linux/drivers/target/target_core_transport.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*******************************************************************************
   3 * Filename:  target_core_transport.c
   4 *
   5 * This file contains the Generic Target Engine Core.
   6 *
   7 * (c) Copyright 2002-2013 Datera, Inc.
   8 *
   9 * Nicholas A. Bellinger <nab@kernel.org>
  10 *
  11 ******************************************************************************/
  12
  13#include <linux/net.h>
  14#include <linux/delay.h>
  15#include <linux/string.h>
  16#include <linux/timer.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/kthread.h>
  20#include <linux/in.h>
  21#include <linux/cdrom.h>
  22#include <linux/module.h>
  23#include <linux/ratelimit.h>
  24#include <linux/vmalloc.h>
  25#include <asm/unaligned.h>
  26#include <net/sock.h>
  27#include <net/tcp.h>
  28#include <scsi/scsi_proto.h>
  29#include <scsi/scsi_common.h>
  30
  31#include <target/target_core_base.h>
  32#include <target/target_core_backend.h>
  33#include <target/target_core_fabric.h>
  34
  35#include "target_core_internal.h"
  36#include "target_core_alua.h"
  37#include "target_core_pr.h"
  38#include "target_core_ua.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/target.h>
  42
  43static struct workqueue_struct *target_completion_wq;
  44static struct workqueue_struct *target_submission_wq;
  45static struct kmem_cache *se_sess_cache;
  46struct kmem_cache *se_ua_cache;
  47struct kmem_cache *t10_pr_reg_cache;
  48struct kmem_cache *t10_alua_lu_gp_cache;
  49struct kmem_cache *t10_alua_lu_gp_mem_cache;
  50struct kmem_cache *t10_alua_tg_pt_gp_cache;
  51struct kmem_cache *t10_alua_lba_map_cache;
  52struct kmem_cache *t10_alua_lba_map_mem_cache;
  53
  54static void transport_complete_task_attr(struct se_cmd *cmd);
  55static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
  56static void transport_handle_queue_full(struct se_cmd *cmd,
  57                struct se_device *dev, int err, bool write_pending);
  58static void target_complete_ok_work(struct work_struct *work);
  59
  60int init_se_kmem_caches(void)
  61{
  62        se_sess_cache = kmem_cache_create("se_sess_cache",
  63                        sizeof(struct se_session), __alignof__(struct se_session),
  64                        0, NULL);
  65        if (!se_sess_cache) {
  66                pr_err("kmem_cache_create() for struct se_session"
  67                                " failed\n");
  68                goto out;
  69        }
  70        se_ua_cache = kmem_cache_create("se_ua_cache",
  71                        sizeof(struct se_ua), __alignof__(struct se_ua),
  72                        0, NULL);
  73        if (!se_ua_cache) {
  74                pr_err("kmem_cache_create() for struct se_ua failed\n");
  75                goto out_free_sess_cache;
  76        }
  77        t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
  78                        sizeof(struct t10_pr_registration),
  79                        __alignof__(struct t10_pr_registration), 0, NULL);
  80        if (!t10_pr_reg_cache) {
  81                pr_err("kmem_cache_create() for struct t10_pr_registration"
  82                                " failed\n");
  83                goto out_free_ua_cache;
  84        }
  85        t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
  86                        sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
  87                        0, NULL);
  88        if (!t10_alua_lu_gp_cache) {
  89                pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
  90                                " failed\n");
  91                goto out_free_pr_reg_cache;
  92        }
  93        t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
  94                        sizeof(struct t10_alua_lu_gp_member),
  95                        __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
  96        if (!t10_alua_lu_gp_mem_cache) {
  97                pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
  98                                "cache failed\n");
  99                goto out_free_lu_gp_cache;
 100        }
 101        t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
 102                        sizeof(struct t10_alua_tg_pt_gp),
 103                        __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
 104        if (!t10_alua_tg_pt_gp_cache) {
 105                pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
 106                                "cache failed\n");
 107                goto out_free_lu_gp_mem_cache;
 108        }
 109        t10_alua_lba_map_cache = kmem_cache_create(
 110                        "t10_alua_lba_map_cache",
 111                        sizeof(struct t10_alua_lba_map),
 112                        __alignof__(struct t10_alua_lba_map), 0, NULL);
 113        if (!t10_alua_lba_map_cache) {
 114                pr_err("kmem_cache_create() for t10_alua_lba_map_"
 115                                "cache failed\n");
 116                goto out_free_tg_pt_gp_cache;
 117        }
 118        t10_alua_lba_map_mem_cache = kmem_cache_create(
 119                        "t10_alua_lba_map_mem_cache",
 120                        sizeof(struct t10_alua_lba_map_member),
 121                        __alignof__(struct t10_alua_lba_map_member), 0, NULL);
 122        if (!t10_alua_lba_map_mem_cache) {
 123                pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
 124                                "cache failed\n");
 125                goto out_free_lba_map_cache;
 126        }
 127
 128        target_completion_wq = alloc_workqueue("target_completion",
 129                                               WQ_MEM_RECLAIM, 0);
 130        if (!target_completion_wq)
 131                goto out_free_lba_map_mem_cache;
 132
 133        target_submission_wq = alloc_workqueue("target_submission",
 134                                               WQ_MEM_RECLAIM, 0);
 135        if (!target_submission_wq)
 136                goto out_free_completion_wq;
 137
 138        return 0;
 139
 140out_free_completion_wq:
 141        destroy_workqueue(target_completion_wq);
 142out_free_lba_map_mem_cache:
 143        kmem_cache_destroy(t10_alua_lba_map_mem_cache);
 144out_free_lba_map_cache:
 145        kmem_cache_destroy(t10_alua_lba_map_cache);
 146out_free_tg_pt_gp_cache:
 147        kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 148out_free_lu_gp_mem_cache:
 149        kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 150out_free_lu_gp_cache:
 151        kmem_cache_destroy(t10_alua_lu_gp_cache);
 152out_free_pr_reg_cache:
 153        kmem_cache_destroy(t10_pr_reg_cache);
 154out_free_ua_cache:
 155        kmem_cache_destroy(se_ua_cache);
 156out_free_sess_cache:
 157        kmem_cache_destroy(se_sess_cache);
 158out:
 159        return -ENOMEM;
 160}
 161
 162void release_se_kmem_caches(void)
 163{
 164        destroy_workqueue(target_submission_wq);
 165        destroy_workqueue(target_completion_wq);
 166        kmem_cache_destroy(se_sess_cache);
 167        kmem_cache_destroy(se_ua_cache);
 168        kmem_cache_destroy(t10_pr_reg_cache);
 169        kmem_cache_destroy(t10_alua_lu_gp_cache);
 170        kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 171        kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 172        kmem_cache_destroy(t10_alua_lba_map_cache);
 173        kmem_cache_destroy(t10_alua_lba_map_mem_cache);
 174}
 175
 176/* This code ensures unique mib indexes are handed out. */
 177static DEFINE_SPINLOCK(scsi_mib_index_lock);
 178static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
 179
 180/*
 181 * Allocate a new row index for the entry type specified
 182 */
 183u32 scsi_get_new_index(scsi_index_t type)
 184{
 185        u32 new_index;
 186
 187        BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
 188
 189        spin_lock(&scsi_mib_index_lock);
 190        new_index = ++scsi_mib_index[type];
 191        spin_unlock(&scsi_mib_index_lock);
 192
 193        return new_index;
 194}
 195
 196void transport_subsystem_check_init(void)
 197{
 198        int ret;
 199        static int sub_api_initialized;
 200
 201        if (sub_api_initialized)
 202                return;
 203
 204        ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
 205        if (ret != 0)
 206                pr_err("Unable to load target_core_iblock\n");
 207
 208        ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
 209        if (ret != 0)
 210                pr_err("Unable to load target_core_file\n");
 211
 212        ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
 213        if (ret != 0)
 214                pr_err("Unable to load target_core_pscsi\n");
 215
 216        ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
 217        if (ret != 0)
 218                pr_err("Unable to load target_core_user\n");
 219
 220        sub_api_initialized = 1;
 221}
 222
 223static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
 224{
 225        struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
 226
 227        wake_up(&sess->cmd_count_wq);
 228}
 229
 230/**
 231 * transport_init_session - initialize a session object
 232 * @se_sess: Session object pointer.
 233 *
 234 * The caller must have zero-initialized @se_sess before calling this function.
 235 */
 236int transport_init_session(struct se_session *se_sess)
 237{
 238        INIT_LIST_HEAD(&se_sess->sess_list);
 239        INIT_LIST_HEAD(&se_sess->sess_acl_list);
 240        spin_lock_init(&se_sess->sess_cmd_lock);
 241        init_waitqueue_head(&se_sess->cmd_count_wq);
 242        init_completion(&se_sess->stop_done);
 243        atomic_set(&se_sess->stopped, 0);
 244        return percpu_ref_init(&se_sess->cmd_count,
 245                               target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
 246}
 247EXPORT_SYMBOL(transport_init_session);
 248
 249void transport_uninit_session(struct se_session *se_sess)
 250{
 251        /*
 252         * Drivers like iscsi and loop do not call target_stop_session
 253         * during session shutdown so we have to drop the ref taken at init
 254         * time here.
 255         */
 256        if (!atomic_read(&se_sess->stopped))
 257                percpu_ref_put(&se_sess->cmd_count);
 258
 259        percpu_ref_exit(&se_sess->cmd_count);
 260}
 261
 262/**
 263 * transport_alloc_session - allocate a session object and initialize it
 264 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 265 */
 266struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
 267{
 268        struct se_session *se_sess;
 269        int ret;
 270
 271        se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
 272        if (!se_sess) {
 273                pr_err("Unable to allocate struct se_session from"
 274                                " se_sess_cache\n");
 275                return ERR_PTR(-ENOMEM);
 276        }
 277        ret = transport_init_session(se_sess);
 278        if (ret < 0) {
 279                kmem_cache_free(se_sess_cache, se_sess);
 280                return ERR_PTR(ret);
 281        }
 282        se_sess->sup_prot_ops = sup_prot_ops;
 283
 284        return se_sess;
 285}
 286EXPORT_SYMBOL(transport_alloc_session);
 287
 288/**
 289 * transport_alloc_session_tags - allocate target driver private data
 290 * @se_sess:  Session pointer.
 291 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 292 * @tag_size: Size in bytes of the private data a target driver associates with
 293 *            each command.
 294 */
 295int transport_alloc_session_tags(struct se_session *se_sess,
 296                                 unsigned int tag_num, unsigned int tag_size)
 297{
 298        int rc;
 299
 300        se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
 301                                         GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 302        if (!se_sess->sess_cmd_map) {
 303                pr_err("Unable to allocate se_sess->sess_cmd_map\n");
 304                return -ENOMEM;
 305        }
 306
 307        rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
 308                        false, GFP_KERNEL, NUMA_NO_NODE);
 309        if (rc < 0) {
 310                pr_err("Unable to init se_sess->sess_tag_pool,"
 311                        " tag_num: %u\n", tag_num);
 312                kvfree(se_sess->sess_cmd_map);
 313                se_sess->sess_cmd_map = NULL;
 314                return -ENOMEM;
 315        }
 316
 317        return 0;
 318}
 319EXPORT_SYMBOL(transport_alloc_session_tags);
 320
 321/**
 322 * transport_init_session_tags - allocate a session and target driver private data
 323 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 324 * @tag_size: Size in bytes of the private data a target driver associates with
 325 *            each command.
 326 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 327 */
 328static struct se_session *
 329transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
 330                            enum target_prot_op sup_prot_ops)
 331{
 332        struct se_session *se_sess;
 333        int rc;
 334
 335        if (tag_num != 0 && !tag_size) {
 336                pr_err("init_session_tags called with percpu-ida tag_num:"
 337                       " %u, but zero tag_size\n", tag_num);
 338                return ERR_PTR(-EINVAL);
 339        }
 340        if (!tag_num && tag_size) {
 341                pr_err("init_session_tags called with percpu-ida tag_size:"
 342                       " %u, but zero tag_num\n", tag_size);
 343                return ERR_PTR(-EINVAL);
 344        }
 345
 346        se_sess = transport_alloc_session(sup_prot_ops);
 347        if (IS_ERR(se_sess))
 348                return se_sess;
 349
 350        rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
 351        if (rc < 0) {
 352                transport_free_session(se_sess);
 353                return ERR_PTR(-ENOMEM);
 354        }
 355
 356        return se_sess;
 357}
 358
 359/*
 360 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
 361 */
 362void __transport_register_session(
 363        struct se_portal_group *se_tpg,
 364        struct se_node_acl *se_nacl,
 365        struct se_session *se_sess,
 366        void *fabric_sess_ptr)
 367{
 368        const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
 369        unsigned char buf[PR_REG_ISID_LEN];
 370        unsigned long flags;
 371
 372        se_sess->se_tpg = se_tpg;
 373        se_sess->fabric_sess_ptr = fabric_sess_ptr;
 374        /*
 375         * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
 376         *
 377         * Only set for struct se_session's that will actually be moving I/O.
 378         * eg: *NOT* discovery sessions.
 379         */
 380        if (se_nacl) {
 381                /*
 382                 *
 383                 * Determine if fabric allows for T10-PI feature bits exposed to
 384                 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
 385                 *
 386                 * If so, then always save prot_type on a per se_node_acl node
 387                 * basis and re-instate the previous sess_prot_type to avoid
 388                 * disabling PI from below any previously initiator side
 389                 * registered LUNs.
 390                 */
 391                if (se_nacl->saved_prot_type)
 392                        se_sess->sess_prot_type = se_nacl->saved_prot_type;
 393                else if (tfo->tpg_check_prot_fabric_only)
 394                        se_sess->sess_prot_type = se_nacl->saved_prot_type =
 395                                        tfo->tpg_check_prot_fabric_only(se_tpg);
 396                /*
 397                 * If the fabric module supports an ISID based TransportID,
 398                 * save this value in binary from the fabric I_T Nexus now.
 399                 */
 400                if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
 401                        memset(&buf[0], 0, PR_REG_ISID_LEN);
 402                        se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
 403                                        &buf[0], PR_REG_ISID_LEN);
 404                        se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
 405                }
 406
 407                spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 408                /*
 409                 * The se_nacl->nacl_sess pointer will be set to the
 410                 * last active I_T Nexus for each struct se_node_acl.
