        u32 lfsr = HP_FIRST_WORD;
 257        int loop;
 258
 259        if (qm_fd_addr_get64(fd) != handler->addr) {
 260                pr_crit("bad frame address, [%llX != %llX]\n",
 261                        qm_fd_addr_get64(fd), handler->addr);
 262                return -EIO;
 263        }
 264        for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
 265                *p ^= handler->rx_mixer;
 266                if (*p != lfsr) {
 267                        pr_crit("corrupt frame data");
 268                        return -EIO;
 269                }
 270                *p ^= handler->tx_mixer;
 271                lfsr = do_lfsr(lfsr);
 272        }
 273        return 0;
 274}
 275
 276static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal,
 277                                            struct qman_fq *fq,
 278                                            const struct qm_dqrr_entry *dqrr,
 279                                            bool sched_napi)
 280{
 281        struct hp_handler *handler = (struct hp_handler *)fq;
 282
 283        if (process_frame_data(handler, &dqrr->fd)) {
 284                WARN_ON(1);
 285                goto skip;
 286        }
 287        if (qman_enqueue(&handler->tx, &dqrr->fd)) {
 288                pr_crit("qman_enqueue() failed");
 289                WARN_ON(1);
 290        }
 291skip:
 292        return qman_cb_dqrr_consume;
 293}
 294
 295static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal,
 296                                             struct qman_fq *fq,
 297                                             const struct qm_dqrr_entry *dqrr,
 298                                             bool sched_napi)
 299{
 300        struct hp_handler *handler = (struct hp_handler *)fq;
 301
 302        process_frame_data(handler, &dqrr->fd);
 303        if (++loop_counter < HP_LOOPS) {
 304                if (qman_enqueue(&handler->tx, &dqrr->fd)) {
 305                        pr_crit("qman_enqueue() failed");
 306                        WARN_ON(1);
 307                        goto skip;
 308                }
 309        } else {
 310                pr_info("Received final (%dth) frame\n", loop_counter);
 311                wake_up(&queue);
 312        }
 313skip:
 314        return qman_cb_dqrr_consume;
 315}
 316
 317static int create_per_cpu_handlers(void)
 318{
 319        struct hp_handler *handler;
 320        int loop;
 321        struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
 322
 323        hp_cpu->processor_id = smp_processor_id();
 324        spin_lock(&hp_lock);
 325        list_add_tail(&hp_cpu->node, &hp_cpu_list);
 326        hp_cpu_list_length++;
 327        spin_unlock(&hp_lock);
 328        INIT_LIST_HEAD(&hp_cpu->handlers);
 329        for (loop = 0; loop < HP_PER_CPU; loop++) {
 330                handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL);
 331                if (!handler) {
 332                        pr_crit("kmem_cache_alloc() failed");
 333                        WARN_ON(1);
 334                        return -EIO;
 335                }
 336                handler->processor_id = hp_cpu->processor_id;
 337                handler->addr = frame_dma;
 338                handler->frame_ptr = frame_ptr;
 339                list_add_tail(&handler->node, &hp_cpu->handlers);
 340        }
 341        return 0;
 342}
 343
 344static int destroy_per_cpu_handlers(void)
 345{
 346        struct list_head *loop, *tmp;
 347        struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
 348
 349        spin_lock(&hp_lock);
 350        list_del(&hp_cpu->node);
 351        spin_unlock(&hp_lock);
 352        list_for_each_safe(loop, tmp, &hp_cpu->handlers) {
 353                u32 flags = 0;
 354                struct hp_handler *handler = list_entry(loop, struct hp_handler,
 355                                                        node);
 356                if (qman_retire_fq(&handler->rx, &flags) ||
 357                    (flags & QMAN_FQ_STATE_BLOCKOOS)) {
 358                        pr_crit("qman_retire_fq(rx) failed, flags: %x", flags);
 359                        WARN_ON(1);
 360                        return -EIO;
 361                }
 362                if (qman_oos_fq(&handler->rx)) {
 363                        pr_crit("qman_oos_fq(rx) failed");
 364                        WARN_ON(1);
 365                        return -EIO;
 366                }
 367                qman_destroy_fq(&handler->rx);
 368                qman_destroy_fq(&handler->tx);
 369                qman_release_fqid(handler->fqid_rx);
 370                list_del(&handler->node);
 371                kmem_cache_free(hp_handler_slab, handler);
 372        }
 373        return 0;
 374}
 375
 376static inline u8 num_cachelines(u32 offset)
