linux/drivers/spi/spi-rspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SH RSPI driver
   4 *
   5 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   6 * Copyright (C) 2014 Glider bvba
   7 *
   8 * Based on spi-sh.c:
   9 * Copyright (C) 2011 Renesas Solutions Corp.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/dmaengine.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/of_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/reset.h>
  25#include <linux/sh_dma.h>
  26#include <linux/spi/spi.h>
  27#include <linux/spi/rspi.h>
  28#include <linux/spinlock.h>
  29
  30#define RSPI_SPCR               0x00    /* Control Register */
  31#define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
  32#define RSPI_SPPCR              0x02    /* Pin Control Register */
  33#define RSPI_SPSR               0x03    /* Status Register */
  34#define RSPI_SPDR               0x04    /* Data Register */
  35#define RSPI_SPSCR              0x08    /* Sequence Control Register */
  36#define RSPI_SPSSR              0x09    /* Sequence Status Register */
  37#define RSPI_SPBR               0x0a    /* Bit Rate Register */
  38#define RSPI_SPDCR              0x0b    /* Data Control Register */
  39#define RSPI_SPCKD              0x0c    /* Clock Delay Register */
  40#define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
  41#define RSPI_SPND               0x0e    /* Next-Access Delay Register */
  42#define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
  43#define RSPI_SPCMD0             0x10    /* Command Register 0 */
  44#define RSPI_SPCMD1             0x12    /* Command Register 1 */
  45#define RSPI_SPCMD2             0x14    /* Command Register 2 */
  46#define RSPI_SPCMD3             0x16    /* Command Register 3 */
  47#define RSPI_SPCMD4             0x18    /* Command Register 4 */
  48#define RSPI_SPCMD5             0x1a    /* Command Register 5 */
  49#define RSPI_SPCMD6             0x1c    /* Command Register 6 */
  50#define RSPI_SPCMD7             0x1e    /* Command Register 7 */
  51#define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
  52#define RSPI_NUM_SPCMD          8
  53#define RSPI_RZ_NUM_SPCMD       4
  54#define QSPI_NUM_SPCMD          4
  55
  56/* RSPI on RZ only */
  57#define RSPI_SPBFCR             0x20    /* Buffer Control Register */
  58#define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
  59
  60/* QSPI only */
  61#define QSPI_SPBFCR             0x18    /* Buffer Control Register */
  62#define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
  63#define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
  64#define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
  65#define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
  66#define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
  67#define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
  68
  69/* SPCR - Control Register */
  70#define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
  71#define SPCR_SPE                0x40    /* Function Enable */
  72#define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
  73#define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
  74#define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
  75#define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
  76/* RSPI on SH only */
  77#define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
  78#define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
  79/* QSPI on R-Car Gen2 only */
  80#define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
  81#define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
  82
  83/* SSLP - Slave Select Polarity Register */
  84#define SSLP_SSLP(i)            BIT(i)  /* SSLi Signal Polarity Setting */
  85
  86/* SPPCR - Pin Control Register */
  87#define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
  88#define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
  89#define SPPCR_SPOM              0x04
  90#define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
  91#define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
  92
  93#define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  94#define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  95
  96/* SPSR - Status Register */
  97#define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
  98#define SPSR_TEND               0x40    /* Transmit End */
  99#define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
 100#define SPSR_PERF               0x08    /* Parity Error Flag */
 101#define SPSR_MODF               0x04    /* Mode Fault Error Flag */
 102#define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
 103#define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
 104
 105/* SPSCR - Sequence Control Register */
 106#define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
 107
 108/* SPSSR - Sequence Status Register */
 109#define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
 110#define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
 111
 112/* SPDCR - Data Control Register */
 113#define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
 114#define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
 115#define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
 116#define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
 117#define SPDCR_SPLWORD           SPDCR_SPLW1
 118#define SPDCR_SPLBYTE           SPDCR_SPLW0
 119#define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
 120#define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
 121#define SPDCR_SLSEL1            0x08
 122#define SPDCR_SLSEL0            0x04
 123#define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
 124#define SPDCR_SPFC1             0x02
 125#define SPDCR_SPFC0             0x01
 126#define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
 127
 128/* SPCKD - Clock Delay Register */
 129#define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
 130
 131/* SSLND - Slave Select Negation Delay Register */
 132#define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
 133
 134/* SPND - Next-Access Delay Register */
 135#define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
 136
 137/* SPCR2 - Control Register 2 */
 138#define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
 139#define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
 140#define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
 141#define SPCR2_SPPE              0x01    /* Parity Enable */
 142
 143/* SPCMDn - Command Registers */
 144#define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
 145#define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
 146#define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
 147#define SPCMD_LSBF              0x1000  /* LSB First */
 148#define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
 149#define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
 150#define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
 151#define SPCMD_SPB_16BIT         0x0100
 152#define SPCMD_SPB_20BIT         0x0000
 153#define SPCMD_SPB_24BIT         0x0100
 154#define SPCMD_SPB_32BIT         0x0200
 155#define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
 156#define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
 157#define SPCMD_SPIMOD1           0x0040
 158#define SPCMD_SPIMOD0           0x0020
 159#define SPCMD_SPIMOD_SINGLE     0
 160#define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
 161#define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