 411                 */
 412                se_nacl->nacl_sess = se_sess;
 413
 414                list_add_tail(&se_sess->sess_acl_list,
 415                              &se_nacl->acl_sess_list);
 416                spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 417        }
 418        list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
 419
 420        pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
 421                se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
 422}
 423EXPORT_SYMBOL(__transport_register_session);
 424
 425void transport_register_session(
 426        struct se_portal_group *se_tpg,
 427        struct se_node_acl *se_nacl,
 428        struct se_session *se_sess,
 429        void *fabric_sess_ptr)
 430{
 431        unsigned long flags;
 432
 433        spin_lock_irqsave(&se_tpg->session_lock, flags);
 434        __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
 435        spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 436}
 437EXPORT_SYMBOL(transport_register_session);
 438
 439struct se_session *
 440target_setup_session(struct se_portal_group *tpg,
 441                     unsigned int tag_num, unsigned int tag_size,
 442                     enum target_prot_op prot_op,
 443                     const char *initiatorname, void *private,
 444                     int (*callback)(struct se_portal_group *,
 445                                     struct se_session *, void *))
 446{
 447        struct se_session *sess;
 448
 449        /*
 450         * If the fabric driver is using percpu-ida based pre allocation
 451         * of I/O descriptor tags, go ahead and perform that setup now..
 452         */
 453        if (tag_num != 0)
 454                sess = transport_init_session_tags(tag_num, tag_size, prot_op);
 455        else
 456                sess = transport_alloc_session(prot_op);
 457
 458        if (IS_ERR(sess))
 459                return sess;
 460
 461        sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
 462                                        (unsigned char *)initiatorname);
 463        if (!sess->se_node_acl) {
 464                transport_free_session(sess);
 465                return ERR_PTR(-EACCES);
 466        }
 467        /*
 468         * Go ahead and perform any remaining fabric setup that is
 469         * required before transport_register_session().
 470         */
 471        if (callback != NULL) {
 472                int rc = callback(tpg, sess, private);
 473                if (rc) {
 474                        transport_free_session(sess);
 475                        return ERR_PTR(rc);
 476                }
 477        }
 478
 479        transport_register_session(tpg, sess->se_node_acl, sess, private);
 480        return sess;
 481}
 482EXPORT_SYMBOL(target_setup_session);
 483
 484ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
 485{
 486        struct se_session *se_sess;
 487        ssize_t len = 0;
 488
 489        spin_lock_bh(&se_tpg->session_lock);
 490        list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
 491                if (!se_sess->se_node_acl)
 492                        continue;
 493                if (!se_sess->se_node_acl->dynamic_node_acl)
 494                        continue;
 495                if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
 496                        break;
 497
 498                len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
 499                                se_sess->se_node_acl->initiatorname);
 500                len += 1; /* Include NULL terminator */
 501        }
 502        spin_unlock_bh(&se_tpg->session_lock);
 503
 504        return len;
 505}
 506EXPORT_SYMBOL(target_show_dynamic_sessions);
 507
 508static void target_complete_nacl(struct kref *kref)
 509{
 510        struct se_node_acl *nacl = container_of(kref,
 511                                struct se_node_acl, acl_kref);
 512        struct se_portal_group *se_tpg = nacl->se_tpg;
 513
 514        if (!nacl->dynamic_stop) {
 515                complete(&nacl->acl_free_comp);
 516                return;
 517        }
 518
 519        mutex_lock(&se_tpg->acl_node_mutex);
 520        list_del_init(&nacl->acl_list);
 521        mutex_unlock(&se_tpg->acl_node_mutex);
 522
 523        core_tpg_wait_for_nacl_pr_ref(nacl);
 524        core_free_device_list_for_node(nacl, se_tpg);
 525        kfree(nacl);
 526}
 527
 528void target_put_nacl(struct se_node_acl *nacl)
 529{
 530        kref_put(&nacl->acl_kref, target_complete_nacl);
 531}
 532EXPORT_SYMBOL(target_put_nacl);
 533
 534void transport_deregister_session_configfs(struct se_session *se_sess)
 535{
 536        struct se_node_acl *se_nacl;
 537        unsigned long flags;
 538        /*
 539         * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
 540         */
 541        se_nacl = se_sess->se_node_acl;
 542        if (se_nacl) {
 543                spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 544                if (!list_empty(&se_sess->sess_acl_list))
 545                        list_del_init(&se_sess->sess_acl_list);
 546                /*
 547                 * If the session list is empty, then clear the pointer.
 548                 * Otherwise, set the struct se_session pointer from the tail
 549                 * element of the per struct se_node_acl active session list.
 550                 */
 551                if (list_empty(&se_nacl->acl_sess_list))
 552                        se_nacl->nacl_sess = NULL;
 553                else {
 554                        se_nacl->nacl_sess = container_of(
 555                                        se_nacl->acl_sess_list.prev,
 556                                        struct se_session, sess_acl_list);
 557                }
 558                spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 559        }
 560}
 561EXPORT_SYMBOL(transport_deregister_session_configfs);
 562
 563void transport_free_session(struct se_session *se_sess)
 564{
 565        struct se_node_acl *se_nacl = se_sess->se_node_acl;
 566
 567        /*
 568         * Drop the se_node_acl->nacl_kref obtained from within
 569         * core_tpg_get_initiator_node_acl().
 570         */
 571        if (se_nacl) {
 572                struct se_portal_group *se_tpg = se_nacl->se_tpg;
 573                const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
 574                unsigned long flags;
 575
 576                se_sess->se_node_acl = NULL;
 577
 578                /*
 579                 * Also determine if we need to drop the extra ->cmd_kref if
 580                 * it had been previously dynamically generated, and
 581                 * the endpoint is not caching dynamic ACLs.
 582                 */
 583                mutex_lock(&se_tpg->acl_node_mutex);
 584                if (se_nacl->dynamic_node_acl &&
 585                    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
 586                        spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 587                        if (list_empty(&se_nacl->acl_sess_list))
 588                                se_nacl->dynamic_stop = true;
 589                        spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 590
 591                        if (se_nacl->dynamic_stop)
 592                                list_del_init(&se_nacl->acl_list);
 593                }
 594                mutex_unlock(&se_tpg->acl_node_mutex);
 595
 596                if (se_nacl->dynamic_stop)
 597                        target_put_nacl(se_nacl);
 598
 599                target_put_nacl(se_nacl);
 600        }
 601        if (se_sess->sess_cmd_map) {
 602                sbitmap_queue_free(&se_sess->sess_tag_pool);
 603                kvfree(se_sess->sess_cmd_map);
 604        }
 605        transport_uninit_session(se_sess);
 606        kmem_cache_free(se_sess_cache, se_sess);
 607}
 608EXPORT_SYMBOL(transport_free_session);
 609
 610static int target_release_res(struct se_device *dev, void *data)
 611{
 612        struct se_session *sess = data;
 613
 614        if (dev->reservation_holder == sess)
 615                target_release_reservation(dev);
 616        return 0;
 617}
 618
 619void transport_deregister_session(struct se_session *se_sess)
 620{
 621        struct se_portal_group *se_tpg = se_sess->se_tpg;
 622        unsigned long flags;
 623
 624        if (!se_tpg) {
 625                transport_free_session(se_sess);
 626                return;
 627        }
 628
 629        spin_lock_irqsave(&se_tpg->session_lock, flags);
 630        list_del(&se_sess->sess_list);
 631        se_sess->se_tpg = NULL;
 632        se_sess->fabric_sess_ptr = NULL;
 633        spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 634
 635        /*
 636         * Since the session is being removed, release SPC-2
 637         * reservations held by the session that is disappearing.
 638         */
 639        target_for_each_device(target_release_res, se_sess);
 640
 641        pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
 642                se_tpg->se_tpg_tfo->fabric_name);
 643        /*
 644         * If last kref is dropping now for an explicit NodeACL, awake sleeping
 645         * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
 646         * removal context from within transport_free_session() code.
 647         *
 648         * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
 649         * to release all remaining generate_node_acl=1 created ACL resources.
 650         */
 651
 652        transport_free_session(se_sess);
 653}
 654EXPORT_SYMBOL(transport_deregister_session);
 655
 656void target_remove_session(struct se_session *se_sess)
 657{
 658        transport_deregister_session_configfs(se_sess);
 659        transport_deregister_session(se_sess);
 660}
 661EXPORT_SYMBOL(target_remove_session);
 662
 663static void target_remove_from_state_list(struct se_cmd *cmd)
 664{
 665        struct se_device *dev = cmd->se_dev;
 666        unsigned long flags;
 667
 668        if (!dev)
 669                return;
 670
 671        spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
 672        if (cmd->state_active) {
 673                list_del(&cmd->state_list);
 674                cmd->state_active = false;
 675        }
 676        spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
 677}
 678
 679static void target_remove_from_tmr_list(struct se_cmd *cmd)
 680{
 681        struct se_device *dev = NULL;
 682        unsigned long flags;
 683
 684        if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
 685                dev = cmd->se_tmr_req->tmr_dev;
 686
 687        if (dev) {
 688                spin_lock_irqsave(&dev->se_tmr_lock, flags);
 689                if (cmd->se_tmr_req->tmr_dev)
 690                        list_del_init(&cmd->se_tmr_req->tmr_list);
 691                spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
 692        }
 693}
 694/*
 695 * This function is called by the target core after the target core has
 696 * finished processing a SCSI command or SCSI TMF. Both the regular command
 697 * processing code and the code for aborting commands can call this
 698 * function. CMD_T_STOP is set if and only if another thread is waiting
 699 * inside transport_wait_for_tasks() for t_transport_stop_comp.
 700 */
 701static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
 702{
 703        unsigned long flags;
 704
 705        spin_lock_irqsave(&cmd->t_state_lock, flags);
 706        /*
 707         * Determine if frontend context caller is requesting the stopping of
 708         * this command for frontend exceptions.
 709         */
 710        if (cmd->transport_state & CMD_T_STOP) {
 711                pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
 712                        __func__, __LINE__, cmd->tag);
 713
 714                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 715
 716                complete_all(&cmd->t_transport_stop_comp);
 717                return 1;
 718        }
 719        cmd->transport_state &= ~CMD_T_ACTIVE;
 720        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 721
 722        /*
 723         * Some fabric modules like tcm_loop can release their internally
 724         * allocated I/O reference and struct se_cmd now.
 725         *
 726         * Fabric modules are expected to return '1' here if the se_cmd being
 727         * passed is released at this point, or zero if not being released.
 728         */
 729        return cmd->se_tfo->check_stop_free(cmd);
 730}
 731
 732static void transport_lun_remove_cmd(struct se_cmd *cmd)
 733{
 734        struct se_lun *lun = cmd->se_lun;
 735
 736        if (!lun)
 737                return;
 738
 739        target_remove_from_state_list(cmd);
 740        target_remove_from_tmr_list(cmd);
 741
 742        if (cmpxchg(&cmd->lun_ref_active, true, false))
 743                percpu_ref_put(&lun->lun_ref);
 744
 745        /*
 746         * Clear struct se_cmd->se_lun before the handoff to FE.
 747         */
 748        cmd->se_lun = NULL;
 749}
 750
 751static void target_complete_failure_work(struct work_struct *work)
 752{
 753        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
 754
 755        transport_generic_request_failure(cmd, cmd->sense_reason);
 756}
 757
 758/*
 759 * Used when asking transport to copy Sense Data from the underlying
 760 * Linux/SCSI struct scsi_cmnd
 761 */
 762static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
 763{
 764        struct se_device *dev = cmd->se_dev;
 765
 766        WARN_ON(!cmd->se_lun);
 767
 768        if (!dev)
 769                return NULL;
 770
 771        if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
 772                return NULL;
 773
 774        cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
 775
 776        pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
 777                dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
 778        return cmd->sense_buffer;
 779}
 780
 781void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
 782{
 783        unsigned char *cmd_sense_buf;
 784        unsigned long flags;
 785
 786        spin_lock_irqsave(&cmd->t_state_lock, flags);
 787        cmd_sense_buf = transport_get_sense_buffer(cmd);
 788        if (!cmd_sense_buf) {
 789                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 790                return;
 791        }
 792
 793        cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
 794        memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
 795        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 796}
 797EXPORT_SYMBOL(transport_copy_sense_to_cmd);
 798
 799static void target_handle_abort(struct se_cmd *cmd)
 800{
 801        bool tas = cmd->transport_state & CMD_T_TAS;
 802        bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
 803        int ret;
 804
 805        pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
 806
 807        if (tas) {
 808                if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
 809                        cmd->scsi_status = SAM_STAT_TASK_ABORTED;
 810                        pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
 811                                 cmd->t_task_cdb[0], cmd->tag);
 812                        trace_target_cmd_complete(cmd);
 813                        ret = cmd->se_tfo->queue_status(cmd);
 814                        if (ret) {
 815                                transport_handle_queue_full(cmd, cmd->se_dev,
 816                                                            ret, false);
 817                                return;
 818                        }
 819                } else {
 820                        cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
 821                        cmd->se_tfo->queue_tm_rsp(cmd);
 822                }
 823        } else {
 824                /*
 825                 * Allow the fabric driver to unmap any resources before
 826                 * releasing the descriptor via TFO->release_cmd().
 827                 */
 828                cmd->se_tfo->aborted_task(cmd);
 829                if (ack_kref)
 830                        WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
 831                /*
 832                 * To do: establish a unit attention condition on the I_T
 833                 * nexus associated with cmd. See also the paragraph "Aborting
 834                 * commands" in SAM.
