linux/drivers/video/fbdev/intelfb/intelfbhw.c
<<
>>
Prefs
   1/*
   2 * intelfb
   3 *
   4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
   5 *
   6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
   7 *                   2004 Sylvain Meyer
   8 *
   9 * This driver consists of two parts.  The first part (intelfbdrv.c) provides
  10 * the basic fbdev interfaces, is derived in part from the radeonfb and
  11 * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
  12 * provides the code to program the hardware.  Most of it is derived from
  13 * the i810/i830 XFree86 driver.  The HW-specific code is covered here
  14 * under a dual license (GPL and MIT/XFree86 license).
  15 *
  16 * Author: David Dawes
  17 *
  18 */
  19
  20/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/errno.h>
  25#include <linux/string.h>
  26#include <linux/mm.h>
  27#include <linux/delay.h>
  28#include <linux/fb.h>
  29#include <linux/ioport.h>
  30#include <linux/init.h>
  31#include <linux/pci.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pagemap.h>
  34#include <linux/interrupt.h>
  35
  36#include <asm/io.h>
  37
  38#include "intelfb.h"
  39#include "intelfbhw.h"
  40
  41struct pll_min_max {
  42        int min_m, max_m, min_m1, max_m1;
  43        int min_m2, max_m2, min_n, max_n;
  44        int min_p, max_p, min_p1, max_p1;
  45        int min_vco, max_vco, p_transition_clk, ref_clk;
  46        int p_inc_lo, p_inc_hi;
  47};
  48
  49#define PLLS_I8xx 0
  50#define PLLS_I9xx 1
  51#define PLLS_MAX 2
  52
  53static struct pll_min_max plls[PLLS_MAX] = {
  54        { 108, 140, 18, 26,
  55          6, 16, 3, 16,
  56          4, 128, 0, 31,
  57          930000, 1400000, 165000, 48000,
  58          4, 2 },               /* I8xx */
  59
  60        { 75, 120, 10, 20,
  61          5, 9, 4, 7,
  62          5, 80, 1, 8,
  63          1400000, 2800000, 200000, 96000,
  64          10, 5 }               /* I9xx */
  65};
  66
  67int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  68{
  69        u32 tmp;
  70        if (!pdev || !dinfo)
  71                return 1;
  72
  73        switch (pdev->device) {
  74        case PCI_DEVICE_ID_INTEL_830M:
  75                dinfo->name = "Intel(R) 830M";
  76                dinfo->chipset = INTEL_830M;
  77                dinfo->mobile = 1;
  78                dinfo->pll_index = PLLS_I8xx;
  79                return 0;
  80        case PCI_DEVICE_ID_INTEL_845G:
  81                dinfo->name = "Intel(R) 845G";
  82                dinfo->chipset = INTEL_845G;
  83                dinfo->mobile = 0;
  84                dinfo->pll_index = PLLS_I8xx;
  85                return 0;
  86        case PCI_DEVICE_ID_INTEL_854:
  87                dinfo->mobile = 1;
  88                dinfo->name = "Intel(R) 854";
  89                dinfo->chipset = INTEL_854;
  90                return 0;
  91        case PCI_DEVICE_ID_INTEL_85XGM:
  92                tmp = 0;
  93                dinfo->mobile = 1;
  94                dinfo->pll_index = PLLS_I8xx;
  95                pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  96                switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  97                        INTEL_85X_VARIANT_MASK) {
  98                case INTEL_VAR_855GME:
  99                        dinfo->name = "Intel(R) 855GME";
 100                        dinfo->chipset = INTEL_855GME;
 101                        return 0;
 102                case INTEL_VAR_855GM:
 103                        dinfo->name = "Intel(R) 855GM";
 104                        dinfo->chipset = INTEL_855GM;
 105                        return 0;
 106                case INTEL_VAR_852GME:
 107                        dinfo->name = "Intel(R) 852GME";
 108                        dinfo->chipset = INTEL_852GME;
 109                        return 0;
 110                case INTEL_VAR_852GM:
 111                        dinfo->name = "Intel(R) 852GM";
 112                        dinfo->chipset = INTEL_852GM;
 113                        return 0;
 114                default:
 115                        dinfo->name = "Intel(R) 852GM/855GM";
 116                        dinfo->chipset = INTEL_85XGM;
 117                        return 0;
 118                }
 119                break;
 120        case PCI_DEVICE_ID_INTEL_865G:
 121                dinfo->name = "Intel(R) 865G";
 122                dinfo->chipset = INTEL_865G;
 123                dinfo->mobile = 0;
 124                dinfo->pll_index = PLLS_I8xx;
 125                return 0;
 126        case PCI_DEVICE_ID_INTEL_915G:
 127                dinfo->name = "Intel(R) 915G";
 128                dinfo->chipset = INTEL_915G;
 129                dinfo->mobile = 0;
 130                dinfo->pll_index = PLLS_I9xx;
 131                return 0;
 132        case PCI_DEVICE_ID_INTEL_915GM:
 133                dinfo->name = "Intel(R) 915GM";
 134                dinfo->chipset = INTEL_915GM;
 135                dinfo->mobile = 1;
 136                dinfo->pll_index = PLLS_I9xx;
 137                return 0;
 138        case PCI_DEVICE_ID_INTEL_945G:
 139                dinfo->name = "Intel(R) 945G";
 140                dinfo->chipset = INTEL_945G;
 141                dinfo->mobile = 0;
 142                dinfo->pll_index = PLLS_I9xx;
 143                return 0;
 144        case PCI_DEVICE_ID_INTEL_945GM:
 145                dinfo->name = "Intel(R) 945GM";
 146                dinfo->chipset = INTEL_945GM;
 147                dinfo->mobile = 1;
 148                dinfo->pll_index = PLLS_I9xx;
 149                return 0;
 150        case PCI_DEVICE_ID_INTEL_945GME:
 151                dinfo->name = "Intel(R) 945GME";
 152                dinfo->chipset = INTEL_945GME;
 153                dinfo->mobile = 1;
 154                dinfo->pll_index = PLLS_I9xx;
 155                return 0;
 156        case PCI_DEVICE_ID_INTEL_965G:
 157                dinfo->name = "Intel(R) 965G";
 158                dinfo->chipset = INTEL_965G;
 159                dinfo->mobile = 0;
 160                dinfo->pll_index = PLLS_I9xx;
 161                return 0;
 162        case PCI_DEVICE_ID_INTEL_965GM:
 163                dinfo->name = "Intel(R) 965GM";
 164                dinfo->chipset = INTEL_965GM;
 165                dinfo->mobile = 1;
 166                dinfo->pll_index = PLLS_I9xx;
 167                return 0;
 168        default:
 169                return 1;
 170        }
 171}
 172
 173int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
 174                         int *stolen_size)
 175{
 176        struct pci_dev *bridge_dev;
 177        u16 tmp;
 178        int stolen_overhead;
 179
 180        if (!pdev || !aperture_size || !stolen_size)
 181                return 1;
 182
 183        /* Find the bridge device.  It is always 0:0.0 */
 184        bridge_dev = pci_get_domain_bus_and_slot(pci_domain_nr(pdev->bus), 0,
 185                                                 PCI_DEVFN(0, 0));
 186        if (!bridge_dev) {
 187                ERR_MSG("cannot find bridge device\n");
 188                return 1;
 189        }
 190
 191        /* Get the fb aperture size and "stolen" memory amount. */
 192        tmp = 0;
 193        pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
 194        pci_dev_put(bridge_dev);
 195
 196        switch (pdev->device) {
 197        case PCI_DEVICE_ID_INTEL_915G:
 198        case PCI_DEVICE_ID_INTEL_915GM:
 199        case PCI_DEVICE_ID_INTEL_945G:
 200        case PCI_DEVICE_ID_INTEL_945GM:
 201        case PCI_DEVICE_ID_INTEL_945GME:
 202        case PCI_DEVICE_ID_INTEL_965G:
 203        case PCI_DEVICE_ID_INTEL_965GM:
 204                /*
 205                 * 915, 945 and 965 chipsets support 64MB, 128MB or 256MB
 206                 * aperture. Determine size from PCI resource length.