 162#define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
 163#define SPCMD_SSLA(i)           ((i) << 4)      /* SSL Assert Signal Setting */
 164#define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
 165#define SPCMD_BRDV(brdv)        ((brdv) << 2)
 166#define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
 167#define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
 168
 169/* SPBFCR - Buffer Control Register */
 170#define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
 171#define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
 172#define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
 173#define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
 174/* QSPI on R-Car Gen2 */
 175#define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
 176#define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
 177#define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
 178#define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
 179
 180#define QSPI_BUFFER_SIZE        32u
 181
 182struct rspi_data {
 183        void __iomem *addr;
 184        u32 speed_hz;
 185        struct spi_controller *ctlr;
 186        struct platform_device *pdev;
 187        wait_queue_head_t wait;
 188        spinlock_t lock;                /* Protects RMW-access to RSPI_SSLP */
 189        struct clk *clk;
 190        u16 spcmd;
 191        u8 spsr;
 192        u8 sppcr;
 193        int rx_irq, tx_irq;
 194        const struct spi_ops *ops;
 195
 196        unsigned dma_callbacked:1;
 197        unsigned byte_access:1;
 198};
 199
 200static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 201{
 202        iowrite8(data, rspi->addr + offset);
 203}
 204
 205static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 206{
 207        iowrite16(data, rspi->addr + offset);
 208}
 209
 210static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 211{
 212        iowrite32(data, rspi->addr + offset);
 213}
 214
 215static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 216{
 217        return ioread8(rspi->addr + offset);
 218}
 219
 220static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 221{
 222        return ioread16(rspi->addr + offset);
 223}
 224
 225static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 226{
 227        if (rspi->byte_access)
 228                rspi_write8(rspi, data, RSPI_SPDR);
 229        else /* 16 bit */
 230                rspi_write16(rspi, data, RSPI_SPDR);
 231}
 232
 233static u16 rspi_read_data(const struct rspi_data *rspi)
 234{
 235        if (rspi->byte_access)
 236                return rspi_read8(rspi, RSPI_SPDR);
 237        else /* 16 bit */
 238                return rspi_read16(rspi, RSPI_SPDR);
 239}
 240
 241/* optional functions */
 242struct spi_ops {
 243        int (*set_config_register)(struct rspi_data *rspi, int access_size);
 244        int (*transfer_one)(struct spi_controller *ctlr,
 245                            struct spi_device *spi, struct spi_transfer *xfer);
 246        u16 extra_mode_bits;
 247        u16 min_div;
 248        u16 max_div;
 249        u16 flags;
 250        u16 fifo_size;
 251        u8 num_hw_ss;
 252};
 253
 254static void rspi_set_rate(struct rspi_data *rspi)
 255{
 256        unsigned long clksrc;
 257        int brdv = 0, spbr;
 258
 259        clksrc = clk_get_rate(rspi->clk);
 260        spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
 261        while (spbr > 255 && brdv < 3) {
 262                brdv++;
 263                spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
 264        }
 265
 266        rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 267        rspi->spcmd |= SPCMD_BRDV(brdv);
 268        rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
 269}
 270
 271/*
 272 * functions for RSPI on legacy SH
 273 */
 274static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 275{
 276        /* Sets output mode, MOSI signal, and (optionally) loopback */
 277        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 278
 279        /* Sets transfer bit rate */
 280        rspi_set_rate(rspi);
 281
 282        /* Disable dummy transmission, set 16-bit word access, 1 frame */
 283        rspi_write8(rspi, 0, RSPI_SPDCR);
 284        rspi->byte_access = 0;
 285
 286        /* Sets RSPCK, SSL, next-access delay value */
 287        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 288        rspi_write8(rspi, 0x00, RSPI_SSLND);
 289        rspi_write8(rspi, 0x00, RSPI_SPND);
 290
 291        /* Sets parity, interrupt mask */
 292        rspi_write8(rspi, 0x00, RSPI_SPCR2);
 293
 294        /* Resets sequencer */
 295        rspi_write8(rspi, 0, RSPI_SPSCR);
 296        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 297        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 298
 299        /* Sets RSPI mode */
 300        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 301
 302        return 0;
 303}
 304
 305/*
 306 * functions for RSPI on RZ
 307 */
 308static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 309{
 310        /* Sets output mode, MOSI signal, and (optionally) loopback */
 311        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 312
 313        /* Sets transfer bit rate */
 314        rspi_set_rate(rspi);
 315
 316        /* Disable dummy transmission, set byte access */
 317        rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 318        rspi->byte_access = 1;
 319
 320        /* Sets RSPCK, SSL, next-access delay value */
 321        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 322        rspi_write8(rspi, 0x00, RSPI_SSLND);
 323        rspi_write8(rspi, 0x00, RSPI_SPND);
 324
 325        /* Resets sequencer */
 326        rspi_write8(rspi, 0, RSPI_SPSCR);
 327        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 328        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 329
 330        /* Sets RSPI mode */
 331        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 332
 333        return 0;
 334}
 335
 336/*
 337 * functions for QSPI
 338 */
 339static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 340{
 341        unsigned long clksrc;
 342        int brdv = 0, spbr;
 343
 344        /* Sets output mode, MOSI signal, and (optionally) loopback */
 345        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 346
 347        /* Sets transfer bit rate */
 348        clksrc = clk_get_rate(rspi->clk);
 349        if (rspi->speed_hz >= clksrc) {
 350                spbr = 0;
 351                rspi->speed_hz = clksrc;
 352        } else {
 353                spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
 354                while (spbr > 255 && brdv < 3) {
 355                        brdv++;
 356                        spbr = DIV_ROUND_UP(spbr, 2);
 357                }
 358                spbr = clamp(spbr, 0, 255);
 359                rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
 360        }
 361        rspi_write8(rspi, spbr, RSPI_SPBR);
 362        rspi->spcmd |= SPCMD_BRDV(brdv);
 363
 364        /* Disable dummy transmission, set byte access */
 365        rspi_write8(rspi, 0, RSPI_SPDCR);
 366        rspi->byte_access = 1;
 367
 368        /* Sets RSPCK, SSL, next-access delay value */
 369        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 370        rspi_write8(rspi, 0x00, RSPI_SSLND);
 371        rspi_write8(rspi, 0x00, RSPI_SPND);
 372
 373        /* Data Length Setting */
 374        if (access_size == 8)