 835                 */
 836        }
 837
 838        WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
 839
 840        transport_lun_remove_cmd(cmd);
 841
 842        transport_cmd_check_stop_to_fabric(cmd);
 843}
 844
 845static void target_abort_work(struct work_struct *work)
 846{
 847        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
 848
 849        target_handle_abort(cmd);
 850}
 851
 852static bool target_cmd_interrupted(struct se_cmd *cmd)
 853{
 854        int post_ret;
 855
 856        if (cmd->transport_state & CMD_T_ABORTED) {
 857                if (cmd->transport_complete_callback)
 858                        cmd->transport_complete_callback(cmd, false, &post_ret);
 859                INIT_WORK(&cmd->work, target_abort_work);
 860                queue_work(target_completion_wq, &cmd->work);
 861                return true;
 862        } else if (cmd->transport_state & CMD_T_STOP) {
 863                if (cmd->transport_complete_callback)
 864                        cmd->transport_complete_callback(cmd, false, &post_ret);
 865                complete_all(&cmd->t_transport_stop_comp);
 866                return true;
 867        }
 868
 869        return false;
 870}
 871
 872/* May be called from interrupt context so must not sleep. */
 873void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
 874                                    sense_reason_t sense_reason)
 875{
 876        struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
 877        int success, cpu;
 878        unsigned long flags;
 879
 880        if (target_cmd_interrupted(cmd))
 881                return;
 882
 883        cmd->scsi_status = scsi_status;
 884        cmd->sense_reason = sense_reason;
 885
 886        spin_lock_irqsave(&cmd->t_state_lock, flags);
 887        switch (cmd->scsi_status) {
 888        case SAM_STAT_CHECK_CONDITION:
 889                if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
 890                        success = 1;
 891                else
 892                        success = 0;
 893                break;
 894        default:
 895                success = 1;
 896                break;
 897        }
 898
 899        cmd->t_state = TRANSPORT_COMPLETE;
 900        cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
 901        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 902
 903        INIT_WORK(&cmd->work, success ? target_complete_ok_work :
 904                  target_complete_failure_work);
 905
 906        if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
 907                cpu = cmd->cpuid;
 908        else
 909                cpu = wwn->cmd_compl_affinity;
 910
 911        queue_work_on(cpu, target_completion_wq, &cmd->work);
 912}
 913EXPORT_SYMBOL(target_complete_cmd_with_sense);
 914
 915void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
 916{
 917        target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
 918                              TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
 919                              TCM_NO_SENSE);
 920}
 921EXPORT_SYMBOL(target_complete_cmd);
 922
 923void target_set_cmd_data_length(struct se_cmd *cmd, int length)
 924{
 925        if (length < cmd->data_length) {
 926                if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
 927                        cmd->residual_count += cmd->data_length - length;
 928                } else {
 929                        cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
 930                        cmd->residual_count = cmd->data_length - length;
 931                }
 932
 933                cmd->data_length = length;
 934        }
 935}
 936EXPORT_SYMBOL(target_set_cmd_data_length);
 937
 938void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
 939{
 940        if (scsi_status == SAM_STAT_GOOD ||
 941            cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
 942                target_set_cmd_data_length(cmd, length);
 943        }
 944
 945        target_complete_cmd(cmd, scsi_status);
 946}
 947EXPORT_SYMBOL(target_complete_cmd_with_length);
 948
 949static void target_add_to_state_list(struct se_cmd *cmd)
 950{
 951        struct se_device *dev = cmd->se_dev;
 952        unsigned long flags;
 953
 954        spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
 955        if (!cmd->state_active) {
 956                list_add_tail(&cmd->state_list,
 957                              &dev->queues[cmd->cpuid].state_list);
 958                cmd->state_active = true;
 959        }
 960        spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
 961}
 962
 963/*
 964 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
 965 */
 966static void transport_write_pending_qf(struct se_cmd *cmd);
 967static void transport_complete_qf(struct se_cmd *cmd);
 968
 969void target_qf_do_work(struct work_struct *work)
 970{
 971        struct se_device *dev = container_of(work, struct se_device,
 972                                        qf_work_queue);
 973        LIST_HEAD(qf_cmd_list);
 974        struct se_cmd *cmd, *cmd_tmp;
 975
 976        spin_lock_irq(&dev->qf_cmd_lock);
 977        list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
 978        spin_unlock_irq(&dev->qf_cmd_lock);
 979
 980        list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
 981                list_del(&cmd->se_qf_node);
 982                atomic_dec_mb(&dev->dev_qf_count);
 983
 984                pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
 985                        " context: %s\n", cmd->se_tfo->fabric_name, cmd,
 986                        (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
 987                        (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
 988                        : "UNKNOWN");
 989
 990                if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
 991                        transport_write_pending_qf(cmd);
 992                else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
 993                         cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
 994                        transport_complete_qf(cmd);
 995        }
 996}
 997
 998unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
 999{
1000        switch (cmd->data_direction) {
1001        case DMA_NONE:
1002                return "NONE";
1003        case DMA_FROM_DEVICE:
1004                return "READ";
1005        case DMA_TO_DEVICE:
1006                return "WRITE";
1007        case DMA_BIDIRECTIONAL:
1008                return "BIDI";
1009        default:
1010                break;
1011        }
1012
1013        return "UNKNOWN";
1014}
1015
1016void transport_dump_dev_state(
1017        struct se_device *dev,
1018        char *b,
1019        int *bl)
1020{
1021        *bl += sprintf(b + *bl, "Status: ");
1022        if (dev->export_count)
1023                *bl += sprintf(b + *bl, "ACTIVATED");
1024        else
1025                *bl += sprintf(b + *bl, "DEACTIVATED");
1026
1027        *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
1028        *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
1029                dev->dev_attrib.block_size,
1030                dev->dev_attrib.hw_max_sectors);
1031        *bl += sprintf(b + *bl, "        ");
1032}
1033
1034void transport_dump_vpd_proto_id(
1035        struct t10_vpd *vpd,
1036        unsigned char *p_buf,
1037        int p_buf_len)
1038{
1039        unsigned char buf[VPD_TMP_BUF_SIZE];
1040        int len;
1041
1042        memset(buf, 0, VPD_TMP_BUF_SIZE);
1043        len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1044
1045        switch (vpd->protocol_identifier) {
1046        case 0x00:
1047                sprintf(buf+len, "Fibre Channel\n");
1048                break;
1049        case 0x10:
1050                sprintf(buf+len, "Parallel SCSI\n");
1051                break;
1052        case 0x20:
1053                sprintf(buf+len, "SSA\n");
1054                break;
1055        case 0x30:
1056                sprintf(buf+len, "IEEE 1394\n");
1057                break;
1058        case 0x40:
1059                sprintf(buf+len, "SCSI Remote Direct Memory Access"
1060                                " Protocol\n");
1061                break;
1062        case 0x50:
1063                sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1064                break;
1065        case 0x60:
1066                sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1067                break;
1068        case 0x70:
1069                sprintf(buf+len, "Automation/Drive Interface Transport"
1070                                " Protocol\n");
1071                break;
1072        case 0x80:
1073                sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1074                break;
1075        default:
1076                sprintf(buf+len, "Unknown 0x%02x\n",
1077                                vpd->protocol_identifier);
1078                break;
1079        }
1080
1081        if (p_buf)
1082                strncpy(p_buf, buf, p_buf_len);
1083        else
1084                pr_debug("%s", buf);
1085}
1086
1087void
1088transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1089{
1090        /*
1091         * Check if the Protocol Identifier Valid (PIV) bit is set..
1092         *
1093         * from spc3r23.pdf section 7.5.1
1094         */
1095         if (page_83[1] & 0x80) {
1096                vpd->protocol_identifier = (page_83[0] & 0xf0);
1097                vpd->protocol_identifier_set = 1;
1098                transport_dump_vpd_proto_id(vpd, NULL, 0);
1099        }
1100}
1101EXPORT_SYMBOL(transport_set_vpd_proto_id);
1102
1103int transport_dump_vpd_assoc(
1104        struct t10_vpd *vpd,
1105        unsigned char *p_buf,
1106        int p_buf_len)
1107{
1108        unsigned char buf[VPD_TMP_BUF_SIZE];
1109        int ret = 0;
1110        int len;
1111
1112        memset(buf, 0, VPD_TMP_BUF_SIZE);
1113        len = sprintf(buf, "T10 VPD Identifier Association: ");
1114
1115        switch (vpd->association) {
1116        case 0x00:
1117                sprintf(buf+len, "addressed logical unit\n");
1118                break;
1119        case 0x10:
1120                sprintf(buf+len, "target port\n");
1121                break;
1122        case 0x20:
1123                sprintf(buf+len, "SCSI target device\n");
1124                break;
1125        default:
1126                sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1127                ret = -EINVAL;
1128                break;
1129        }
1130
1131        if (p_buf)
1132                strncpy(p_buf, buf, p_buf_len);
1133        else
1134                pr_debug("%s", buf);
1135
1136        return ret;
1137}
1138
1139int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1140{
1141        /*
1142         * The VPD identification association..
1143         *
1144         * from spc3r23.pdf Section 7.6.3.1 Table 297
1145         */
1146        vpd->association = (page_83[1] & 0x30);
1147        return transport_dump_vpd_assoc(vpd, NULL, 0);
1148}
1149EXPORT_SYMBOL(transport_set_vpd_assoc);
1150
1151int transport_dump_vpd_ident_type(
1152        struct t10_vpd *vpd,
1153        unsigned char *p_buf,
1154        int p_buf_len)
1155{
1156        unsigned char buf[VPD_TMP_BUF_SIZE];
1157        int ret = 0;
1158        int len;
1159
1160        memset(buf, 0, VPD_TMP_BUF_SIZE);
1161        len = sprintf(buf, "T10 VPD Identifier Type: ");
1162
1163        switch (vpd->device_identifier_type) {
1164        case 0x00:
1165                sprintf(buf+len, "Vendor specific\n");
1166                break;
1167        case 0x01:
1168                sprintf(buf+len, "T10 Vendor ID based\n");
1169                break;
1170        case 0x02:
1171                sprintf(buf+len, "EUI-64 based\n");
1172                break;
1173        case 0x03:
1174                sprintf(buf+len, "NAA\n");
1175                break;
1176        case 0x04:
1177                sprintf(buf+len, "Relative target port identifier\n");
1178                break;
1179        case 0x08:
1180                sprintf(buf+len, "SCSI name string\n");
1181                break;
1182        default:
1183                sprintf(buf+len, "Unsupported: 0x%02x\n",
1184                                vpd->device_identifier_type);
1185                ret = -EINVAL;
1186                break;
1187        }
1188
1189        if (p_buf) {
1190                if (p_buf_len < strlen(buf)+1)
1191                        return -EINVAL;
1192                strncpy(p_buf, buf, p_buf_len);
1193        } else {
1194                pr_debug("%s", buf);
1195        }
1196
1197        return ret;
1198}
1199
1200int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1201{
1202        /*
1203         * The VPD identifier type..
1204         *
1205         * from spc3r23.pdf Section 7.6.3.1 Table 298
1206         */
1207        vpd->device_identifier_type = (page_83[1] & 0x0f);
1208        return transport_dump_vpd_ident_type(vpd, NULL, 0);
1209}
1210EXPORT_SYMBOL(transport_set_vpd_ident_type);
1211
1212int transport_dump_vpd_ident(
1213        struct t10_vpd *vpd,
1214        unsigned char *p_buf,
1215        int p_buf_len)
1216{
1217        unsigned char buf[VPD_TMP_BUF_SIZE];
1218        int ret = 0;
1219
1220        memset(buf, 0, VPD_TMP_BUF_SIZE);
1221
1222        switch (vpd->device_identifier_code_set) {
1223        case 0x01: /* Binary */
1224                snprintf(buf, sizeof(buf),
1225                        "T10 VPD Binary Device Identifier: %s\n",
1226                        &vpd->device_identifier[0]);
1227                break;
1228        case 0x02: /* ASCII */
1229                snprintf(buf, sizeof(buf),
1230                        "T10 VPD ASCII Device Identifier: %s\n",
1231                        &vpd->device_identifier[0]);
1232                break;
1233        case 0x03: /* UTF-8 */
1234                snprintf(buf, sizeof(buf),
1235                        "T10 VPD UTF-8 Device Identifier: %s\n",
1236                        &vpd->device_identifier[0]);
1237                break;
1238        default:
1239                sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1240                        " 0x%02x", vpd->device_identifier_code_set);
1241                ret = -EINVAL;
1242                break;
1243        }
1244
1245        if (p_buf)
1246                strncpy(p_buf, buf, p_buf_len);
1247        else
1248                pr_debug("%s", buf);
1249
1250        return ret;
1251}
1252
1253int
1254transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1255{
1256        static const char hex_str[] = "0123456789abcdef";
1257        int j = 0, i = 4; /* offset to start of the identifier */
1258
1259        /*
1260         * The VPD Code Set (encoding)
1261         *
1262         * from spc3r23.pdf Section 7.6.3.1 Table 296
1263         */
1264        vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1265        switch (vpd->device_identifier_code_set) {
1266        case 0x01: /* Binary */
1267                vpd->device_identifier[j++] =
1268                                hex_str[vpd->device_identifier_type];
1269                while (i < (4 + page_83[3])) {
1270                        vpd->device_identifier[j++] =
1271                                hex_str[(page_83[i] & 0xf0) >> 4];
1272                        vpd->device_identifier[j++] =
1273                                hex_str[page_83[i] & 0x0f];
1274                        i++;
1275                }
1276                break;
1277        case 0x02: /* ASCII */
1278        case 0x03: /* UTF-8 */
1279                while (i < (4 + page_83[3]))
1280                        vpd->device_identifier[j++] = page_83[i++];
1281                break;
1282        default:
1283                break;
1284        }
1285
1286        return transport_dump_vpd_ident(vpd, NULL, 0);
1287}
1288EXPORT_SYMBOL(transport_set_vpd_ident);
1289
1290static sense_reason_t
1291target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1292                               unsigned int size)
1293{
1294        u32 mtl;
1295
1296        if (!cmd->se_tfo->max_data_sg_nents)
1297                return TCM_NO_SENSE;
1298        /*
1299         * Check if fabric enforced maximum SGL entries per I/O descriptor
1300         * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1301         * residual_count and reduce original cmd->data_length to maximum
1302         * length based on single PAGE_SIZE entry scatter-lists.
1303         */
1304        mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1305        if (cmd->data_length > mtl) {
1306                /*
1307                 * If an existing CDB overflow is present, calculate new residual
1308                 * based on CDB size minus fabric maximum transfer length.
1309                 *
1310                 * If an existing CDB underflow is present, calculate new residual
1311                 * based on original cmd->data_length minus fabric maximum transfer
1312                 * length.
1313                 *
1314                 * Otherwise, set the underflow residual based on cmd->data_length
1315                 * minus fabric maximum transfer length.
1316                 */
1317                if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1318                        cmd->residual_count = (size - mtl);
1319                } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1320                        u32 orig_dl = size + cmd->residual_count;
1321                        cmd->residual_count = (orig_dl - mtl);
1322                } else {
1323                        cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1324                        cmd->residual_count = (cmd->data_length - mtl);
1325                }
1326                cmd->data_length = mtl;
1327                /*
1328                 * Reset sbc_check_prot() calculated protection payload
1329                 * length based upon the new smaller MTL.