 207                 */
 208                *aperture_size = pci_resource_len(pdev, 2);
 209                break;
 210        default:
 211                if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
 212                        *aperture_size = MB(64);
 213                else
 214                        *aperture_size = MB(128);
 215                break;
 216        }
 217
 218        /* Stolen memory size is reduced by the GTT and the popup.
 219           GTT is 1K per MB of aperture size, and popup is 4K. */
 220        stolen_overhead = (*aperture_size / MB(1)) + 4;
 221        switch(pdev->device) {
 222        case PCI_DEVICE_ID_INTEL_830M:
 223        case PCI_DEVICE_ID_INTEL_845G:
 224                switch (tmp & INTEL_830_GMCH_GMS_MASK) {
 225                case INTEL_830_GMCH_GMS_STOLEN_512:
 226                        *stolen_size = KB(512) - KB(stolen_overhead);
 227                        return 0;
 228                case INTEL_830_GMCH_GMS_STOLEN_1024:
 229                        *stolen_size = MB(1) - KB(stolen_overhead);
 230                        return 0;
 231                case INTEL_830_GMCH_GMS_STOLEN_8192:
 232                        *stolen_size = MB(8) - KB(stolen_overhead);
 233                        return 0;
 234                case INTEL_830_GMCH_GMS_LOCAL:
 235                        ERR_MSG("only local memory found\n");
 236                        return 1;
 237                case INTEL_830_GMCH_GMS_DISABLED:
 238                        ERR_MSG("video memory is disabled\n");
 239                        return 1;
 240                default:
 241                        ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
 242                                tmp & INTEL_830_GMCH_GMS_MASK);
 243                        return 1;
 244                }
 245                break;
 246        default:
 247                switch (tmp & INTEL_855_GMCH_GMS_MASK) {
 248                case INTEL_855_GMCH_GMS_STOLEN_1M:
 249                        *stolen_size = MB(1) - KB(stolen_overhead);
 250                        return 0;
 251                case INTEL_855_GMCH_GMS_STOLEN_4M:
 252                        *stolen_size = MB(4) - KB(stolen_overhead);
 253                        return 0;
 254                case INTEL_855_GMCH_GMS_STOLEN_8M:
 255                        *stolen_size = MB(8) - KB(stolen_overhead);
 256                        return 0;
 257                case INTEL_855_GMCH_GMS_STOLEN_16M:
 258                        *stolen_size = MB(16) - KB(stolen_overhead);
 259                        return 0;
 260                case INTEL_855_GMCH_GMS_STOLEN_32M:
 261                        *stolen_size = MB(32) - KB(stolen_overhead);
 262                        return 0;
 263                case INTEL_915G_GMCH_GMS_STOLEN_48M:
 264                        *stolen_size = MB(48) - KB(stolen_overhead);
 265                        return 0;
 266                case INTEL_915G_GMCH_GMS_STOLEN_64M:
 267                        *stolen_size = MB(64) - KB(stolen_overhead);
 268                        return 0;
 269                case INTEL_855_GMCH_GMS_DISABLED:
 270                        ERR_MSG("video memory is disabled\n");
 271                        return 0;
 272                default:
 273                        ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
 274                                tmp & INTEL_855_GMCH_GMS_MASK);
 275                        return 1;
 276                }
 277        }
 278}
 279
 280int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
 281{
 282        int dvo = 0;
 283
 284        if (INREG(LVDS) & PORT_ENABLE)
 285                dvo |= LVDS_PORT;
 286        if (INREG(DVOA) & PORT_ENABLE)
 287                dvo |= DVOA_PORT;
 288        if (INREG(DVOB) & PORT_ENABLE)
 289                dvo |= DVOB_PORT;
 290        if (INREG(DVOC) & PORT_ENABLE)
 291                dvo |= DVOC_PORT;
 292
 293        return dvo;
 294}
 295
 296const char * intelfbhw_dvo_to_string(int dvo)
 297{
 298        if (dvo & DVOA_PORT)
 299                return "DVO port A";
 300        else if (dvo & DVOB_PORT)
 301                return "DVO port B";
 302        else if (dvo & DVOC_PORT)
 303                return "DVO port C";
 304        else if (dvo & LVDS_PORT)
 305                return "LVDS port";
 306        else
 307                return NULL;
 308}
 309
 310
 311int intelfbhw_validate_mode(struct intelfb_info *dinfo,
 312                            struct fb_var_screeninfo *var)
 313{
 314        int bytes_per_pixel;
 315        int tmp;
 316
 317#if VERBOSE > 0
 318        DBG_MSG("intelfbhw_validate_mode\n");
 319#endif
 320
 321        bytes_per_pixel = var->bits_per_pixel / 8;
 322        if (bytes_per_pixel == 3)
 323                bytes_per_pixel = 4;
 324
 325        /* Check if enough video memory. */
 326        tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
 327        if (tmp > dinfo->fb.size) {
 328                WRN_MSG("Not enough video ram for mode "
 329                        "(%d KByte vs %d KByte).\n",
 330                        BtoKB(tmp), BtoKB(dinfo->fb.size));
 331                return 1;
 332        }
 333
 334        /* Check if x/y limits are OK. */
 335        if (var->xres - 1 > HACTIVE_MASK) {
 336                WRN_MSG("X resolution too large (%d vs %d).\n",
 337                        var->xres, HACTIVE_MASK + 1);
 338                return 1;
 339        }
 340        if (var->yres - 1 > VACTIVE_MASK) {
 341                WRN_MSG("Y resolution too large (%d vs %d).\n",
 342                        var->yres, VACTIVE_MASK + 1);
 343                return 1;
 344        }
 345        if (var->xres < 4) {
 346                WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
 347                return 1;
 348        }
 349        if (var->yres < 4) {
 350                WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
 351                return 1;
 352        }
 353
 354        /* Check for doublescan modes. */
 355        if (var->vmode & FB_VMODE_DOUBLE) {
 356                WRN_MSG("Mode is double-scan.\n");
 357                return 1;
 358        }
 359
 360        if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
 361                WRN_MSG("Odd number of lines in interlaced mode\n");
 362                return 1;
 363        }
 364
 365        /* Check if clock is OK. */
 366        tmp = 1000000000 / var->pixclock;
 367        if (tmp < MIN_CLOCK) {
 368                WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
 369                        (tmp + 500) / 1000, MIN_CLOCK / 1000);
 370                return 1;
 371        }
 372        if (tmp > MAX_CLOCK) {
 373                WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
 374                        (tmp + 500) / 1000, MAX_CLOCK / 1000);
 375                return 1;
 376        }
 377
 378        return 0;
 379}
 380
 381int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
 382{
 383        struct intelfb_info *dinfo = GET_DINFO(info);
 384        u32 offset, xoffset, yoffset;
 385
 386#if VERBOSE > 0
 387        DBG_MSG("intelfbhw_pan_display\n");
 388#endif
 389
 390        xoffset = ROUND_DOWN_TO(var->xoffset, 8);
 391        yoffset = var->yoffset;
 392
 393        if ((xoffset + info->var.xres > info->var.xres_virtual) ||
 394            (yoffset + info->var.yres > info->var.yres_virtual))
 395                return -EINVAL;
 396
 397        offset = (yoffset * dinfo->pitch) +
 398                 (xoffset * info->var.bits_per_pixel) / 8;
 399
 400        offset += dinfo->fb.offset << 12;
 401
 402        dinfo->vsync.pan_offset = offset;
 403        if ((var->activate & FB_ACTIVATE_VBL) &&
 404            !intelfbhw_enable_irq(dinfo))
 405                dinfo->vsync.pan_display = 1;
 406        else {
 407                dinfo->vsync.pan_display = 0;
 408                OUTREG(DSPABASE, offset);
 409        }
 410
 411        return 0;
 412}
 413
 414/* Blank the screen. */
 415void intelfbhw_do_blank(int blank, struct fb_info *info)
 416{
