linux/drivers/spi/spi-aspeed-smc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * ASPEED FMC/SPI Memory Controller Driver
   4 *
   5 * Copyright (c) 2015-2022, IBM Corporation.
   6 * Copyright (c) 2020, ASPEED Corporation.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_platform.h>
  13#include <linux/platform_device.h>
  14#include <linux/spi/spi.h>
  15#include <linux/spi/spi-mem.h>
  16
  17#define DEVICE_NAME "spi-aspeed-smc"
  18
  19/* Type setting Register */
  20#define CONFIG_REG                      0x0
  21#define   CONFIG_TYPE_SPI               0x2
  22
  23/* CE Control Register */
  24#define CE_CTRL_REG                     0x4
  25
  26/* CEx Control Register */
  27#define CE0_CTRL_REG                    0x10
  28#define   CTRL_IO_MODE_MASK             GENMASK(30, 28)
  29#define   CTRL_IO_SINGLE_DATA           0x0
  30#define   CTRL_IO_DUAL_DATA             BIT(29)
  31#define   CTRL_IO_QUAD_DATA             BIT(30)
  32#define   CTRL_COMMAND_SHIFT            16
  33#define   CTRL_IO_ADDRESS_4B            BIT(13) /* AST2400 SPI only */
  34#define   CTRL_IO_DUMMY_SET(dummy)                                      \
  35        (((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6))
  36#define   CTRL_FREQ_SEL_SHIFT           8
  37#define   CTRL_FREQ_SEL_MASK            GENMASK(11, CTRL_FREQ_SEL_SHIFT)
  38#define   CTRL_CE_STOP_ACTIVE           BIT(2)
  39#define   CTRL_IO_MODE_CMD_MASK         GENMASK(1, 0)
  40#define   CTRL_IO_MODE_NORMAL           0x0
  41#define   CTRL_IO_MODE_READ             0x1
  42#define   CTRL_IO_MODE_WRITE            0x2
  43#define   CTRL_IO_MODE_USER             0x3
  44
  45#define   CTRL_IO_CMD_MASK              0xf0ff40c3
  46
  47/* CEx Address Decoding Range Register */
  48#define CE0_SEGMENT_ADDR_REG            0x30
  49
  50/* CEx Read timing compensation register */
  51#define CE0_TIMING_COMPENSATION_REG     0x94
  52
  53enum aspeed_spi_ctl_reg_value {
  54        ASPEED_SPI_BASE,
  55        ASPEED_SPI_READ,
  56        ASPEED_SPI_WRITE,
  57        ASPEED_SPI_MAX,
  58};
  59
  60struct aspeed_spi;
  61
  62struct aspeed_spi_chip {
  63        struct aspeed_spi       *aspi;
  64        u32                      cs;
  65        void __iomem            *ctl;
  66        void __iomem            *ahb_base;
  67        u32                      ahb_window_size;
  68        u32                      ctl_val[ASPEED_SPI_MAX];
  69        u32                      clk_freq;
  70};
  71
  72struct aspeed_spi_data {
  73        u32     ctl0;
  74        u32     max_cs;
  75        bool    hastype;
  76        u32     mode_bits;
  77        u32     we0;
  78        u32     timing;
  79        u32     hclk_mask;
  80        u32     hdiv_max;
  81
  82        u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg);
  83        u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg);
  84        u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end);
  85        int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv,
  86                         const u8 *golden_buf, u8 *test_buf);
  87};
  88
  89#define ASPEED_SPI_MAX_NUM_CS   5
  90
  91struct aspeed_spi {
  92        const struct aspeed_spi_data    *data;
  93
  94        void __iomem            *regs;
  95        void __iomem            *ahb_base;
  96        u32                      ahb_base_phy;
  97        u32                      ahb_window_size;
  98        struct device           *dev;
  99
 100        struct clk              *clk;
 101        u32                      clk_freq;
 102
 103        struct aspeed_spi_chip   chips[ASPEED_SPI_MAX_NUM_CS];
 104};
 105
 106static u32 aspeed_spi_get_io_mode(const struct spi_mem_op *op)
 107{
 108        switch (op->data.buswidth) {
 109        case 1:
 110                return CTRL_IO_SINGLE_DATA;
 111        case 2:
 112                return CTRL_IO_DUAL_DATA;
 113        case 4:
 114                return CTRL_IO_QUAD_DATA;
 115        default:
 116                return CTRL_IO_SINGLE_DATA;
 117        }
 118}
 119
 120static void aspeed_spi_set_io_mode(struct aspeed_spi_chip *chip, u32 io_mode)
 121{
 122        u32 ctl;
 123
 124        if (io_mode > 0) {
 125                ctl = readl(chip->ctl) & ~CTRL_IO_MODE_MASK;
 126                ctl |= io_mode;
 127                writel(ctl, chip->ctl);
 128        }
 129}
 130
 131static void aspeed_spi_start_user(struct aspeed_spi_chip *chip)
 132{
 133        u32 ctl = chip->ctl_val[ASPEED_SPI_BASE];
 134
 135        ctl |= CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
 136        writel(ctl, chip->ctl);
 137
 138        ctl &= ~CTRL_CE_STOP_ACTIVE;
 139        writel(ctl, chip->ctl);
 140}
 141
 142static void aspeed_spi_stop_user(struct aspeed_spi_chip *chip)
 143{
 144        u32 ctl = chip->ctl_val[ASPEED_SPI_READ] |
 145                CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
 146
 147        writel(ctl, chip->ctl);
 148
 149        /* Restore defaults */
 150        writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
 151}
 152
 153static int aspeed_spi_read_from_ahb(void *buf, void __iomem *src, size_t len)
 154{
 155        size_t offset = 0;
 156
 157        if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
 158            IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
 159                ioread32_rep(src, buf, len >> 2);
 160                offset = len & ~0x3;
 161                len -= offset;
 162        }
 163        ioread8_rep(src, (u8 *)buf + offset, len);
 164        return 0;
 165}
 166
 167static int aspeed_spi_write_to_ahb(void __iomem *dst, const void *buf, size_t len)
 168{
 169        size_t offset = 0;
 170
 171        if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