1330                 */
1331                if (cmd->prot_length) {
1332                        u32 sectors = (mtl / dev->dev_attrib.block_size);
1333                        cmd->prot_length = dev->prot_length * sectors;
1334                }
1335        }
1336        return TCM_NO_SENSE;
1337}
1338
1339/**
1340 * target_cmd_size_check - Check whether there will be a residual.
1341 * @cmd: SCSI command.
1342 * @size: Data buffer size derived from CDB. The data buffer size provided by
1343 *   the SCSI transport driver is available in @cmd->data_length.
1344 *
1345 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1346 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1347 *
1348 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1349 *
1350 * Return: TCM_NO_SENSE
1351 */
1352sense_reason_t
1353target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1354{
1355        struct se_device *dev = cmd->se_dev;
1356
1357        if (cmd->unknown_data_length) {
1358                cmd->data_length = size;
1359        } else if (size != cmd->data_length) {
1360                pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1361                        " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1362                        " 0x%02x\n", cmd->se_tfo->fabric_name,
1363                                cmd->data_length, size, cmd->t_task_cdb[0]);
1364                /*
1365                 * For READ command for the overflow case keep the existing
1366                 * fabric provided ->data_length. Otherwise for the underflow
1367                 * case, reset ->data_length to the smaller SCSI expected data
1368                 * transfer length.
1369                 */
1370                if (size > cmd->data_length) {
1371                        cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1372                        cmd->residual_count = (size - cmd->data_length);
1373                } else {
1374                        cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1375                        cmd->residual_count = (cmd->data_length - size);
1376                        /*
1377                         * Do not truncate ->data_length for WRITE command to
1378                         * dump all payload
1379                         */
1380                        if (cmd->data_direction == DMA_FROM_DEVICE) {
1381                                cmd->data_length = size;
1382                        }
1383                }
1384
1385                if (cmd->data_direction == DMA_TO_DEVICE) {
1386                        if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1387                                pr_err_ratelimited("Rejecting underflow/overflow"
1388                                                   " for WRITE data CDB\n");
1389                                return TCM_INVALID_FIELD_IN_COMMAND_IU;
1390                        }
1391                        /*
1392                         * Some fabric drivers like iscsi-target still expect to
1393                         * always reject overflow writes.  Reject this case until
1394                         * full fabric driver level support for overflow writes
1395                         * is introduced tree-wide.
1396                         */
1397                        if (size > cmd->data_length) {
1398                                pr_err_ratelimited("Rejecting overflow for"
1399                                                   " WRITE control CDB\n");
1400                                return TCM_INVALID_CDB_FIELD;
1401                        }
1402                }
1403        }
1404
1405        return target_check_max_data_sg_nents(cmd, dev, size);
1406
1407}
1408
1409/*
1410 * Used by fabric modules containing a local struct se_cmd within their
1411 * fabric dependent per I/O descriptor.
1412 *
1413 * Preserves the value of @cmd->tag.
1414 */
1415void __target_init_cmd(
1416        struct se_cmd *cmd,
1417        const struct target_core_fabric_ops *tfo,
1418        struct se_session *se_sess,
1419        u32 data_length,
1420        int data_direction,
1421        int task_attr,
1422        unsigned char *sense_buffer, u64 unpacked_lun)
1423{
1424        INIT_LIST_HEAD(&cmd->se_delayed_node);
1425        INIT_LIST_HEAD(&cmd->se_qf_node);
1426        INIT_LIST_HEAD(&cmd->state_list);
1427        init_completion(&cmd->t_transport_stop_comp);
1428        cmd->free_compl = NULL;
1429        cmd->abrt_compl = NULL;
1430        spin_lock_init(&cmd->t_state_lock);
1431        INIT_WORK(&cmd->work, NULL);
1432        kref_init(&cmd->cmd_kref);
1433
1434        cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1435        cmd->se_tfo = tfo;
1436        cmd->se_sess = se_sess;
1437        cmd->data_length = data_length;
1438        cmd->data_direction = data_direction;
1439        cmd->sam_task_attr = task_attr;
1440        cmd->sense_buffer = sense_buffer;
1441        cmd->orig_fe_lun = unpacked_lun;
1442
1443        if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1444                cmd->cpuid = raw_smp_processor_id();
1445
1446        cmd->state_active = false;
1447}
1448EXPORT_SYMBOL(__target_init_cmd);
1449
1450static sense_reason_t
1451transport_check_alloc_task_attr(struct se_cmd *cmd)
1452{
1453        struct se_device *dev = cmd->se_dev;
1454
1455        /*
1456         * Check if SAM Task Attribute emulation is enabled for this
1457         * struct se_device storage object
1458         */
1459        if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1460                return 0;
1461
1462        if (cmd->sam_task_attr == TCM_ACA_TAG) {
1463                pr_debug("SAM Task Attribute ACA"
1464                        " emulation is not supported\n");
1465                return TCM_INVALID_CDB_FIELD;
1466        }
1467
1468        return 0;
1469}
1470
1471sense_reason_t
1472target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1473{
1474        sense_reason_t ret;
1475
1476        /*
1477         * Ensure that the received CDB is less than the max (252 + 8) bytes
1478         * for VARIABLE_LENGTH_CMD
1479         */
1480        if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1481                pr_err("Received SCSI CDB with command_size: %d that"
1482                        " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1483                        scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1484                ret = TCM_INVALID_CDB_FIELD;
1485                goto err;
1486        }
1487        /*
1488         * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1489         * allocate the additional extended CDB buffer now..  Otherwise
1490         * setup the pointer from __t_task_cdb to t_task_cdb.
1491         */
1492        if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1493                cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1494                if (!cmd->t_task_cdb) {
1495                        pr_err("Unable to allocate cmd->t_task_cdb"
1496                                " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1497                                scsi_command_size(cdb),
1498                                (unsigned long)sizeof(cmd->__t_task_cdb));
1499                        ret = TCM_OUT_OF_RESOURCES;
1500                        goto err;
1501                }
1502        }
1503        /*
1504         * Copy the original CDB into cmd->
1505         */
1506        memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1507
1508        trace_target_sequencer_start(cmd);
1509        return 0;
1510
1511err:
1512        /*
1513         * Copy the CDB here to allow trace_target_cmd_complete() to
1514         * print the cdb to the trace buffers.
1515         */
1516        memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1517                                         (unsigned int)TCM_MAX_COMMAND_SIZE));
1518        return ret;
1519}
1520EXPORT_SYMBOL(target_cmd_init_cdb);
1521
1522sense_reason_t
1523target_cmd_parse_cdb(struct se_cmd *cmd)
1524{
1525        struct se_device *dev = cmd->se_dev;
1526        sense_reason_t ret;
1527
1528        ret = dev->transport->parse_cdb(cmd);
1529        if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1530                pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1531                                     cmd->se_tfo->fabric_name,
1532                                     cmd->se_sess->se_node_acl->initiatorname,
1533                                     cmd->t_task_cdb[0]);
1534        if (ret)
1535                return ret;
1536
1537        ret = transport_check_alloc_task_attr(cmd);
1538        if (ret)
1539                return ret;
1540
1541        cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1542        atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1543        return 0;
1544}
1545EXPORT_SYMBOL(target_cmd_parse_cdb);
1546
1547/*
1548 * Used by fabric module frontends to queue tasks directly.
1549 * May only be used from process context.
1550 */
1551int transport_handle_cdb_direct(
1552        struct se_cmd *cmd)
1553{
1554        sense_reason_t ret;
1555
1556        might_sleep();
1557
1558        if (!cmd->se_lun) {
1559                dump_stack();
1560                pr_err("cmd->se_lun is NULL\n");
1561                return -EINVAL;
1562        }
1563
1564        /*
1565         * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1566         * outstanding descriptors are handled correctly during shutdown via
1567         * transport_wait_for_tasks()
1568         *
1569         * Also, we don't take cmd->t_state_lock here as we only expect
1570         * this to be called for initial descriptor submission.
1571         */
1572        cmd->t_state = TRANSPORT_NEW_CMD;
1573        cmd->transport_state |= CMD_T_ACTIVE;
1574
1575        /*
1576         * transport_generic_new_cmd() is already handling QUEUE_FULL,
1577         * so follow TRANSPORT_NEW_CMD processing thread context usage
1578         * and call transport_generic_request_failure() if necessary..
1579         */
1580        ret = transport_generic_new_cmd(cmd);
1581        if (ret)
1582                transport_generic_request_failure(cmd, ret);
1583        return 0;
1584}
1585EXPORT_SYMBOL(transport_handle_cdb_direct);
1586
1587sense_reason_t
1588transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1589                u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1590{
1591        if (!sgl || !sgl_count)
1592                return 0;
1593
1594        /*
1595         * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1596         * scatterlists already have been set to follow what the fabric
1597         * passes for the original expected data transfer length.
1598         */
1599        if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1600                pr_warn("Rejecting SCSI DATA overflow for fabric using"
1601                        " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1602                return TCM_INVALID_CDB_FIELD;
1603        }
1604
1605        cmd->t_data_sg = sgl;
1606        cmd->t_data_nents = sgl_count;
1607        cmd->t_bidi_data_sg = sgl_bidi;
1608        cmd->t_bidi_data_nents = sgl_bidi_count;
1609
1610        cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1611        return 0;
1612}
1613
1614/**
1615 * target_init_cmd - initialize se_cmd
1616 * @se_cmd: command descriptor to init
1617 * @se_sess: associated se_sess for endpoint
1618 * @sense: pointer to SCSI sense buffer
1619 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1620 * @data_length: fabric expected data transfer length
1621 * @task_attr: SAM task attribute
1622 * @data_dir: DMA data direction
1623 * @flags: flags for command submission from target_sc_flags_tables
1624 *
1625 * Task tags are supported if the caller has set @se_cmd->tag.
1626 *
1627 * Returns:
1628 *      - less than zero to signal active I/O shutdown failure.
1629 *      - zero on success.
1630 *
1631 * If the fabric driver calls target_stop_session, then it must check the
1632 * return code and handle failures. This will never fail for other drivers,
1633 * and the return code can be ignored.
1634 */
1635int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1636                    unsigned char *sense, u64 unpacked_lun,
1637                    u32 data_length, int task_attr, int data_dir, int flags)
1638{
1639        struct se_portal_group *se_tpg;
1640
1641        se_tpg = se_sess->se_tpg;
1642        BUG_ON(!se_tpg);
1643        BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1644
1645        if (flags & TARGET_SCF_USE_CPUID)
1646                se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1647        /*
1648         * Signal bidirectional data payloads to target-core
1649         */
1650        if (flags & TARGET_SCF_BIDI_OP)
1651                se_cmd->se_cmd_flags |= SCF_BIDI;
1652
1653        if (flags & TARGET_SCF_UNKNOWN_SIZE)
1654                se_cmd->unknown_data_length = 1;
1655        /*
1656         * Initialize se_cmd for target operation.  From this point
1657         * exceptions are handled by sending exception status via
1658         * target_core_fabric_ops->queue_status() callback
1659         */
1660        __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1661                          data_dir, task_attr, sense, unpacked_lun);
1662
1663        /*
1664         * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1665         * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1666         * kref_put() to happen during fabric packet acknowledgement.
1667         */
1668        return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1669}
1670EXPORT_SYMBOL_GPL(target_init_cmd);
1671
1672/**
1673 * target_submit_prep - prepare cmd for submission
1674 * @se_cmd: command descriptor to prep
1675 * @cdb: pointer to SCSI CDB
1676 * @sgl: struct scatterlist memory for unidirectional mapping
1677 * @sgl_count: scatterlist count for unidirectional mapping
1678 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1679 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1680 * @sgl_prot: struct scatterlist memory protection information
1681 * @sgl_prot_count: scatterlist count for protection information
1682 * @gfp: gfp allocation type
1683 *
1684 * Returns:
1685 *      - less than zero to signal failure.
1686 *      - zero on success.
1687 *
1688 * If failure is returned, lio will the callers queue_status to complete
1689 * the cmd.
1690 */
1691int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1692                       struct scatterlist *sgl, u32 sgl_count,
1693                       struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1694                       struct scatterlist *sgl_prot, u32 sgl_prot_count,
1695                       gfp_t gfp)
1696{
1697        sense_reason_t rc;
1698
1699        rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1700        if (rc)
1701                goto send_cc_direct;
1702
1703        /*
1704         * Locate se_lun pointer and attach it to struct se_cmd
1705         */
1706        rc = transport_lookup_cmd_lun(se_cmd);
1707        if (rc)
1708                goto send_cc_direct;
1709
1710        rc = target_cmd_parse_cdb(se_cmd);
1711        if (rc != 0)
1712                goto generic_fail;
1713
1714        /*
1715         * Save pointers for SGLs containing protection information,
1716         * if present.
1717         */
1718        if (sgl_prot_count) {
1719                se_cmd->t_prot_sg = sgl_prot;
1720                se_cmd->t_prot_nents = sgl_prot_count;
1721                se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1722        }
1723
1724        /*
1725         * When a non zero sgl_count has been passed perform SGL passthrough
1726         * mapping for pre-allocated fabric memory instead of having target
1727         * core perform an internal SGL allocation..
1728         */
1729        if (sgl_count != 0) {
1730                BUG_ON(!sgl);
1731
1732                rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1733                                sgl_bidi, sgl_bidi_count);
1734                if (rc != 0)
1735                        goto generic_fail;
1736        }
1737
1738        return 0;
1739
1740send_cc_direct:
1741        transport_send_check_condition_and_sense(se_cmd, rc, 0);
1742        target_put_sess_cmd(se_cmd);
1743        return -EIO;
1744
1745generic_fail:
1746        transport_generic_request_failure(se_cmd, rc);
1747        return -EIO;
1748}
1749EXPORT_SYMBOL_GPL(target_submit_prep);
1750
1751/**
1752 * target_submit - perform final initialization and submit cmd to LIO core
1753 * @se_cmd: command descriptor to submit
1754 *
1755 * target_submit_prep must have been called on the cmd, and this must be
1756 * called from process context.