 417        struct intelfb_info *dinfo = GET_DINFO(info);
 418        u32 tmp;
 419
 420#if VERBOSE > 0
 421        DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
 422#endif
 423
 424        /* Turn plane A on or off */
 425        tmp = INREG(DSPACNTR);
 426        if (blank)
 427                tmp &= ~DISPPLANE_PLANE_ENABLE;
 428        else
 429                tmp |= DISPPLANE_PLANE_ENABLE;
 430        OUTREG(DSPACNTR, tmp);
 431        /* Flush */
 432        tmp = INREG(DSPABASE);
 433        OUTREG(DSPABASE, tmp);
 434
 435        /* Turn off/on the HW cursor */
 436#if VERBOSE > 0
 437        DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
 438#endif
 439        if (dinfo->cursor_on) {
 440                if (blank)
 441                        intelfbhw_cursor_hide(dinfo);
 442                else
 443                        intelfbhw_cursor_show(dinfo);
 444                dinfo->cursor_on = 1;
 445        }
 446        dinfo->cursor_blanked = blank;
 447
 448        /* Set DPMS level */
 449        tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
 450        switch (blank) {
 451        case FB_BLANK_UNBLANK:
 452        case FB_BLANK_NORMAL:
 453                tmp |= ADPA_DPMS_D0;
 454                break;
 455        case FB_BLANK_VSYNC_SUSPEND:
 456                tmp |= ADPA_DPMS_D1;
 457                break;
 458        case FB_BLANK_HSYNC_SUSPEND:
 459                tmp |= ADPA_DPMS_D2;
 460                break;
 461        case FB_BLANK_POWERDOWN:
 462                tmp |= ADPA_DPMS_D3;
 463                break;
 464        }
 465        OUTREG(ADPA, tmp);
 466
 467        return;
 468}
 469
 470
 471/* Check which pipe is connected to an active display plane. */
 472int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
 473{
 474        int pipe = -1;
 475
 476        /* keep old default behaviour - prefer PIPE_A */
 477        if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
 478                pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
 479                pipe &= PIPE_MASK;
 480                if (unlikely(pipe == PIPE_A))
 481                        return PIPE_A;
 482        }
 483        if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
 484                pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
 485                pipe &= PIPE_MASK;
 486                if (likely(pipe == PIPE_A))
 487                        return PIPE_A;
 488        }
 489        /* Impossible that no pipe is selected - return PIPE_A */
 490        WARN_ON(pipe == -1);
 491        if (unlikely(pipe == -1))
 492                pipe = PIPE_A;
 493
 494        return pipe;
 495}
 496
 497void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
 498                         unsigned red, unsigned green, unsigned blue,
 499                         unsigned transp)
 500{
 501        u32 palette_reg = (dinfo->pipe == PIPE_A) ?
 502                          PALETTE_A : PALETTE_B;
 503
 504#if VERBOSE > 0
 505        DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
 506                regno, red, green, blue);
 507#endif
 508
 509        OUTREG(palette_reg + (regno << 2),
 510               (red << PALETTE_8_RED_SHIFT) |
 511               (green << PALETTE_8_GREEN_SHIFT) |
 512               (blue << PALETTE_8_BLUE_SHIFT));
 513}
 514
 515
 516int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
 517                            struct intelfb_hwstate *hw, int flag)
 518{
 519        int i;
 520
 521#if VERBOSE > 0
 522        DBG_MSG("intelfbhw_read_hw_state\n");
 523#endif
 524
 525        if (!hw || !dinfo)
 526                return -1;
 527
 528        /* Read in as much of the HW state as possible. */
 529        hw->vga0_divisor = INREG(VGA0_DIVISOR);
 530        hw->vga1_divisor = INREG(VGA1_DIVISOR);
 531        hw->vga_pd = INREG(VGAPD);
 532        hw->dpll_a = INREG(DPLL_A);
 533        hw->dpll_b = INREG(DPLL_B);
 534        hw->fpa0 = INREG(FPA0);
 535        hw->fpa1 = INREG(FPA1);
 536        hw->fpb0 = INREG(FPB0);
 537        hw->fpb1 = INREG(FPB1);
 538
 539        if (flag == 1)
 540                return flag;
 541
 542#if 0
 543        /* This seems to be a problem with the 852GM/855GM */
 544        for (i = 0; i < PALETTE_8_ENTRIES; i++) {
 545                hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
 546                hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
 547        }
 548#endif
 549
 550        if (flag == 2)
 551                return flag;
 552
 553        hw->htotal_a = INREG(HTOTAL_A);
 554        hw->hblank_a = INREG(HBLANK_A);
 555        hw->hsync_a = INREG(HSYNC_A);
 556        hw->vtotal_a = INREG(VTOTAL_A);
 557        hw->vblank_a = INREG(VBLANK_A);
 558        hw->vsync_a = INREG(VSYNC_A);
 559        hw->src_size_a = INREG(SRC_SIZE_A);
 560        hw->bclrpat_a = INREG(BCLRPAT_A);
 561        hw->htotal_b = INREG(HTOTAL_B);
 562        hw->hblank_b = INREG(HBLANK_B);
 563        hw->hsync_b = INREG(HSYNC_B);
 564        hw->vtotal_b = INREG(VTOTAL_B);
 565        hw->vblank_b = INREG(VBLANK_B);
 566        hw->vsync_b = INREG(VSYNC_B);
 567        hw->src_size_b = INREG(SRC_SIZE_B);
 568        hw->bclrpat_b = INREG(BCLRPAT_B);
 569
 570        if (flag == 3)
 571                return flag;
 572
 573        hw->adpa = INREG(ADPA);
 574        hw->dvoa = INREG(DVOA);
 575        hw->dvob = INREG(DVOB);
 576        hw->dvoc = INREG(DVOC);
 577        hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
 578        hw->dvob_srcdim = INREG(DVOB_SRCDIM);
 579        hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
 580        hw->lvds = INREG(LVDS);
 581
 582        if (flag == 4)
 583                return flag;
 584
 585        hw->pipe_a_conf = INREG(PIPEACONF);
 586        hw->pipe_b_conf = INREG(PIPEBCONF);
 587        hw->disp_arb = INREG(DISPARB);
 588
 589        if (flag == 5)
 590                return flag;
 591
 592        hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
 593        hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
 594        hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
 595        hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
 596
 597        if (flag == 6)
 598                return flag;
 599
 600        for (i = 0; i < 4; i++) {
 601                hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
 602                hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
 603        }
 604
 605        if (flag == 7)
 606                return flag;
 607
 608        hw->cursor_size = INREG(CURSOR_SIZE);
 609
 610        if (flag == 8)
 611                return flag;
 612
 613        hw->disp_a_ctrl = INREG(DSPACNTR);
 614        hw->disp_b_ctrl = INREG(DSPBCNTR);
 615        hw->disp_a_base = INREG(DSPABASE);
 616        hw->disp_b_base = INREG(DSPBBASE);
 617        hw->disp_a_stride = INREG(DSPASTRIDE);
 618        hw->disp_b_stride = INREG(DSPBSTRIDE);
 619
 620        if (flag == 9)
 621                return flag;
 622
 623        hw->vgacntrl = INREG(VGACNTRL);
 624
 625        if (flag == 10)
 626                return flag;
 627
 628        hw->add_id = INREG(ADD_ID);
 629
 630        if (flag == 11)
 631                return flag;
 632
 633        for (i = 0; i < 7; i++) {
 634                hw->swf0x[i] = INREG(SWF00 + (i << 2));
 635                hw->swf1x[i] = INREG(SWF10 + (i << 2));
 636                if (i < 3)
 637                        hw->swf3x[i] = INREG(SWF30 + (i << 2));
 638        }
 639
 640        for (i = 0; i < 8; i++)
 641                hw->fence[i] = INREG(FENCE + (i << 2));
 642
 643        hw->instpm = INREG(INSTPM);
 644        hw->mem_mode = INREG(MEM_MODE);
 645        hw->fw_blc_0 = INREG(FW_BLC_0);
 646        hw->fw_blc_1 = INREG(FW_BLC_1);
 647
 648        hw->hwstam = INREG16(HWSTAM);
 649        hw->ier = INREG16(IER);
 650        hw->iir = INREG16(IIR);
 651        hw->imr = INREG16(IMR);
 652
 653        return 0;
 654}
 655
 656
 657static int calc_vclock3(int index, int m, int n, int p)
 658{
 659        if (p == 0 || n == 0)