 375                rspi->spcmd |= SPCMD_SPB_8BIT;
 376        else if (access_size == 16)
 377                rspi->spcmd |= SPCMD_SPB_16BIT;
 378        else
 379                rspi->spcmd |= SPCMD_SPB_32BIT;
 380
 381        rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 382
 383        /* Resets transfer data length */
 384        rspi_write32(rspi, 0, QSPI_SPBMUL0);
 385
 386        /* Resets transmit and receive buffer */
 387        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 388        /* Sets buffer to allow normal operation */
 389        rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 390
 391        /* Resets sequencer */
 392        rspi_write8(rspi, 0, RSPI_SPSCR);
 393        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 394
 395        /* Sets RSPI mode */
 396        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 397
 398        return 0;
 399}
 400
 401static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
 402{
 403        u8 data;
 404
 405        data = rspi_read8(rspi, reg);
 406        data &= ~mask;
 407        data |= (val & mask);
 408        rspi_write8(rspi, data, reg);
 409}
 410
 411static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
 412                                          unsigned int len)
 413{
 414        unsigned int n;
 415
 416        n = min(len, QSPI_BUFFER_SIZE);
 417
 418        if (len >= QSPI_BUFFER_SIZE) {
 419                /* sets triggering number to 32 bytes */
 420                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 421                             SPBFCR_TXTRG_32B, QSPI_SPBFCR);
 422        } else {
 423                /* sets triggering number to 1 byte */
 424                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 425                             SPBFCR_TXTRG_1B, QSPI_SPBFCR);
 426        }
 427
 428        return n;
 429}
 430
 431static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
 432{
 433        unsigned int n;
 434
 435        n = min(len, QSPI_BUFFER_SIZE);
 436
 437        if (len >= QSPI_BUFFER_SIZE) {
 438                /* sets triggering number to 32 bytes */
 439                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 440                             SPBFCR_RXTRG_32B, QSPI_SPBFCR);
 441        } else {
 442                /* sets triggering number to 1 byte */
 443                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 444                             SPBFCR_RXTRG_1B, QSPI_SPBFCR);
 445        }
 446        return n;
 447}
 448
 449static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 450{
 451        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 452}
 453
 454static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 455{
 456        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 457}
 458
 459static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 460                                   u8 enable_bit)
 461{
 462        int ret;
 463
 464        rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 465        if (rspi->spsr & wait_mask)
 466                return 0;
 467
 468        rspi_enable_irq(rspi, enable_bit);
 469        ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 470        if (ret == 0 && !(rspi->spsr & wait_mask))
 471                return -ETIMEDOUT;
 472
 473        return 0;
 474}
 475
 476static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
 477{
 478        return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 479}
 480
 481static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
 482{
 483        return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
 484}
 485
 486static int rspi_data_out(struct rspi_data *rspi, u8 data)
 487{
 488        int error = rspi_wait_for_tx_empty(rspi);
 489        if (error < 0) {
 490                dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 491                return error;
 492        }
 493        rspi_write_data(rspi, data);
 494        return 0;
 495}
 496
 497static int rspi_data_in(struct rspi_data *rspi)
 498{
 499        int error;
 500        u8 data;
 501
 502        error = rspi_wait_for_rx_full(rspi);
 503        if (error < 0) {
 504                dev_err(&rspi->ctlr->dev, "receive timeout\n");
 505                return error;
 506        }
 507        data = rspi_read_data(rspi);
 508        return data;
 509}
 510
 511static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
 512                             unsigned int n)
 513{
 514        while (n-- > 0) {
 515                if (tx) {
 516                        int ret = rspi_data_out(rspi, *tx++);
 517                        if (ret < 0)
 518                                return ret;
 519                }
 520                if (rx) {
 521                        int ret = rspi_data_in(rspi);
 522                        if (ret < 0)
 523                                return ret;
 524                        *rx++ = ret;
 525                }
 526        }
 527
 528        return 0;
 529}
 530
 531static void rspi_dma_complete(void *arg)
 532{
 533        struct rspi_data *rspi = arg;
 534
 535        rspi->dma_callbacked = 1;
 536        wake_up_interruptible(&rspi->wait);
 537}
 538
 539static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
 540                             struct sg_table *rx)
 541{
 542        struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 543        u8 irq_mask = 0;
 544        unsigned int other_irq = 0;
 545        dma_cookie_t cookie;
 546        int ret;
 547
 548        /* First prepare and submit the DMA request(s), as this may fail */
 549        if (rx) {
 550                desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
 551                                        rx->nents, DMA_DEV_TO_MEM,
 552                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 553                if (!desc_rx) {
 554                        ret = -EAGAIN;
 555                        goto no_dma_rx;
 556                }
 557
 558                desc_rx->callback = rspi_dma_complete;
 559                desc_rx->callback_param = rspi;
 560                cookie = dmaengine_submit(desc_rx);
 561                if (dma_submit_error(cookie)) {
 562                        ret = cookie;
 563                        goto no_dma_rx;
 564                }
 565
 566                irq_mask |= SPCR_SPRIE;
 567        }
 568
 569        if (tx) {
 570                desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
 571                                        tx->nents, DMA_MEM_TO_DEV,
 572                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 573                if (!desc_tx) {
 574                        ret = -EAGAIN;
 575                        goto no_dma_tx;
 576                }
 577
 578                if (rx) {
 579                        /* No callback */
 580                        desc_tx->callback = NULL;
 581                } else {
 582                        desc_tx->callback = rspi_dma_complete;
 583                        desc_tx->callback_param = rspi;
 584                }
 585                cookie = dmaengine_submit(desc_tx);
 586                if (dma_submit_error(cookie)) {
 587                        ret = cookie;
 588                        goto no_dma_tx;
 589                }
 590
 591                irq_mask |= SPCR_SPTIE;
 592        }
 593
 594        /*
 595         * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
 596         * called. So, this driver disables the IRQ while DMA transfer.