1757 */
1758void target_submit(struct se_cmd *se_cmd)
1759{
1760        struct scatterlist *sgl = se_cmd->t_data_sg;
1761        unsigned char *buf = NULL;
1762
1763        might_sleep();
1764
1765        if (se_cmd->t_data_nents != 0) {
1766                BUG_ON(!sgl);
1767                /*
1768                 * A work-around for tcm_loop as some userspace code via
1769                 * scsi-generic do not memset their associated read buffers,
1770                 * so go ahead and do that here for type non-data CDBs.  Also
1771                 * note that this is currently guaranteed to be a single SGL
1772                 * for this case by target core in target_setup_cmd_from_cdb()
1773                 * -> transport_generic_cmd_sequencer().
1774                 */
1775                if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1776                     se_cmd->data_direction == DMA_FROM_DEVICE) {
1777                        if (sgl)
1778                                buf = kmap(sg_page(sgl)) + sgl->offset;
1779
1780                        if (buf) {
1781                                memset(buf, 0, sgl->length);
1782                                kunmap(sg_page(sgl));
1783                        }
1784                }
1785
1786        }
1787
1788        /*
1789         * Check if we need to delay processing because of ALUA
1790         * Active/NonOptimized primary access state..
1791         */
1792        core_alua_check_nonop_delay(se_cmd);
1793
1794        transport_handle_cdb_direct(se_cmd);
1795}
1796EXPORT_SYMBOL_GPL(target_submit);
1797
1798/**
1799 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1800 *
1801 * @se_cmd: command descriptor to submit
1802 * @se_sess: associated se_sess for endpoint
1803 * @cdb: pointer to SCSI CDB
1804 * @sense: pointer to SCSI sense buffer
1805 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1806 * @data_length: fabric expected data transfer length
1807 * @task_attr: SAM task attribute
1808 * @data_dir: DMA data direction
1809 * @flags: flags for command submission from target_sc_flags_tables
1810 *
1811 * Task tags are supported if the caller has set @se_cmd->tag.
1812 *
1813 * This may only be called from process context, and also currently
1814 * assumes internal allocation of fabric payload buffer by target-core.
1815 *
1816 * It also assumes interal target core SGL memory allocation.
1817 *
1818 * This function must only be used by drivers that do their own
1819 * sync during shutdown and does not use target_stop_session. If there
1820 * is a failure this function will call into the fabric driver's
1821 * queue_status with a CHECK_CONDITION.
1822 */
1823void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1824                unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1825                u32 data_length, int task_attr, int data_dir, int flags)
1826{
1827        int rc;
1828
1829        rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1830                             task_attr, data_dir, flags);
1831        WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1832        if (rc)
1833                return;
1834
1835        if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1836                               GFP_KERNEL))
1837                return;
1838
1839        target_submit(se_cmd);
1840}
1841EXPORT_SYMBOL(target_submit_cmd);
1842
1843
1844static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1845{
1846        struct se_dev_plug *se_plug;
1847
1848        if (!se_dev->transport->plug_device)
1849                return NULL;
1850
1851        se_plug = se_dev->transport->plug_device(se_dev);
1852        if (!se_plug)
1853                return NULL;
1854
1855        se_plug->se_dev = se_dev;
1856        /*
1857         * We have a ref to the lun at this point, but the cmds could
1858         * complete before we unplug, so grab a ref to the se_device so we
1859         * can call back into the backend.
1860         */
1861        config_group_get(&se_dev->dev_group);
1862        return se_plug;
1863}
1864
1865static void target_unplug_device(struct se_dev_plug *se_plug)
1866{
1867        struct se_device *se_dev = se_plug->se_dev;
1868
1869        se_dev->transport->unplug_device(se_plug);
1870        config_group_put(&se_dev->dev_group);
1871}
1872
1873void target_queued_submit_work(struct work_struct *work)
1874{
1875        struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1876        struct se_cmd *se_cmd, *next_cmd;
1877        struct se_dev_plug *se_plug = NULL;
1878        struct se_device *se_dev = NULL;
1879        struct llist_node *cmd_list;
1880
1881        cmd_list = llist_del_all(&sq->cmd_list);
1882        if (!cmd_list)
1883                /* Previous call took what we were queued to submit */
1884                return;
1885
1886        cmd_list = llist_reverse_order(cmd_list);
1887        llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1888                if (!se_dev) {
1889                        se_dev = se_cmd->se_dev;
1890                        se_plug = target_plug_device(se_dev);
1891                }
1892
1893                target_submit(se_cmd);
1894        }
1895
1896        if (se_plug)
1897                target_unplug_device(se_plug);
1898}
1899
1900/**
1901 * target_queue_submission - queue the cmd to run on the LIO workqueue
1902 * @se_cmd: command descriptor to submit
1903 */
1904void target_queue_submission(struct se_cmd *se_cmd)
1905{
1906        struct se_device *se_dev = se_cmd->se_dev;
1907        int cpu = se_cmd->cpuid;
1908        struct se_cmd_queue *sq;
1909
1910        sq = &se_dev->queues[cpu].sq;
1911        llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1912        queue_work_on(cpu, target_submission_wq, &sq->work);
1913}
1914EXPORT_SYMBOL_GPL(target_queue_submission);
1915
1916static void target_complete_tmr_failure(struct work_struct *work)
1917{
1918        struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1919
1920        se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1921        se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1922
1923        transport_lun_remove_cmd(se_cmd);
1924        transport_cmd_check_stop_to_fabric(se_cmd);
1925}
1926
1927/**
1928 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1929 *                     for TMR CDBs
1930 *
1931 * @se_cmd: command descriptor to submit
1932 * @se_sess: associated se_sess for endpoint
1933 * @sense: pointer to SCSI sense buffer
1934 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1935 * @fabric_tmr_ptr: fabric context for TMR req
1936 * @tm_type: Type of TM request
1937 * @gfp: gfp type for caller
1938 * @tag: referenced task tag for TMR_ABORT_TASK
1939 * @flags: submit cmd flags
1940 *
1941 * Callable from all contexts.
1942 **/
1943
1944int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1945                unsigned char *sense, u64 unpacked_lun,
1946                void *fabric_tmr_ptr, unsigned char tm_type,
1947                gfp_t gfp, u64 tag, int flags)
1948{
1949        struct se_portal_group *se_tpg;
1950        int ret;
1951
1952        se_tpg = se_sess->se_tpg;
1953        BUG_ON(!se_tpg);
1954
1955        __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1956                          0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1957        /*
1958         * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1959         * allocation failure.
1960         */
1961        ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1962        if (ret < 0)
1963                return -ENOMEM;
1964
1965        if (tm_type == TMR_ABORT_TASK)
1966                se_cmd->se_tmr_req->ref_task_tag = tag;
1967
1968        /* See target_submit_cmd for commentary */
1969        ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1970        if (ret) {
1971                core_tmr_release_req(se_cmd->se_tmr_req);
1972                return ret;
1973        }
1974
1975        ret = transport_lookup_tmr_lun(se_cmd);
1976        if (ret)
1977                goto failure;
1978
1979        transport_generic_handle_tmr(se_cmd);
1980        return 0;
1981
1982        /*
1983         * For callback during failure handling, push this work off
1984         * to process context with TMR_LUN_DOES_NOT_EXIST status.
1985         */
1986failure:
1987        INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1988        schedule_work(&se_cmd->work);
1989        return 0;
1990}
1991EXPORT_SYMBOL(target_submit_tmr);
1992
1993/*
1994 * Handle SAM-esque emulation for generic transport request failures.
1995 */
1996void transport_generic_request_failure(struct se_cmd *cmd,
1997                sense_reason_t sense_reason)
1998{
1999        int ret = 0, post_ret;
2000
2001        pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2002                 sense_reason);
2003        target_show_cmd("-----[ ", cmd);
2004
2005        /*
2006         * For SAM Task Attribute emulation for failed struct se_cmd
2007         */
2008        transport_complete_task_attr(cmd);
2009
2010        if (cmd->transport_complete_callback)
2011                cmd->transport_complete_callback(cmd, false, &post_ret);
2012
2013        if (cmd->transport_state & CMD_T_ABORTED) {
2014                INIT_WORK(&cmd->work, target_abort_work);
2015                queue_work(target_completion_wq, &cmd->work);
2016                return;
2017        }
2018
2019        switch (sense_reason) {
2020        case TCM_NON_EXISTENT_LUN:
2021        case TCM_UNSUPPORTED_SCSI_OPCODE:
2022        case TCM_INVALID_CDB_FIELD:
2023        case TCM_INVALID_PARAMETER_LIST:
2024        case TCM_PARAMETER_LIST_LENGTH_ERROR:
2025        case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2026        case TCM_UNKNOWN_MODE_PAGE:
2027        case TCM_WRITE_PROTECTED:
2028        case TCM_ADDRESS_OUT_OF_RANGE:
2029        case TCM_CHECK_CONDITION_ABORT_CMD:
2030        case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2031        case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2032        case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2033        case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2034        case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2035        case TCM_TOO_MANY_TARGET_DESCS:
2036        case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2037        case TCM_TOO_MANY_SEGMENT_DESCS:
2038        case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2039        case TCM_INVALID_FIELD_IN_COMMAND_IU:
2040        case TCM_ALUA_TG_PT_STANDBY:
2041        case TCM_ALUA_TG_PT_UNAVAILABLE:
2042        case TCM_ALUA_STATE_TRANSITION:
2043        case TCM_ALUA_OFFLINE:
2044                break;
2045        case TCM_OUT_OF_RESOURCES:
2046                cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2047                goto queue_status;
2048        case TCM_LUN_BUSY:
2049                cmd->scsi_status = SAM_STAT_BUSY;
2050                goto queue_status;
2051        case TCM_RESERVATION_CONFLICT:
2052                /*
2053                 * No SENSE Data payload for this case, set SCSI Status
2054                 * and queue the response to $FABRIC_MOD.
2055                 *
2056                 * Uses linux/include/scsi/scsi.h SAM status codes defs
2057                 */
2058                cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2059                /*
2060                 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2061                 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2062                 * CONFLICT STATUS.
2063                 *
2064                 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2065                 */
2066                if (cmd->se_sess &&
2067                    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2068                                        == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2069                        target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2070                                               cmd->orig_fe_lun, 0x2C,
2071                                        ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2072                }
2073
2074                goto queue_status;
2075        default:
2076                pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2077                        cmd->t_task_cdb[0], sense_reason);
2078                sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2079                break;
2080        }
2081
2082        ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2083        if (ret)
2084                goto queue_full;
2085
2086check_stop:
2087        transport_lun_remove_cmd(cmd);
2088        transport_cmd_check_stop_to_fabric(cmd);
2089        return;
2090
2091queue_status:
2092        trace_target_cmd_complete(cmd);
2093        ret = cmd->se_tfo->queue_status(cmd);
2094        if (!ret)
2095                goto check_stop;
2096queue_full:
2097        transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2098}
2099EXPORT_SYMBOL(transport_generic_request_failure);
2100
2101void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2102{
2103        sense_reason_t ret;
2104
2105        if (!cmd->execute_cmd) {
2106                ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2107                goto err;
2108        }
2109        if (do_checks) {
2110                /*
2111                 * Check for an existing UNIT ATTENTION condition after
2112                 * target_handle_task_attr() has done SAM task attr
2113                 * checking, and possibly have already defered execution
2114                 * out to target_restart_delayed_cmds() context.
2115                 */
2116                ret = target_scsi3_ua_check(cmd);
2117                if (ret)
2118                        goto err;
2119
2120                ret = target_alua_state_check(cmd);
2121                if (ret)
2122                        goto err;
2123
2124                ret = target_check_reservation(cmd);
2125                if (ret) {
2126                        cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2127                        goto err;
2128                }
2129        }
2130
2131        ret = cmd->execute_cmd(cmd);
2132        if (!ret)
2133                return;
2134err:
2135        spin_lock_irq(&cmd->t_state_lock);
2136        cmd->transport_state &= ~CMD_T_SENT;
2137        spin_unlock_irq(&cmd->t_state_lock);
2138
2139        transport_generic_request_failure(cmd, ret);
2140}
2141
2142static int target_write_prot_action(struct se_cmd *cmd)
2143{
2144        u32 sectors;
2145        /*
2146         * Perform WRITE_INSERT of PI using software emulation when backend
2147         * device has PI enabled, if the transport has not already generated
2148         * PI using hardware WRITE_INSERT offload.
2149         */
2150        switch (cmd->prot_op) {
2151        case TARGET_PROT_DOUT_INSERT:
2152                if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2153                        sbc_dif_generate(cmd);
2154                break;
2155        case TARGET_PROT_DOUT_STRIP:
2156                if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2157                        break;
2158
2159                sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2160                cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2161                                             sectors, 0, cmd->t_prot_sg, 0);
2162                if (unlikely(cmd->pi_err)) {
2163                        spin_lock_irq(&cmd->t_state_lock);
2164                        cmd->transport_state &= ~CMD_T_SENT;
2165                        spin_unlock_irq(&cmd->t_state_lock);
2166                        transport_generic_request_failure(cmd, cmd->pi_err);
2167                        return -1;
2168                }
2169                break;
2170        default:
2171                break;
2172        }
2173
2174        return 0;
2175}
2176
2177static bool target_handle_task_attr(struct se_cmd *cmd)
2178{
2179        struct se_device *dev = cmd->se_dev;
2180
2181        if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2182                return false;
2183
2184        cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2185
2186        /*
2187         * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2188         * to allow the passed struct se_cmd list of tasks to the front of the list.
2189         */
2190        switch (cmd->sam_task_attr) {
2191        case TCM_HEAD_TAG:
2192                atomic_inc_mb(&dev->non_ordered);
2193                pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2194                         cmd->t_task_cdb[0]);
2195                return false;
2196        case TCM_ORDERED_TAG:
2197                atomic_inc_mb(&dev->delayed_cmd_count);
2198
2199                pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2200                         cmd->t_task_cdb[0]);
2201                break;
2202        default:
2203                /*
2204                 * For SIMPLE and UNTAGGED Task Attribute commands
2205                 */
2206                atomic_inc_mb(&dev->non_ordered);
2207
2208                if (atomic_read(&dev->delayed_cmd_count) == 0)
2209                        return false;
2210                break;
2211        }
2212
2213        if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
2214                atomic_inc_mb(&dev->delayed_cmd_count);
2215                /*
2216                 * We will account for this when we dequeue from the delayed
2217                 * list.
