linux/drivers/usb/host/xhci-mtk-sch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2015 MediaTek Inc.
   4 * Author:
   5 *  Zhigang.Wei <zhigang.wei@mediatek.com>
   6 *  Chunfeng.Yun <chunfeng.yun@mediatek.com>
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/slab.h>
  12
  13#include "xhci.h"
  14#include "xhci-mtk.h"
  15
  16#define SSP_BW_BOUNDARY 130000
  17#define SS_BW_BOUNDARY  51000
  18/* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */
  19#define HS_BW_BOUNDARY  6144
  20/* usb2 spec section11.18.1: at most 188 FS bytes per microframe */
  21#define FS_PAYLOAD_MAX 188
  22
  23#define DBG_BUF_EN      64
  24
  25/* schedule error type */
  26#define ESCH_SS_Y6              1001
  27#define ESCH_SS_OVERLAP         1002
  28#define ESCH_CS_OVERFLOW        1003
  29#define ESCH_BW_OVERFLOW        1004
  30#define ESCH_FIXME              1005
  31
  32/* mtk scheduler bitmasks */
  33#define EP_BPKTS(p)     ((p) & 0x7f)
  34#define EP_BCSCOUNT(p)  (((p) & 0x7) << 8)
  35#define EP_BBM(p)       ((p) << 11)
  36#define EP_BOFFSET(p)   ((p) & 0x3fff)
  37#define EP_BREPEAT(p)   (((p) & 0x7fff) << 16)
  38
  39static char *sch_error_string(int err_num)
  40{
  41        switch (err_num) {
  42        case ESCH_SS_Y6:
  43                return "Can't schedule Start-Split in Y6";
  44        case ESCH_SS_OVERLAP:
  45                return "Can't find a suitable Start-Split location";
  46        case ESCH_CS_OVERFLOW:
  47                return "The last Complete-Split is greater than 7";
  48        case ESCH_BW_OVERFLOW:
  49                return "Bandwidth exceeds the maximum limit";
  50        case ESCH_FIXME:
  51                return "FIXME, to be resolved";
  52        default:
  53                return "Unknown";
  54        }
  55}
  56
  57static int is_fs_or_ls(enum usb_device_speed speed)
  58{
  59        return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
  60}
  61
  62static const char *
  63decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed)
  64{
  65        static char buf[DBG_BUF_EN];
  66        struct usb_endpoint_descriptor *epd = &ep->desc;
  67        unsigned int interval;
  68        const char *unit;
  69
  70        interval = usb_decode_interval(epd, speed);
  71        if (interval % 1000) {
  72                unit = "us";
  73        } else {
  74                unit = "ms";
  75                interval /= 1000;
  76        }
  77
  78        snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s",
  79                 usb_speed_string(speed), usb_endpoint_num(epd),
  80                 usb_endpoint_dir_in(epd) ? "in" : "out",
  81                 usb_ep_type_string(usb_endpoint_type(epd)),
  82                 usb_endpoint_maxp(epd), epd->bInterval, interval, unit);
  83
  84        return buf;
  85}
  86
  87static u32 get_bw_boundary(enum usb_device_speed speed)
  88{
  89        u32 boundary;
  90
  91        switch (speed) {
  92        case USB_SPEED_SUPER_PLUS:
  93                boundary = SSP_BW_BOUNDARY;
  94                break;
  95        case USB_SPEED_SUPER:
  96                boundary = SS_BW_BOUNDARY;
  97                break;
  98        default:
  99                boundary = HS_BW_BOUNDARY;
 100                break;
 101        }
 102
 103        return boundary;
 104}
 105
 106/*
 107* get the bandwidth domain which @ep belongs to.
 108*
 109* the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk,
 110* each HS root port is treated as a single bandwidth domain,
 111* but each SS root port is treated as two bandwidth domains, one for IN eps,
 112* one for OUT eps.