 597         */
 598        if (tx)
 599                disable_irq(other_irq = rspi->tx_irq);
 600        if (rx && rspi->rx_irq != other_irq)
 601                disable_irq(rspi->rx_irq);
 602
 603        rspi_enable_irq(rspi, irq_mask);
 604        rspi->dma_callbacked = 0;
 605
 606        /* Now start DMA */
 607        if (rx)
 608                dma_async_issue_pending(rspi->ctlr->dma_rx);
 609        if (tx)
 610                dma_async_issue_pending(rspi->ctlr->dma_tx);
 611
 612        ret = wait_event_interruptible_timeout(rspi->wait,
 613                                               rspi->dma_callbacked, HZ);
 614        if (ret > 0 && rspi->dma_callbacked) {
 615                ret = 0;
 616                if (tx)
 617                        dmaengine_synchronize(rspi->ctlr->dma_tx);
 618                if (rx)
 619                        dmaengine_synchronize(rspi->ctlr->dma_rx);
 620        } else {
 621                if (!ret) {
 622                        dev_err(&rspi->ctlr->dev, "DMA timeout\n");
 623                        ret = -ETIMEDOUT;
 624                }
 625                if (tx)
 626                        dmaengine_terminate_sync(rspi->ctlr->dma_tx);
 627                if (rx)
 628                        dmaengine_terminate_sync(rspi->ctlr->dma_rx);
 629        }
 630
 631        rspi_disable_irq(rspi, irq_mask);
 632
 633        if (tx)
 634                enable_irq(rspi->tx_irq);
 635        if (rx && rspi->rx_irq != other_irq)
 636                enable_irq(rspi->rx_irq);
 637
 638        return ret;
 639
 640no_dma_tx:
 641        if (rx)
 642                dmaengine_terminate_sync(rspi->ctlr->dma_rx);
 643no_dma_rx:
 644        if (ret == -EAGAIN) {
 645                dev_warn_once(&rspi->ctlr->dev,
 646                              "DMA not available, falling back to PIO\n");
 647        }
 648        return ret;
 649}
 650
 651static void rspi_receive_init(const struct rspi_data *rspi)
 652{
 653        u8 spsr;
 654
 655        spsr = rspi_read8(rspi, RSPI_SPSR);
 656        if (spsr & SPSR_SPRF)
 657                rspi_read_data(rspi);   /* dummy read */
 658        if (spsr & SPSR_OVRF)
 659                rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 660                            RSPI_SPSR);
 661}
 662
 663static void rspi_rz_receive_init(const struct rspi_data *rspi)
 664{
 665        rspi_receive_init(rspi);
 666        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 667        rspi_write8(rspi, 0, RSPI_SPBFCR);
 668}
 669
 670static void qspi_receive_init(const struct rspi_data *rspi)
 671{
 672        u8 spsr;
 673
 674        spsr = rspi_read8(rspi, RSPI_SPSR);
 675        if (spsr & SPSR_SPRF)
 676                rspi_read_data(rspi);   /* dummy read */
 677        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 678        rspi_write8(rspi, 0, QSPI_SPBFCR);
 679}
 680
 681static bool __rspi_can_dma(const struct rspi_data *rspi,
 682                           const struct spi_transfer *xfer)
 683{
 684        return xfer->len > rspi->ops->fifo_size;
 685}
 686
 687static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
 688                         struct spi_transfer *xfer)
 689{
 690        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 691
 692        return __rspi_can_dma(rspi, xfer);
 693}
 694
 695static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
 696                                         struct spi_transfer *xfer)
 697{
 698        if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
 699                return -EAGAIN;
 700
 701        /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
 702        return rspi_dma_transfer(rspi, &xfer->tx_sg,
 703                                xfer->rx_buf ? &xfer->rx_sg : NULL);
 704}
 705
 706static int rspi_common_transfer(struct rspi_data *rspi,
 707                                struct spi_transfer *xfer)
 708{
 709        int ret;
 710
 711        xfer->effective_speed_hz = rspi->speed_hz;
 712
 713        ret = rspi_dma_check_then_transfer(rspi, xfer);
 714        if (ret != -EAGAIN)
 715                return ret;
 716
 717        ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
 718        if (ret < 0)
 719                return ret;
 720
 721        /* Wait for the last transmission */
 722        rspi_wait_for_tx_empty(rspi);
 723
 724        return 0;
 725}
 726
 727static int rspi_transfer_one(struct spi_controller *ctlr,
 728                             struct spi_device *spi, struct spi_transfer *xfer)
 729{
 730        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 731        u8 spcr;
 732
 733        spcr = rspi_read8(rspi, RSPI_SPCR);
 734        if (xfer->rx_buf) {
 735                rspi_receive_init(rspi);
 736                spcr &= ~SPCR_TXMD;
 737        } else {
 738                spcr |= SPCR_TXMD;
 739        }
 740        rspi_write8(rspi, spcr, RSPI_SPCR);
 741
 742        return rspi_common_transfer(rspi, xfer);
 743}
 744
 745static int rspi_rz_transfer_one(struct spi_controller *ctlr,
 746                                struct spi_device *spi,
 747                                struct spi_transfer *xfer)
 748{
 749        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 750
 751        rspi_rz_receive_init(rspi);
 752
 753        return rspi_common_transfer(rspi, xfer);
 754}
 755
 756static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
 757                                        u8 *rx, unsigned int len)
 758{
 759        unsigned int i, n;
 760        int ret;
 761
 762        while (len > 0) {
 763                n = qspi_set_send_trigger(rspi, len);
 764                qspi_set_receive_trigger(rspi, len);
 765                ret = rspi_wait_for_tx_empty(rspi);
 766                if (ret < 0) {
 767                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 768                        return ret;
 769                }
 770                for (i = 0; i < n; i++)
 771                        rspi_write_data(rspi, *tx++);
 772
 773                ret = rspi_wait_for_rx_full(rspi);
 774                if (ret < 0) {
 775                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 776                        return ret;
 777                }
 778                for (i = 0; i < n; i++)
 779                        *rx++ = rspi_read_data(rspi);
 780
 781                len -= n;
 782        }
 783
 784        return 0;
 785}
 786
 787static int qspi_transfer_out_in(struct rspi_data *rspi,
 788                                struct spi_transfer *xfer)
 789{
 790        int ret;
 791
 792        qspi_receive_init(rspi);
 793
 794        ret = rspi_dma_check_then_transfer(rspi, xfer);
 795        if (ret != -EAGAIN)