 172            IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
 173                iowrite32_rep(dst, buf, len >> 2);
 174                offset = len & ~0x3;
 175                len -= offset;
 176        }
 177        iowrite8_rep(dst, (const u8 *)buf + offset, len);
 178        return 0;
 179}
 180
 181static int aspeed_spi_send_cmd_addr(struct aspeed_spi_chip *chip, u8 addr_nbytes,
 182                                    u64 offset, u32 opcode)
 183{
 184        __be32 temp;
 185        u32 cmdaddr;
 186
 187        switch (addr_nbytes) {
 188        case 3:
 189                cmdaddr = offset & 0xFFFFFF;
 190                cmdaddr |= opcode << 24;
 191
 192                temp = cpu_to_be32(cmdaddr);
 193                aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
 194                break;
 195        case 4:
 196                temp = cpu_to_be32(offset);
 197                aspeed_spi_write_to_ahb(chip->ahb_base, &opcode, 1);
 198                aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
 199                break;
 200        default:
 201                WARN_ONCE(1, "Unexpected address width %u", addr_nbytes);
 202                return -EOPNOTSUPP;
 203        }
 204        return 0;
 205}
 206
 207static int aspeed_spi_read_reg(struct aspeed_spi_chip *chip,
 208                               const struct spi_mem_op *op)
 209{
 210        aspeed_spi_start_user(chip);
 211        aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
 212        aspeed_spi_read_from_ahb(op->data.buf.in,
 213                                 chip->ahb_base, op->data.nbytes);
 214        aspeed_spi_stop_user(chip);
 215        return 0;
 216}
 217
 218static int aspeed_spi_write_reg(struct aspeed_spi_chip *chip,
 219                                const struct spi_mem_op *op)
 220{
 221        aspeed_spi_start_user(chip);
 222        aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
 223        aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out,
 224                                op->data.nbytes);
 225        aspeed_spi_stop_user(chip);
 226        return 0;
 227}
 228
 229static ssize_t aspeed_spi_read_user(struct aspeed_spi_chip *chip,
 230                                    const struct spi_mem_op *op,
 231                                    u64 offset, size_t len, void *buf)
 232{
 233        int io_mode = aspeed_spi_get_io_mode(op);
 234        u8 dummy = 0xFF;
 235        int i;
 236        int ret;
 237
 238        aspeed_spi_start_user(chip);
 239
 240        ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, offset, op->cmd.opcode);
 241        if (ret < 0)
 242                return ret;
 243
 244        if (op->dummy.buswidth && op->dummy.nbytes) {
 245                for (i = 0; i < op->dummy.nbytes / op->dummy.buswidth; i++)
 246                        aspeed_spi_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
 247        }
 248
 249        aspeed_spi_set_io_mode(chip, io_mode);
 250
 251        aspeed_spi_read_from_ahb(buf, chip->ahb_base, len);
 252        aspeed_spi_stop_user(chip);
 253        return 0;
 254}
 255
 256static ssize_t aspeed_spi_write_user(struct aspeed_spi_chip *chip,
 257                                     const struct spi_mem_op *op)
 258{
 259        int ret;
 260
 261        aspeed_spi_start_user(chip);
 262        ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, op->addr.val, op->cmd.opcode);
 263        if (ret < 0)
 264                return ret;
 265        aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out, op->data.nbytes);
 266        aspeed_spi_stop_user(chip);
 267        return 0;
 268}
 269
 270/* support for 1-1-1, 1-1-2 or 1-1-4 */
 271static bool aspeed_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
 272{
 273        if (op->cmd.buswidth > 1)
 274                return false;
 275
 276        if (op->addr.nbytes != 0) {
 277                if (op->addr.buswidth > 1)
 278                        return false;
 279                if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
 280                        return false;
 281        }
 282
 283        if (op->dummy.nbytes != 0) {
 284                if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
 285                        return false;
 286        }
 287
 288        if (op->data.nbytes != 0 && op->data.buswidth > 4)
 289                return false;
 290
 291        return spi_mem_default_supports_op(mem, op);
 292}
 293
 294static const struct aspeed_spi_data ast2400_spi_data;
 295
 296static int do_aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 297{
 298        struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->master);
 299        struct aspeed_spi_chip *chip = &aspi->chips[mem->spi->chip_select];
 300        u32 addr_mode, addr_mode_backup;
 301        u32 ctl_val;
 302        int ret = 0;
 303
 304        dev_dbg(aspi->dev,
 305                "CE%d %s OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x len:%#x",
 306                chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
 307                op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
 308                op->dummy.buswidth, op->data.buswidth,
 309                op->addr.nbytes, op->dummy.nbytes, op->data.nbytes);
 310
 311        addr_mode = readl(aspi->regs + CE_CTRL_REG);
 312        addr_mode_backup = addr_mode;
 313
 314        ctl_val = chip->ctl_val[ASPEED_SPI_BASE];
 315        ctl_val &= ~CTRL_IO_CMD_MASK;
 316
 317        ctl_val |= op->cmd.opcode << CTRL_COMMAND_SHIFT;
 318
 319        /* 4BYTE address mode */
 320        if (op->addr.nbytes) {
 321                if (op->addr.nbytes == 4)
 322                        addr_mode |= (0x11 << chip->cs);
 323                else
 324                        addr_mode &= ~(0x11 << chip->cs);