 660                return 0;
 661        return plls[index].ref_clk * m / n / p;
 662}
 663
 664static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
 665                       int lvds)
 666{
 667        struct pll_min_max *pll = &plls[index];
 668        u32 m, vco, p;
 669
 670        m = (5 * (m1 + 2)) + (m2 + 2);
 671        n += 2;
 672        vco = pll->ref_clk * m / n;
 673
 674        if (index == PLLS_I8xx)
 675                p = ((p1 + 2) * (1 << (p2 + 1)));
 676        else
 677                p = ((p1) * (p2 ? 5 : 10));
 678        return vco / p;
 679}
 680
 681#if REGDUMP
 682static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
 683                               int *o_p1, int *o_p2)
 684{
 685        int p1, p2;
 686
 687        if (IS_I9XX(dinfo)) {
 688                if (dpll & DPLL_P1_FORCE_DIV2)
 689                        p1 = 1;
 690                else
 691                        p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
 692
 693                p1 = ffs(p1);
 694
 695                p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
 696        } else {
 697                if (dpll & DPLL_P1_FORCE_DIV2)
 698                        p1 = 0;
 699                else
 700                        p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
 701                p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
 702        }
 703
 704        *o_p1 = p1;
 705        *o_p2 = p2;
 706}
 707#endif
 708
 709
 710void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
 711                              struct intelfb_hwstate *hw)
 712{
 713#if REGDUMP
 714        int i, m1, m2, n, p1, p2;
 715        int index = dinfo->pll_index;
 716        DBG_MSG("intelfbhw_print_hw_state\n");
 717
 718        if (!hw)
 719                return;
 720        /* Read in as much of the HW state as possible. */
 721        printk("hw state dump start\n");
 722        printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
 723        printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
 724        printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
 725        n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 726        m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 727        m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 728
 729        intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
 730
 731        printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 732               m1, m2, n, p1, p2);
 733        printk("        VGA0: clock is %d\n",
 734               calc_vclock(index, m1, m2, n, p1, p2, 0));
 735
 736        n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 737        m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 738        m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 739
 740        intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
 741        printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 742               m1, m2, n, p1, p2);
 743        printk("        VGA1: clock is %d\n",
 744               calc_vclock(index, m1, m2, n, p1, p2, 0));
 745
 746        printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
 747        printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
 748        printk("        FPA0:                   0x%08x\n", hw->fpa0);
 749        printk("        FPA1:                   0x%08x\n", hw->fpa1);
 750        printk("        FPB0:                   0x%08x\n", hw->fpb0);
 751        printk("        FPB1:                   0x%08x\n", hw->fpb1);
 752
 753        n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 754        m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 755        m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 756
 757        intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
 758
 759        printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 760               m1, m2, n, p1, p2);
 761        printk("        PLLA0: clock is %d\n",
 762               calc_vclock(index, m1, m2, n, p1, p2, 0));
 763
 764        n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 765        m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 766        m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 767
 768        intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
 769
 770        printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 771               m1, m2, n, p1, p2);
 772        printk("        PLLA1: clock is %d\n",
 773               calc_vclock(index, m1, m2, n, p1, p2, 0));
 774
 775#if 0
 776        printk("        PALETTE_A:\n");
 777        for (i = 0; i < PALETTE_8_ENTRIES)
 778                printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
 779        printk("        PALETTE_B:\n");
 780        for (i = 0; i < PALETTE_8_ENTRIES)
 781                printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
 782#endif
 783
 784        printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
 785        printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
 786        printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
 787        printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
 788        printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
 789        printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
 790        printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
 791        printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
 792        printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
 793        printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
 794        printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
 795        printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
 796        printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
 797        printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
 798        printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
 799        printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
 800
 801        printk("        ADPA:                   0x%08x\n", hw->adpa);
 802        printk("        DVOA:                   0x%08x\n", hw->dvoa);
 803        printk("        DVOB:                   0x%08x\n", hw->dvob);
 804        printk("        DVOC:                   0x%08x\n", hw->dvoc);
 805        printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
 806        printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
 807        printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
 808        printk("        LVDS:                   0x%08x\n", hw->lvds);
 809
 810        printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
 811        printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
 812        printk("        DISPARB:                0x%08x\n", hw->disp_arb);
 813
 814        printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
 815        printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
 816        printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
 817        printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
 818
 819        printk("        CURSOR_A_PALETTE:       ");
 820        for (i = 0; i < 4; i++) {
 821                printk("0x%08x", hw->cursor_a_palette[i]);
 822                if (i < 3)
 823                        printk(", ");
 824        }
 825        printk("\n");
 826        printk("        CURSOR_B_PALETTE:       ");
 827        for (i = 0; i < 4; i++) {
 828                printk("0x%08x", hw->cursor_b_palette[i]);
 829                if (i < 3)
 830                        printk(", ");
 831        }
 832        printk("\n");
 833
 834        printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
 835
 836        printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
 837        printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
 838        printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
 839        printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