 796                return ret;
 797
 798        return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
 799                                            xfer->rx_buf, xfer->len);
 800}
 801
 802static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 803{
 804        const u8 *tx = xfer->tx_buf;
 805        unsigned int n = xfer->len;
 806        unsigned int i, len;
 807        int ret;
 808
 809        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 810                ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
 811                if (ret != -EAGAIN)
 812                        return ret;
 813        }
 814
 815        while (n > 0) {
 816                len = qspi_set_send_trigger(rspi, n);
 817                ret = rspi_wait_for_tx_empty(rspi);
 818                if (ret < 0) {
 819                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 820                        return ret;
 821                }
 822                for (i = 0; i < len; i++)
 823                        rspi_write_data(rspi, *tx++);
 824
 825                n -= len;
 826        }
 827
 828        /* Wait for the last transmission */
 829        rspi_wait_for_tx_empty(rspi);
 830
 831        return 0;
 832}
 833
 834static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 835{
 836        u8 *rx = xfer->rx_buf;
 837        unsigned int n = xfer->len;
 838        unsigned int i, len;
 839        int ret;
 840
 841        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 842                ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
 843                if (ret != -EAGAIN)
 844                        return ret;
 845        }
 846
 847        while (n > 0) {
 848                len = qspi_set_receive_trigger(rspi, n);
 849                ret = rspi_wait_for_rx_full(rspi);
 850                if (ret < 0) {
 851                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 852                        return ret;
 853                }
 854                for (i = 0; i < len; i++)
 855                        *rx++ = rspi_read_data(rspi);
 856
 857                n -= len;
 858        }
 859
 860        return 0;
 861}
 862
 863static int qspi_transfer_one(struct spi_controller *ctlr,
 864                             struct spi_device *spi, struct spi_transfer *xfer)
 865{
 866        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 867
 868        xfer->effective_speed_hz = rspi->speed_hz;
 869        if (spi->mode & SPI_LOOP) {
 870                return qspi_transfer_out_in(rspi, xfer);
 871        } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
 872                /* Quad or Dual SPI Write */
 873                return qspi_transfer_out(rspi, xfer);
 874        } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
 875                /* Quad or Dual SPI Read */
 876                return qspi_transfer_in(rspi, xfer);
 877        } else {
 878                /* Single SPI Transfer */
 879                return qspi_transfer_out_in(rspi, xfer);
 880        }
 881}
 882
 883static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 884{
 885        if (xfer->tx_buf)
 886                switch (xfer->tx_nbits) {
 887                case SPI_NBITS_QUAD:
 888                        return SPCMD_SPIMOD_QUAD;
 889                case SPI_NBITS_DUAL:
 890                        return SPCMD_SPIMOD_DUAL;
 891                default:
 892                        return 0;
 893                }
 894        if (xfer->rx_buf)
 895                switch (xfer->rx_nbits) {
 896                case SPI_NBITS_QUAD:
 897                        return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 898                case SPI_NBITS_DUAL:
 899                        return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 900                default:
 901                        return 0;
 902                }
 903
 904        return 0;
 905}
 906
 907static int qspi_setup_sequencer(struct rspi_data *rspi,
 908                                const struct spi_message *msg)
 909{
 910        const struct spi_transfer *xfer;
 911        unsigned int i = 0, len = 0;
 912        u16 current_mode = 0xffff, mode;
 913
 914        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 915                mode = qspi_transfer_mode(xfer);
 916                if (mode == current_mode) {
 917                        len += xfer->len;
 918                        continue;
 919                }
 920
 921                /* Transfer mode change */
 922                if (i) {
 923                        /* Set transfer data length of previous transfer */
 924                        rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 925                }
 926
 927                if (i >= QSPI_NUM_SPCMD) {
 928                        dev_err(&msg->spi->dev,
 929                                "Too many different transfer modes");
 930                        return -EINVAL;
 931                }
 932
 933                /* Program transfer mode for this transfer */
 934                rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 935                current_mode = mode;
 936                len = xfer->len;
 937                i++;
 938        }
 939        if (i) {
 940                /* Set final transfer data length and sequence length */
 941                rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 942                rspi_write8(rspi, i - 1, RSPI_SPSCR);
 943        }
 944
 945        return 0;
 946}
 947
 948static int rspi_setup(struct spi_device *spi)
 949{
 950        struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
 951        u8 sslp;
 952
 953        if (spi->cs_gpiod)
 954                return 0;
 955
 956        pm_runtime_get_sync(&rspi->pdev->dev);
 957        spin_lock_irq(&rspi->lock);
 958
 959        sslp = rspi_read8(rspi, RSPI_SSLP);
 960        if (spi->mode & SPI_CS_HIGH)
 961                sslp |= SSLP_SSLP(spi->chip_select);
 962        else
 963                sslp &= ~SSLP_SSLP(spi->chip_select);
 964        rspi_write8(rspi, sslp, RSPI_SSLP);
 965
 966        spin_unlock_irq(&rspi->lock);
 967        pm_runtime_put(&rspi->pdev->dev);
 968        return 0;
 969}
 970
 971static int rspi_prepare_message(struct spi_controller *ctlr,
 972                                struct spi_message *msg)
 973{
 974        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 975        struct spi_device *spi = msg->spi;
 976        const struct spi_transfer *xfer;
 977        int ret;
 978
 979        /*
 980         * As the Bit Rate Register must not be changed while the device is
 981         * active, all transfers in a message must use the same bit rate.