 377{
 378        u8 res = (offset + (L1_CACHE_BYTES - 1))
 379                         / (L1_CACHE_BYTES);
 380        if (res > 3)
 381                return 3;
 382        return res;
 383}
 384#define STASH_DATA_CL \
 385        num_cachelines(HP_NUM_WORDS * 4)
 386#define STASH_CTX_CL \
 387        num_cachelines(offsetof(struct hp_handler, fqid_rx))
 388
 389static int init_handler(void *h)
 390{
 391        struct qm_mcc_initfq opts;
 392        struct hp_handler *handler = h;
 393        int err;
 394
 395        if (handler->processor_id != smp_processor_id()) {
 396                err = -EIO;
 397                goto failed;
 398        }
 399        /* Set up rx */
 400        memset(&handler->rx, 0, sizeof(handler->rx));
 401        if (handler == special_handler)
 402                handler->rx.cb.dqrr = special_dqrr;
 403        else
 404                handler->rx.cb.dqrr = normal_dqrr;
 405        err = qman_create_fq(handler->fqid_rx, 0, &handler->rx);
 406        if (err) {
 407                pr_crit("qman_create_fq(rx) failed");
 408                goto failed;
 409        }
 410        memset(&opts, 0, sizeof(opts));
 411        opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL |
 412                                   QM_INITFQ_WE_CONTEXTA);
 413        opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING);
 414        qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL);
 415        err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED |
 416                           QMAN_INITFQ_FLAG_LOCAL, &opts);
 417        if (err) {
 418                pr_crit("qman_init_fq(rx) failed");
 419                goto failed;
 420        }
 421        /* Set up tx */
 422        memset(&handler->tx, 0, sizeof(handler->tx));
 423        err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY,
 424                             &handler->tx);
 425        if (err) {
 426                pr_crit("qman_create_fq(tx) failed");
 427                goto failed;
 428        }
 429
 430        return 0;
 431failed:
 432        return err;
 433}
 434
 435static void init_handler_cb(void *h)
 436{
 437        if (init_handler(h))
 438                WARN_ON(1);
 439}
 440
 441static int init_phase2(void)
 442{
 443        int loop;
 444        u32 fqid = 0;
 445        u32 lfsr = 0xdeadbeef;
 446        struct hp_cpu *hp_cpu;
 447        struct hp_handler *handler;
 448
 449        for (loop = 0; loop < HP_PER_CPU; loop++) {
 450                list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
 451                        int err;
 452
 453                        if (!loop)
 454                                hp_cpu->iterator = list_first_entry(
 455                                                &hp_cpu->handlers,
 456                                                struct hp_handler, node);
 457                        else
 458                                hp_cpu->iterator = list_entry(
 459                                                hp_cpu->iterator->node.next,
 460                                                struct hp_handler, node);
 461                        /* Rx FQID is the previous handler's Tx FQID */
 462                        hp_cpu->iterator->fqid_rx = fqid;
 463                        /* Allocate new FQID for Tx */
 464                        err = qman_alloc_fqid(&fqid);
 465                        if (err) {
 466                                pr_crit("qman_alloc_fqid() failed");
 467                                return err;
 468                        }
 469                        hp_cpu->iterator->fqid_tx = fqid;
 470                        /* Rx mixer is the previous handler's Tx mixer */
 471                        hp_cpu->iterator->rx_mixer = lfsr;
 472                        /* Get new mixer for Tx */
 473                        lfsr = do_lfsr(lfsr);
 474                        hp_cpu->iterator->tx_mixer = lfsr;
 475                }
 476        }
 477        /* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
 478        hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node);
 479        handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node);
 480        if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef)
 481                return 1;
 482        handler->fqid_rx = fqid;
 483        handler->rx_mixer = lfsr;
 484        /* and tag it as our "special" handler */
 485        special_handler = handler;
 486        return 0;
 487}
 488
 489static int init_phase3(void)
 490{
 491        int loop, err;
 492        struct hp_cpu *hp_cpu;
 493
 494        for (loop = 0; loop < HP_PER_CPU; loop++) {
 495                list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
 496                        if (!loop)