 325
 326                if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
 327                        ctl_val |= CTRL_IO_ADDRESS_4B;
 328        }
 329
 330        if (op->dummy.nbytes)
 331                ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
 332
 333        if (op->data.nbytes)
 334                ctl_val |= aspeed_spi_get_io_mode(op);
 335
 336        if (op->data.dir == SPI_MEM_DATA_OUT)
 337                ctl_val |= CTRL_IO_MODE_WRITE;
 338        else
 339                ctl_val |= CTRL_IO_MODE_READ;
 340
 341        if (addr_mode != addr_mode_backup)
 342                writel(addr_mode, aspi->regs + CE_CTRL_REG);
 343        writel(ctl_val, chip->ctl);
 344
 345        if (op->data.dir == SPI_MEM_DATA_IN) {
 346                if (!op->addr.nbytes)
 347                        ret = aspeed_spi_read_reg(chip, op);
 348                else
 349                        ret = aspeed_spi_read_user(chip, op, op->addr.val,
 350                                                   op->data.nbytes, op->data.buf.in);
 351        } else {
 352                if (!op->addr.nbytes)
 353                        ret = aspeed_spi_write_reg(chip, op);
 354                else
 355                        ret = aspeed_spi_write_user(chip, op);
 356        }
 357
 358        /* Restore defaults */
 359        if (addr_mode != addr_mode_backup)
 360                writel(addr_mode_backup, aspi->regs + CE_CTRL_REG);
 361        writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
 362        return ret;
 363}
 364
 365static int aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 366{
 367        int ret;
 368
 369        ret = do_aspeed_spi_exec_op(mem, op);
 370        if (ret)
 371                dev_err(&mem->spi->dev, "operation failed: %d\n", ret);
 372        return ret;
 373}
 374
 375static const char *aspeed_spi_get_name(struct spi_mem *mem)
 376{
 377        struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->master);
 378        struct device *dev = aspi->dev;
 379
 380        return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
 381}
 382
 383struct aspeed_spi_window {
 384        u32 cs;
 385        u32 offset;
 386        u32 size;
 387};
 388
 389static void aspeed_spi_get_windows(struct aspeed_spi *aspi,
 390                                   struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])
 391{
 392        const struct aspeed_spi_data *data = aspi->data;
 393        u32 reg_val;
 394        u32 cs;
 395
 396        for (cs = 0; cs < aspi->data->max_cs; cs++) {
 397                reg_val = readl(aspi->regs + CE0_SEGMENT_ADDR_REG + cs * 4);
 398                windows[cs].cs = cs;
 399                windows[cs].size = data->segment_end(aspi, reg_val) -
 400                        data->segment_start(aspi, reg_val);
 401                windows[cs].offset = cs ? windows[cs - 1].offset + windows[cs - 1].size : 0;
 402                dev_vdbg(aspi->dev, "CE%d offset=0x%.8x size=0x%x\n", cs,
 403                         windows[cs].offset, windows[cs].size);
 404        }
 405}
 406
 407/*
 408 * On the AST2600, some CE windows are closed by default at reset but
 409 * U-Boot should open all.
 410 */
 411static int aspeed_spi_chip_set_default_window(struct aspeed_spi_chip *chip)
 412{
 413        struct aspeed_spi *aspi = chip->aspi;
 414        struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
 415        struct aspeed_spi_window *win = &windows[chip->cs];
 416
 417        /* No segment registers for the AST2400 SPI controller */
 418        if (aspi->data == &ast2400_spi_data) {
 419                win->offset = 0;
 420                win->size = aspi->ahb_window_size;
 421        } else {
 422                aspeed_spi_get_windows(aspi, windows);
 423        }
 424
 425        chip->ahb_base = aspi->ahb_base + win->offset;
 426        chip->ahb_window_size = win->size;
 427
 428        dev_dbg(aspi->dev, "CE%d default window [ 0x%.8x - 0x%.8x ] %dMB",
 429                chip->cs, aspi->ahb_base_phy + win->offset,
 430                aspi->ahb_base_phy + win->offset + win->size - 1,
 431                win->size >> 20);
 432
 433        return chip->ahb_window_size ? 0 : -1;
 434}
 435
 436static int aspeed_spi_set_window(struct aspeed_spi *aspi,
 437                                 const struct aspeed_spi_window *win)
 438{
 439        u32 start = aspi->ahb_base_phy + win->offset;
 440        u32 end = start + win->size;
 441        void __iomem *seg_reg = aspi->regs + CE0_SEGMENT_ADDR_REG + win->cs * 4;
 442        u32 seg_val_backup = readl(seg_reg);
 443        u32 seg_val = aspi->data->segment_reg(aspi, start, end);
 444
 445        if (seg_val == seg_val_backup)
 446                return 0;
 447
 448        writel(seg_val, seg_reg);
 449
 450        /*
 451         * Restore initial value if something goes wrong else we could
 452         * loose access to the chip.
 453         */
 454        if (seg_val != readl(seg_reg)) {
 455                dev_err(aspi->dev, "CE%d invalid window [ 0x%.8x - 0x%.8x ] %dMB",
 456                        win->cs, start, end - 1, win->size >> 20);
 457                writel(seg_val_backup, seg_reg);
 458                return -EIO;
 459        }
 460
 461        if (win->size)
 462                dev_dbg(aspi->dev, "CE%d new window [ 0x%.8x - 0x%.8x ] %dMB",
 463                        win->cs, start, end - 1,  win->size >> 20);
 464        else
 465                dev_dbg(aspi->dev, "CE%d window closed", win->cs);
 466
 467        return 0;
 468}
 469
 470/*
 471 * Yet to be done when possible :
 472 * - Align mappings on flash size (we don't have the info)
 473 * - ioremap each window, not strictly necessary since the overall window
 474 *   is correct.