 982         * In theory, the sequencer could be enabled, and each Command Register
 983         * could divide the base bit rate by a different value.
 984         * However, most RSPI variants do not have Transfer Data Length
 985         * Multiplier Setting Registers, so each sequence step would be limited
 986         * to a single word, making this feature unsuitable for large
 987         * transfers, which would gain most from it.
 988         */
 989        rspi->speed_hz = spi->max_speed_hz;
 990        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 991                if (xfer->speed_hz < rspi->speed_hz)
 992                        rspi->speed_hz = xfer->speed_hz;
 993        }
 994
 995        rspi->spcmd = SPCMD_SSLKP;
 996        if (spi->mode & SPI_CPOL)
 997                rspi->spcmd |= SPCMD_CPOL;
 998        if (spi->mode & SPI_CPHA)
 999                rspi->spcmd |= SPCMD_CPHA;
1000        if (spi->mode & SPI_LSB_FIRST)
1001                rspi->spcmd |= SPCMD_LSBF;
1002
1003        /* Configure slave signal to assert */
1004        rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1005                                                : spi->chip_select);
1006
1007        /* CMOS output mode and MOSI signal from previous transfer */
1008        rspi->sppcr = 0;
1009        if (spi->mode & SPI_LOOP)
1010                rspi->sppcr |= SPPCR_SPLP;
1011
1012        rspi->ops->set_config_register(rspi, 8);
1013
1014        if (msg->spi->mode &
1015            (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1016                /* Setup sequencer for messages with multiple transfer modes */
1017                ret = qspi_setup_sequencer(rspi, msg);
1018                if (ret < 0)
1019                        return ret;
1020        }
1021
1022        /* Enable SPI function in master mode */
1023        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1024        return 0;
1025}
1026
1027static int rspi_unprepare_message(struct spi_controller *ctlr,
1028                                  struct spi_message *msg)
1029{
1030        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1031
1032        /* Disable SPI function */
1033        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1034
1035        /* Reset sequencer for Single SPI Transfers */
1036        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1037        rspi_write8(rspi, 0, RSPI_SPSCR);
1038        return 0;
1039}
1040
1041static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1042{
1043        struct rspi_data *rspi = _sr;
1044        u8 spsr;
1045        irqreturn_t ret = IRQ_NONE;
1046        u8 disable_irq = 0;
1047
1048        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1049        if (spsr & SPSR_SPRF)
1050                disable_irq |= SPCR_SPRIE;
1051        if (spsr & SPSR_SPTEF)
1052                disable_irq |= SPCR_SPTIE;
1053
1054        if (disable_irq) {
1055                ret = IRQ_HANDLED;
1056                rspi_disable_irq(rspi, disable_irq);
1057                wake_up(&rspi->wait);
1058        }
1059
1060        return ret;
1061}
1062
1063static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1064{
1065        struct rspi_data *rspi = _sr;
1066        u8 spsr;
1067
1068        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1069        if (spsr & SPSR_SPRF) {
1070                rspi_disable_irq(rspi, SPCR_SPRIE);
1071                wake_up(&rspi->wait);
1072                return IRQ_HANDLED;
1073        }
1074
1075        return 0;
1076}
1077
1078static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1079{
1080        struct rspi_data *rspi = _sr;
1081        u8 spsr;
1082
1083        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1084        if (spsr & SPSR_SPTEF) {
1085                rspi_disable_irq(rspi, SPCR_SPTIE);
1086                wake_up(&rspi->wait);
1087                return IRQ_HANDLED;
1088        }
1089
1090        return 0;
1091}
1092
1093static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1094                                              enum dma_transfer_direction dir,
1095                                              unsigned int id,
1096                                              dma_addr_t port_addr)
1097{
1098        dma_cap_mask_t mask;
1099        struct dma_chan *chan;
1100        struct dma_slave_config cfg;
1101        int ret;
1102
1103        dma_cap_zero(mask);
1104        dma_cap_set(DMA_SLAVE, mask);
1105
1106        chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1107                                (void *)(unsigned long)id, dev,
1108                                dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1109        if (!chan) {
1110                dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1111                return NULL;
1112        }
1113
1114        memset(&cfg, 0, sizeof(cfg));
1115        cfg.dst_addr = port_addr + RSPI_SPDR;
1116        cfg.src_addr = port_addr + RSPI_SPDR;
1117        cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118        cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1119        cfg.direction = dir;
1120
1121        ret = dmaengine_slave_config(chan, &cfg);
1122        if (ret) {
1123                dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1124                dma_release_channel(chan);
1125                return NULL;
1126        }
1127
1128        return chan;
1129}
1130
1131static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1132                            const struct resource *res)
1133{
1134        const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1135        unsigned int dma_tx_id, dma_rx_id;
1136
1137        if (dev->of_node) {