 840        printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
 841        printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
 842
 843        printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
 844        printk("        ADD_ID:                 0x%08x\n", hw->add_id);
 845
 846        for (i = 0; i < 7; i++) {
 847                printk("        SWF0%d                  0x%08x\n", i,
 848                        hw->swf0x[i]);
 849        }
 850        for (i = 0; i < 7; i++) {
 851                printk("        SWF1%d                  0x%08x\n", i,
 852                        hw->swf1x[i]);
 853        }
 854        for (i = 0; i < 3; i++) {
 855                printk("        SWF3%d                  0x%08x\n", i,
 856                       hw->swf3x[i]);
 857        }
 858        for (i = 0; i < 8; i++)
 859                printk("        FENCE%d                 0x%08x\n", i,
 860                       hw->fence[i]);
 861
 862        printk("        INSTPM                  0x%08x\n", hw->instpm);
 863        printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
 864        printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
 865        printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
 866
 867        printk("        HWSTAM                  0x%04x\n", hw->hwstam);
 868        printk("        IER                     0x%04x\n", hw->ier);
 869        printk("        IIR                     0x%04x\n", hw->iir);
 870        printk("        IMR                     0x%04x\n", hw->imr);
 871        printk("hw state dump end\n");
 872#endif
 873}
 874
 875
 876
 877/* Split the M parameter into M1 and M2. */
 878static int splitm(int index, unsigned int m, unsigned int *retm1,
 879                  unsigned int *retm2)
 880{
 881        int m1, m2;
 882        int testm;
 883        struct pll_min_max *pll = &plls[index];
 884
 885        /* no point optimising too much - brute force m */
 886        for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
 887                for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
 888                        testm = (5 * (m1 + 2)) + (m2 + 2);
 889                        if (testm == m) {
 890                                *retm1 = (unsigned int)m1;
 891                                *retm2 = (unsigned int)m2;
 892                                return 0;
 893                        }
 894                }
 895        }
 896        return 1;
 897}
 898
 899/* Split the P parameter into P1 and P2. */
 900static int splitp(int index, unsigned int p, unsigned int *retp1,
 901                  unsigned int *retp2)
 902{
 903        int p1, p2;
 904        struct pll_min_max *pll = &plls[index];
 905
 906        if (index == PLLS_I9xx) {
 907                p2 = (p % 10) ? 1 : 0;
 908
 909                p1 = p / (p2 ? 5 : 10);
 910
 911                *retp1 = (unsigned int)p1;
 912                *retp2 = (unsigned int)p2;
 913                return 0;
 914        }
 915
 916        if (p % 4 == 0)
 917                p2 = 1;
 918        else
 919                p2 = 0;
 920        p1 = (p / (1 << (p2 + 1))) - 2;
 921        if (p % 4 == 0 && p1 < pll->min_p1) {
 922                p2 = 0;
 923                p1 = (p / (1 << (p2 + 1))) - 2;
 924        }
 925        if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
 926            (p1 + 2) * (1 << (p2 + 1)) != p) {
 927                return 1;
 928        } else {
 929                *retp1 = (unsigned int)p1;
 930                *retp2 = (unsigned int)p2;
 931                return 0;
 932        }
 933}
 934
 935static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
 936                           u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
 937{
 938        u32 m1, m2, n, p1, p2, n1, testm;
 939        u32 f_vco, p, p_best = 0, m, f_out = 0;
 940        u32 err_best = 10000000;
 941        u32 n_best = 0, m_best = 0, f_err;
 942        u32 p_min, p_max, p_inc, div_max;
 943        struct pll_min_max *pll = &plls[index];
 944
 945        DBG_MSG("Clock is %d\n", clock);
 946
 947        div_max = pll->max_vco / clock;
 948
 949        p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
 950        p_min = p_inc;
 951        p_max = ROUND_DOWN_TO(div_max, p_inc);
 952        if (p_min < pll->min_p)
 953                p_min = pll->min_p;
 954        if (p_max > pll->max_p)
 955                p_max = pll->max_p;
 956
 957        DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
 958
 959        p = p_min;
 960        do {
 961                if (splitp(index, p, &p1, &p2)) {
 962                        WRN_MSG("cannot split p = %d\n", p);
 963                        p += p_inc;
 964                        continue;
 965                }
 966                n = pll->min_n;
 967                f_vco = clock * p;
 968
 969                do {
 970                        m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
 971                        if (m < pll->min_m)
 972                                m = pll->min_m + 1;
 973                        if (m > pll->max_m)
 974                                m = pll->max_m - 1;
 975                        for (testm = m - 1; testm <= m; testm++) {
 976                                f_out = calc_vclock3(index, testm, n, p);
 977                                if (splitm(index, testm, &m1, &m2)) {
 978                                        WRN_MSG("cannot split m = %d\n",
 979                                                testm);
 980                                        continue;
 981                                }
 982                                if (clock > f_out)
 983                                        f_err = clock - f_out;
 984                                else/* slightly bias the error for bigger clocks */
 985                                        f_err = f_out - clock + 1;
 986
 987                                if (f_err < err_best) {
 988                                        m_best = testm;
 989                                        n_best = n;
 990                                        p_best = p;
 991                                        err_best = f_err;
 992                                }
 993                        }
 994                        n++;
 995                } while ((n <= pll->max_n) && (f_out >= clock));
 996                p += p_inc;
 997        } while ((p <= p_max));
 998
 999        if (!m_best) {
1000                WRN_MSG("cannot find parameters for clock %d\n", clock);
1001                return 1;
1002        }
1003        m = m_best;
1004        n = n_best;
1005        p = p_best;
1006        splitm(index, m, &m1, &m2);
1007        splitp(index, p, &p1, &p2);
1008        n1 = n - 2;
1009
1010        DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1011                "f: %d (%d), VCO: %d\n",
1012                m, m1, m2, n, n1, p, p1, p2,
1013                calc_vclock3(index, m, n, p),
1014                calc_vclock(index, m1, m2, n1, p1, p2, 0),
1015                calc_vclock3(index, m, n, p) * p);
1016        *retm1 = m1;
1017        *retm2 = m2;
1018        *retn = n1;
1019        *retp1 = p1;
1020        *retp2 = p2;
1021        *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1022
1023        return 0;
1024}
1025
1026static __inline__ int check_overflow(u32 value, u32 limit,
1027                                     const char *description)
1028{
1029        if (value > limit) {
1030                WRN_MSG("%s value %d exceeds limit %d\n",
1031                        description, value, limit);
1032                return 1;
1033        }
1034        return 0;
1035}
1036
1037/* It is assumed that hw is filled in with the initial state information. */
1038int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1039                         struct intelfb_hwstate *hw,
1040                         struct fb_var_screeninfo *var)
1041{
1042        int pipe = intelfbhw_active_pipe(hw);
1043        u32 *dpll, *fp0, *fp1;
1044        u32 m1, m2, n, p1, p2, clock_target, clock;
