linux/drivers/tty/vt/keyboard.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
  29#include <linux/init.h>
  30#include <linux/input.h>
  31#include <linux/jiffies.h>
  32#include <linux/kbd_diacr.h>
  33#include <linux/kbd_kern.h>
  34#include <linux/leds.h>
  35#include <linux/mm.h>
  36#include <linux/module.h>
  37#include <linux/nospec.h>
  38#include <linux/notifier.h>
  39#include <linux/reboot.h>
  40#include <linux/sched/debug.h>
  41#include <linux/sched/signal.h>
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/string.h>
  45#include <linux/tty_flip.h>
  46#include <linux/tty.h>
  47#include <linux/uaccess.h>
  48#include <linux/vt_kern.h>
  49
  50#include <asm/irq_regs.h>
  51
  52/*
  53 * Exported functions/variables
  54 */
  55
  56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
  57
  58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  59#include <asm/kbdleds.h>
  60#else
  61static inline int kbd_defleds(void)
  62{
  63        return 0;
  64}
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69/*
  70 * Handler Tables.
  71 */
  72
  73#define K_HANDLERS\
  74        k_self,         k_fn,           k_spec,         k_pad,\
  75        k_dead,         k_cons,         k_cur,          k_shift,\
  76        k_meta,         k_ascii,        k_lock,         k_lowercase,\
  77        k_slock,        k_dead2,        k_brl,          k_ignore
  78
  79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  80                            char up_flag);
  81static k_handler_fn K_HANDLERS;
  82static k_handler_fn *k_handler[16] = { K_HANDLERS };
  83
  84#define FN_HANDLERS\
  85        fn_null,        fn_enter,       fn_show_ptregs, fn_show_mem,\
  86        fn_show_state,  fn_send_intr,   fn_lastcons,    fn_caps_toggle,\
  87        fn_num,         fn_hold,        fn_scroll_forw, fn_scroll_back,\
  88        fn_boot_it,     fn_caps_on,     fn_compose,     fn_SAK,\
  89        fn_dec_console, fn_inc_console, fn_spawn_con,   fn_bare_num
  90
  91typedef void (fn_handler_fn)(struct vc_data *vc);
  92static fn_handler_fn FN_HANDLERS;
  93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  94
  95/*
  96 * Variables exported for vt_ioctl.c
  97 */
  98
  99struct vt_spawn_console vt_spawn_con = {
 100        .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 101        .pid  = NULL,
 102        .sig  = 0,
 103};
 104
 105
 106/*
 107 * Internal Data.
 108 */
 109
 110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111static struct kbd_struct *kbd = kbd_table;
 112
 113/* maximum values each key_handler can handle */
 114static const unsigned char max_vals[] = {
 115        [ KT_LATIN      ] = 255,
 116        [ KT_FN         ] = ARRAY_SIZE(func_table) - 1,
 117        [ KT_SPEC       ] = ARRAY_SIZE(fn_handler) - 1,
 118        [ KT_PAD        ] = NR_PAD - 1,
 119        [ KT_DEAD       ] = NR_DEAD - 1,
 120        [ KT_CONS       ] = 255,
 121        [ KT_CUR        ] = 3,
 122        [ KT_SHIFT      ] = NR_SHIFT - 1,
 123        [ KT_META       ] = 255,
 124        [ KT_ASCII      ] = NR_ASCII - 1,
 125        [ KT_LOCK       ] = NR_LOCK - 1,
 126        [ KT_LETTER     ] = 255,
 127        [ KT_SLOCK      ] = NR_LOCK - 1,
 128        [ KT_DEAD2      ] = 255,
 129        [ KT_BRL        ] = NR_BRL - 1,
 130};
 131
 132static const int NR_TYPES = ARRAY_SIZE(max_vals);
 133
 134static void kbd_bh(struct tasklet_struct *unused);
 135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
 136
 137static struct input_handler kbd_handler;
 138static DEFINE_SPINLOCK(kbd_event_lock);
 139static DEFINE_SPINLOCK(led_lock);
 140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
 141static DECLARE_BITMAP(key_down, KEY_CNT);       /* keyboard key bitmap */
 142static unsigned char shift_down[NR_SHIFT];              /* shift state counters.. */
 143static bool dead_key_next;
 144
 145/* Handles a number being assembled on the number pad */
 146static bool npadch_active;
 147static unsigned int npadch_value;
 148
 149static unsigned int diacr;
 150static bool rep;                        /* flag telling character repeat */
 151
 152static int shift_state = 0;
 153
 154static unsigned int ledstate = -1U;                     /* undefined */
 155static unsigned char ledioctl;
 156static bool vt_switch;
 157
 158/*
 159 * Notifier list for console keyboard events
 160 */
 161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 162
 163int register_keyboard_notifier(struct notifier_block *nb)
 164{
 165        return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 166}
 167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 168
 169int unregister_keyboard_notifier(struct notifier_block *nb)
 170{
 171        return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 172}
 173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 174
 175/*
 176 * Translation of scancodes to keycodes. We set them on only the first
 177 * keyboard in the list that accepts the scancode and keycode.
 178 * Explanation for not choosing the first attached keyboard anymore:
 179 *  USB keyboards for example have two event devices: one for all "normal"
 180 *  keys and one for extra function keys (like "volume up", "make coffee",
 181 *  etc.). So this means that scancodes for the extra function keys won't
 182 *  be valid for the first event device, but will be for the second.
 183 */
 184
 185struct getset_keycode_data {
 186        struct input_keymap_entry ke;
 187        int error;
 188};
 189
 190static int getkeycode_helper(struct input_handle *handle, void *data)
 191{
 192        struct getset_keycode_data *d = data;
 193
 194        d->error = input_get_keycode(handle->dev, &d->ke);
 195
 196        return d->error == 0; /* stop as soon as we successfully get one */
 197}
 198
 199static int getkeycode(unsigned int scancode)
 200{
 201        struct getset_keycode_data d = {
 202                .ke     = {
 203                        .flags          = 0,
 204                        .len            = sizeof(scancode),
 205                        .keycode        = 0,
 206                },
 207                .error  = -ENODEV,
 208        };
 209
 210        memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 211
 212        input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 213
 214        return d.error ?: d.ke.keycode;
 215}
 216
 217static int setkeycode_helper(struct input_handle *handle, void *data)
 218{
 219        struct getset_keycode_data *d = data;
 220
 221        d->error = input_set_keycode(handle->dev, &d->ke);
 222
 223        return d->error == 0; /* stop as soon as we successfully set one */
 224}
 225
 226static int setkeycode(unsigned int scancode, unsigned int keycode)
 227{
 228        struct getset_keycode_data d = {
 229                .ke     = {
 230                        .flags          = 0,
 231                        .len            = sizeof(scancode),
 232                        .keycode        = keycode,
 233                },
 234                .error  = -ENODEV,
 235        };
 236
 237        memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 238
 239        input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 240
 241        return d.error;
 242}
 243
 244/*
 245 * Making beeps and bells. Note that we prefer beeps to bells, but when
 246 * shutting the sound off we do both.
 247 */
 248
 249static int kd_sound_helper(struct input_handle *handle, void *data)
 250{
 251        unsigned int *hz = data;
 252        struct input_dev *dev = handle->dev;
 253
 254        if (test_bit(EV_SND, dev->evbit)) {
 255                if (test_bit(SND_TONE, dev->sndbit)) {
 256                        input_inject_event(handle, EV_SND, SND_TONE, *hz);
 257                        if (*hz)
 258                                return 0;
 259                }
 260                if (test_bit(SND_BELL, dev->sndbit))
 261                        input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 262        }
 263
 264        return 0;
 265}
 266
 267static void kd_nosound(struct timer_list *unused)
 268{
 269        static unsigned int zero;
 270
 271        input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 272}
 273
 274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 275
 276void kd_mksound(unsigned int hz, unsigned int ticks)
 277{
 278        del_timer_sync(&kd_mksound_timer);
 279
 280        input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 281
 282        if (hz && ticks)
 283                mod_timer(&kd_mksound_timer, jiffies + ticks);
 284}
 285EXPORT_SYMBOL(kd_mksound);
 286
 287/*
 288 * Setting the keyboard rate.