 475 */
 476static const struct aspeed_spi_data ast2500_spi_data;
 477static const struct aspeed_spi_data ast2600_spi_data;
 478static const struct aspeed_spi_data ast2600_fmc_data;
 479
 480static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip,
 481                                         u32 local_offset, u32 size)
 482{
 483        struct aspeed_spi *aspi = chip->aspi;
 484        struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
 485        struct aspeed_spi_window *win = &windows[chip->cs];
 486        int ret;
 487
 488        /* No segment registers for the AST2400 SPI controller */
 489        if (aspi->data == &ast2400_spi_data)
 490                return 0;
 491
 492        /*
 493         * Due to an HW issue on the AST2500 SPI controller, the CE0
 494         * window size should be smaller than the maximum 128MB.
 495         */
 496        if (aspi->data == &ast2500_spi_data && chip->cs == 0 && size == SZ_128M) {
 497                size = 120 << 20;
 498                dev_info(aspi->dev, "CE%d window resized to %dMB (AST2500 HW quirk)",
 499                         chip->cs, size >> 20);
 500        }
 501
 502        /*
 503         * The decoding size of AST2600 SPI controller should set at
 504         * least 2MB.
 505         */
 506        if ((aspi->data == &ast2600_spi_data || aspi->data == &ast2600_fmc_data) &&
 507            size < SZ_2M) {
 508                size = SZ_2M;
 509                dev_info(aspi->dev, "CE%d window resized to %dMB (AST2600 Decoding)",
 510                         chip->cs, size >> 20);
 511        }
 512
 513        aspeed_spi_get_windows(aspi, windows);
 514
 515        /* Adjust this chip window */
 516        win->offset += local_offset;
 517        win->size = size;
 518
 519        if (win->offset + win->size > aspi->ahb_window_size) {
 520                win->size = aspi->ahb_window_size - win->offset;
 521                dev_warn(aspi->dev, "CE%d window resized to %dMB", chip->cs, win->size >> 20);
 522        }
 523
 524        ret = aspeed_spi_set_window(aspi, win);
 525        if (ret)
 526                return ret;
 527
 528        /* Update chip mapping info */
 529        chip->ahb_base = aspi->ahb_base + win->offset;
 530        chip->ahb_window_size = win->size;
 531
 532        /*
 533         * Also adjust next chip window to make sure that it does not
 534         * overlap with the current window.
 535         */
 536        if (chip->cs < aspi->data->max_cs - 1) {
 537                struct aspeed_spi_window *next = &windows[chip->cs + 1];
 538
 539                /* Change offset and size to keep the same end address */
 540                if ((next->offset + next->size) > (win->offset + win->size))
 541                        next->size = (next->offset + next->size) - (win->offset + win->size);
 542                else
 543                        next->size = 0;
 544                next->offset = win->offset + win->size;
 545
 546                aspeed_spi_set_window(aspi, next);
 547        }
 548        return 0;
 549}
 550
 551static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip);
 552
 553static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
 554{
 555        struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master);
 556        struct aspeed_spi_chip *chip = &aspi->chips[desc->mem->spi->chip_select];
 557        struct spi_mem_op *op = &desc->info.op_tmpl;
 558        u32 ctl_val;
 559        int ret = 0;
 560
 561        dev_dbg(aspi->dev,
 562                "CE%d %s dirmap [ 0x%.8llx - 0x%.8llx ] OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x\n",
 563                chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
 564                desc->info.offset, desc->info.offset + desc->info.length,
 565                op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
 566                op->dummy.buswidth, op->data.buswidth,
 567                op->addr.nbytes, op->dummy.nbytes);
 568
 569        chip->clk_freq = desc->mem->spi->max_speed_hz;
 570
 571        /* Only for reads */
 572        if (op->data.dir != SPI_MEM_DATA_IN)
 573                return -EOPNOTSUPP;
 574
 575        aspeed_spi_chip_adjust_window(chip, desc->info.offset, desc->info.length);
 576
 577        if (desc->info.length > chip->ahb_window_size)
 578                dev_warn(aspi->dev, "CE%d window (%dMB) too small for mapping",
 579                         chip->cs, chip->ahb_window_size >> 20);
 580
 581        /* Define the default IO read settings */
 582        ctl_val = readl(chip->ctl) & ~CTRL_IO_CMD_MASK;
 583        ctl_val |= aspeed_spi_get_io_mode(op) |
 584                op->cmd.opcode << CTRL_COMMAND_SHIFT |
 585                CTRL_IO_MODE_READ;
 586
 587        if (op->dummy.nbytes)
 588                ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
 589
 590        /* Tune 4BYTE address mode */
 591        if (op->addr.nbytes) {
 592                u32 addr_mode = readl(aspi->regs + CE_CTRL_REG);
 593
 594                if (op->addr.nbytes == 4)
 595                        addr_mode |= (0x11 << chip->cs);
 596                else
 597                        addr_mode &= ~(0x11 << chip->cs);
 598                writel(addr_mode, aspi->regs + CE_CTRL_REG);
 599
 600                /* AST2400 SPI controller sets 4BYTE address mode in
 601                 * CE0 Control Register
 602                 */
 603                if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
 604                        ctl_val |= CTRL_IO_ADDRESS_4B;
 605        }
 606
 607        /* READ mode is the controller default setting */
 608        chip->ctl_val[ASPEED_SPI_READ] = ctl_val;
 609        writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
 610
 611        ret = aspeed_spi_do_calibration(chip);
 612
 613        dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n",
 614                 chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]);
 615
 616        return ret;
 617}
 618
 619static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
 620                                      u64 offset, size_t len, void *buf)
 621{
 622        struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master);
 623        struct aspeed_spi_chip *chip = &aspi->chips[desc->mem->spi->chip_select];