1045        u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1046        u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1047        u32 vsync_pol, hsync_pol;
1048        u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1049        u32 stride_alignment;
1050
1051        DBG_MSG("intelfbhw_mode_to_hw\n");
1052
1053        /* Disable VGA */
1054        hw->vgacntrl |= VGA_DISABLE;
1055
1056        /* Set which pipe's registers will be set. */
1057        if (pipe == PIPE_B) {
1058                dpll = &hw->dpll_b;
1059                fp0 = &hw->fpb0;
1060                fp1 = &hw->fpb1;
1061                hs = &hw->hsync_b;
1062                hb = &hw->hblank_b;
1063                ht = &hw->htotal_b;
1064                vs = &hw->vsync_b;
1065                vb = &hw->vblank_b;
1066                vt = &hw->vtotal_b;
1067                ss = &hw->src_size_b;
1068                pipe_conf = &hw->pipe_b_conf;
1069        } else {
1070                dpll = &hw->dpll_a;
1071                fp0 = &hw->fpa0;
1072                fp1 = &hw->fpa1;
1073                hs = &hw->hsync_a;
1074                hb = &hw->hblank_a;
1075                ht = &hw->htotal_a;
1076                vs = &hw->vsync_a;
1077                vb = &hw->vblank_a;
1078                vt = &hw->vtotal_a;
1079                ss = &hw->src_size_a;
1080                pipe_conf = &hw->pipe_a_conf;
1081        }
1082
1083        /* Use ADPA register for sync control. */
1084        hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1085
1086        /* sync polarity */
1087        hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1088                        ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1089        vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1090                        ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1091        hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1092                      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1093        hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1094                    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1095
1096        /* Connect correct pipe to the analog port DAC */
1097        hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1098        hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1099
1100        /* Set DPMS state to D0 (on) */
1101        hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1102        hw->adpa |= ADPA_DPMS_D0;
1103
1104        hw->adpa |= ADPA_DAC_ENABLE;
1105
1106        *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1107        *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1108        *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1109
1110        /* Desired clock in kHz */
1111        clock_target = 1000000000 / var->pixclock;
1112
1113        if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1114                            &n, &p1, &p2, &clock)) {
1115                WRN_MSG("calc_pll_params failed\n");
1116                return 1;
1117        }
1118
1119        /* Check for overflow. */
1120        if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1121                return 1;
1122        if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1123                return 1;
1124        if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1125                return 1;
1126        if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1127                return 1;
1128        if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1129                return 1;
1130
1131        *dpll &= ~DPLL_P1_FORCE_DIV2;
1132        *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1133                   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1134
1135        if (IS_I9XX(dinfo)) {
1136                *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1137                *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1138        } else
1139                *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1140
1141        *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1142               (m1 << FP_M1_DIVISOR_SHIFT) |
1143               (m2 << FP_M2_DIVISOR_SHIFT);
1144        *fp1 = *fp0;
1145
1146        hw->dvob &= ~PORT_ENABLE;
1147        hw->dvoc &= ~PORT_ENABLE;
1148
1149        /* Use display plane A. */
1150        hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1151        hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1152        hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1153        switch (intelfb_var_to_depth(var)) {
1154        case 8:
1155                hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1156                break;
1157        case 15:
1158                hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1159                break;
1160        case 16:
1161                hw->disp_a_ctrl |= DISPPLANE_16BPP;
1162                break;
1163        case 24:
1164                hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1165                break;
1166        }
1167        hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1168        hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1169
1170        /* Set CRTC registers. */
1171        hactive = var->xres;
1172        hsync_start = hactive + var->right_margin;
1173        hsync_end = hsync_start + var->hsync_len;
1174        htotal = hsync_end + var->left_margin;
1175        hblank_start = hactive;
1176        hblank_end = htotal;
1177
1178        DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1179                hactive, hsync_start, hsync_end, htotal, hblank_start,
1180                hblank_end);
1181
1182        vactive = var->yres;
1183        if (var->vmode & FB_VMODE_INTERLACED)
1184                vactive--; /* the chip adds 2 halflines automatically */
1185        vsync_start = vactive + var->lower_margin;
1186        vsync_end = vsync_start + var->vsync_len;
1187        vtotal = vsync_end + var->upper_margin;
1188        vblank_start = vactive;
1189        vblank_end = vsync_end + 1;
1190
1191        DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1192                vactive, vsync_start, vsync_end, vtotal, vblank_start,
1193                vblank_end);
1194
1195        /* Adjust for register values, and check for overflow. */
1196        hactive--;
1197        if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1198                return 1;
1199        hsync_start--;
1200        if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1201                return 1;
1202        hsync_end--;
1203        if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1204                return 1;
1205        htotal--;
1206        if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1207                return 1;
1208        hblank_start--;
1209        if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1210                return 1;
1211        hblank_end--;
1212        if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1213                return 1;
1214
1215        vactive--;
1216        if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1217                return 1;
1218        vsync_start--;
1219        if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1220                return 1;
1221        vsync_end--;
1222        if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1223                return 1;
1224        vtotal--;
1225        if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1226                return 1;
1227        vblank_start--;
1228        if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1229                return 1;
1230        vblank_end--;
1231        if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1232                return 1;
1233
1234        *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1235        *hb = (hblank_start << HBLANKSTART_SHIFT) |
1236              (hblank_end << HSYNCEND_SHIFT);
1237        *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1238