2218                 */
2219                atomic_dec_mb(&dev->non_ordered);
2220        }
2221
2222        spin_lock_irq(&cmd->t_state_lock);
2223        cmd->transport_state &= ~CMD_T_SENT;
2224        spin_unlock_irq(&cmd->t_state_lock);
2225
2226        spin_lock(&dev->delayed_cmd_lock);
2227        list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2228        spin_unlock(&dev->delayed_cmd_lock);
2229
2230        pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2231                cmd->t_task_cdb[0], cmd->sam_task_attr);
2232        /*
2233         * We may have no non ordered cmds when this function started or we
2234         * could have raced with the last simple/head cmd completing, so kick
2235         * the delayed handler here.
2236         */
2237        schedule_work(&dev->delayed_cmd_work);
2238        return true;
2239}
2240
2241void target_execute_cmd(struct se_cmd *cmd)
2242{
2243        /*
2244         * Determine if frontend context caller is requesting the stopping of
2245         * this command for frontend exceptions.
2246         *
2247         * If the received CDB has already been aborted stop processing it here.
2248         */
2249        if (target_cmd_interrupted(cmd))
2250                return;
2251
2252        spin_lock_irq(&cmd->t_state_lock);
2253        cmd->t_state = TRANSPORT_PROCESSING;
2254        cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2255        spin_unlock_irq(&cmd->t_state_lock);
2256
2257        if (target_write_prot_action(cmd))
2258                return;
2259
2260        if (target_handle_task_attr(cmd))
2261                return;
2262
2263        __target_execute_cmd(cmd, true);
2264}
2265EXPORT_SYMBOL(target_execute_cmd);
2266
2267/*
2268 * Process all commands up to the last received ORDERED task attribute which
2269 * requires another blocking boundary
2270 */
2271void target_do_delayed_work(struct work_struct *work)
2272{
2273        struct se_device *dev = container_of(work, struct se_device,
2274                                             delayed_cmd_work);
2275
2276        spin_lock(&dev->delayed_cmd_lock);
2277        while (!dev->ordered_sync_in_progress) {
2278                struct se_cmd *cmd;
2279
2280                if (list_empty(&dev->delayed_cmd_list))
2281                        break;
2282
2283                cmd = list_entry(dev->delayed_cmd_list.next,
2284                                 struct se_cmd, se_delayed_node);
2285
2286                if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2287                        /*
2288                         * Check if we started with:
2289                         * [ordered] [simple] [ordered]
2290                         * and we are now at the last ordered so we have to wait
2291                         * for the simple cmd.
2292                         */
2293                        if (atomic_read(&dev->non_ordered) > 0)
2294                                break;
2295
2296                        dev->ordered_sync_in_progress = true;
2297                }
2298
2299                list_del(&cmd->se_delayed_node);
2300                atomic_dec_mb(&dev->delayed_cmd_count);
2301                spin_unlock(&dev->delayed_cmd_lock);
2302
2303                if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2304                        atomic_inc_mb(&dev->non_ordered);
2305
2306                cmd->transport_state |= CMD_T_SENT;
2307
2308                __target_execute_cmd(cmd, true);
2309
2310                spin_lock(&dev->delayed_cmd_lock);
2311        }
2312        spin_unlock(&dev->delayed_cmd_lock);
2313}
2314
2315/*
2316 * Called from I/O completion to determine which dormant/delayed
2317 * and ordered cmds need to have their tasks added to the execution queue.
2318 */
2319static void transport_complete_task_attr(struct se_cmd *cmd)
2320{
2321        struct se_device *dev = cmd->se_dev;
2322
2323        if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2324                return;
2325
2326        if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2327                goto restart;
2328
2329        if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2330                atomic_dec_mb(&dev->non_ordered);
2331                dev->dev_cur_ordered_id++;
2332        } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2333                atomic_dec_mb(&dev->non_ordered);
2334                dev->dev_cur_ordered_id++;
2335                pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2336                         dev->dev_cur_ordered_id);
2337        } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2338                spin_lock(&dev->delayed_cmd_lock);
2339                dev->ordered_sync_in_progress = false;
2340                spin_unlock(&dev->delayed_cmd_lock);
2341
2342                dev->dev_cur_ordered_id++;
2343                pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2344                         dev->dev_cur_ordered_id);
2345        }
2346        cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2347
2348restart:
2349        if (atomic_read(&dev->delayed_cmd_count) > 0)
2350                schedule_work(&dev->delayed_cmd_work);
2351}
2352
2353static void transport_complete_qf(struct se_cmd *cmd)
2354{
2355        int ret = 0;
2356
2357        transport_complete_task_attr(cmd);
2358        /*
2359         * If a fabric driver ->write_pending() or ->queue_data_in() callback
2360         * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2361         * the same callbacks should not be retried.  Return CHECK_CONDITION
2362         * if a scsi_status is not already set.
2363         *
2364         * If a fabric driver ->queue_status() has returned non zero, always
2365         * keep retrying no matter what..
2366         */
2367        if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2368                if (cmd->scsi_status)
2369                        goto queue_status;
2370
2371                translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2372                goto queue_status;
2373        }
2374
2375        /*
2376         * Check if we need to send a sense buffer from
2377         * the struct se_cmd in question. We do NOT want
2378         * to take this path of the IO has been marked as
2379         * needing to be treated like a "normal read". This
2380         * is the case if it's a tape read, and either the
2381         * FM, EOM, or ILI bits are set, but there is no
2382         * sense data.
2383         */
2384        if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2385            cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2386                goto queue_status;
2387
2388        switch (cmd->data_direction) {
2389        case DMA_FROM_DEVICE:
2390                /* queue status if not treating this as a normal read */
2391                if (cmd->scsi_status &&
2392                    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2393                        goto queue_status;
2394
2395                trace_target_cmd_complete(cmd);
2396                ret = cmd->se_tfo->queue_data_in(cmd);
2397                break;
2398        case DMA_TO_DEVICE:
2399                if (cmd->se_cmd_flags & SCF_BIDI) {
2400                        ret = cmd->se_tfo->queue_data_in(cmd);
2401                        break;
2402                }
2403                fallthrough;
2404        case DMA_NONE:
2405queue_status:
2406                trace_target_cmd_complete(cmd);
2407                ret = cmd->se_tfo->queue_status(cmd);
2408                break;
2409        default:
2410                break;
2411        }
2412
2413        if (ret < 0) {
2414                transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2415                return;
2416        }
2417        transport_lun_remove_cmd(cmd);
2418        transport_cmd_check_stop_to_fabric(cmd);
2419}
2420
2421static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2422                                        int err, bool write_pending)
2423{
2424        /*
2425         * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2426         * ->queue_data_in() callbacks from new process context.
2427         *
2428         * Otherwise for other errors, transport_complete_qf() will send
2429         * CHECK_CONDITION via ->queue_status() instead of attempting to
2430         * retry associated fabric driver data-transfer callbacks.
2431         */
2432        if (err == -EAGAIN || err == -ENOMEM) {
2433                cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2434                                                 TRANSPORT_COMPLETE_QF_OK;
2435        } else {
2436                pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2437                cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2438        }
2439
2440        spin_lock_irq(&dev->qf_cmd_lock);
2441        list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2442        atomic_inc_mb(&dev->dev_qf_count);
2443        spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2444
2445        schedule_work(&cmd->se_dev->qf_work_queue);
2446}
2447
2448static bool target_read_prot_action(struct se_cmd *cmd)
2449{
2450        switch (cmd->prot_op) {
2451        case TARGET_PROT_DIN_STRIP:
2452                if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2453                        u32 sectors = cmd->data_length >>
2454                                  ilog2(cmd->se_dev->dev_attrib.block_size);
2455
2456                        cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2457                                                     sectors, 0, cmd->t_prot_sg,
2458                                                     0);
2459                        if (cmd->pi_err)
2460                                return true;
2461                }
2462                break;
2463        case TARGET_PROT_DIN_INSERT:
2464                if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2465                        break;
2466
2467                sbc_dif_generate(cmd);
2468                break;
2469        default:
2470                break;
2471        }
2472
2473        return false;
2474}
2475
2476static void target_complete_ok_work(struct work_struct *work)
2477{
2478        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2479        int ret;
2480
2481        /*
2482         * Check if we need to move delayed/dormant tasks from cmds on the
2483         * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2484         * Attribute.
2485         */
2486        transport_complete_task_attr(cmd);
2487
2488        /*
2489         * Check to schedule QUEUE_FULL work, or execute an existing
2490         * cmd->transport_qf_callback()
2491         */
2492        if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2493                schedule_work(&cmd->se_dev->qf_work_queue);
2494
2495        /*
2496         * Check if we need to send a sense buffer from
2497         * the struct se_cmd in question. We do NOT want
2498         * to take this path of the IO has been marked as
2499         * needing to be treated like a "normal read". This
2500         * is the case if it's a tape read, and either the
2501         * FM, EOM, or ILI bits are set, but there is no
2502         * sense data.
2503         */
2504        if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2505            cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2506                WARN_ON(!cmd->scsi_status);
2507                ret = transport_send_check_condition_and_sense(
2508                                        cmd, 0, 1);
2509                if (ret)
2510                        goto queue_full;
2511
2512                transport_lun_remove_cmd(cmd);
2513                transport_cmd_check_stop_to_fabric(cmd);
2514                return;
2515        }
2516        /*
2517         * Check for a callback, used by amongst other things
2518         * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2519         */
2520        if (cmd->transport_complete_callback) {
2521                sense_reason_t rc;
2522                bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2523                bool zero_dl = !(cmd->data_length);
2524                int post_ret = 0;
2525
2526                rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2527                if (!rc && !post_ret) {
2528                        if (caw && zero_dl)
2529                                goto queue_rsp;
2530
2531                        return;
2532                } else if (rc) {
2533                        ret = transport_send_check_condition_and_sense(cmd,
2534                                                rc, 0);
2535                        if (ret)
2536                                goto queue_full;
2537
2538                        transport_lun_remove_cmd(cmd);
2539                        transport_cmd_check_stop_to_fabric(cmd);
2540                        return;
2541                }
2542        }
2543
2544queue_rsp:
2545        switch (cmd->data_direction) {
2546        case DMA_FROM_DEVICE:
2547                /*
2548                 * if this is a READ-type IO, but SCSI status
2549                 * is set, then skip returning data and just
2550                 * return the status -- unless this IO is marked
2551                 * as needing to be treated as a normal read,
2552                 * in which case we want to go ahead and return
2553                 * the data. This happens, for example, for tape
2554                 * reads with the FM, EOM, or ILI bits set, with
2555                 * no sense data.
2556                 */
2557                if (cmd->scsi_status &&
2558                    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2559                        goto queue_status;
2560
2561                atomic_long_add(cmd->data_length,
2562                                &cmd->se_lun->lun_stats.tx_data_octets);
2563                /*
2564                 * Perform READ_STRIP of PI using software emulation when
2565                 * backend had PI enabled, if the transport will not be
2566                 * performing hardware READ_STRIP offload.
2567                 */
2568                if (target_read_prot_action(cmd)) {
2569                        ret = transport_send_check_condition_and_sense(cmd,
2570                                                cmd->pi_err, 0);
2571                        if (ret)
2572                                goto queue_full;
2573
2574                        transport_lun_remove_cmd(cmd);
2575                        transport_cmd_check_stop_to_fabric(cmd);
2576                        return;
2577                }
2578
2579                trace_target_cmd_complete(cmd);
2580                ret = cmd->se_tfo->queue_data_in(cmd);
2581                if (ret)
2582                        goto queue_full;
2583                break;
2584        case DMA_TO_DEVICE:
2585                atomic_long_add(cmd->data_length,
2586                                &cmd->se_lun->lun_stats.rx_data_octets);
2587                /*
2588                 * Check if we need to send READ payload for BIDI-COMMAND
2589                 */
2590                if (cmd->se_cmd_flags & SCF_BIDI) {
2591                        atomic_long_add(cmd->data_length,
2592                                        &cmd->se_lun->lun_stats.tx_data_octets);
2593                        ret = cmd->se_tfo->queue_data_in(cmd);
2594                        if (ret)
2595                                goto queue_full;
2596                        break;
2597                }
2598                fallthrough;
2599        case DMA_NONE:
2600queue_status:
2601                trace_target_cmd_complete(cmd);
2602                ret = cmd->se_tfo->queue_status(cmd);
2603                if (ret)
2604                        goto queue_full;
2605                break;
2606        default:
2607                break;
2608        }
2609
2610        transport_lun_remove_cmd(cmd);
2611        transport_cmd_check_stop_to_fabric(cmd);
2612        return;
2613
2614queue_full:
2615        pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2616                " data_direction: %d\n", cmd, cmd->data_direction);
2617
2618        transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2619}
2620
2621void target_free_sgl(struct scatterlist *sgl, int nents)
2622{
2623        sgl_free_n_order(sgl, nents, 0);
2624}
2625EXPORT_SYMBOL(target_free_sgl);
2626
2627static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2628{
2629        /*
2630         * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2631         * emulation, and free + reset pointers if necessary..