 113* @real_port value is defined as follow according to xHCI spec:
 114* 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc
 115* so the bandwidth domain array is organized as follow for simplification:
 116* SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY
 117*/
 118static struct mu3h_sch_bw_info *
 119get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
 120            struct usb_host_endpoint *ep)
 121{
 122        struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
 123        struct xhci_virt_device *virt_dev;
 124        int bw_index;
 125
 126        virt_dev = xhci->devs[udev->slot_id];
 127        if (!virt_dev->real_port) {
 128                WARN_ONCE(1, "%s invalid real_port\n", dev_name(&udev->dev));
 129                return NULL;
 130        }
 131
 132        if (udev->speed >= USB_SPEED_SUPER) {
 133                if (usb_endpoint_dir_out(&ep->desc))
 134                        bw_index = (virt_dev->real_port - 1) * 2;
 135                else
 136                        bw_index = (virt_dev->real_port - 1) * 2 + 1;
 137        } else {
 138                /* add one more for each SS port */
 139                bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1;
 140        }
 141
 142        return &mtk->sch_array[bw_index];
 143}
 144
 145static u32 get_esit(struct xhci_ep_ctx *ep_ctx)
 146{
 147        u32 esit;
 148
 149        esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info));
 150        if (esit > XHCI_MTK_MAX_ESIT)
 151                esit = XHCI_MTK_MAX_ESIT;
 152
 153        return esit;
 154}
 155
 156static struct mu3h_sch_tt *find_tt(struct usb_device *udev)
 157{
 158        struct usb_tt *utt = udev->tt;
 159        struct mu3h_sch_tt *tt, **tt_index, **ptt;
 160        bool allocated_index = false;
 161
 162        if (!utt)
 163                return NULL;    /* Not below a TT */
 164
 165        /*
 166         * Find/create our data structure.
 167         * For hubs with a single TT, we get it directly.
 168         * For hubs with multiple TTs, there's an extra level of pointers.
 169         */
 170        tt_index = NULL;
 171        if (utt->multi) {
 172                tt_index = utt->hcpriv;
 173                if (!tt_index) {        /* Create the index array */
 174                        tt_index = kcalloc(utt->hub->maxchild,
 175                                        sizeof(*tt_index), GFP_KERNEL);
 176                        if (!tt_index)
 177                                return ERR_PTR(-ENOMEM);
 178                        utt->hcpriv = tt_index;
 179                        allocated_index = true;
 180                }
 181                ptt = &tt_index[udev->ttport - 1];
 182        } else {
 183                ptt = (struct mu3h_sch_tt **) &utt->hcpriv;
 184        }
 185
 186        tt = *ptt;
 187        if (!tt) {      /* Create the mu3h_sch_tt */
 188                tt = kzalloc(sizeof(*tt), GFP_KERNEL);
 189                if (!tt) {
 190                        if (allocated_index) {
 191                                utt->hcpriv = NULL;
 192                                kfree(tt_index);
 193                        }
 194                        return ERR_PTR(-ENOMEM);
 195                }
 196                INIT_LIST_HEAD(&tt->ep_list);
 197                *ptt = tt;
 198        }
 199
 200        return tt;
 201}
 202
 203/* Release the TT above udev, if it's not in use */
 204static void drop_tt(struct usb_device *udev)
 205{
 206        struct usb_tt *utt = udev->tt;
 207        struct mu3h_sch_tt *tt, **tt_index, **ptt;
 208        int i, cnt;
 209
 210        if (!utt || !utt->hcpriv)
 211                return;         /* Not below a TT, or never allocated */
 212
 213        cnt = 0;
 214        if (utt->multi) {
 215                tt_index = utt->hcpriv;
 216                ptt = &tt_index[udev->ttport - 1];
 217                /*  How many entries are left in tt_index? */
 218                for (i = 0; i < utt->hub->maxchild; ++i)
 219                        cnt += !!tt_index[i];
 220        } else {
 221                tt_index = NULL;
 222                ptt = (struct mu3h_sch_tt **)&utt->hcpriv;
 223        }
 224
 225        tt = *ptt;
 226        if (!tt || !list_empty(&tt->ep_list))
 227                return;         /* never allocated , or still in use*/
 228
 229        *ptt = NULL;
 230        kfree(tt);
 231
 232        if (cnt == 1) {
 233                utt->hcpriv = NULL;
 234                kfree(tt_index);