 289 */
 290
 291static int kbd_rate_helper(struct input_handle *handle, void *data)
 292{
 293        struct input_dev *dev = handle->dev;
 294        struct kbd_repeat *rpt = data;
 295
 296        if (test_bit(EV_REP, dev->evbit)) {
 297
 298                if (rpt[0].delay > 0)
 299                        input_inject_event(handle,
 300                                           EV_REP, REP_DELAY, rpt[0].delay);
 301                if (rpt[0].period > 0)
 302                        input_inject_event(handle,
 303                                           EV_REP, REP_PERIOD, rpt[0].period);
 304
 305                rpt[1].delay = dev->rep[REP_DELAY];
 306                rpt[1].period = dev->rep[REP_PERIOD];
 307        }
 308
 309        return 0;
 310}
 311
 312int kbd_rate(struct kbd_repeat *rpt)
 313{
 314        struct kbd_repeat data[2] = { *rpt };
 315
 316        input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 317        *rpt = data[1]; /* Copy currently used settings */
 318
 319        return 0;
 320}
 321
 322/*
 323 * Helper Functions.
 324 */
 325static void put_queue(struct vc_data *vc, int ch)
 326{
 327        tty_insert_flip_char(&vc->port, ch, 0);
 328        tty_flip_buffer_push(&vc->port);
 329}
 330
 331static void puts_queue(struct vc_data *vc, const char *cp)
 332{
 333        tty_insert_flip_string(&vc->port, cp, strlen(cp));
 334        tty_flip_buffer_push(&vc->port);
 335}
 336
 337static void applkey(struct vc_data *vc, int key, char mode)
 338{
 339        static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 340
 341        buf[1] = (mode ? 'O' : '[');
 342        buf[2] = key;
 343        puts_queue(vc, buf);
 344}
 345
 346/*
 347 * Many other routines do put_queue, but I think either
 348 * they produce ASCII, or they produce some user-assigned
 349 * string, and in both cases we might assume that it is
 350 * in utf-8 already.
 351 */
 352static void to_utf8(struct vc_data *vc, uint c)
 353{
 354        if (c < 0x80)
 355                /*  0******* */
 356                put_queue(vc, c);
 357        else if (c < 0x800) {
 358                /* 110***** 10****** */
 359                put_queue(vc, 0xc0 | (c >> 6));
 360                put_queue(vc, 0x80 | (c & 0x3f));
 361        } else if (c < 0x10000) {
 362                if (c >= 0xD800 && c < 0xE000)
 363                        return;
 364                if (c == 0xFFFF)
 365                        return;
 366                /* 1110**** 10****** 10****** */
 367                put_queue(vc, 0xe0 | (c >> 12));
 368                put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 369                put_queue(vc, 0x80 | (c & 0x3f));
 370        } else if (c < 0x110000) {
 371                /* 11110*** 10****** 10****** 10****** */
 372                put_queue(vc, 0xf0 | (c >> 18));
 373                put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 374                put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 375                put_queue(vc, 0x80 | (c & 0x3f));
 376        }
 377}
 378
 379/* FIXME: review locking for vt.c callers */
 380static void set_leds(void)
 381{
 382        tasklet_schedule(&keyboard_tasklet);
 383}
 384
 385/*
 386 * Called after returning from RAW mode or when changing consoles - recompute
 387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 388 * undefined, so that shiftkey release is seen. The caller must hold the
 389 * kbd_event_lock.
 390 */
 391
 392static void do_compute_shiftstate(void)
 393{
 394        unsigned int k, sym, val;
 395
 396        shift_state = 0;
 397        memset(shift_down, 0, sizeof(shift_down));
 398
 399        for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 400                sym = U(key_maps[0][k]);
 401                if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 402                        continue;
 403
 404                val = KVAL(sym);
 405                if (val == KVAL(K_CAPSSHIFT))
 406                        val = KVAL(K_SHIFT);
 407
 408                shift_down[val]++;
 409                shift_state |= BIT(val);
 410        }
 411}
 412
 413/* We still have to export this method to vt.c */
 414void vt_set_leds_compute_shiftstate(void)
 415{
 416        unsigned long flags;
 417
 418        /*
 419         * When VT is switched, the keyboard led needs to be set once.
 420         * Ensure that after the switch is completed, the state of the
 421         * keyboard LED is consistent with the state of the keyboard lock.
 422         */
 423        vt_switch = true;
 424        set_leds();
 425
 426        spin_lock_irqsave(&kbd_event_lock, flags);
 427        do_compute_shiftstate();
 428        spin_unlock_irqrestore(&kbd_event_lock, flags);
 429}
 430
 431/*
 432 * We have a combining character DIACR here, followed by the character CH.
 433 * If the combination occurs in the table, return the corresponding value.
 434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 435 * Otherwise, conclude that DIACR was not combining after all,
 436 * queue it and return CH.
 437 */
 438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 439{
 440        unsigned int d = diacr;
 441        unsigned int i;
 442
 443        diacr = 0;
 444
 445        if ((d & ~0xff) == BRL_UC_ROW) {
 446                if ((ch & ~0xff) == BRL_UC_ROW)
 447                        return d | ch;
 448        } else {
 449                for (i = 0; i < accent_table_size; i++)
 450                        if (accent_table[i].diacr == d && accent_table[i].base == ch)
 451                                return accent_table[i].result;
 452        }
 453
 454        if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 455                return d;
 456
 457        if (kbd->kbdmode == VC_UNICODE)
 458                to_utf8(vc, d);
 459        else {
 460                int c = conv_uni_to_8bit(d);
 461                if (c != -1)
 462                        put_queue(vc, c);
 463        }
 464
 465        return ch;
 466}
 467
 468/*
 469 * Special function handlers
 470 */
 471static void fn_enter(struct vc_data *vc)
 472{
 473        if (diacr) {
 474                if (kbd->kbdmode == VC_UNICODE)
 475                        to_utf8(vc, diacr);
 476                else {
 477                        int c = conv_uni_to_8bit(diacr);
 478                        if (c != -1)
 479                                put_queue(vc, c);
 480                }
 481                diacr = 0;
 482        }
 483
 484        put_queue(vc, '\r');
 485        if (vc_kbd_mode(kbd, VC_CRLF))
 486                put_queue(vc, '\n');
 487}
 488
 489static void fn_caps_toggle(struct vc_data *vc)
 490{
 491        if (rep)
 492                return;
 493
 494        chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 495}
 496
 497static void fn_caps_on(struct vc_data *vc)
 498{
 499        if (rep)
 500                return;
 501
 502        set_vc_kbd_led(kbd, VC_CAPSLOCK);
 503}
 504
 505static void fn_show_ptregs(struct vc_data *vc)
 506{
 507        struct pt_regs *regs = get_irq_regs();
 508
 509        if (regs)
 510                show_regs(regs);
 511}
 512
 513static void fn_hold(struct vc_data *vc)
 514{
 515        struct tty_struct *tty = vc->port.tty;
 516
 517        if (rep || !tty)
 518                return;
 519
 520        /*
 521         * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 522         * these routines are also activated by ^S/^Q.
 523         * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 524         */
 525        if (tty->flow.stopped)
 526                start_tty(tty);
 527        else
 528                stop_tty(tty);
 529}
 530
 531static void fn_num(struct vc_data *vc)
 532{
 533        if (vc_kbd_mode(kbd, VC_APPLIC))
 534                applkey(vc, 'P', 1);
 535        else
 536                fn_bare_num(vc);
 537}
 538
 539/*
 540 * Bind this to Shift-NumLock if you work in application keypad mode
 541 * but want to be able to change the NumLock flag.
 542 * Bind this to NumLock if you prefer that the NumLock key always
 543 * changes the NumLock flag.