1239        *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1240        *vb = (vblank_start << VBLANKSTART_SHIFT) |
1241              (vblank_end << VSYNCEND_SHIFT);
1242        *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1243        *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1244              (vactive << SRC_SIZE_VERT_SHIFT);
1245
1246        hw->disp_a_stride = dinfo->pitch;
1247        DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1248
1249        hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1250                          var->xoffset * var->bits_per_pixel / 8;
1251
1252        hw->disp_a_base += dinfo->fb.offset << 12;
1253
1254        /* Check stride alignment. */
1255        stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1256                                            STRIDE_ALIGNMENT;
1257        if (hw->disp_a_stride % stride_alignment != 0) {
1258                WRN_MSG("display stride %d has bad alignment %d\n",
1259                        hw->disp_a_stride, stride_alignment);
1260                return 1;
1261        }
1262
1263        /* Set the palette to 8-bit mode. */
1264        *pipe_conf &= ~PIPECONF_GAMMA;
1265
1266        if (var->vmode & FB_VMODE_INTERLACED)
1267                *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1268        else
1269                *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1270
1271        return 0;
1272}
1273
1274/* Program a (non-VGA) video mode. */
1275int intelfbhw_program_mode(struct intelfb_info *dinfo,
1276                           const struct intelfb_hwstate *hw, int blank)
1277{
1278        u32 tmp;
1279        const u32 *dpll, *fp0, *fp1, *pipe_conf;
1280        const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1281        u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1282        u32 hsync_reg, htotal_reg, hblank_reg;
1283        u32 vsync_reg, vtotal_reg, vblank_reg;
1284        u32 src_size_reg;
1285        u32 count, tmp_val[3];
1286
1287        /* Assume single pipe */
1288
1289#if VERBOSE > 0
1290        DBG_MSG("intelfbhw_program_mode\n");
1291#endif
1292
1293        /* Disable VGA */
1294        tmp = INREG(VGACNTRL);
1295        tmp |= VGA_DISABLE;
1296        OUTREG(VGACNTRL, tmp);
1297
1298        dinfo->pipe = intelfbhw_active_pipe(hw);
1299
1300        if (dinfo->pipe == PIPE_B) {
1301                dpll = &hw->dpll_b;
1302                fp0 = &hw->fpb0;
1303                fp1 = &hw->fpb1;
1304                pipe_conf = &hw->pipe_b_conf;
1305                hs = &hw->hsync_b;
1306                hb = &hw->hblank_b;
1307                ht = &hw->htotal_b;
1308                vs = &hw->vsync_b;
1309                vb = &hw->vblank_b;
1310                vt = &hw->vtotal_b;
1311                ss = &hw->src_size_b;
1312                dpll_reg = DPLL_B;
1313                fp0_reg = FPB0;
1314                fp1_reg = FPB1;
1315                pipe_conf_reg = PIPEBCONF;
1316                pipe_stat_reg = PIPEBSTAT;
1317                hsync_reg = HSYNC_B;
1318                htotal_reg = HTOTAL_B;
1319                hblank_reg = HBLANK_B;
1320                vsync_reg = VSYNC_B;
1321                vtotal_reg = VTOTAL_B;
1322                vblank_reg = VBLANK_B;
1323                src_size_reg = SRC_SIZE_B;
1324        } else {
1325                dpll = &hw->dpll_a;
1326                fp0 = &hw->fpa0;
1327                fp1 = &hw->fpa1;
1328                pipe_conf = &hw->pipe_a_conf;
1329                hs = &hw->hsync_a;
1330                hb = &hw->hblank_a;
1331                ht = &hw->htotal_a;
1332                vs = &hw->vsync_a;
1333                vb = &hw->vblank_a;
1334                vt = &hw->vtotal_a;
1335                ss = &hw->src_size_a;
1336                dpll_reg = DPLL_A;
1337                fp0_reg = FPA0;
1338                fp1_reg = FPA1;
1339                pipe_conf_reg = PIPEACONF;
1340                pipe_stat_reg = PIPEASTAT;
1341                hsync_reg = HSYNC_A;
1342                htotal_reg = HTOTAL_A;
1343                hblank_reg = HBLANK_A;
1344                vsync_reg = VSYNC_A;
1345                vtotal_reg = VTOTAL_A;
1346                vblank_reg = VBLANK_A;
1347                src_size_reg = SRC_SIZE_A;
1348        }
1349
1350        /* turn off pipe */
1351        tmp = INREG(pipe_conf_reg);
1352        tmp &= ~PIPECONF_ENABLE;
1353        OUTREG(pipe_conf_reg, tmp);
1354
1355        count = 0;
1356        do {
1357                tmp_val[count % 3] = INREG(PIPEA_DSL);
1358                if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1359                        break;
1360                count++;
1361                udelay(1);
1362                if (count % 200 == 0) {
1363                        tmp = INREG(pipe_conf_reg);
1364                        tmp &= ~PIPECONF_ENABLE;
1365                        OUTREG(pipe_conf_reg, tmp);
1366                }
1367        } while (count < 2000);
1368
1369        OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1370
1371        /* Disable planes A and B. */
1372        tmp = INREG(DSPACNTR);
1373        tmp &= ~DISPPLANE_PLANE_ENABLE;
1374        OUTREG(DSPACNTR, tmp);
1375        tmp = INREG(DSPBCNTR);
1376        tmp &= ~DISPPLANE_PLANE_ENABLE;
1377        OUTREG(DSPBCNTR, tmp);
1378
1379        /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1380        mdelay(20);
1381
1382        OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1383        OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1384        OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1385
1386        /* Disable Sync */
1387        tmp = INREG(ADPA);
1388        tmp &= ~ADPA_DPMS_CONTROL_MASK;
1389        tmp |= ADPA_DPMS_D3;
1390        OUTREG(ADPA, tmp);
1391
1392        /* do some funky magic - xyzzy */
1393        OUTREG(0x61204, 0xabcd0000);
1394
1395        /* turn off PLL */
1396        tmp = INREG(dpll_reg);
1397        tmp &= ~DPLL_VCO_ENABLE;
1398        OUTREG(dpll_reg, tmp);
1399
1400        /* Set PLL parameters */
1401        OUTREG(fp0_reg, *fp0);
1402        OUTREG(fp1_reg, *fp1);
1403
1404        /* Enable PLL */
1405        OUTREG(dpll_reg, *dpll);
1406
1407        /* Set DVOs B/C */
1408        OUTREG(DVOB, hw->dvob);
1409        OUTREG(DVOC, hw->dvoc);
1410
1411        /* undo funky magic */
1412        OUTREG(0x61204, 0x00000000);
1413
1414        /* Set ADPA */
1415        OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1416        OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1417
1418        /* Set pipe parameters */
1419        OUTREG(hsync_reg, *hs);
1420        OUTREG(hblank_reg, *hb);
1421        OUTREG(htotal_reg, *ht);
1422        OUTREG(vsync_reg, *vs);
1423        OUTREG(vblank_reg, *vb);
1424        OUTREG(vtotal_reg, *vt);
1425        OUTREG(src_size_reg, *ss);
1426
1427        switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1428                                          FB_VMODE_ODD_FLD_FIRST)) {
1429        case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1430                OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1431                break;
1432        case FB_VMODE_INTERLACED: /* even lines first */
1433                OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1434                break;
1435        default:                /* non-interlaced */
1436                OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1437        }
1438        /* Enable pipe */
1439        OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1440
1441        /* Enable sync */
1442        tmp = INREG(ADPA);
1443        tmp &= ~ADPA_DPMS_CONTROL_MASK;
1444        tmp |= ADPA_DPMS_D0;
1445        OUTREG(ADPA, tmp);
1446
1447        /* setup display plane */
1448        if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1449                /*
1450                 *      i830M errata: the display plane must be enabled
1451                 *      to allow writes to the other bits in the plane
1452                 *      control register.