 235        }
 236}
 237
 238static struct mu3h_sch_ep_info *
 239create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
 240              struct usb_host_endpoint *ep)
 241{
 242        struct mu3h_sch_ep_info *sch_ep;
 243        struct mu3h_sch_bw_info *bw_info;
 244        struct mu3h_sch_tt *tt = NULL;
 245
 246        bw_info = get_bw_info(mtk, udev, ep);
 247        if (!bw_info)
 248                return ERR_PTR(-ENODEV);
 249
 250        sch_ep = kzalloc(sizeof(*sch_ep), GFP_KERNEL);
 251        if (!sch_ep)
 252                return ERR_PTR(-ENOMEM);
 253
 254        if (is_fs_or_ls(udev->speed)) {
 255                tt = find_tt(udev);
 256                if (IS_ERR(tt)) {
 257                        kfree(sch_ep);
 258                        return ERR_PTR(-ENOMEM);
 259                }
 260        }
 261
 262        sch_ep->bw_info = bw_info;
 263        sch_ep->sch_tt = tt;
 264        sch_ep->ep = ep;
 265        sch_ep->speed = udev->speed;
 266        INIT_LIST_HEAD(&sch_ep->endpoint);
 267        INIT_LIST_HEAD(&sch_ep->tt_endpoint);
 268        INIT_HLIST_NODE(&sch_ep->hentry);
 269
 270        return sch_ep;
 271}
 272
 273static void setup_sch_info(struct xhci_ep_ctx *ep_ctx,
 274                           struct mu3h_sch_ep_info *sch_ep)
 275{
 276        u32 ep_type;
 277        u32 maxpkt;
 278        u32 max_burst;
 279        u32 mult;
 280        u32 esit_pkts;
 281        u32 max_esit_payload;
 282
 283        ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
 284        maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
 285        max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2));
 286        mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info));
 287        max_esit_payload =
 288                (CTX_TO_MAX_ESIT_PAYLOAD_HI(
 289                        le32_to_cpu(ep_ctx->ep_info)) << 16) |
 290                 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info));
 291
 292        sch_ep->esit = get_esit(ep_ctx);
 293        sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
 294        sch_ep->ep_type = ep_type;
 295        sch_ep->maxpkt = maxpkt;
 296        sch_ep->offset = 0;
 297        sch_ep->burst_mode = 0;
 298        sch_ep->repeat = 0;
 299
 300        if (sch_ep->speed == USB_SPEED_HIGH) {
 301                sch_ep->cs_count = 0;
 302
 303                /*
 304                 * usb_20 spec section5.9
 305                 * a single microframe is enough for HS synchromous endpoints
 306                 * in a interval
 307                 */
 308                sch_ep->num_budget_microframes = 1;
 309
 310                /*
 311                 * xHCI spec section6.2.3.4
 312                 * @max_burst is the number of additional transactions
 313                 * opportunities per microframe
 314                 */
 315                sch_ep->pkts = max_burst + 1;
 316                sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
 317        } else if (sch_ep->speed >= USB_SPEED_SUPER) {
 318                /* usb3_r1 spec section4.4.7 & 4.4.8 */
 319                sch_ep->cs_count = 0;
 320                sch_ep->burst_mode = 1;
 321                /*
 322                 * some device's (d)wBytesPerInterval is set as 0,
 323                 * then max_esit_payload is 0, so evaluate esit_pkts from
 324                 * mult and burst
 325                 */
 326                esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt);
 327                if (esit_pkts == 0)
 328                        esit_pkts = (mult + 1) * (max_burst + 1);
 329
 330                if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
 331                        sch_ep->pkts = esit_pkts;
 332                        sch_ep->num_budget_microframes = 1;
 333                }
 334
 335                if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) {
 336
 337                        if (sch_ep->esit == 1)
 338                                sch_ep->pkts = esit_pkts;
 339                        else if (esit_pkts <= sch_ep->esit)
 340                                sch_ep->pkts = 1;
 341                        else
 342                                sch_ep->pkts = roundup_pow_of_two(esit_pkts)
 343                                        / sch_ep->esit;
 344
 345                        sch_ep->num_budget_microframes =
 346                                DIV_ROUND_UP(esit_pkts, sch_ep->pkts);
 347
 348                        sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1);