 544 */
 545static void fn_bare_num(struct vc_data *vc)
 546{
 547        if (!rep)
 548                chg_vc_kbd_led(kbd, VC_NUMLOCK);
 549}
 550
 551static void fn_lastcons(struct vc_data *vc)
 552{
 553        /* switch to the last used console, ChN */
 554        set_console(last_console);
 555}
 556
 557static void fn_dec_console(struct vc_data *vc)
 558{
 559        int i, cur = fg_console;
 560
 561        /* Currently switching?  Queue this next switch relative to that. */
 562        if (want_console != -1)
 563                cur = want_console;
 564
 565        for (i = cur - 1; i != cur; i--) {
 566                if (i == -1)
 567                        i = MAX_NR_CONSOLES - 1;
 568                if (vc_cons_allocated(i))
 569                        break;
 570        }
 571        set_console(i);
 572}
 573
 574static void fn_inc_console(struct vc_data *vc)
 575{
 576        int i, cur = fg_console;
 577
 578        /* Currently switching?  Queue this next switch relative to that. */
 579        if (want_console != -1)
 580                cur = want_console;
 581
 582        for (i = cur+1; i != cur; i++) {
 583                if (i == MAX_NR_CONSOLES)
 584                        i = 0;
 585                if (vc_cons_allocated(i))
 586                        break;
 587        }
 588        set_console(i);
 589}
 590
 591static void fn_send_intr(struct vc_data *vc)
 592{
 593        tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 594        tty_flip_buffer_push(&vc->port);
 595}
 596
 597static void fn_scroll_forw(struct vc_data *vc)
 598{
 599        scrollfront(vc, 0);
 600}
 601
 602static void fn_scroll_back(struct vc_data *vc)
 603{
 604        scrollback(vc);
 605}
 606
 607static void fn_show_mem(struct vc_data *vc)
 608{
 609        show_mem(0, NULL);
 610}
 611
 612static void fn_show_state(struct vc_data *vc)
 613{
 614        show_state();
 615}
 616
 617static void fn_boot_it(struct vc_data *vc)
 618{
 619        ctrl_alt_del();
 620}
 621
 622static void fn_compose(struct vc_data *vc)
 623{
 624        dead_key_next = true;
 625}
 626
 627static void fn_spawn_con(struct vc_data *vc)
 628{
 629        spin_lock(&vt_spawn_con.lock);
 630        if (vt_spawn_con.pid)
 631                if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 632                        put_pid(vt_spawn_con.pid);
 633                        vt_spawn_con.pid = NULL;
 634                }
 635        spin_unlock(&vt_spawn_con.lock);
 636}
 637
 638static void fn_SAK(struct vc_data *vc)
 639{
 640        struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 641        schedule_work(SAK_work);
 642}
 643
 644static void fn_null(struct vc_data *vc)
 645{
 646        do_compute_shiftstate();
 647}
 648
 649/*
 650 * Special key handlers
 651 */
 652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 653{
 654}
 655
 656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 657{
 658        if (up_flag)
 659                return;
 660        if (value >= ARRAY_SIZE(fn_handler))
 661                return;
 662        if ((kbd->kbdmode == VC_RAW ||
 663             kbd->kbdmode == VC_MEDIUMRAW ||
 664             kbd->kbdmode == VC_OFF) &&
 665             value != KVAL(K_SAK))
 666                return;         /* SAK is allowed even in raw mode */
 667        fn_handler[value](vc);
 668}
 669
 670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 671{
 672        pr_err("k_lowercase was called - impossible\n");
 673}
 674
 675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 676{
 677        if (up_flag)
 678                return;         /* no action, if this is a key release */
 679
 680        if (diacr)
 681                value = handle_diacr(vc, value);
 682
 683        if (dead_key_next) {
 684                dead_key_next = false;
 685                diacr = value;
 686                return;
 687        }
 688        if (kbd->kbdmode == VC_UNICODE)
 689                to_utf8(vc, value);
 690        else {
 691                int c = conv_uni_to_8bit(value);
 692                if (c != -1)
 693                        put_queue(vc, c);
 694        }
 695}
 696
 697/*
 698 * Handle dead key. Note that we now may have several
 699 * dead keys modifying the same character. Very useful
 700 * for Vietnamese.
 701 */
 702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 703{
 704        if (up_flag)
 705                return;
 706
 707        diacr = (diacr ? handle_diacr(vc, value) : value);
 708}
 709
 710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 711{
 712        k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 713}
 714
 715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 716{
 717        k_deadunicode(vc, value, up_flag);
 718}
 719
 720/*
 721 * Obsolete - for backwards compatibility only
 722 */
 723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 724{
 725        static const unsigned char ret_diacr[NR_DEAD] = {
 726                '`',    /* dead_grave */
 727                '\'',   /* dead_acute */
 728                '^',    /* dead_circumflex */
 729                '~',    /* dead_tilda */
 730                '"',    /* dead_diaeresis */
 731                ',',    /* dead_cedilla */
 732                '_',    /* dead_macron */
 733                'U',    /* dead_breve */
 734                '.',    /* dead_abovedot */
 735                '*',    /* dead_abovering */
 736                '=',    /* dead_doubleacute */
 737                'c',    /* dead_caron */
 738                'k',    /* dead_ogonek */
 739                'i',    /* dead_iota */
 740                '#',    /* dead_voiced_sound */
 741                'o',    /* dead_semivoiced_sound */
 742                '!',    /* dead_belowdot */
 743                '?',    /* dead_hook */
 744                '+',    /* dead_horn */
 745                '-',    /* dead_stroke */
 746                ')',    /* dead_abovecomma */
 747                '(',    /* dead_abovereversedcomma */
 748                ':',    /* dead_doublegrave */
 749                'n',    /* dead_invertedbreve */
 750                ';',    /* dead_belowcomma */
 751                '$',    /* dead_currency */
 752                '@',    /* dead_greek */
 753        };
 754
 755        k_deadunicode(vc, ret_diacr[value], up_flag);
 756}
 757
 758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 759{
 760        if (up_flag)
 761                return;
 762
 763        set_console(value);
 764}
 765
 766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 767{
 768        if (up_flag)
 769                return;
 770
 771        if ((unsigned)value < ARRAY_SIZE(func_table)) {
 772                unsigned long flags;
 773
 774                spin_lock_irqsave(&func_buf_lock, flags);
 775                if (func_table[value])
 776                        puts_queue(vc, func_table[value]);
 777                spin_unlock_irqrestore(&func_buf_lock, flags);
 778
 779        } else
 780                pr_err("k_fn called with value=%d\n", value);
 781}
 782
 783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 784{
 785        static const char cur_chars[] = "BDCA";
 786
 787        if (up_flag)
 788                return;
 789
 790        applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 791}
 792
 793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 794{
 795        static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 796        static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 797
 798        if (up_flag)
 799                return;         /* no action, if this is a key release */
 800
 801        /* kludge... shift forces cursor/number keys */
 802        if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 803                applkey(vc, app_map[value], 1);
 804                return;
 805        }
 806
 807        if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 808
 809                switch (value) {
 810                case KVAL(K_PCOMMA):
 811                case KVAL(K_PDOT):
 812                        k_fn(vc, KVAL(K_REMOVE), 0);
 813                        return;
 814                case KVAL(K_P0):
 815                        k_fn(vc, KVAL(K_INSERT), 0);
 816                        return;
 817                case KVAL(K_P1):
 818                        k_fn(vc, KVAL(K_SELECT), 0);
 819                        return;
 820                case KVAL(K_P2):
 821                        k_cur(vc, KVAL(K_DOWN), 0);
 822                        return;
 823                case KVAL(K_P3):
 824                        k_fn(vc, KVAL(K_PGDN), 0);
 825                        return;
 826                case KVAL(K_P4):
 827                        k_cur(vc, KVAL(K_LEFT), 0);
 828                        return;
 829                case KVAL(K_P6):
 830                        k_cur(vc, KVAL(K_RIGHT), 0);
 831                        return;
 832                case KVAL(K_P7):
 833                        k_fn(vc, KVAL(K_FIND), 0);
 834                        return;
 835                case KVAL(K_P8):
 836                        k_cur(vc, KVAL(K_UP), 0);
 837                        return;
 838                case KVAL(K_P9):
 839                        k_fn(vc, KVAL(K_PGUP), 0);
 840                        return;
 841                case KVAL(K_P5):
 842                        applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 843                        return;
 844                }
 845        }
 846
 847        put_queue(vc, pad_chars[value]);
 848        if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 849                put_queue(vc, '\n');
 850}
 851
 852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 853{
 854        int old_state = shift_state;
 855
 856        if (rep)
 857                return;
 858        /*
 859         * Mimic typewriter:
 860         * a CapsShift key acts like Shift but undoes CapsLock
 861         */
 862        if (value == KVAL(K_CAPSSHIFT)) {
 863                value = KVAL(K_SHIFT);
 864                if (!up_flag)
 865                        clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 866        }
 867
 868        if (up_flag) {
 869                /*
 870                 * handle the case that two shift or control
 871                 * keys are depressed simultaneously
 872                 */
 873                if (shift_down[value])
 874                        shift_down[value]--;
 875        } else
 876                shift_down[value]++;
 877
 878        if (shift_down[value])
 879                shift_state |= BIT(value);
 880        else
 881                shift_state &= ~BIT(value);
 882
 883        /* kludge */
 884        if (up_flag && shift_state != old_state && npadch_active) {
 885                if (kbd->kbdmode == VC_UNICODE)
 886                        to_utf8(vc, npadch_value);
 887                else
 888                        put_queue(vc, npadch_value & 0xff);
 889                npadch_active = false;
 890        }
 891}