 624
 625        /* Switch to USER command mode if mapping window is too small */
 626        if (chip->ahb_window_size < offset + len) {
 627                int ret;
 628
 629                ret = aspeed_spi_read_user(chip, &desc->info.op_tmpl, offset, len, buf);
 630                if (ret < 0)
 631                        return ret;
 632        } else {
 633                memcpy_fromio(buf, chip->ahb_base + offset, len);
 634        }
 635
 636        return len;
 637}
 638
 639static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
 640        .supports_op = aspeed_spi_supports_op,
 641        .exec_op = aspeed_spi_exec_op,
 642        .get_name = aspeed_spi_get_name,
 643        .dirmap_create = aspeed_spi_dirmap_create,
 644        .dirmap_read = aspeed_spi_dirmap_read,
 645};
 646
 647static void aspeed_spi_chip_set_type(struct aspeed_spi *aspi, unsigned int cs, int type)
 648{
 649        u32 reg;
 650
 651        reg = readl(aspi->regs + CONFIG_REG);
 652        reg &= ~(0x3 << (cs * 2));
 653        reg |= type << (cs * 2);
 654        writel(reg, aspi->regs + CONFIG_REG);
 655}
 656
 657static void aspeed_spi_chip_enable(struct aspeed_spi *aspi, unsigned int cs, bool enable)
 658{
 659        u32 we_bit = BIT(aspi->data->we0 + cs);
 660        u32 reg = readl(aspi->regs + CONFIG_REG);
 661
 662        if (enable)
 663                reg |= we_bit;
 664        else
 665                reg &= ~we_bit;
 666        writel(reg, aspi->regs + CONFIG_REG);
 667}
 668
 669static int aspeed_spi_setup(struct spi_device *spi)
 670{
 671        struct aspeed_spi *aspi = spi_controller_get_devdata(spi->master);
 672        const struct aspeed_spi_data *data = aspi->data;
 673        unsigned int cs = spi->chip_select;
 674        struct aspeed_spi_chip *chip = &aspi->chips[cs];
 675
 676        chip->aspi = aspi;
 677        chip->cs = cs;
 678        chip->ctl = aspi->regs + data->ctl0 + cs * 4;
 679
 680        /* The driver only supports SPI type flash */
 681        if (data->hastype)
 682                aspeed_spi_chip_set_type(aspi, cs, CONFIG_TYPE_SPI);
 683
 684        if (aspeed_spi_chip_set_default_window(chip) < 0) {
 685                dev_warn(aspi->dev, "CE%d window invalid", cs);
 686                return -EINVAL;
 687        }
 688
 689        aspeed_spi_chip_enable(aspi, cs, true);
 690
 691        chip->ctl_val[ASPEED_SPI_BASE] = CTRL_CE_STOP_ACTIVE | CTRL_IO_MODE_USER;
 692
 693        dev_dbg(aspi->dev, "CE%d setup done\n", cs);
 694        return 0;
 695}
 696
 697static void aspeed_spi_cleanup(struct spi_device *spi)
 698{
 699        struct aspeed_spi *aspi = spi_controller_get_devdata(spi->master);
 700        unsigned int cs = spi->chip_select;
 701
 702        aspeed_spi_chip_enable(aspi, cs, false);
 703
 704        dev_dbg(aspi->dev, "CE%d cleanup done\n", cs);
 705}
 706
 707static void aspeed_spi_enable(struct aspeed_spi *aspi, bool enable)
 708{
 709        int cs;
 710
 711        for (cs = 0; cs < aspi->data->max_cs; cs++)
 712                aspeed_spi_chip_enable(aspi, cs, enable);
 713}
 714
 715static int aspeed_spi_probe(struct platform_device *pdev)
 716{
 717        struct device *dev = &pdev->dev;
 718        const struct aspeed_spi_data *data;
 719        struct spi_controller *ctlr;
 720        struct aspeed_spi *aspi;
 721        struct resource *res;
 722        int ret;
 723
 724        data = of_device_get_match_data(&pdev->dev);
 725        if (!data)
 726                return -ENODEV;
 727
 728        ctlr = devm_spi_alloc_master(dev, sizeof(*aspi));
 729        if (!ctlr)
 730                return -ENOMEM;
 731
 732        aspi = spi_controller_get_devdata(ctlr);
 733        platform_set_drvdata(pdev, aspi);
 734        aspi->data = data;
 735        aspi->dev = dev;
 736
 737        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 738        aspi->regs = devm_ioremap_resource(dev, res);
 739        if (IS_ERR(aspi->regs)) {
 740                dev_err(dev, "missing AHB register window\n");
 741                return PTR_ERR(aspi->regs);
 742        }
 743
 744        res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 745        aspi->ahb_base = devm_ioremap_resource(dev, res);
 746        if (IS_ERR(aspi->ahb_base)) {
 747                dev_err(dev, "missing AHB mapping window\n");
 748                return PTR_ERR(aspi->ahb_base);
 749        }
 750
 751        aspi->ahb_window_size = resource_size(res);
 752        aspi->ahb_base_phy = res->start;
 753
 754        aspi->clk = devm_clk_get(&pdev->dev, NULL);
 755        if (IS_ERR(aspi->clk)) {
 756                dev_err(dev, "missing clock\n");
 757                return PTR_ERR(aspi->clk);
 758        }
 759
 760        aspi->clk_freq = clk_get_rate(aspi->clk);
 761        if (!aspi->clk_freq) {
 762                dev_err(dev, "invalid clock\n");
 763                return -EINVAL;
 764        }
 765
 766        ret = clk_prepare_enable(aspi->clk);
 767        if (ret) {
 768                dev_err(dev, "can not enable the clock\n");
 769                return ret;
 770        }
 771
 772        /* IRQ is for DMA, which the driver doesn't support yet */
 773
 774        ctlr->mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | data->mode_bits;
 775        ctlr->bus_num = pdev->id;
 776        ctlr->mem_ops = &aspeed_spi_mem_ops;
 777        ctlr->setup = aspeed_spi_setup;
 778        ctlr->cleanup = aspeed_spi_cleanup;
 779        ctlr->num_chipselect = data->max_cs;
 780        ctlr->dev.of_node = dev->of_node;
 781
 782        ret = devm_spi_register_controller(dev, ctlr);
 783        if (ret) {
 784                dev_err(&pdev->dev, "spi_register_controller failed\n");
 785                goto disable_clk;
 786        }
 787        return 0;
 788
 789disable_clk:
 790        clk_disable_unprepare(aspi->clk);
 791        return ret;
 792}
 793
 794static int aspeed_spi_remove(struct platform_device *pdev)
 795{
 796        struct aspeed_spi *aspi = platform_get_drvdata(pdev);
 797
 798        aspeed_spi_enable(aspi, false);
 799        clk_disable_unprepare(aspi->clk);
 800        return 0;
 801}
 802
 803/*
 804 * AHB mappings
 805 */
 806
 807/*
 808 * The Segment Registers of the AST2400 and AST2500 use a 8MB unit.