 349                }
 350                sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
 351        } else if (is_fs_or_ls(sch_ep->speed)) {
 352                sch_ep->pkts = 1; /* at most one packet for each microframe */
 353
 354                /*
 355                 * num_budget_microframes and cs_count will be updated when
 356                 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type
 357                 */
 358                sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX);
 359                sch_ep->num_budget_microframes = sch_ep->cs_count;
 360                sch_ep->bw_cost_per_microframe = min_t(u32, maxpkt, FS_PAYLOAD_MAX);
 361        }
 362}
 363
 364/* Get maximum bandwidth when we schedule at offset slot. */
 365static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw,
 366        struct mu3h_sch_ep_info *sch_ep, u32 offset)
 367{
 368        u32 max_bw = 0;
 369        u32 bw;
 370        int i, j, k;
 371
 372        for (i = 0; i < sch_ep->num_esit; i++) {
 373                u32 base = offset + i * sch_ep->esit;
 374
 375                for (j = 0; j < sch_ep->num_budget_microframes; j++) {
 376                        k = XHCI_MTK_BW_INDEX(base + j);
 377                        bw = sch_bw->bus_bw[k] + sch_ep->bw_cost_per_microframe;
 378                        if (bw > max_bw)
 379                                max_bw = bw;
 380                }
 381        }
 382        return max_bw;
 383}
 384
 385static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw,
 386        struct mu3h_sch_ep_info *sch_ep, bool used)
 387{
 388        int bw_updated;
 389        u32 base;
 390        int i, j;
 391
 392        bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1);
 393
 394        for (i = 0; i < sch_ep->num_esit; i++) {
 395                base = sch_ep->offset + i * sch_ep->esit;
 396                for (j = 0; j < sch_ep->num_budget_microframes; j++)
 397                        sch_bw->bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated;
 398        }
 399}
 400
 401static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
 402{
 403        struct mu3h_sch_tt *tt = sch_ep->sch_tt;
 404        u32 tmp;
 405        int base;
 406        int i, j, k;
 407
 408        for (i = 0; i < sch_ep->num_esit; i++) {
 409                base = offset + i * sch_ep->esit;
 410
 411                /*
 412                 * Compared with hs bus, no matter what ep type,
 413                 * the hub will always delay one uframe to send data
 414                 */
 415                for (j = 0; j < sch_ep->num_budget_microframes; j++) {
 416                        k = XHCI_MTK_BW_INDEX(base + j);
 417                        tmp = tt->fs_bus_bw[k] + sch_ep->bw_cost_per_microframe;
 418                        if (tmp > FS_PAYLOAD_MAX)
 419                                return -ESCH_BW_OVERFLOW;
 420                }
 421        }
 422
 423        return 0;
 424}
 425
 426static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset)
 427{
 428        u32 extra_cs_count;
 429        u32 start_ss, last_ss;
 430        u32 start_cs, last_cs;
 431
 432        if (!sch_ep->sch_tt)
 433                return 0;
 434
 435        start_ss = offset % 8;
 436
 437        if (sch_ep->ep_type == ISOC_OUT_EP) {
 438                last_ss = start_ss + sch_ep->cs_count - 1;
 439
 440                /*
 441                 * usb_20 spec section11.18:
 442                 * must never schedule Start-Split in Y6
 443                 */
 444                if (!(start_ss == 7 || last_ss < 6))
 445                        return -ESCH_SS_Y6;
 446
 447        } else {
 448                u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
 449
 450                /*
 451                 * usb_20 spec section11.18:
 452                 * must never schedule Start-Split in Y6
 453                 */
 454                if (start_ss == 6)
 455                        return -ESCH_SS_Y6;
 456
 457                /* one uframe for ss + one uframe for idle */
 458                start_cs = (start_ss + 2) % 8;
 459                last_cs = start_cs + cs_count - 1;
 460
 461                if (last_cs > 7)
 462                        return -ESCH_CS_OVERFLOW;
 463
 464                if (sch_ep->ep_type == ISOC_IN_EP)
 465                        extra_cs_count = (last_cs == 7) ? 1 : 2;
 466                else /*  ep_type : INTR IN / INTR OUT */
 467                        extra_cs_count = 1;