 892
 893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 894{
 895        if (up_flag)
 896                return;
 897
 898        if (vc_kbd_mode(kbd, VC_META)) {
 899                put_queue(vc, '\033');
 900                put_queue(vc, value);
 901        } else
 902                put_queue(vc, value | BIT(7));
 903}
 904
 905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 906{
 907        unsigned int base;
 908
 909        if (up_flag)
 910                return;
 911
 912        if (value < 10) {
 913                /* decimal input of code, while Alt depressed */
 914                base = 10;
 915        } else {
 916                /* hexadecimal input of code, while AltGr depressed */
 917                value -= 10;
 918                base = 16;
 919        }
 920
 921        if (!npadch_active) {
 922                npadch_value = 0;
 923                npadch_active = true;
 924        }
 925
 926        npadch_value = npadch_value * base + value;
 927}
 928
 929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 930{
 931        if (up_flag || rep)
 932                return;
 933
 934        chg_vc_kbd_lock(kbd, value);
 935}
 936
 937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 938{
 939        k_shift(vc, value, up_flag);
 940        if (up_flag || rep)
 941                return;
 942
 943        chg_vc_kbd_slock(kbd, value);
 944        /* try to make Alt, oops, AltGr and such work */
 945        if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 946                kbd->slockstate = 0;
 947                chg_vc_kbd_slock(kbd, value);
 948        }
 949}
 950
 951/* by default, 300ms interval for combination release */
 952static unsigned brl_timeout = 300;
 953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 954module_param(brl_timeout, uint, 0644);
 955
 956static unsigned brl_nbchords = 1;
 957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 958module_param(brl_nbchords, uint, 0644);
 959
 960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 961{
 962        static unsigned long chords;
 963        static unsigned committed;
 964
 965        if (!brl_nbchords)
 966                k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 967        else {
 968                committed |= pattern;
 969                chords++;
 970                if (chords == brl_nbchords) {
 971                        k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 972                        chords = 0;
 973                        committed = 0;
 974                }
 975        }
 976}
 977
 978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 979{
 980        static unsigned pressed, committing;
 981        static unsigned long releasestart;
 982
 983        if (kbd->kbdmode != VC_UNICODE) {
 984                if (!up_flag)
 985                        pr_warn("keyboard mode must be unicode for braille patterns\n");
 986                return;
 987        }
 988
 989        if (!value) {
 990                k_unicode(vc, BRL_UC_ROW, up_flag);
 991                return;
 992        }
 993
 994        if (value > 8)
 995                return;
 996
 997        if (!up_flag) {
 998                pressed |= BIT(value - 1);
 999                if (!brl_timeout)
1000                        committing = pressed;
1001        } else if (brl_timeout) {
1002                if (!committing ||
1003                    time_after(jiffies,
1004                               releasestart + msecs_to_jiffies(brl_timeout))) {
1005                        committing = pressed;
1006                        releasestart = jiffies;
1007                }
1008                pressed &= ~BIT(value - 1);
1009                if (!pressed && committing) {
1010                        k_brlcommit(vc, committing, 0);
1011                        committing = 0;
1012                }
1013        } else {
1014                if (committing) {
1015                        k_brlcommit(vc, committing, 0);
1016                        committing = 0;
1017                }
1018                pressed &= ~BIT(value - 1);
1019        }
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025        struct led_trigger trigger;
1026        unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031        struct kbd_led_trigger *trigger =
1032                container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034        tasklet_disable(&keyboard_tasklet);
1035        if (ledstate != -1U)
1036                led_trigger_event(&trigger->trigger,
1037                                  ledstate & trigger->mask ?
1038                                        LED_FULL : LED_OFF);
1039        tasklet_enable(&keyboard_tasklet);
1040
1041        return 0;
1042}
1043
1044#define KBD_LED_TRIGGER(_led_bit, _name) {                      \
1045                .trigger = {                                    \
1046                        .name = _name,                          \
1047                        .activate = kbd_led_trigger_activate,   \
1048                },                                              \
1049                .mask   = BIT(_led_bit),                        \
1050        }
1051
1052#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)          \
1053        KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055static struct kbd_led_trigger kbd_led_triggers[] = {
1056        KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057        KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1058        KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1059        KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1060
1061        KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1062        KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1063        KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1064        KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1065        KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066        KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067        KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1068        KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1069};
1070
1071static void kbd_propagate_led_state(unsigned int old_state,
1072                                    unsigned int new_state)
1073{
1074        struct kbd_led_trigger *trigger;
1075        unsigned int changed = old_state ^ new_state;
1076        int i;
1077
1078        for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079                trigger = &kbd_led_triggers[i];
1080
1081                if (changed & trigger->mask)
1082                        led_trigger_event(&trigger->trigger,
1083                                          new_state & trigger->mask ?
1084                                                LED_FULL : LED_OFF);
1085        }
1086}
1087
1088static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089{
1090        unsigned int led_state = *(unsigned int *)data;
1091
1092        if (test_bit(EV_LED, handle->dev->evbit))
1093                kbd_propagate_led_state(~led_state, led_state);
1094
1095        return 0;
1096}
1097
1098static void kbd_init_leds(void)
1099{
1100        int error;
1101        int i;
1102
1103        for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104                error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105                if (error)
1106                        pr_err("error %d while registering trigger %s\n",
1107                               error, kbd_led_triggers[i].trigger.name);
1108        }
1109}
1110
1111#else
1112
1113static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114{
1115        unsigned int leds = *(unsigned int *)data;
1116
1117        if (test_bit(EV_LED, handle->dev->evbit)) {
1118                input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119                input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & BIT(1)));
1120                input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & BIT(2)));
1121                input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122        }
1123
1124        return 0;
1125}
1126
1127static void kbd_propagate_led_state(unsigned int old_state,
1128                                    unsigned int new_state)
1129{
1130        input_handler_for_each_handle(&kbd_handler, &new_state,
1131                                      kbd_update_leds_helper);
1132}
1133
1134static void kbd_init_leds(void)
1135{
1136}
1137
1138#endif
1139
1140/*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
1145static unsigned char getledstate(void)
1146{
1147        return ledstate & 0xff;
1148}
1149
1150void setledstate(struct kbd_struct *kb, unsigned int led)
1151{
1152        unsigned long flags;
1153        spin_lock_irqsave(&led_lock, flags);
1154        if (!(led & ~7)) {
1155                ledioctl = led;
1156                kb->ledmode = LED_SHOW_IOCTL;
1157        } else
1158                kb->ledmode = LED_SHOW_FLAGS;
1159
1160        set_leds();
1161        spin_unlock_irqrestore(&led_lock, flags);
1162}
1163
1164static inline unsigned char getleds(void)
1165{
1166        struct kbd_struct *kb = kbd_table + fg_console;
1167
1168        if (kb->ledmode == LED_SHOW_IOCTL)
1169                return ledioctl;
1170
1171        return kb->ledflagstate;
1172}
1173
1174/**
1175 *      vt_get_leds     -       helper for braille console
1176 *      @console: console to read
1177 *      @flag: flag we want to check
1178 *
1179 *      Check the status of a keyboard led flag and report it back
1180 */
1181int vt_get_leds(unsigned int console, int flag)
1182{
1183        struct kbd_struct *kb = &kbd_table[console];
1184        int ret;
1185        unsigned long flags;
1186
1187        spin_lock_irqsave(&led_lock, flags);
1188        ret = vc_kbd_led(kb, flag);
1189        spin_unlock_irqrestore(&led_lock, flags);
1190
1191        return ret;
1192}
1193EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195/**
1196 *      vt_set_led_state        -       set LED state of a console
1197 *      @console: console to set
1198 *      @leds: LED bits
1199 *
1200 *      Set the LEDs on a console. This is a wrapper for the VT layer
1201 *      so that we can keep kbd knowledge internal
1202 */
1203void vt_set_led_state(unsigned int console, int leds)
1204{
1205        struct kbd_struct *kb = &kbd_table[console];
1206        setledstate(kb, leds);
1207}
1208
1209/**
1210 *      vt_kbd_con_start        -       Keyboard side of console start
1211 *      @console: console
1212 *
1213 *      Handle console start. This is a wrapper for the VT layer
1214 *      so that we can keep kbd knowledge internal
1215 *
1216 *      FIXME: We eventually need to hold the kbd lock here to protect
1217 *      the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 *      and start_tty under the kbd_event_lock, while normal tty paths
1219 *      don't hold the lock. We probably need to split out an LED lock
1220 *      but not during an -rc release!