 809 * The address range is encoded with absolute addresses in the overall
 810 * mapping window.
 811 */
 812static u32 aspeed_spi_segment_start(struct aspeed_spi *aspi, u32 reg)
 813{
 814        return ((reg >> 16) & 0xFF) << 23;
 815}
 816
 817static u32 aspeed_spi_segment_end(struct aspeed_spi *aspi, u32 reg)
 818{
 819        return ((reg >> 24) & 0xFF) << 23;
 820}
 821
 822static u32 aspeed_spi_segment_reg(struct aspeed_spi *aspi, u32 start, u32 end)
 823{
 824        return (((start >> 23) & 0xFF) << 16) | (((end >> 23) & 0xFF) << 24);
 825}
 826
 827/*
 828 * The Segment Registers of the AST2600 use a 1MB unit. The address
 829 * range is encoded with offsets in the overall mapping window.
 830 */
 831
 832#define AST2600_SEG_ADDR_MASK 0x0ff00000
 833
 834static u32 aspeed_spi_segment_ast2600_start(struct aspeed_spi *aspi,
 835                                            u32 reg)
 836{
 837        u32 start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
 838
 839        return aspi->ahb_base_phy + start_offset;
 840}
 841
 842static u32 aspeed_spi_segment_ast2600_end(struct aspeed_spi *aspi,
 843                                          u32 reg)
 844{
 845        u32 end_offset = reg & AST2600_SEG_ADDR_MASK;
 846
 847        /* segment is disabled */
 848        if (!end_offset)
 849                return aspi->ahb_base_phy;
 850
 851        return aspi->ahb_base_phy + end_offset + 0x100000;
 852}
 853
 854static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi,
 855                                          u32 start, u32 end)
 856{
 857        /* disable zero size segments */
 858        if (start == end)
 859                return 0;
 860
 861        return ((start & AST2600_SEG_ADDR_MASK) >> 16) |
 862                ((end - 1) & AST2600_SEG_ADDR_MASK);
 863}
 864
 865/*
 866 * Read timing compensation sequences
 867 */
 868
 869#define CALIBRATE_BUF_SIZE SZ_16K
 870
 871static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip,
 872                                   const u8 *golden_buf, u8 *test_buf)
 873{
 874        int i;
 875
 876        for (i = 0; i < 10; i++) {
 877                memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
 878                if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) {
 879#if defined(VERBOSE_DEBUG)
 880                        print_hex_dump_bytes(DEVICE_NAME "  fail: ", DUMP_PREFIX_NONE,
 881                                             test_buf, 0x100);
 882#endif
 883                        return false;
 884                }
 885        }
 886        return true;
 887}
 888
 889#define FREAD_TPASS(i)  (((i) / 2) | (((i) & 1) ? 0 : 8))
 890
 891/*
 892 * The timing register is shared by all devices. Only update for CE0.
 893 */
 894static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
 895                                const u8 *golden_buf, u8 *test_buf)
 896{
 897        struct aspeed_spi *aspi = chip->aspi;
 898        const struct aspeed_spi_data *data = aspi->data;
 899        int i;
 900        int good_pass = -1, pass_count = 0;
 901        u32 shift = (hdiv - 1) << 2;
 902        u32 mask = ~(0xfu << shift);
 903        u32 fread_timing_val = 0;
 904
 905        /* Try HCLK delay 0..5, each one with/without delay and look for a
 906         * good pair.