 468
 469                cs_count += extra_cs_count;
 470                if (cs_count > 7)
 471                        cs_count = 7; /* HW limit */
 472
 473                sch_ep->cs_count = cs_count;
 474                /* one for ss, the other for idle */
 475                sch_ep->num_budget_microframes = cs_count + 2;
 476
 477                /*
 478                 * if interval=1, maxp >752, num_budge_micoframe is larger
 479                 * than sch_ep->esit, will overstep boundary
 480                 */
 481                if (sch_ep->num_budget_microframes > sch_ep->esit)
 482                        sch_ep->num_budget_microframes = sch_ep->esit;
 483        }
 484
 485        return check_fs_bus_bw(sch_ep, offset);
 486}
 487
 488static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used)
 489{
 490        struct mu3h_sch_tt *tt = sch_ep->sch_tt;
 491        int bw_updated;
 492        u32 base;
 493        int i, j;
 494
 495        bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1);
 496
 497        for (i = 0; i < sch_ep->num_esit; i++) {
 498                base = sch_ep->offset + i * sch_ep->esit;
 499
 500                for (j = 0; j < sch_ep->num_budget_microframes; j++)
 501                        tt->fs_bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated;
 502        }
 503
 504        if (used)
 505                list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list);
 506        else
 507                list_del(&sch_ep->tt_endpoint);
 508}
 509
 510static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw,
 511                      struct mu3h_sch_ep_info *sch_ep, bool loaded)
 512{
 513        if (sch_ep->sch_tt)
 514                update_sch_tt(sch_ep, loaded);
 515
 516        /* update bus bandwidth info */
 517        update_bus_bw(sch_bw, sch_ep, loaded);
 518        sch_ep->allocated = loaded;
 519
 520        return 0;
 521}
 522
 523static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep)
 524{
 525        struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info;
 526        const u32 bw_boundary = get_bw_boundary(sch_ep->speed);
 527        u32 offset;
 528        u32 worst_bw;
 529        u32 min_bw = ~0;
 530        int min_index = -1;
 531        int ret = 0;
 532
 533        /*
 534         * Search through all possible schedule microframes.
 535         * and find a microframe where its worst bandwidth is minimum.
 536         */
 537        for (offset = 0; offset < sch_ep->esit; offset++) {
 538                ret = check_sch_tt(sch_ep, offset);
 539                if (ret)
 540                        continue;
 541
 542                worst_bw = get_max_bw(sch_bw, sch_ep, offset);
 543                if (worst_bw > bw_boundary)
 544                        continue;
 545
 546                if (min_bw > worst_bw) {
 547                        min_bw = worst_bw;
 548                        min_index = offset;
 549                }
 550
 551                /* use first-fit for LS/FS */
 552                if (sch_ep->sch_tt && min_index >= 0)
 553                        break;
 554
 555                if (min_bw == 0)
 556                        break;
 557        }
 558
 559        if (min_index < 0)
 560                return ret ? ret : -ESCH_BW_OVERFLOW;
 561
 562        sch_ep->offset = min_index;
 563
 564        return load_ep_bw(sch_bw, sch_ep, true);
 565}
 566
 567static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
 568                           struct mu3h_sch_ep_info *sch_ep)
 569{
 570        /* only release ep bw check passed by check_sch_bw() */
 571        if (sch_ep->allocated)
 572                load_ep_bw(sch_ep->bw_info, sch_ep, false);
 573
 574        if (sch_ep->sch_tt)
 575                drop_tt(udev);
 576
 577        list_del(&sch_ep->endpoint);
 578        hlist_del(&sch_ep->hentry);
 579        kfree(sch_ep);
 580}
 581
 582static bool need_bw_sch(struct usb_device *udev,
 583                        struct usb_host_endpoint *ep)
 584{
 585        bool has_tt = udev->tt && udev->tt->hub->parent;
 586
 587        /* only for periodic endpoints */
 588        if (usb_endpoint_xfer_control(&ep->desc)
 589                || usb_endpoint_xfer_bulk(&ep->desc))
 590                return false;
 591
 592        /*
 593         * for LS & FS periodic endpoints which its device is not behind
 594         * a TT are also ignored, root-hub will schedule them directly,
 595         * but need set @bpkts field of endpoint context to 1.