1221 */
1222void vt_kbd_con_start(unsigned int console)
1223{
1224        struct kbd_struct *kb = &kbd_table[console];
1225        unsigned long flags;
1226        spin_lock_irqsave(&led_lock, flags);
1227        clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228        set_leds();
1229        spin_unlock_irqrestore(&led_lock, flags);
1230}
1231
1232/**
1233 *      vt_kbd_con_stop         -       Keyboard side of console stop
1234 *      @console: console
1235 *
1236 *      Handle console stop. This is a wrapper for the VT layer
1237 *      so that we can keep kbd knowledge internal
1238 */
1239void vt_kbd_con_stop(unsigned int console)
1240{
1241        struct kbd_struct *kb = &kbd_table[console];
1242        unsigned long flags;
1243        spin_lock_irqsave(&led_lock, flags);
1244        set_vc_kbd_led(kb, VC_SCROLLOCK);
1245        set_leds();
1246        spin_unlock_irqrestore(&led_lock, flags);
1247}
1248
1249/*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1254 */
1255static void kbd_bh(struct tasklet_struct *unused)
1256{
1257        unsigned int leds;
1258        unsigned long flags;
1259
1260        spin_lock_irqsave(&led_lock, flags);
1261        leds = getleds();
1262        leds |= (unsigned int)kbd->lockstate << 8;
1263        spin_unlock_irqrestore(&led_lock, flags);
1264
1265        if (vt_switch) {
1266                ledstate = ~leds;
1267                vt_switch = false;
1268        }
1269
1270        if (leds != ledstate) {
1271                kbd_propagate_led_state(ledstate, leds);
1272                ledstate = leds;
1273        }
1274}
1275
1276#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1277    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
1281static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282{
1283        if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284                return false;
1285
1286        return dev->id.bustype == BUS_I8042 &&
1287                dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288}
1289
1290static const unsigned short x86_keycodes[256] =
1291        { 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1292         16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293         32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294         48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295         64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296         80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297        284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298        367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299        360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300        103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301        291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302        264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303        377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304        308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305        332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307#ifdef CONFIG_SPARC
1308static int sparc_l1_a_state;
1309extern void sun_do_break(void);
1310#endif
1311
1312static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313                       unsigned char up_flag)
1314{
1315        int code;
1316
1317        switch (keycode) {
1318
1319        case KEY_PAUSE:
1320                put_queue(vc, 0xe1);
1321                put_queue(vc, 0x1d | up_flag);
1322                put_queue(vc, 0x45 | up_flag);
1323                break;
1324
1325        case KEY_HANGEUL:
1326                if (!up_flag)
1327                        put_queue(vc, 0xf2);
1328                break;
1329
1330        case KEY_HANJA:
1331                if (!up_flag)
1332                        put_queue(vc, 0xf1);
1333                break;
1334
1335        case KEY_SYSRQ:
1336                /*
1337                 * Real AT keyboards (that's what we're trying
1338                 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339                 * pressing PrtSc/SysRq alone, but simply 0x54
1340                 * when pressing Alt+PrtSc/SysRq.
1341                 */
1342                if (test_bit(KEY_LEFTALT, key_down) ||
1343                    test_bit(KEY_RIGHTALT, key_down)) {
1344                        put_queue(vc, 0x54 | up_flag);
1345                } else {
1346                        put_queue(vc, 0xe0);
1347                        put_queue(vc, 0x2a | up_flag);
1348                        put_queue(vc, 0xe0);
1349                        put_queue(vc, 0x37 | up_flag);
1350                }
1351                break;
1352
1353        default:
1354                if (keycode > 255)
1355                        return -1;
1356
1357                code = x86_keycodes[keycode];
1358                if (!code)
1359                        return -1;
1360
1361                if (code & 0x100)
1362                        put_queue(vc, 0xe0);
1363                put_queue(vc, (code & 0x7f) | up_flag);
1364
1365                break;
1366        }
1367
1368        return 0;
1369}
1370
1371#else
1372
1373static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374{
1375        return false;
1376}
1377
1378static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379{
1380        if (keycode > 127)
1381                return -1;
1382
1383        put_queue(vc, keycode | up_flag);
1384        return 0;
1385}
1386#endif
1387
1388static void kbd_rawcode(unsigned char data)
1389{
1390        struct vc_data *vc = vc_cons[fg_console].d;
1391
1392        kbd = &kbd_table[vc->vc_num];
1393        if (kbd->kbdmode == VC_RAW)
1394                put_queue(vc, data);
1395}
1396
1397static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398{
1399        struct vc_data *vc = vc_cons[fg_console].d;
1400        unsigned short keysym, *key_map;
1401        unsigned char type;
1402        bool raw_mode;
1403        struct tty_struct *tty;
1404        int shift_final;
1405        struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406        int rc;
1407
1408        tty = vc->port.tty;
1409
1410        if (tty && (!tty->driver_data)) {
1411                /* No driver data? Strange. Okay we fix it then. */
1412                tty->driver_data = vc;
1413        }
1414
1415        kbd = &kbd_table[vc->vc_num];
1416
1417#ifdef CONFIG_SPARC
1418        if (keycode == KEY_STOP)
1419                sparc_l1_a_state = down;
1420#endif
1421
1422        rep = (down == 2);
1423
1424        raw_mode = (kbd->kbdmode == VC_RAW);
1425        if (raw_mode && !hw_raw)
1426                if (emulate_raw(vc, keycode, !down << 7))
1427                        if (keycode < BTN_MISC && printk_ratelimit())
1428                                pr_warn("can't emulate rawmode for keycode %d\n",
1429                                        keycode);
1430
1431#ifdef CONFIG_SPARC
1432        if (keycode == KEY_A && sparc_l1_a_state) {
1433                sparc_l1_a_state = false;
1434                sun_do_break();
1435        }
1436#endif
1437
1438        if (kbd->kbdmode == VC_MEDIUMRAW) {
1439                /*
1440                 * This is extended medium raw mode, with keys above 127
1441                 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442                 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443                 * interfere with anything else. The two bytes after 0 will
1444                 * always have the up flag set not to interfere with older
1445                 * applications. This allows for 16384 different keycodes,
1446                 * which should be enough.
1447                 */
1448                if (keycode < 128) {
1449                        put_queue(vc, keycode | (!down << 7));
1450                } else {
1451                        put_queue(vc, !down << 7);
1452                        put_queue(vc, (keycode >> 7) | BIT(7));
1453                        put_queue(vc, keycode | BIT(7));
1454                }
1455                raw_mode = true;
1456        }
1457
1458        assign_bit(keycode, key_down, down);
1459
1460        if (rep &&
1461            (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462             (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463                /*
1464                 * Don't repeat a key if the input buffers are not empty and the
1465                 * characters get aren't echoed locally. This makes key repeat
1466                 * usable with slow applications and under heavy loads.