 907         */
 908        for (i = 0; i < 12; i++) {
 909                bool pass;
 910
 911                if (chip->cs == 0) {
 912                        fread_timing_val &= mask;
 913                        fread_timing_val |= FREAD_TPASS(i) << shift;
 914                        writel(fread_timing_val, aspi->regs + data->timing);
 915                }
 916                pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
 917                dev_dbg(aspi->dev,
 918                        "  * [%08x] %d HCLK delay, %dns DI delay : %s",
 919                        fread_timing_val, i / 2, (i & 1) ? 0 : 4,
 920                        pass ? "PASS" : "FAIL");
 921                if (pass) {
 922                        pass_count++;
 923                        if (pass_count == 3) {
 924                                good_pass = i - 1;
 925                                break;
 926                        }
 927                } else {
 928                        pass_count = 0;
 929                }
 930        }
 931
 932        /* No good setting for this frequency */
 933        if (good_pass < 0)
 934                return -1;
 935
 936        /* We have at least one pass of margin, let's use first pass */
 937        if (chip->cs == 0) {
 938                fread_timing_val &= mask;
 939                fread_timing_val |= FREAD_TPASS(good_pass) << shift;
 940                writel(fread_timing_val, aspi->regs + data->timing);
 941        }
 942        dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]",
 943                good_pass, fread_timing_val);
 944        return 0;
 945}
 946
 947static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size)
 948{
 949        const u32 *tb32 = (const u32 *)test_buf;
 950        u32 i, cnt = 0;
 951
 952        /* We check if we have enough words that are neither all 0
 953         * nor all 1's so the calibration can be considered valid.
 954         *
 955         * I use an arbitrary threshold for now of 64
 956         */
 957        size >>= 2;
 958        for (i = 0; i < size; i++) {
 959                if (tb32[i] != 0 && tb32[i] != 0xffffffff)
 960                        cnt++;
 961        }
 962        return cnt >= 64;
 963}
 964
 965static const u32 aspeed_spi_hclk_divs[] = {
 966        0xf, /* HCLK */
 967        0x7, /* HCLK/2 */
 968        0xe, /* HCLK/3 */
 969        0x6, /* HCLK/4 */
 970        0xd, /* HCLK/5 */
 971};
 972
 973#define ASPEED_SPI_HCLK_DIV(i) \
 974        (aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT)
 975
 976static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip)
 977{
 978        struct aspeed_spi *aspi = chip->aspi;
 979        const struct aspeed_spi_data *data = aspi->data;
 980        u32 ahb_freq = aspi->clk_freq;
 981        u32 max_freq = chip->clk_freq;
 982        u32 ctl_val;
 983        u8 *golden_buf = NULL;
 984        u8 *test_buf = NULL;
 985        int i, rc, best_div = -1;
 986
 987        dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz",
 988                ahb_freq / 1000000);
 989
 990        /*
 991         * use the related low frequency to get check calibration data
 992         * and get golden data.
 993         */
 994        ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask;
 995        writel(ctl_val, chip->ctl);
 996
 997        test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL);
 998        if (!test_buf)
 999                return -ENOMEM;
1000
1001        golden_buf = test_buf + CALIBRATE_BUF_SIZE;
1002
1003        memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
1004        if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) {
1005                dev_info(aspi->dev, "Calibration area too uniform, using low speed");
1006                goto no_calib;
1007        }
1008
1009#if defined(VERBOSE_DEBUG)
1010        print_hex_dump_bytes(DEVICE_NAME "  good: ", DUMP_PREFIX_NONE,
1011                             golden_buf, 0x100);
1012#endif
1013
1014        /* Now we iterate the HCLK dividers until we find our breaking point */
1015        for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) {
1016                u32 tv, freq;
1017
1018                freq = ahb_freq / i;
1019                if (freq > max_freq)
1020                        continue;
1021
1022                /* Set the timing */
1023                tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i);
1024                writel(tv, chip->ctl);
1025                dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv);
1026                rc = data->calibrate(chip, i, golden_buf, test_buf);
1027                if (rc == 0)
1028                        best_div = i;
1029        }
1030
1031        /* Nothing found ? */
1032        if (best_div < 0) {
1033                dev_warn(aspi->dev, "No good frequency, using dumb slow");
1034        } else {
1035                dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div);
1036
1037                /* Record the freq */
1038                for (i = 0; i < ASPEED_SPI_MAX; i++)
1039                        chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) |
1040                                ASPEED_SPI_HCLK_DIV(best_div);
1041        }
1042
1043no_calib:
1044        writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
1045        kfree(test_buf);
1046        return 0;
1047}
1048
1049#define TIMING_DELAY_DI         BIT(3)
1050#define TIMING_DELAY_HCYCLE_MAX 5
1051#define TIMING_REG_AST2600(chip)                                \
1052        ((chip)->aspi->regs + (chip)->aspi->data->timing +      \
1053         (chip)->cs * 4)
1054
1055static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
1056                                        const u8 *golden_buf, u8 *test_buf)
1057{
1058        struct aspeed_spi *aspi = chip->aspi;
1059        int hcycle;
1060        u32 shift = (hdiv - 2) << 3;
1061        u32 mask = ~(0xfu << shift);
1062        u32 fread_timing_val = 0;
1063
1064        for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) {
1065                int delay_ns;
1066                bool pass = false;
1067
1068                fread_timing_val &= mask;
1069                fread_timing_val |= hcycle << shift;
1070
1071                /* no DI input delay first  */
1072                writel(fread_timing_val, TIMING_REG_AST2600(chip));
1073                pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1074                dev_dbg(aspi->dev,
1075                        "  * [%08x] %d HCLK delay, DI delay none : %s",
1076                        fread_timing_val, hcycle, pass ? "PASS" : "FAIL");
1077                if (pass)
1078                        return 0;
1079
1080                /* Add DI input delays  */
1081                fread_timing_val &= mask;
1082                fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift;
1083
1084                for (delay_ns = 0; delay_ns < 0x10; delay_ns++) {
1085                        fread_timing_val &= ~(0xf << (4 + shift));
1086                        fread_timing_val |= delay_ns << (4 + shift);
1087
1088                        writel(fread_timing_val, TIMING_REG_AST2600(chip));
1089                        pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1090                        dev_dbg(aspi->dev,
1091                                "  * [%08x] %d HCLK delay, DI delay %d.%dns : %s",
1092                                fread_timing_val, hcycle, (delay_ns + 1) / 2,
1093                                (delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL");
1094                        /*
1095                         * TODO: This is optimistic. We should look
1096                         * for a working interval and save the middle
1097                         * value in the read timing register.