1138                /* In the OF case we will get the slave IDs from the DT */
1139                dma_tx_id = 0;
1140                dma_rx_id = 0;
1141        } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1142                dma_tx_id = rspi_pd->dma_tx_id;
1143                dma_rx_id = rspi_pd->dma_rx_id;
1144        } else {
1145                /* The driver assumes no error. */
1146                return 0;
1147        }
1148
1149        ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1150                                             res->start);
1151        if (!ctlr->dma_tx)
1152                return -ENODEV;
1153
1154        ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1155                                             res->start);
1156        if (!ctlr->dma_rx) {
1157                dma_release_channel(ctlr->dma_tx);
1158                ctlr->dma_tx = NULL;
1159                return -ENODEV;
1160        }
1161
1162        ctlr->can_dma = rspi_can_dma;
1163        dev_info(dev, "DMA available");
1164        return 0;
1165}
1166
1167static void rspi_release_dma(struct spi_controller *ctlr)
1168{
1169        if (ctlr->dma_tx)
1170                dma_release_channel(ctlr->dma_tx);
1171        if (ctlr->dma_rx)
1172                dma_release_channel(ctlr->dma_rx);
1173}
1174
1175static int rspi_remove(struct platform_device *pdev)
1176{
1177        struct rspi_data *rspi = platform_get_drvdata(pdev);
1178
1179        rspi_release_dma(rspi->ctlr);
1180        pm_runtime_disable(&pdev->dev);
1181
1182        return 0;
1183}
1184
1185static const struct spi_ops rspi_ops = {
1186        .set_config_register =  rspi_set_config_register,
1187        .transfer_one =         rspi_transfer_one,
1188        .min_div =              2,
1189        .max_div =              4096,
1190        .flags =                SPI_CONTROLLER_MUST_TX,
1191        .fifo_size =            8,
1192        .num_hw_ss =            2,
1193};
1194
1195static const struct spi_ops rspi_rz_ops = {
1196        .set_config_register =  rspi_rz_set_config_register,
1197        .transfer_one =         rspi_rz_transfer_one,
1198        .min_div =              2,
1199        .max_div =              4096,
1200        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1201        .fifo_size =            8,      /* 8 for TX, 32 for RX */
1202        .num_hw_ss =            1,
1203};
1204
1205static const struct spi_ops qspi_ops = {
1206        .set_config_register =  qspi_set_config_register,
1207        .transfer_one =         qspi_transfer_one,
1208        .extra_mode_bits =      SPI_TX_DUAL | SPI_TX_QUAD |
1209                                SPI_RX_DUAL | SPI_RX_QUAD,
1210        .min_div =              1,
1211        .max_div =              4080,
1212        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1213        .fifo_size =            32,
1214        .num_hw_ss =            1,
1215};
1216
1217#ifdef CONFIG_OF
1218static const struct of_device_id rspi_of_match[] = {
1219        /* RSPI on legacy SH */
1220        { .compatible = "renesas,rspi", .data = &rspi_ops },
1221        /* RSPI on RZ/A1H */
1222        { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1223        /* QSPI on R-Car Gen2 */
1224        { .compatible = "renesas,qspi", .data = &qspi_ops },
1225        { /* sentinel */ }
1226};
1227
1228MODULE_DEVICE_TABLE(of, rspi_of_match);
1229
1230static void rspi_reset_control_assert(void *data)
1231{
1232        reset_control_assert(data);
1233}
1234
1235static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1236{
1237        struct reset_control *rstc;
1238        u32 num_cs;
1239        int error;
1240
1241        /* Parse DT properties */
1242        error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1243        if (error) {
1244                dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1245                return error;
1246        }
1247
1248        ctlr->num_chipselect = num_cs;
1249
1250        rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
1251        if (IS_ERR(rstc))
1252                return dev_err_probe(dev, PTR_ERR(rstc),
1253                                             "failed to get reset ctrl\n");
1254
1255        error = reset_control_deassert(rstc);
1256        if (error) {
1257                dev_err(dev, "failed to deassert reset %d\n", error);
1258                return error;
1259        }
1260
1261        error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
1262        if (error) {
1263                dev_err(dev, "failed to register assert devm action, %d\n", error);
1264                return error;
1265        }
1266
1267        return 0;
1268}
1269#else
1270#define rspi_of_match   NULL
1271static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1272{
1273        return -EINVAL;
1274}
1275#endif /* CONFIG_OF */
1276
1277static int rspi_request_irq(struct device *dev, unsigned int irq,
1278                            irq_handler_t handler, const char *suffix,
1279                            void *dev_id)
1280{
1281        const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1282                                          dev_name(dev), suffix);
1283        if (!name)
1284                return -ENOMEM;
1285
1286        return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1287}
1288
1289static int rspi_probe(struct platform_device *pdev)
1290{
1291        struct resource *res;
1292        struct spi_controller *ctlr;
1293        struct rspi_data *rspi;
1294        int ret;
1295        const struct rspi_plat_data *rspi_pd;
1296        const struct spi_ops *ops;
1297        unsigned long clksrc;
1298