1467                 */
1468                return;
1469        }
1470
1471        param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472        param.ledstate = kbd->ledflagstate;
1473        key_map = key_maps[shift_final];
1474
1475        rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476                                        KBD_KEYCODE, &param);
1477        if (rc == NOTIFY_STOP || !key_map) {
1478                atomic_notifier_call_chain(&keyboard_notifier_list,
1479                                           KBD_UNBOUND_KEYCODE, &param);
1480                do_compute_shiftstate();
1481                kbd->slockstate = 0;
1482                return;
1483        }
1484
1485        if (keycode < NR_KEYS)
1486                keysym = key_map[keycode];
1487        else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488                keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489        else
1490                return;
1491
1492        type = KTYP(keysym);
1493
1494        if (type < 0xf0) {
1495                param.value = keysym;
1496                rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497                                                KBD_UNICODE, &param);
1498                if (rc != NOTIFY_STOP)
1499                        if (down && !raw_mode)
1500                                k_unicode(vc, keysym, !down);
1501                return;
1502        }
1503
1504        type -= 0xf0;
1505
1506        if (type == KT_LETTER) {
1507                type = KT_LATIN;
1508                if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509                        key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510                        if (key_map)
1511                                keysym = key_map[keycode];
1512                }
1513        }
1514
1515        param.value = keysym;
1516        rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517                                        KBD_KEYSYM, &param);
1518        if (rc == NOTIFY_STOP)
1519                return;
1520
1521        if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522                return;
1523
1524        (*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526        param.ledstate = kbd->ledflagstate;
1527        atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1528
1529        if (type != KT_SLOCK)
1530                kbd->slockstate = 0;
1531}
1532
1533static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534                      unsigned int event_code, int value)
1535{
1536        /* We are called with interrupts disabled, just take the lock */
1537        spin_lock(&kbd_event_lock);
1538
1539        if (event_type == EV_MSC && event_code == MSC_RAW &&
1540                        kbd_is_hw_raw(handle->dev))
1541                kbd_rawcode(value);
1542        if (event_type == EV_KEY && event_code <= KEY_MAX)
1543                kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545        spin_unlock(&kbd_event_lock);
1546
1547        tasklet_schedule(&keyboard_tasklet);
1548        do_poke_blanked_console = 1;
1549        schedule_console_callback();
1550}
1551
1552static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553{
1554        if (test_bit(EV_SND, dev->evbit))
1555                return true;
1556
1557        if (test_bit(EV_KEY, dev->evbit)) {
1558                if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559                                BTN_MISC)
1560                        return true;
1561                if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562                                        KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563                        return true;
1564        }
1565
1566        return false;
1567}
1568
1569/*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
1575static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576                        const struct input_device_id *id)
1577{
1578        struct input_handle *handle;
1579        int error;
1580
1581        handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582        if (!handle)
1583                return -ENOMEM;
1584
1585        handle->dev = dev;
1586        handle->handler = handler;
1587        handle->name = "kbd";
1588
1589        error = input_register_handle(handle);
1590        if (error)
1591                goto err_free_handle;
1592
1593        error = input_open_device(handle);
1594        if (error)
1595                goto err_unregister_handle;
1596
1597        return 0;
1598
1599 err_unregister_handle:
1600        input_unregister_handle(handle);
1601 err_free_handle:
1602        kfree(handle);
1603        return error;
1604}
1605
1606static void kbd_disconnect(struct input_handle *handle)
1607{
1608        input_close_device(handle);
1609        input_unregister_handle(handle);
1610        kfree(handle);
1611}
1612
1613/*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
1617static void kbd_start(struct input_handle *handle)
1618{
1619        tasklet_disable(&keyboard_tasklet);
1620
1621        if (ledstate != -1U)
1622                kbd_update_leds_helper(handle, &ledstate);
1623
1624        tasklet_enable(&keyboard_tasklet);
1625}
1626
1627static const struct input_device_id kbd_ids[] = {
1628        {
1629                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630                .evbit = { BIT_MASK(EV_KEY) },
1631        },
1632
1633        {
1634                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635                .evbit = { BIT_MASK(EV_SND) },
1636        },
1637
1638        { },    /* Terminating entry */
1639};
1640
1641MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643static struct input_handler kbd_handler = {
1644        .event          = kbd_event,
1645        .match          = kbd_match,
1646        .connect        = kbd_connect,
1647        .disconnect     = kbd_disconnect,
1648        .start          = kbd_start,
1649        .name           = "kbd",
1650        .id_table       = kbd_ids,
1651};
1652
1653int __init kbd_init(void)
1654{
1655        int i;
1656        int error;
1657
1658        for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659                kbd_table[i].ledflagstate = kbd_defleds();
1660                kbd_table[i].default_ledflagstate = kbd_defleds();
1661                kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662                kbd_table[i].lockstate = KBD_DEFLOCK;
1663                kbd_table[i].slockstate = 0;
1664                kbd_table[i].modeflags = KBD_DEFMODE;
1665                kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666        }
1667
1668        kbd_init_leds();
1669
1670        error = input_register_handler(&kbd_handler);
1671        if (error)
1672                return error;
1673
1674        tasklet_enable(&keyboard_tasklet);
1675        tasklet_schedule(&keyboard_tasklet);
1676
1677        return 0;
1678}
1679
1680/* Ioctl support code */
1681
1682/**
1683 *      vt_do_diacrit           -       diacritical table updates
1684 *      @cmd: ioctl request
1685 *      @udp: pointer to user data for ioctl
1686 *      @perm: permissions check computed by caller
1687 *
1688 *      Update the diacritical tables atomically and safely. Lock them
1689 *      against simultaneous keypresses
1690 */
1691int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692{
1693        unsigned long flags;
1694        int asize;
1695        int ret = 0;
1696
1697        switch (cmd) {
1698        case KDGKBDIACR:
1699        {
1700                struct kbdiacrs __user *a = udp;
1701                struct kbdiacr *dia;
1702                int i;
1703
1704                dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705                                                                GFP_KERNEL);
1706                if (!dia)
1707                        return -ENOMEM;
1708
1709                /* Lock the diacriticals table, make a copy and then
1710                   copy it after we unlock */
1711                spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713                asize = accent_table_size;
1714                for (i = 0; i < asize; i++) {
1715                        dia[i].diacr = conv_uni_to_8bit(
1716                                                accent_table[i].diacr);
1717                        dia[i].base = conv_uni_to_8bit(
1718                                                accent_table[i].base);
1719                        dia[i].result = conv_uni_to_8bit(
1720                                                accent_table[i].result);
1721                }
1722                spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724                if (put_user(asize, &a->kb_cnt))
1725                        ret = -EFAULT;
1726                else  if (copy_to_user(a->kbdiacr, dia,
1727                                asize * sizeof(struct kbdiacr)))
1728                        ret = -EFAULT;
1729                kfree(dia);
1730                return ret;
1731        }
1732        case KDGKBDIACRUC:
1733        {
1734                struct kbdiacrsuc __user *a = udp;
1735                void *buf;
1736
1737                buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738                                                                GFP_KERNEL);
1739                if (buf == NULL)
1740                        return -ENOMEM;
1741
1742                /* Lock the diacriticals table, make a copy and then
1743                   copy it after we unlock */
1744                spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746                asize = accent_table_size;
1747                memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749                spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751                if (put_user(asize, &a->kb_cnt))
1752                        ret = -EFAULT;
1753                else if (copy_to_user(a->kbdiacruc, buf,
1754                                asize*sizeof(struct kbdiacruc)))
1755                        ret = -EFAULT;
1756                kfree(buf);
1757                return ret;
1758        }
1759
1760        case KDSKBDIACR:
1761        {
1762                struct kbdiacrs __user *a = udp;
1763                struct kbdiacr *dia = NULL;
1764                unsigned int ct;
1765                int i;
1766
1767                if (!perm)
1768                        return -EPERM;
1769                if (get_user(ct, &a->kb_cnt))
1770                        return -EFAULT;
1771                if (ct >= MAX_DIACR)
1772                        return -EINVAL;
1773
1774                if (ct) {
1775
1776                        dia = memdup_user(a->kbdiacr,
1777                                        sizeof(struct kbdiacr) * ct);
1778                        if (IS_ERR(dia))
1779                                return PTR_ERR(dia);
1780
1781                }
1782
1783                spin_lock_irqsave(&kbd_event_lock, flags);
1784                accent_table_size = ct;
1785                for (i = 0; i < ct; i++) {
1786                        accent_table[i].diacr =
1787                                        conv_8bit_to_uni(dia[i].diacr);
1788                        accent_table[i].base =
1789                                        conv_8bit_to_uni(dia[i].base);
1790                        accent_table[i].result =
1791                                        conv_8bit_to_uni(dia[i].result);
1792                }
1793                spin_unlock_irqrestore(&kbd_event_lock, flags);
1794                kfree(dia);
1795                return 0;
1796        }
1797
1798        case KDSKBDIACRUC:
1799        {
1800                struct kbdiacrsuc __user *a = udp;
1801                unsigned int ct;
1802                void *buf = NULL;
1803
1804                if (!perm)
1805                        return -EPERM;
1806
1807                if (get_user(ct, &a->kb_cnt))
1808                        return -EFAULT;
1809
1810                if (ct >= MAX_DIACR)
1811                        return -EINVAL;
1812
1813                if (ct) {
1814                        buf = memdup_user(a->kbdiacruc,
1815                                          ct * sizeof(struct kbdiacruc));
1816                        if (IS_ERR(buf))
1817                                return PTR_ERR(buf);
1818                } 
1819                spin_lock_irqsave(&kbd_event_lock, flags);
1820                if (ct)
1821                        memcpy(accent_table, buf,
1822                                        ct * sizeof(struct kbdiacruc));
1823                accent_table_size = ct;
1824                spin_unlock_irqrestore(&kbd_event_lock, flags);
1825                kfree(buf);
1826                return 0;
1827        }
1828        }
1829        return ret;
1830}
1831
1832/**
1833 *      vt_do_kdskbmode         -       set keyboard mode ioctl
1834 *      @console: the console to use
1835 *      @arg: the requested mode
1836 *
1837 *      Update the keyboard mode bits while holding the correct locks.