1098                         */
1099                        if (pass)
1100                                return 0;
1101                }
1102        }
1103
1104        /* No good setting for this frequency */
1105        return -1;
1106}
1107
1108/*
1109 * Platform definitions
1110 */
1111static const struct aspeed_spi_data ast2400_fmc_data = {
1112        .max_cs        = 5,
1113        .hastype       = true,
1114        .we0           = 16,
1115        .ctl0          = CE0_CTRL_REG,
1116        .timing        = CE0_TIMING_COMPENSATION_REG,
1117        .hclk_mask     = 0xfffff0ff,
1118        .hdiv_max      = 1,
1119        .calibrate     = aspeed_spi_calibrate,
1120        .segment_start = aspeed_spi_segment_start,
1121        .segment_end   = aspeed_spi_segment_end,
1122        .segment_reg   = aspeed_spi_segment_reg,
1123};
1124
1125static const struct aspeed_spi_data ast2400_spi_data = {
1126        .max_cs        = 1,
1127        .hastype       = false,
1128        .we0           = 0,
1129        .ctl0          = 0x04,
1130        .timing        = 0x14,
1131        .hclk_mask     = 0xfffff0ff,
1132        .hdiv_max      = 1,
1133        .calibrate     = aspeed_spi_calibrate,
1134        /* No segment registers */
1135};
1136
1137static const struct aspeed_spi_data ast2500_fmc_data = {
1138        .max_cs        = 3,
1139        .hastype       = true,
1140        .we0           = 16,
1141        .ctl0          = CE0_CTRL_REG,
1142        .timing        = CE0_TIMING_COMPENSATION_REG,
1143        .hclk_mask     = 0xffffd0ff,
1144        .hdiv_max      = 1,
1145        .calibrate     = aspeed_spi_calibrate,
1146        .segment_start = aspeed_spi_segment_start,
1147        .segment_end   = aspeed_spi_segment_end,
1148        .segment_reg   = aspeed_spi_segment_reg,
1149};
1150
1151static const struct aspeed_spi_data ast2500_spi_data = {
1152        .max_cs        = 2,
1153        .hastype       = false,
1154        .we0           = 16,
1155        .ctl0          = CE0_CTRL_REG,
1156        .timing        = CE0_TIMING_COMPENSATION_REG,
1157        .hclk_mask     = 0xffffd0ff,
1158        .hdiv_max      = 1,
1159        .calibrate     = aspeed_spi_calibrate,
1160        .segment_start = aspeed_spi_segment_start,
1161        .segment_end   = aspeed_spi_segment_end,
1162        .segment_reg   = aspeed_spi_segment_reg,
1163};
1164
1165static const struct aspeed_spi_data ast2600_fmc_data = {
1166        .max_cs        = 3,
1167        .hastype       = false,
1168        .mode_bits     = SPI_RX_QUAD | SPI_RX_QUAD,
1169        .we0           = 16,
1170        .ctl0          = CE0_CTRL_REG,
1171        .timing        = CE0_TIMING_COMPENSATION_REG,
1172        .hclk_mask     = 0xf0fff0ff,
1173        .hdiv_max      = 2,
1174        .calibrate     = aspeed_spi_ast2600_calibrate,
1175        .segment_start = aspeed_spi_segment_ast2600_start,
1176        .segment_end   = aspeed_spi_segment_ast2600_end,
1177        .segment_reg   = aspeed_spi_segment_ast2600_reg,
1178};
1179
1180static const struct aspeed_spi_data ast2600_spi_data = {
1181        .max_cs        = 2,
1182        .hastype       = false,
1183        .mode_bits     = SPI_RX_QUAD | SPI_RX_QUAD,
1184        .we0           = 16,
1185        .ctl0          = CE0_CTRL_REG,
1186        .timing        = CE0_TIMING_COMPENSATION_REG,
1187        .hclk_mask     = 0xf0fff0ff,
1188        .hdiv_max      = 2,
1189        .calibrate     = aspeed_spi_ast2600_calibrate,
1190        .segment_start = aspeed_spi_segment_ast2600_start,
1191        .segment_end   = aspeed_spi_segment_ast2600_end,
1192        .segment_reg   = aspeed_spi_segment_ast2600_reg,
1193};
1194
1195static const struct of_device_id aspeed_spi_matches[] = {
1196        { .compatible = "aspeed,ast2400-fmc", .data = &ast2400_fmc_data },
1197        { .compatible = "aspeed,ast2400-spi", .data = &ast2400_spi_data },
1198        { .compatible = "aspeed,ast2500-fmc", .data = &ast2500_fmc_data },
1199        { .compatible = "aspeed,ast2500-spi", .data = &ast2500_spi_data },
1200        { .compatible = "aspeed,ast2600-fmc", .data = &ast2600_fmc_data },
1201        { .compatible = "aspeed,ast2600-spi", .data = &ast2600_spi_data },
1202        { }
1203};
1204MODULE_DEVICE_TABLE(of, aspeed_spi_matches);
1205
1206static struct platform_driver aspeed_spi_driver = {
1207        .probe                  = aspeed_spi_probe,
1208        .remove                 = aspeed_spi_remove,
1209        .driver = {
1210                .name           = DEVICE_NAME,
1211                .of_match_table = aspeed_spi_matches,
1212        }
1213};
1214
1215module_platform_driver(aspeed_spi_driver);
1216
1217MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
1218MODULE_AUTHOR("Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>");
1219MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
1220MODULE_LICENSE("GPL v2");
1221