2632         */
2633        if (!cmd->t_data_sg_orig)
2634                return;
2635
2636        kfree(cmd->t_data_sg);
2637        cmd->t_data_sg = cmd->t_data_sg_orig;
2638        cmd->t_data_sg_orig = NULL;
2639        cmd->t_data_nents = cmd->t_data_nents_orig;
2640        cmd->t_data_nents_orig = 0;
2641}
2642
2643static inline void transport_free_pages(struct se_cmd *cmd)
2644{
2645        if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2646                target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2647                cmd->t_prot_sg = NULL;
2648                cmd->t_prot_nents = 0;
2649        }
2650
2651        if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2652                /*
2653                 * Release special case READ buffer payload required for
2654                 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2655                 */
2656                if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2657                        target_free_sgl(cmd->t_bidi_data_sg,
2658                                           cmd->t_bidi_data_nents);
2659                        cmd->t_bidi_data_sg = NULL;
2660                        cmd->t_bidi_data_nents = 0;
2661                }
2662                transport_reset_sgl_orig(cmd);
2663                return;
2664        }
2665        transport_reset_sgl_orig(cmd);
2666
2667        target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2668        cmd->t_data_sg = NULL;
2669        cmd->t_data_nents = 0;
2670
2671        target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2672        cmd->t_bidi_data_sg = NULL;
2673        cmd->t_bidi_data_nents = 0;
2674}
2675
2676void *transport_kmap_data_sg(struct se_cmd *cmd)
2677{
2678        struct scatterlist *sg = cmd->t_data_sg;
2679        struct page **pages;
2680        int i;
2681
2682        /*
2683         * We need to take into account a possible offset here for fabrics like
2684         * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2685         * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2686         */
2687        if (!cmd->t_data_nents)
2688                return NULL;
2689
2690        BUG_ON(!sg);
2691        if (cmd->t_data_nents == 1)
2692                return kmap(sg_page(sg)) + sg->offset;
2693
2694        /* >1 page. use vmap */
2695        pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2696        if (!pages)
2697                return NULL;
2698
2699        /* convert sg[] to pages[] */
2700        for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2701                pages[i] = sg_page(sg);
2702        }
2703
2704        cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2705        kfree(pages);
2706        if (!cmd->t_data_vmap)
2707                return NULL;
2708
2709        return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2710}
2711EXPORT_SYMBOL(transport_kmap_data_sg);
2712
2713void transport_kunmap_data_sg(struct se_cmd *cmd)
2714{
2715        if (!cmd->t_data_nents) {
2716                return;
2717        } else if (cmd->t_data_nents == 1) {
2718                kunmap(sg_page(cmd->t_data_sg));
2719                return;
2720        }
2721
2722        vunmap(cmd->t_data_vmap);
2723        cmd->t_data_vmap = NULL;
2724}
2725EXPORT_SYMBOL(transport_kunmap_data_sg);
2726
2727int
2728target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2729                 bool zero_page, bool chainable)
2730{
2731        gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2732
2733        *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2734        return *sgl ? 0 : -ENOMEM;
2735}
2736EXPORT_SYMBOL(target_alloc_sgl);
2737
2738/*
2739 * Allocate any required resources to execute the command.  For writes we
2740 * might not have the payload yet, so notify the fabric via a call to
2741 * ->write_pending instead. Otherwise place it on the execution queue.
2742 */
2743sense_reason_t
2744transport_generic_new_cmd(struct se_cmd *cmd)
2745{
2746        unsigned long flags;
2747        int ret = 0;
2748        bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2749
2750        if (cmd->prot_op != TARGET_PROT_NORMAL &&
2751            !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2752                ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2753                                       cmd->prot_length, true, false);
2754                if (ret < 0)
2755                        return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2756        }
2757
2758        /*
2759         * Determine if the TCM fabric module has already allocated physical
2760         * memory, and is directly calling transport_generic_map_mem_to_cmd()
2761         * beforehand.
2762         */
2763        if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2764            cmd->data_length) {
2765
2766                if ((cmd->se_cmd_flags & SCF_BIDI) ||
2767                    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2768                        u32 bidi_length;
2769
2770                        if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2771                                bidi_length = cmd->t_task_nolb *
2772                                              cmd->se_dev->dev_attrib.block_size;
2773                        else
2774                                bidi_length = cmd->data_length;
2775
2776                        ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2777                                               &cmd->t_bidi_data_nents,
2778                                               bidi_length, zero_flag, false);
2779                        if (ret < 0)
2780                                return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2781                }
2782
2783                ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2784                                       cmd->data_length, zero_flag, false);
2785                if (ret < 0)
2786                        return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2787        } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2788                    cmd->data_length) {
2789                /*
2790                 * Special case for COMPARE_AND_WRITE with fabrics
2791                 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2792                 */
2793                u32 caw_length = cmd->t_task_nolb *
2794                                 cmd->se_dev->dev_attrib.block_size;
2795
2796                ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2797                                       &cmd->t_bidi_data_nents,
2798                                       caw_length, zero_flag, false);
2799                if (ret < 0)
2800                        return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2801        }
2802        /*
2803         * If this command is not a write we can execute it right here,
2804         * for write buffers we need to notify the fabric driver first
2805         * and let it call back once the write buffers are ready.
2806         */
2807        target_add_to_state_list(cmd);
2808        if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2809                target_execute_cmd(cmd);
2810                return 0;
2811        }
2812
2813        spin_lock_irqsave(&cmd->t_state_lock, flags);
2814        cmd->t_state = TRANSPORT_WRITE_PENDING;
2815        /*
2816         * Determine if frontend context caller is requesting the stopping of
2817         * this command for frontend exceptions.
2818         */
2819        if (cmd->transport_state & CMD_T_STOP &&
2820            !cmd->se_tfo->write_pending_must_be_called) {
2821                pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2822                         __func__, __LINE__, cmd->tag);
2823
2824                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2825
2826                complete_all(&cmd->t_transport_stop_comp);
2827                return 0;
2828        }
2829        cmd->transport_state &= ~CMD_T_ACTIVE;
2830        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2831
2832        ret = cmd->se_tfo->write_pending(cmd);
2833        if (ret)
2834                goto queue_full;
2835
2836        return 0;
2837
2838queue_full:
2839        pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2840        transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2841        return 0;
2842}
2843EXPORT_SYMBOL(transport_generic_new_cmd);
2844
2845static void transport_write_pending_qf(struct se_cmd *cmd)
2846{
2847        unsigned long flags;
2848        int ret;
2849        bool stop;
2850
2851        spin_lock_irqsave(&cmd->t_state_lock, flags);
2852        stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2853        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2854
2855        if (stop) {
2856                pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2857                        __func__, __LINE__, cmd->tag);
2858                complete_all(&cmd->t_transport_stop_comp);
2859                return;
2860        }
2861
2862        ret = cmd->se_tfo->write_pending(cmd);
2863        if (ret) {
2864                pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2865                         cmd);
2866                transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2867        }
2868}
2869
2870static bool
2871__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2872                           unsigned long *flags);
2873
2874static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2875{
2876        unsigned long flags;
2877
2878        spin_lock_irqsave(&cmd->t_state_lock, flags);
2879        __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2880        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2881}
2882
2883/*
2884 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2885 * finished.
2886 */
2887void target_put_cmd_and_wait(struct se_cmd *cmd)
2888{
2889        DECLARE_COMPLETION_ONSTACK(compl);
2890
2891        WARN_ON_ONCE(cmd->abrt_compl);
2892        cmd->abrt_compl = &compl;
2893        target_put_sess_cmd(cmd);
2894        wait_for_completion(&compl);
2895}
2896
2897/*
2898 * This function is called by frontend drivers after processing of a command
2899 * has finished.
2900 *
2901 * The protocol for ensuring that either the regular frontend command
2902 * processing flow or target_handle_abort() code drops one reference is as
2903 * follows:
2904 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2905 *   the frontend driver to call this function synchronously or asynchronously.
2906 *   That will cause one reference to be dropped.
2907 * - During regular command processing the target core sets CMD_T_COMPLETE
2908 *   before invoking one of the .queue_*() functions.
2909 * - The code that aborts commands skips commands and TMFs for which
2910 *   CMD_T_COMPLETE has been set.
2911 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2912 *   commands that will be aborted.
2913 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2914 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2915 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2916 *   be called and will drop a reference.
2917 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2918 *   will be called. target_handle_abort() will drop the final reference.
2919 */
2920int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2921{
2922        DECLARE_COMPLETION_ONSTACK(compl);
2923        int ret = 0;
2924        bool aborted = false, tas = false;
2925
2926        if (wait_for_tasks)
2927                target_wait_free_cmd(cmd, &aborted, &tas);
2928
2929        if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2930                /*
2931                 * Handle WRITE failure case where transport_generic_new_cmd()
2932                 * has already added se_cmd to state_list, but fabric has
2933                 * failed command before I/O submission.
2934                 */
2935                if (cmd->state_active)
2936                        target_remove_from_state_list(cmd);
2937
2938                if (cmd->se_lun)
2939                        transport_lun_remove_cmd(cmd);
2940        }
2941        if (aborted)
2942                cmd->free_compl = &compl;
2943        ret = target_put_sess_cmd(cmd);
2944        if (aborted) {
2945                pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2946                wait_for_completion(&compl);
2947                ret = 1;
2948        }
2949        return ret;
2950}
2951EXPORT_SYMBOL(transport_generic_free_cmd);
2952
2953/**
2954 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2955 * @se_cmd:     command descriptor to add
2956 * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2957 */
2958int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2959{
2960        struct se_session *se_sess = se_cmd->se_sess;
2961        int ret = 0;
2962
2963        /*
2964         * Add a second kref if the fabric caller is expecting to handle
2965         * fabric acknowledgement that requires two target_put_sess_cmd()
2966         * invocations before se_cmd descriptor release.
2967         */
2968        if (ack_kref) {
2969                kref_get(&se_cmd->cmd_kref);
2970                se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2971        }
2972
2973        if (!percpu_ref_tryget_live(&se_sess->cmd_count))
2974                ret = -ESHUTDOWN;
2975
2976        if (ret && ack_kref)
2977                target_put_sess_cmd(se_cmd);
2978
2979        return ret;
2980}
2981EXPORT_SYMBOL(target_get_sess_cmd);
2982
2983static void target_free_cmd_mem(struct se_cmd *cmd)
2984{
2985        transport_free_pages(cmd);
2986
2987        if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2988                core_tmr_release_req(cmd->se_tmr_req);
2989        if (cmd->t_task_cdb != cmd->__t_task_cdb)
2990                kfree(cmd->t_task_cdb);
2991}
2992
2993static void target_release_cmd_kref(struct kref *kref)
2994{
2995        struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2996        struct se_session *se_sess = se_cmd->se_sess;
2997        struct completion *free_compl = se_cmd->free_compl;
2998        struct completion *abrt_compl = se_cmd->abrt_compl;
2999
3000        target_free_cmd_mem(se_cmd);
3001        se_cmd->se_tfo->release_cmd(se_cmd);
3002        if (free_compl)
3003                complete(free_compl);
3004        if (abrt_compl)
3005                complete(abrt_compl);
3006
3007        percpu_ref_put(&se_sess->cmd_count);
3008}
3009
3010/**
3011 * target_put_sess_cmd - decrease the command reference count
3012 * @se_cmd:     command to drop a reference from
3013 *
3014 * Returns 1 if and only if this target_put_sess_cmd() call caused the
3015 * refcount to drop to zero. Returns zero otherwise.
3016 */
3017int target_put_sess_cmd(struct se_cmd *se_cmd)
3018{
3019        return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3020}
3021EXPORT_SYMBOL(target_put_sess_cmd);
3022
3023static const char *data_dir_name(enum dma_data_direction d)
3024{
3025        switch (d) {
3026        case DMA_BIDIRECTIONAL: return "BIDI";
3027        case DMA_TO_DEVICE:     return "WRITE";
3028        case DMA_FROM_DEVICE:   return "READ";
3029        case DMA_NONE:          return "NONE";
3030        }
3031
3032        return "(?)";
3033}
3034
3035static const char *cmd_state_name(enum transport_state_table t)
3036{
3037        switch (t) {
3038        case TRANSPORT_NO_STATE:        return "NO_STATE";
3039        case TRANSPORT_NEW_CMD:         return "NEW_CMD";
3040        case TRANSPORT_WRITE_PENDING:   return "WRITE_PENDING";
3041        case TRANSPORT_PROCESSING:      return "PROCESSING";
3042        case TRANSPORT_COMPLETE:        return "COMPLETE";
3043        case TRANSPORT_ISTATE_PROCESSING:
3044                                        return "ISTATE_PROCESSING";
3045        case TRANSPORT_COMPLETE_QF_WP:  return "COMPLETE_QF_WP";
3046        case TRANSPORT_COMPLETE_QF_OK:  return "COMPLETE_QF_OK";
3047        case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
3048        }
3049
3050        return "(?)";
3051}
3052
3053static void target_append_str(char **str, const char *txt)
3054{
3055        char *prev = *str;
3056
3057        *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3058                kstrdup(txt, GFP_ATOMIC);
3059        kfree(prev);
3060}
3061
3062/*
3063 * Convert a transport state bitmask into a string. The caller is
3064 * responsible for freeing the returned pointer.
3065 */
3066static char *target_ts_to_str(u32 ts)
3067{
3068        char *str = NULL;
3069
3070        if (ts & CMD_T_ABORTED)
3071                target_append_str(&str, "aborted");
3072        if (ts & CMD_T_ACTIVE)
3073                target_append_str(&str, "active");
3074        if (ts & CMD_T_COMPLETE)
3075                target_append_str(&str, "complete");
3076        if (ts & CMD_T_SENT)
3077                target_append_str(&str, "sent");
3078        if (ts & CMD_T_STOP)
3079                target_append_str(&str, "stop");
3080        if (ts & CMD_T_FABRIC_STOP)
3081                target_append_str(&str, "fabric_stop");
3082
3083        return str;
3084}
3085
3086static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3087{
3088        switch (tmf) {
3089        case TMR_ABORT_TASK:            return "ABORT_TASK";
3090        case TMR_ABORT_TASK_SET:        return "ABORT_TASK_SET";
3091        case TMR_CLEAR_ACA:             return "CLEAR_ACA";
3092        case TMR_CLEAR_TASK_SET:        return "CLEAR_TASK_SET";
3093        case TMR_LUN_RESET:             return "LUN_RESET";
3094        case TMR_TARGET_WARM_RESET:     return "TARGET_WARM_RESET";
3095        case TMR_TARGET_COLD_RESET:     return "TARGET_COLD_RESET";
3096        case TMR_LUN_RESET_PRO:         return "LUN_RESET_PRO";
3097        case TMR_UNKNOWN:               break;
3098        }
3099        return "(?)";
3100}
3101
3102void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3103{
3104        char *ts_str = target_ts_to_str(cmd->transport_state);
3105        const u8 *cdb = cmd->t_task_cdb;
3106        struct se_tmr_req *tmf = cmd->se_tmr_req;
3107
3108        if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3109                pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3110                         pfx, cdb[0], cdb[1], cmd->tag,
3111                         data_dir_name(cmd->data_direction),
3112                         cmd->se_tfo->get_cmd_state(cmd),
3113                         cmd_state_name(cmd->t_state), cmd->data_length,
3114                         kref_read(&cmd->cmd_kref), ts_str);
3115        } else {
3116                pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3117                         pfx, target_tmf_name(tmf->function), cmd->tag,
3118                         tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3119                         cmd_state_name(cmd->t_state),
3120                         kref_read(&cmd->cmd_kref), ts_str);
3121        }
3122        kfree(ts_str);
3123}
3124EXPORT_SYMBOL(target_show_cmd);
3125
3126static void target_stop_session_confirm(struct percpu_ref *ref)
3127{
3128        struct se_session *se_sess = container_of(ref, struct se_session,
3129                                                  cmd_count);
3130        complete_all(&se_sess->stop_done);
3131}
3132
3133/**
3134 * target_stop_session - Stop new IO from being queued on the session.