 596         */
 597        if (is_fs_or_ls(udev->speed) && !has_tt)
 598                return false;
 599
 600        /* skip endpoint with zero maxpkt */
 601        if (usb_endpoint_maxp(&ep->desc) == 0)
 602                return false;
 603
 604        return true;
 605}
 606
 607int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk)
 608{
 609        struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
 610        struct mu3h_sch_bw_info *sch_array;
 611        int num_usb_bus;
 612
 613        /* ss IN and OUT are separated */
 614        num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports;
 615
 616        sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL);
 617        if (sch_array == NULL)
 618                return -ENOMEM;
 619
 620        mtk->sch_array = sch_array;
 621
 622        INIT_LIST_HEAD(&mtk->bw_ep_chk_list);
 623        hash_init(mtk->sch_ep_hash);
 624
 625        return 0;
 626}
 627
 628void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk)
 629{
 630        kfree(mtk->sch_array);
 631}
 632
 633static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
 634                        struct usb_host_endpoint *ep)
 635{
 636        struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
 637        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 638        struct xhci_ep_ctx *ep_ctx;
 639        struct xhci_virt_device *virt_dev;
 640        struct mu3h_sch_ep_info *sch_ep;
 641        unsigned int ep_index;
 642
 643        virt_dev = xhci->devs[udev->slot_id];
 644        ep_index = xhci_get_endpoint_index(&ep->desc);
 645        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
 646
 647        if (!need_bw_sch(udev, ep)) {
 648                /*
 649                 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its
 650                 * device does not connected through an external HS hub
 651                 */
 652                if (usb_endpoint_xfer_int(&ep->desc)
 653                        || usb_endpoint_xfer_isoc(&ep->desc))
 654                        ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1));
 655
 656                return 0;
 657        }
 658
 659        xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
 660
 661        sch_ep = create_sch_ep(mtk, udev, ep);
 662        if (IS_ERR_OR_NULL(sch_ep))
 663                return -ENOMEM;
 664
 665        setup_sch_info(ep_ctx, sch_ep);
 666
 667        list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list);
 668        hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep);
 669
 670        return 0;
 671}
 672
 673static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
 674                          struct usb_host_endpoint *ep)
 675{
 676        struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
 677        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 678        struct mu3h_sch_ep_info *sch_ep;
 679        struct hlist_node *hn;
 680
 681        if (!need_bw_sch(udev, ep))
 682                return;
 683
 684        xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
 685
 686        hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep,
 687                                    hn, hentry, (unsigned long)ep) {
 688                if (sch_ep->ep == ep) {
 689                        destroy_sch_ep(mtk, udev, sch_ep);
 690                        break;
 691                }
 692        }
 693}
 694
 695int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
 696{
 697        struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
 698        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 699        struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
 700        struct mu3h_sch_ep_info *sch_ep;
 701        int ret;
 702
 703        xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
 704
 705        list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) {
 706                struct xhci_ep_ctx *ep_ctx;
 707                struct usb_host_endpoint *ep = sch_ep->ep;
 708                unsigned int ep_index = xhci_get_endpoint_index(&ep->desc);
 709
 710                ret = check_sch_bw(sch_ep);
 711                if (ret) {
 712                        xhci_err(xhci, "Not enough bandwidth! (%s)\n",
 713                                 sch_error_string(-ret));
 714                        return -ENOSPC;
 715                }
 716
 717                ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
 718                ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts)
 719                        | EP_BCSCOUNT(sch_ep->cs_count)
 720                        | EP_BBM(sch_ep->burst_mode));
 721                ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset)
 722                        | EP_BREPEAT(sch_ep->repeat));
 723
 724                xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n",
 725                        sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode,
 726                        sch_ep->offset, sch_ep->repeat);
 727        }
 728
 729        ret = xhci_check_bandwidth(hcd, udev);
 730        if (!ret)
 731                list_del_init(&mtk->bw_ep_chk_list);
 732
 733        return ret;
 734}
 735
 736void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
 737{
 738        struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
 739        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 740        struct mu3h_sch_ep_info *sch_ep, *tmp;
 741
 742        xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
 743
 744        list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint)
 745                destroy_sch_ep(mtk, udev, sch_ep);
 746
 747        xhci_reset_bandwidth(hcd, udev);
 748}
 749
 750int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
 751                    struct usb_host_endpoint *ep)
 752{
 753        int ret;
 754
 755        ret = xhci_add_endpoint(hcd, udev, ep);
 756        if (ret)
 757                return ret;
 758
 759        if (ep->hcpriv)
 760                ret = add_ep_quirk(hcd, udev, ep);
 761
 762        return ret;
 763}
 764
 765int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
 766                     struct usb_host_endpoint *ep)
 767{
 768        int ret;
 769
 770        ret = xhci_drop_endpoint(hcd, udev, ep);
 771        if (ret)
 772                return ret;
 773
 774        if (ep->hcpriv)
 775                drop_ep_quirk(hcd, udev, ep);
 776
 777        return 0;
 778}
 779