 497                                hp_cpu->iterator = list_first_entry(
 498                                                &hp_cpu->handlers,
 499                                                struct hp_handler, node);
 500                        else
 501                                hp_cpu->iterator = list_entry(
 502                                                hp_cpu->iterator->node.next,
 503                                                struct hp_handler, node);
 504                        preempt_disable();
 505                        if (hp_cpu->processor_id == smp_processor_id()) {
 506                                err = init_handler(hp_cpu->iterator);
 507                                if (err)
 508                                        return err;
 509                        } else {
 510                                smp_call_function_single(hp_cpu->processor_id,
 511                                        init_handler_cb, hp_cpu->iterator, 1);
 512                        }
 513                        preempt_enable();
 514                }
 515        }
 516        return 0;
 517}
 518
 519static int send_first_frame(void *ignore)
 520{
 521        u32 *p = special_handler->frame_ptr;
 522        u32 lfsr = HP_FIRST_WORD;
 523        int loop, err;
 524        struct qm_fd fd;
 525
 526        if (special_handler->processor_id != smp_processor_id()) {
 527                err = -EIO;
 528                goto failed;
 529        }
 530        memset(&fd, 0, sizeof(fd));
 531        qm_fd_addr_set64(&fd, special_handler->addr);
 532        qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4);
 533        for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
 534                if (*p != lfsr) {
 535                        err = -EIO;
 536                        pr_crit("corrupt frame data");
 537                        goto failed;
 538                }
 539                *p ^= special_handler->tx_mixer;
 540                lfsr = do_lfsr(lfsr);
 541        }
 542        pr_info("Sending first frame\n");
 543        err = qman_enqueue(&special_handler->tx, &fd);
 544        if (err) {
 545                pr_crit("qman_enqueue() failed");
 546                goto failed;
 547        }
 548
 549        return 0;
 550failed:
 551        return err;
 552}
 553
 554static void send_first_frame_cb(void *ignore)
 555{
 556        if (send_first_frame(NULL))
 557                WARN_ON(1);
 558}
 559
 560int qman_test_stash(void)
 561{
 562        int err;
 563
 564        if (cpumask_weight(cpu_online_mask) < 2) {
 565                pr_info("%s(): skip - only 1 CPU\n", __func__);
 566                return 0;
 567        }
 568
 569        pr_info("%s(): Starting\n", __func__);
 570
 571        hp_cpu_list_length = 0;
 572        loop_counter = 0;
 573        hp_handler_slab = kmem_cache_create("hp_handler_slab",
 574                        sizeof(struct hp_handler), L1_CACHE_BYTES,
 575                        SLAB_HWCACHE_ALIGN, NULL);
 576        if (!hp_handler_slab) {
 577                err = -EIO;
 578                pr_crit("kmem_cache_create() failed");
 579                goto failed;
 580        }
 581
 582        err = allocate_frame_data();
 583        if (err)
 584                goto failed;
 585
 586        /* Init phase 1 */
 587        pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU);
 588        if (on_all_cpus(create_per_cpu_handlers)) {
 589                err = -EIO;
 590                pr_crit("on_each_cpu() failed");
 591                goto failed;
 592        }
 593        pr_info("Number of cpus: %d, total of %d handlers\n",
 594                hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU);
 595
 596        err = init_phase2();
 597        if (err)
 598                goto failed;
 599
 600        err = init_phase3();
 601        if (err)
 602                goto failed;
 603
 604        preempt_disable();
 605        if (special_handler->processor_id == smp_processor_id()) {
 606                err = send_first_frame(NULL);
 607                if (err)
 608                        goto failed;
 609        } else {
 610                smp_call_function_single(special_handler->processor_id,
 611                                         send_first_frame_cb, NULL, 1);
 612        }
 613        preempt_enable();
 614
 615        wait_event(queue, loop_counter == HP_LOOPS);
 616        deallocate_frame_data();
 617        if (on_all_cpus(destroy_per_cpu_handlers)) {
 618                err = -EIO;
 619                pr_crit("on_each_cpu() failed");
 620                goto failed;
 621        }
 622        kmem_cache_destroy(hp_handler_slab);
 623        pr_info("%s(): Finished\n", __func__);
 624
 625        return 0;
 626failed:
 627        WARN_ON(1);
 628        return err;
 629}
 630