3135 * @se_sess:    session to stop
3136 */
3137void target_stop_session(struct se_session *se_sess)
3138{
3139        pr_debug("Stopping session queue.\n");
3140        if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
3141                percpu_ref_kill_and_confirm(&se_sess->cmd_count,
3142                                            target_stop_session_confirm);
3143}
3144EXPORT_SYMBOL(target_stop_session);
3145
3146/**
3147 * target_wait_for_sess_cmds - Wait for outstanding commands
3148 * @se_sess:    session to wait for active I/O
3149 */
3150void target_wait_for_sess_cmds(struct se_session *se_sess)
3151{
3152        int ret;
3153
3154        WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
3155
3156        do {
3157                pr_debug("Waiting for running cmds to complete.\n");
3158                ret = wait_event_timeout(se_sess->cmd_count_wq,
3159                                percpu_ref_is_zero(&se_sess->cmd_count),
3160                                180 * HZ);
3161        } while (ret <= 0);
3162
3163        wait_for_completion(&se_sess->stop_done);
3164        pr_debug("Waiting for cmds done.\n");
3165}
3166EXPORT_SYMBOL(target_wait_for_sess_cmds);
3167
3168/*
3169 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3170 * all references to the LUN have been released. Called during LUN shutdown.
3171 */
3172void transport_clear_lun_ref(struct se_lun *lun)
3173{
3174        percpu_ref_kill(&lun->lun_ref);
3175        wait_for_completion(&lun->lun_shutdown_comp);
3176}
3177
3178static bool
3179__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3180                           bool *aborted, bool *tas, unsigned long *flags)
3181        __releases(&cmd->t_state_lock)
3182        __acquires(&cmd->t_state_lock)
3183{
3184        lockdep_assert_held(&cmd->t_state_lock);
3185
3186        if (fabric_stop)
3187                cmd->transport_state |= CMD_T_FABRIC_STOP;
3188
3189        if (cmd->transport_state & CMD_T_ABORTED)
3190                *aborted = true;
3191
3192        if (cmd->transport_state & CMD_T_TAS)
3193                *tas = true;
3194
3195        if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3196            !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3197                return false;
3198
3199        if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3200            !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3201                return false;
3202
3203        if (!(cmd->transport_state & CMD_T_ACTIVE))
3204                return false;
3205
3206        if (fabric_stop && *aborted)
3207                return false;
3208
3209        cmd->transport_state |= CMD_T_STOP;
3210
3211        target_show_cmd("wait_for_tasks: Stopping ", cmd);
3212
3213        spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3214
3215        while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3216                                            180 * HZ))
3217                target_show_cmd("wait for tasks: ", cmd);
3218
3219        spin_lock_irqsave(&cmd->t_state_lock, *flags);
3220        cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3221
3222        pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3223                 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3224
3225        return true;
3226}
3227
3228/**
3229 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3230 * @cmd: command to wait on
3231 */
3232bool transport_wait_for_tasks(struct se_cmd *cmd)
3233{
3234        unsigned long flags;
3235        bool ret, aborted = false, tas = false;
3236
3237        spin_lock_irqsave(&cmd->t_state_lock, flags);
3238        ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3239        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3240
3241        return ret;
3242}
3243EXPORT_SYMBOL(transport_wait_for_tasks);
3244
3245struct sense_detail {
3246        u8 key;
3247        u8 asc;
3248        u8 ascq;
3249        bool add_sense_info;
3250};
3251
3252static const struct sense_detail sense_detail_table[] = {
3253        [TCM_NO_SENSE] = {
3254                .key = NOT_READY
3255        },
3256        [TCM_NON_EXISTENT_LUN] = {
3257                .key = ILLEGAL_REQUEST,
3258                .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3259        },
3260        [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3261                .key = ILLEGAL_REQUEST,
3262                .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3263        },
3264        [TCM_SECTOR_COUNT_TOO_MANY] = {
3265                .key = ILLEGAL_REQUEST,
3266                .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3267        },
3268        [TCM_UNKNOWN_MODE_PAGE] = {
3269                .key = ILLEGAL_REQUEST,
3270                .asc = 0x24, /* INVALID FIELD IN CDB */
3271        },
3272        [TCM_CHECK_CONDITION_ABORT_CMD] = {
3273                .key = ABORTED_COMMAND,
3274                .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3275                .ascq = 0x03,
3276        },
3277        [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3278                .key = ABORTED_COMMAND,
3279                .asc = 0x0c, /* WRITE ERROR */
3280                .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3281        },
3282        [TCM_INVALID_CDB_FIELD] = {
3283                .key = ILLEGAL_REQUEST,
3284                .asc = 0x24, /* INVALID FIELD IN CDB */
3285        },
3286        [TCM_INVALID_PARAMETER_LIST] = {
3287                .key = ILLEGAL_REQUEST,
3288                .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3289        },
3290        [TCM_TOO_MANY_TARGET_DESCS] = {
3291                .key = ILLEGAL_REQUEST,
3292                .asc = 0x26,
3293                .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3294        },
3295        [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3296                .key = ILLEGAL_REQUEST,
3297                .asc = 0x26,
3298                .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3299        },
3300        [TCM_TOO_MANY_SEGMENT_DESCS] = {
3301                .key = ILLEGAL_REQUEST,
3302                .asc = 0x26,
3303                .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3304        },
3305        [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3306                .key = ILLEGAL_REQUEST,
3307                .asc = 0x26,
3308                .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3309        },
3310        [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3311                .key = ILLEGAL_REQUEST,
3312                .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3313        },
3314        [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3315                .key = ILLEGAL_REQUEST,
3316                .asc = 0x0c, /* WRITE ERROR */
3317                .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3318        },
3319        [TCM_SERVICE_CRC_ERROR] = {
3320                .key = ABORTED_COMMAND,
3321                .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3322                .ascq = 0x05, /* N/A */
3323        },
3324        [TCM_SNACK_REJECTED] = {
3325                .key = ABORTED_COMMAND,
3326                .asc = 0x11, /* READ ERROR */
3327                .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3328        },
3329        [TCM_WRITE_PROTECTED] = {
3330                .key = DATA_PROTECT,
3331                .asc = 0x27, /* WRITE PROTECTED */
3332        },
3333        [TCM_ADDRESS_OUT_OF_RANGE] = {
3334                .key = ILLEGAL_REQUEST,
3335                .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3336        },
3337        [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3338                .key = UNIT_ATTENTION,
3339        },
3340        [TCM_MISCOMPARE_VERIFY] = {
3341                .key = MISCOMPARE,
3342                .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3343                .ascq = 0x00,
3344                .add_sense_info = true,
3345        },
3346        [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3347                .key = ABORTED_COMMAND,
3348                .asc = 0x10,
3349                .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3350                .add_sense_info = true,
3351        },
3352        [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3353                .key = ABORTED_COMMAND,
3354                .asc = 0x10,
3355                .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3356                .add_sense_info = true,
3357        },
3358        [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3359                .key = ABORTED_COMMAND,
3360                .asc = 0x10,
3361                .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3362                .add_sense_info = true,
3363        },
3364        [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3365                .key = COPY_ABORTED,
3366                .asc = 0x0d,
3367                .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3368
3369        },
3370        [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3371                /*
3372                 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3373                 * Solaris initiators.  Returning NOT READY instead means the
3374                 * operations will be retried a finite number of times and we
3375                 * can survive intermittent errors.
3376                 */
3377                .key = NOT_READY,
3378                .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3379        },
3380        [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3381                /*
3382                 * From spc4r22 section5.7.7,5.7.8
3383                 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3384                 * or a REGISTER AND IGNORE EXISTING KEY service action or
3385                 * REGISTER AND MOVE service actionis attempted,
3386                 * but there are insufficient device server resources to complete the
3387                 * operation, then the command shall be terminated with CHECK CONDITION
3388                 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3389                 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3390                 */
3391                .key = ILLEGAL_REQUEST,
3392                .asc = 0x55,
3393                .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3394        },
3395        [TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3396                .key = ILLEGAL_REQUEST,
3397                .asc = 0x0e,
3398                .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3399        },
3400        [TCM_ALUA_TG_PT_STANDBY] = {
3401                .key = NOT_READY,
3402                .asc = 0x04,
3403                .ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3404        },
3405        [TCM_ALUA_TG_PT_UNAVAILABLE] = {
3406                .key = NOT_READY,
3407                .asc = 0x04,
3408                .ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3409        },
3410        [TCM_ALUA_STATE_TRANSITION] = {
3411                .key = NOT_READY,
3412                .asc = 0x04,
3413                .ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3414        },
3415        [TCM_ALUA_OFFLINE] = {
3416                .key = NOT_READY,
3417                .asc = 0x04,
3418                .ascq = ASCQ_04H_ALUA_OFFLINE,
3419        },
3420};
3421
3422/**
3423 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3424 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3425 *   be stored.
3426 * @reason: LIO sense reason code. If this argument has the value
3427 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3428 *   dequeuing a unit attention fails due to multiple commands being processed
3429 *   concurrently, set the command status to BUSY.
3430 *
3431 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3432 */
3433static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3434{
3435        const struct sense_detail *sd;
3436        u8 *buffer = cmd->sense_buffer;
3437        int r = (__force int)reason;
3438        u8 key, asc, ascq;
3439        bool desc_format = target_sense_desc_format(cmd->se_dev);
3440
3441        if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3442                sd = &sense_detail_table[r];
3443        else
3444                sd = &sense_detail_table[(__force int)
3445                                       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3446
3447        key = sd->key;
3448        if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3449                if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3450                                                       &ascq)) {
3451                        cmd->scsi_status = SAM_STAT_BUSY;
3452                        return;
3453                }
3454        } else {
3455                WARN_ON_ONCE(sd->asc == 0);
3456                asc = sd->asc;
3457                ascq = sd->ascq;
3458        }
3459
3460        cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3461        cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3462        cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3463        scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3464        if (sd->add_sense_info)
3465                WARN_ON_ONCE(scsi_set_sense_information(buffer,
3466                                                        cmd->scsi_sense_length,
3467                                                        cmd->sense_info) < 0);
3468}
3469
3470int
3471transport_send_check_condition_and_sense(struct se_cmd *cmd,
3472                sense_reason_t reason, int from_transport)
3473{
3474        unsigned long flags;
3475
3476        WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3477
3478        spin_lock_irqsave(&cmd->t_state_lock, flags);
3479        if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3480                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3481                return 0;
3482        }
3483        cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3484        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3485
3486        if (!from_transport)
3487                translate_sense_reason(cmd, reason);
3488
3489        trace_target_cmd_complete(cmd);
3490        return cmd->se_tfo->queue_status(cmd);
3491}
3492EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3493
3494/**
3495 * target_send_busy - Send SCSI BUSY status back to the initiator
3496 * @cmd: SCSI command for which to send a BUSY reply.
3497 *
3498 * Note: Only call this function if target_submit_cmd*() failed.
3499 */
3500int target_send_busy(struct se_cmd *cmd)
3501{
3502        WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3503
3504        cmd->scsi_status = SAM_STAT_BUSY;
3505        trace_target_cmd_complete(cmd);
3506        return cmd->se_tfo->queue_status(cmd);
3507}
3508EXPORT_SYMBOL(target_send_busy);
3509
3510static void target_tmr_work(struct work_struct *work)
3511{
3512        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3513        struct se_device *dev = cmd->se_dev;
3514        struct se_tmr_req *tmr = cmd->se_tmr_req;
3515        int ret;
3516
3517        if (cmd->transport_state & CMD_T_ABORTED)
3518                goto aborted;
3519
3520        switch (tmr->function) {
3521        case TMR_ABORT_TASK:
3522                core_tmr_abort_task(dev, tmr, cmd->se_sess);
3523                break;
3524        case TMR_ABORT_TASK_SET:
3525        case TMR_CLEAR_ACA:
3526        case TMR_CLEAR_TASK_SET:
3527                tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3528                break;
3529        case TMR_LUN_RESET:
3530                ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3531                tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3532                                         TMR_FUNCTION_REJECTED;
3533                if (tmr->response == TMR_FUNCTION_COMPLETE) {
3534                        target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3535                                               cmd->orig_fe_lun, 0x29,
3536                                               ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3537                }
3538                break;
3539        case TMR_TARGET_WARM_RESET:
3540                tmr->response = TMR_FUNCTION_REJECTED;
3541                break;
3542        case TMR_TARGET_COLD_RESET:
3543                tmr->response = TMR_FUNCTION_REJECTED;
3544                break;
3545        default:
3546                pr_err("Unknown TMR function: 0x%02x.\n",
3547                                tmr->function);
3548                tmr->response = TMR_FUNCTION_REJECTED;
3549                break;
3550        }
3551
3552        if (cmd->transport_state & CMD_T_ABORTED)
3553                goto aborted;
3554
3555        cmd->se_tfo->queue_tm_rsp(cmd);
3556
3557        transport_lun_remove_cmd(cmd);
3558        transport_cmd_check_stop_to_fabric(cmd);
3559        return;
3560
3561aborted:
3562        target_handle_abort(cmd);
3563}
3564
3565int transport_generic_handle_tmr(
3566        struct se_cmd *cmd)
3567{
3568        unsigned long flags;
3569        bool aborted = false;
3570
3571        spin_lock_irqsave(&cmd->t_state_lock, flags);
3572        if (cmd->transport_state & CMD_T_ABORTED) {
3573                aborted = true;
3574        } else {
3575                cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3576                cmd->transport_state |= CMD_T_ACTIVE;
3577        }
3578        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3579
3580        if (aborted) {
3581                pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3582                                    cmd->se_tmr_req->function,
3583                                    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3584                target_handle_abort(cmd);
3585                return 0;
3586        }
3587
3588        INIT_WORK(&cmd->work, target_tmr_work);
3589        schedule_work(&cmd->work);
3590        return 0;
3591}
3592EXPORT_SYMBOL(transport_generic_handle_tmr);
3593
3594bool
3595target_check_wce(struct se_device *dev)
3596{
3597        bool wce = false;
3598
3599        if (dev->transport->get_write_cache)
3600                wce = dev->transport->get_write_cache(dev);
3601        else if (dev->dev_attrib.emulate_write_cache > 0)
3602                wce = true;
3603
3604        return wce;
3605}
3606
3607bool
3608target_check_fua(struct se_device *dev)
3609{
3610        return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3611}
3612