1838 *      Return 0 for success or an error code.
1839 */
1840int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1841{
1842        struct kbd_struct *kb = &kbd_table[console];
1843        int ret = 0;
1844        unsigned long flags;
1845
1846        spin_lock_irqsave(&kbd_event_lock, flags);
1847        switch(arg) {
1848        case K_RAW:
1849                kb->kbdmode = VC_RAW;
1850                break;
1851        case K_MEDIUMRAW:
1852                kb->kbdmode = VC_MEDIUMRAW;
1853                break;
1854        case K_XLATE:
1855                kb->kbdmode = VC_XLATE;
1856                do_compute_shiftstate();
1857                break;
1858        case K_UNICODE:
1859                kb->kbdmode = VC_UNICODE;
1860                do_compute_shiftstate();
1861                break;
1862        case K_OFF:
1863                kb->kbdmode = VC_OFF;
1864                break;
1865        default:
1866                ret = -EINVAL;
1867        }
1868        spin_unlock_irqrestore(&kbd_event_lock, flags);
1869        return ret;
1870}
1871
1872/**
1873 *      vt_do_kdskbmeta         -       set keyboard meta state
1874 *      @console: the console to use
1875 *      @arg: the requested meta state
1876 *
1877 *      Update the keyboard meta bits while holding the correct locks.
1878 *      Return 0 for success or an error code.
1879 */
1880int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1881{
1882        struct kbd_struct *kb = &kbd_table[console];
1883        int ret = 0;
1884        unsigned long flags;
1885
1886        spin_lock_irqsave(&kbd_event_lock, flags);
1887        switch(arg) {
1888        case K_METABIT:
1889                clr_vc_kbd_mode(kb, VC_META);
1890                break;
1891        case K_ESCPREFIX:
1892                set_vc_kbd_mode(kb, VC_META);
1893                break;
1894        default:
1895                ret = -EINVAL;
1896        }
1897        spin_unlock_irqrestore(&kbd_event_lock, flags);
1898        return ret;
1899}
1900
1901int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1902                                                                int perm)
1903{
1904        struct kbkeycode tmp;
1905        int kc = 0;
1906
1907        if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1908                return -EFAULT;
1909        switch (cmd) {
1910        case KDGETKEYCODE:
1911                kc = getkeycode(tmp.scancode);
1912                if (kc >= 0)
1913                        kc = put_user(kc, &user_kbkc->keycode);
1914                break;
1915        case KDSETKEYCODE:
1916                if (!perm)
1917                        return -EPERM;
1918                kc = setkeycode(tmp.scancode, tmp.keycode);
1919                break;
1920        }
1921        return kc;
1922}
1923
1924static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1925                unsigned char map)
1926{
1927        unsigned short *key_map, val;
1928        unsigned long flags;
1929
1930        /* Ensure another thread doesn't free it under us */
1931        spin_lock_irqsave(&kbd_event_lock, flags);
1932        key_map = key_maps[map];
1933        if (key_map) {
1934                val = U(key_map[idx]);
1935                if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1936                        val = K_HOLE;
1937        } else
1938                val = idx ? K_HOLE : K_NOSUCHMAP;
1939        spin_unlock_irqrestore(&kbd_event_lock, flags);
1940
1941        return val;
1942}
1943
1944static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1945                unsigned char map, unsigned short val)
1946{
1947        unsigned long flags;
1948        unsigned short *key_map, *new_map, oldval;
1949
1950        if (!idx && val == K_NOSUCHMAP) {
1951                spin_lock_irqsave(&kbd_event_lock, flags);
1952                /* deallocate map */
1953                key_map = key_maps[map];
1954                if (map && key_map) {
1955                        key_maps[map] = NULL;
1956                        if (key_map[0] == U(K_ALLOCATED)) {
1957                                kfree(key_map);
1958                                keymap_count--;
1959                        }
1960                }
1961                spin_unlock_irqrestore(&kbd_event_lock, flags);
1962
1963                return 0;
1964        }
1965
1966        if (KTYP(val) < NR_TYPES) {
1967                if (KVAL(val) > max_vals[KTYP(val)])
1968                        return -EINVAL;
1969        } else if (kbdmode != VC_UNICODE)
1970                return -EINVAL;
1971
1972        /* ++Geert: non-PC keyboards may generate keycode zero */
1973#if !defined(__mc68000__) && !defined(__powerpc__)
1974        /* assignment to entry 0 only tests validity of args */
1975        if (!idx)
1976                return 0;
1977#endif
1978
1979        new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1980        if (!new_map)
1981                return -ENOMEM;
1982
1983        spin_lock_irqsave(&kbd_event_lock, flags);
1984        key_map = key_maps[map];
1985        if (key_map == NULL) {
1986                int j;
1987
1988                if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1989                    !capable(CAP_SYS_RESOURCE)) {
1990                        spin_unlock_irqrestore(&kbd_event_lock, flags);
1991                        kfree(new_map);
1992                        return -EPERM;
1993                }
1994                key_maps[map] = new_map;
1995                key_map = new_map;
1996                key_map[0] = U(K_ALLOCATED);
1997                for (j = 1; j < NR_KEYS; j++)
1998                        key_map[j] = U(K_HOLE);
1999                keymap_count++;
2000        } else
2001                kfree(new_map);
2002
2003        oldval = U(key_map[idx]);
2004        if (val == oldval)
2005                goto out;
2006
2007        /* Attention Key */
2008        if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2009                spin_unlock_irqrestore(&kbd_event_lock, flags);
2010                return -EPERM;
2011        }
2012
2013        key_map[idx] = U(val);
2014        if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2015                do_compute_shiftstate();
2016out:
2017        spin_unlock_irqrestore(&kbd_event_lock, flags);
2018
2019        return 0;
2020}
2021
2022int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2023                                                unsigned int console)
2024{
2025        struct kbd_struct *kb = &kbd_table[console];
2026        struct kbentry kbe;
2027
2028        if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2029                return -EFAULT;
2030
2031        switch (cmd) {
2032        case KDGKBENT:
2033                return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2034                                        kbe.kb_table),
2035                                &user_kbe->kb_value);
2036        case KDSKBENT:
2037                if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2038                        return -EPERM;
2039                return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2040                                kbe.kb_value);
2041        }
2042        return 0;
2043}
2044
2045static char *vt_kdskbsent(char *kbs, unsigned char cur)
2046{
2047        static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2048        char *cur_f = func_table[cur];
2049
2050        if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2051                strcpy(cur_f, kbs);
2052                return kbs;
2053        }
2054
2055        func_table[cur] = kbs;
2056
2057        return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2058}
2059
2060int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2061{
2062        unsigned char kb_func;
2063        unsigned long flags;