1299        ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1300        if (ctlr == NULL)
1301                return -ENOMEM;
1302
1303        ops = of_device_get_match_data(&pdev->dev);
1304        if (ops) {
1305                ret = rspi_parse_dt(&pdev->dev, ctlr);
1306                if (ret)
1307                        goto error1;
1308        } else {
1309                ops = (struct spi_ops *)pdev->id_entry->driver_data;
1310                rspi_pd = dev_get_platdata(&pdev->dev);
1311                if (rspi_pd && rspi_pd->num_chipselect)
1312                        ctlr->num_chipselect = rspi_pd->num_chipselect;
1313                else
1314                        ctlr->num_chipselect = 2; /* default */
1315        }
1316
1317        rspi = spi_controller_get_devdata(ctlr);
1318        platform_set_drvdata(pdev, rspi);
1319        rspi->ops = ops;
1320        rspi->ctlr = ctlr;
1321
1322        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1323        rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1324        if (IS_ERR(rspi->addr)) {
1325                ret = PTR_ERR(rspi->addr);
1326                goto error1;
1327        }
1328
1329        rspi->clk = devm_clk_get(&pdev->dev, NULL);
1330        if (IS_ERR(rspi->clk)) {
1331                dev_err(&pdev->dev, "cannot get clock\n");
1332                ret = PTR_ERR(rspi->clk);
1333                goto error1;
1334        }
1335
1336        rspi->pdev = pdev;
1337        pm_runtime_enable(&pdev->dev);
1338
1339        init_waitqueue_head(&rspi->wait);
1340        spin_lock_init(&rspi->lock);
1341
1342        ctlr->bus_num = pdev->id;
1343        ctlr->setup = rspi_setup;
1344        ctlr->auto_runtime_pm = true;
1345        ctlr->transfer_one = ops->transfer_one;
1346        ctlr->prepare_message = rspi_prepare_message;
1347        ctlr->unprepare_message = rspi_unprepare_message;
1348        ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1349                          SPI_LOOP | ops->extra_mode_bits;
1350        clksrc = clk_get_rate(rspi->clk);
1351        ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1352        ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1353        ctlr->flags = ops->flags;
1354        ctlr->dev.of_node = pdev->dev.of_node;
1355        ctlr->use_gpio_descriptors = true;
1356        ctlr->max_native_cs = rspi->ops->num_hw_ss;
1357
1358        ret = platform_get_irq_byname_optional(pdev, "rx");
1359        if (ret < 0) {
1360                ret = platform_get_irq_byname_optional(pdev, "mux");
1361                if (ret < 0)
1362                        ret = platform_get_irq(pdev, 0);
1363                if (ret >= 0)
1364                        rspi->rx_irq = rspi->tx_irq = ret;
1365        } else {
1366                rspi->rx_irq = ret;
1367                ret = platform_get_irq_byname(pdev, "tx");
1368                if (ret >= 0)
1369                        rspi->tx_irq = ret;
1370        }
1371
1372        if (rspi->rx_irq == rspi->tx_irq) {
1373                /* Single multiplexed interrupt */
1374                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1375                                       "mux", rspi);
1376        } else {
1377                /* Multi-interrupt mode, only SPRI and SPTI are used */
1378                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1379                                       "rx", rspi);
1380                if (!ret)
1381                        ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1382                                               rspi_irq_tx, "tx", rspi);
1383        }
1384        if (ret < 0) {
1385                dev_err(&pdev->dev, "request_irq error\n");
1386                goto error2;
1387        }
1388
1389        ret = rspi_request_dma(&pdev->dev, ctlr, res);
1390        if (ret < 0)
1391                dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1392
1393        ret = devm_spi_register_controller(&pdev->dev, ctlr);
1394        if (ret < 0) {
1395                dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1396                goto error3;
1397        }
1398
1399        dev_info(&pdev->dev, "probed\n");
1400
1401        return 0;
1402
1403error3:
1404        rspi_release_dma(ctlr);
1405error2:
1406        pm_runtime_disable(&pdev->dev);
1407error1:
1408        spi_controller_put(ctlr);
1409
1410        return ret;
1411}
1412
1413static const struct platform_device_id spi_driver_ids[] = {
1414        { "rspi",       (kernel_ulong_t)&rspi_ops },
1415        {},
1416};
1417
1418MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1419
1420#ifdef CONFIG_PM_SLEEP
1421static int rspi_suspend(struct device *dev)
1422{
1423        struct rspi_data *rspi = dev_get_drvdata(dev);
1424
1425        return spi_controller_suspend(rspi->ctlr);
1426}
1427
1428static int rspi_resume(struct device *dev)
1429{
1430        struct rspi_data *rspi = dev_get_drvdata(dev);
1431
1432        return spi_controller_resume(rspi->ctlr);
1433}
1434
1435static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1436#define DEV_PM_OPS      &rspi_pm_ops
1437#else
1438#define DEV_PM_OPS      NULL
1439#endif /* CONFIG_PM_SLEEP */
1440
1441static struct platform_driver rspi_driver = {
1442        .probe =        rspi_probe,
1443        .remove =       rspi_remove,
1444        .id_table =     spi_driver_ids,
1445        .driver         = {
1446                .name = "renesas_spi",
1447                .pm = DEV_PM_OPS,
1448                .of_match_table = of_match_ptr(rspi_of_match),
1449        },
1450};
1451module_platform_driver(rspi_driver);
1452
1453MODULE_DESCRIPTION("Renesas RSPI bus driver");
1454MODULE_LICENSE("GPL v2");
1455MODULE_AUTHOR("Yoshihiro Shimoda");
1456