2064        char *kbs;
2065        int ret;
2066
2067        if (get_user(kb_func, &user_kdgkb->kb_func))
2068                return -EFAULT;
2069
2070        kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2071
2072        switch (cmd) {
2073        case KDGKBSENT: {
2074                /* size should have been a struct member */
2075                ssize_t len = sizeof(user_kdgkb->kb_string);
2076
2077                kbs = kmalloc(len, GFP_KERNEL);
2078                if (!kbs)
2079                        return -ENOMEM;
2080
2081                spin_lock_irqsave(&func_buf_lock, flags);
2082                len = strlcpy(kbs, func_table[kb_func] ? : "", len);
2083                spin_unlock_irqrestore(&func_buf_lock, flags);
2084
2085                ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2086                        -EFAULT : 0;
2087
2088                break;
2089        }
2090        case KDSKBSENT:
2091                if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2092                        return -EPERM;
2093
2094                kbs = strndup_user(user_kdgkb->kb_string,
2095                                sizeof(user_kdgkb->kb_string));
2096                if (IS_ERR(kbs))
2097                        return PTR_ERR(kbs);
2098
2099                spin_lock_irqsave(&func_buf_lock, flags);
2100                kbs = vt_kdskbsent(kbs, kb_func);
2101                spin_unlock_irqrestore(&func_buf_lock, flags);
2102
2103                ret = 0;
2104                break;
2105        }
2106
2107        kfree(kbs);
2108
2109        return ret;
2110}
2111
2112int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2113{
2114        struct kbd_struct *kb = &kbd_table[console];
2115        unsigned long flags;
2116        unsigned char ucval;
2117
2118        switch(cmd) {
2119        /* the ioctls below read/set the flags usually shown in the leds */
2120        /* don't use them - they will go away without warning */
2121        case KDGKBLED:
2122                spin_lock_irqsave(&kbd_event_lock, flags);
2123                ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2124                spin_unlock_irqrestore(&kbd_event_lock, flags);
2125                return put_user(ucval, (char __user *)arg);
2126
2127        case KDSKBLED:
2128                if (!perm)
2129                        return -EPERM;
2130                if (arg & ~0x77)
2131                        return -EINVAL;
2132                spin_lock_irqsave(&led_lock, flags);
2133                kb->ledflagstate = (arg & 7);
2134                kb->default_ledflagstate = ((arg >> 4) & 7);
2135                set_leds();
2136                spin_unlock_irqrestore(&led_lock, flags);
2137                return 0;
2138
2139        /* the ioctls below only set the lights, not the functions */
2140        /* for those, see KDGKBLED and KDSKBLED above */
2141        case KDGETLED:
2142                ucval = getledstate();
2143                return put_user(ucval, (char __user *)arg);
2144
2145        case KDSETLED:
2146                if (!perm)
2147                        return -EPERM;
2148                setledstate(kb, arg);
2149                return 0;
2150        }
2151        return -ENOIOCTLCMD;
2152}
2153
2154int vt_do_kdgkbmode(unsigned int console)
2155{
2156        struct kbd_struct *kb = &kbd_table[console];
2157        /* This is a spot read so needs no locking */
2158        switch (kb->kbdmode) {
2159        case VC_RAW:
2160                return K_RAW;
2161        case VC_MEDIUMRAW:
2162                return K_MEDIUMRAW;
2163        case VC_UNICODE:
2164                return K_UNICODE;
2165        case VC_OFF:
2166                return K_OFF;
2167        default:
2168                return K_XLATE;
2169        }
2170}
2171
2172/**
2173 *      vt_do_kdgkbmeta         -       report meta status
2174 *      @console: console to report
2175 *
2176 *      Report the meta flag status of this console
2177 */
2178int vt_do_kdgkbmeta(unsigned int console)
2179{
2180        struct kbd_struct *kb = &kbd_table[console];
2181        /* Again a spot read so no locking */
2182        return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2183}
2184
2185/**
2186 *      vt_reset_unicode        -       reset the unicode status
2187 *      @console: console being reset
2188 *
2189 *      Restore the unicode console state to its default
2190 */
2191void vt_reset_unicode(unsigned int console)
2192{
2193        unsigned long flags;
2194
2195        spin_lock_irqsave(&kbd_event_lock, flags);
2196        kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2197        spin_unlock_irqrestore(&kbd_event_lock, flags);
2198}
2199
2200/**
2201 *      vt_get_shift_state      -       shift bit state
2202 *
2203 *      Report the shift bits from the keyboard state. We have to export
2204 *      this to support some oddities in the vt layer.
2205 */
2206int vt_get_shift_state(void)
2207{
2208        /* Don't lock as this is a transient report */
2209        return shift_state;
2210}
2211
2212/**
2213 *      vt_reset_keyboard       -       reset keyboard state
2214 *      @console: console to reset
2215 *
2216 *      Reset the keyboard bits for a console as part of a general console
2217 *      reset event
2218 */
2219void vt_reset_keyboard(unsigned int console)
2220{
2221        struct kbd_struct *kb = &kbd_table[console];
2222        unsigned long flags;
2223
2224        spin_lock_irqsave(&kbd_event_lock, flags);
2225        set_vc_kbd_mode(kb, VC_REPEAT);
2226        clr_vc_kbd_mode(kb, VC_CKMODE);
2227        clr_vc_kbd_mode(kb, VC_APPLIC);
2228        clr_vc_kbd_mode(kb, VC_CRLF);
2229        kb->lockstate = 0;
2230        kb->slockstate = 0;
2231        spin_lock(&led_lock);
2232        kb->ledmode = LED_SHOW_FLAGS;
2233        kb->ledflagstate = kb->default_ledflagstate;
2234        spin_unlock(&led_lock);
2235        /* do not do set_leds here because this causes an endless tasklet loop
2236           when the keyboard hasn't been initialized yet */
2237        spin_unlock_irqrestore(&kbd_event_lock, flags);
2238}
2239
2240/**
2241 *      vt_get_kbd_mode_bit     -       read keyboard status bits
2242 *      @console: console to read from
2243 *      @bit: mode bit to read
2244 *
2245 *      Report back a vt mode bit. We do this without locking so the
2246 *      caller must be sure that there are no synchronization needs
2247 */
2248
2249int vt_get_kbd_mode_bit(unsigned int console, int bit)
2250{
2251        struct kbd_struct *kb = &kbd_table[console];
2252        return vc_kbd_mode(kb, bit);
2253}
2254
2255/**
2256 *      vt_set_kbd_mode_bit     -       read keyboard status bits
2257 *      @console: console to read from
2258 *      @bit: mode bit to read
2259 *
2260 *      Set a vt mode bit. We do this without locking so the
2261 *      caller must be sure that there are no synchronization needs
2262 */
2263
2264void vt_set_kbd_mode_bit(unsigned int console, int bit)
2265{
2266        struct kbd_struct *kb = &kbd_table[console];
2267        unsigned long flags;
2268
2269        spin_lock_irqsave(&kbd_event_lock, flags);
2270        set_vc_kbd_mode(kb, bit);
2271        spin_unlock_irqrestore(&kbd_event_lock, flags);
2272}
2273
2274/**
2275 *      vt_clr_kbd_mode_bit     -       read keyboard status bits
2276 *      @console: console to read from
2277 *      @bit: mode bit to read
2278 *
2279 *      Report back a vt mode bit. We do this without locking so the
2280 *      caller must be sure that there are no synchronization needs
2281 */
2282
2283void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2284{
2285        struct kbd_struct *kb = &kbd_table[console];
2286        unsigned long flags;
2287
2288        spin_lock_irqsave(&kbd_event_lock, flags);
2289        clr_vc_kbd_mode(kb, bit);
2290        spin_unlock_irqrestore(&kbd_event_lock, flags);
2291}
2292