1453                 */
1454                tmp = INREG(DSPACNTR);
1455                if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1456                        tmp |= DISPPLANE_PLANE_ENABLE;
1457                        OUTREG(DSPACNTR, tmp);
1458                        OUTREG(DSPACNTR,
1459                               hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1460                        mdelay(1);
1461                }
1462        }
1463
1464        OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1465        OUTREG(DSPASTRIDE, hw->disp_a_stride);
1466        OUTREG(DSPABASE, hw->disp_a_base);
1467
1468        /* Enable plane */
1469        if (!blank) {
1470                tmp = INREG(DSPACNTR);
1471                tmp |= DISPPLANE_PLANE_ENABLE;
1472                OUTREG(DSPACNTR, tmp);
1473                OUTREG(DSPABASE, hw->disp_a_base);
1474        }
1475
1476        return 0;
1477}
1478
1479/* forward declarations */
1480static void refresh_ring(struct intelfb_info *dinfo);
1481static void reset_state(struct intelfb_info *dinfo);
1482static void do_flush(struct intelfb_info *dinfo);
1483
1484static  u32 get_ring_space(struct intelfb_info *dinfo)
1485{
1486        u32 ring_space;
1487
1488        if (dinfo->ring_tail >= dinfo->ring_head)
1489                ring_space = dinfo->ring.size -
1490                        (dinfo->ring_tail - dinfo->ring_head);
1491        else
1492                ring_space = dinfo->ring_head - dinfo->ring_tail;
1493
1494        if (ring_space > RING_MIN_FREE)
1495                ring_space -= RING_MIN_FREE;
1496        else
1497                ring_space = 0;
1498
1499        return ring_space;
1500}
1501
1502static int wait_ring(struct intelfb_info *dinfo, int n)
1503{
1504        int i = 0;
1505        unsigned long end;
1506        u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1507
1508#if VERBOSE > 0
1509        DBG_MSG("wait_ring: %d\n", n);
1510#endif
1511
1512        end = jiffies + (HZ * 3);
1513        while (dinfo->ring_space < n) {
1514                dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1515                dinfo->ring_space = get_ring_space(dinfo);
1516
1517                if (dinfo->ring_head != last_head) {
1518                        end = jiffies + (HZ * 3);
1519                        last_head = dinfo->ring_head;
1520                }
1521                i++;
1522                if (time_before(end, jiffies)) {
1523                        if (!i) {
1524                                /* Try again */
1525                                reset_state(dinfo);
1526                                refresh_ring(dinfo);
1527                                do_flush(dinfo);
1528                                end = jiffies + (HZ * 3);
1529                                i = 1;
1530                        } else {
1531                                WRN_MSG("ring buffer : space: %d wanted %d\n",
1532                                        dinfo->ring_space, n);
1533                                WRN_MSG("lockup - turning off hardware "
1534                                        "acceleration\n");
1535                                dinfo->ring_lockup = 1;
1536                                break;
1537                        }
1538                }
1539                udelay(1);
1540        }
1541        return i;
1542}
1543
1544static void do_flush(struct intelfb_info *dinfo)
1545{
1546        START_RING(2);
1547        OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1548        OUT_RING(MI_NOOP);
1549        ADVANCE_RING();
1550}
1551
1552void intelfbhw_do_sync(struct intelfb_info *dinfo)
1553{
1554#if VERBOSE > 0
1555        DBG_MSG("intelfbhw_do_sync\n");
1556#endif
1557
1558        if (!dinfo->accel)
1559                return;
1560
1561        /*
1562         * Send a flush, then wait until the ring is empty.  This is what
1563         * the XFree86 driver does, and actually it doesn't seem a lot worse
1564         * than the recommended method (both have problems).
1565         */
1566        do_flush(dinfo);
1567        wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1568        dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1569}
1570
1571static void refresh_ring(struct intelfb_info *dinfo)
1572{
1573#if VERBOSE > 0
1574        DBG_MSG("refresh_ring\n");
1575#endif
1576
1577        dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1578        dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1579        dinfo->ring_space = get_ring_space(dinfo);
1580}
1581
1582static void reset_state(struct intelfb_info *dinfo)
1583{
1584        int i;
1585        u32 tmp;
1586
1587#if VERBOSE > 0
1588        DBG_MSG("reset_state\n");
1589#endif
1590
1591        for (i = 0; i < FENCE_NUM; i++)
1592                OUTREG(FENCE + (i << 2), 0);
1593
1594        /* Flush the ring buffer if it's enabled. */
1595        tmp = INREG(PRI_RING_LENGTH);
1596        if (tmp & RING_ENABLE) {
1597#if VERBOSE > 0
1598                DBG_MSG("reset_state: ring was enabled\n");
1599#endif
1600                refresh_ring(dinfo);
1601                intelfbhw_do_sync(dinfo);
1602                DO_RING_IDLE();
1603        }
1604
1605        OUTREG(PRI_RING_LENGTH, 0);
1606        OUTREG(PRI_RING_HEAD, 0);
1607        OUTREG(PRI_RING_TAIL, 0);
1608        OUTREG(PRI_RING_START, 0);
1609}
1610
1611/* Stop the 2D engine, and turn off the ring buffer. */
1612void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1613{
1614#if VERBOSE > 0
1615        DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1616                dinfo->accel, dinfo->ring_active);
1617#endif
1618
1619        if (!dinfo->accel)
1620                return;
1621
1622        dinfo->ring_active = 0;
1623        reset_state(dinfo);
1624}
1625
1626/*
1627 * Enable the ring buffer, and initialise the 2D engine.
1628 * It is assumed that the graphics engine has been stopped by previously
1629 * calling intelfb_2d_stop().
1630 */
1631void intelfbhw_2d_start(struct intelfb_info *dinfo)
1632{
1633#if VERBOSE > 0
1634        DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1635                dinfo->accel, dinfo->ring_active);
1636#endif
1637
1638        if (!dinfo->accel)
1639                return;
1640
1641        /* Initialise the primary ring buffer. */
1642        OUTREG(PRI_RING_LENGTH, 0);
1643        OUTREG(PRI_RING_TAIL, 0);
1644        OUTREG(PRI_RING_HEAD, 0);
1645
1646        OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1647        OUTREG(PRI_RING_LENGTH,
1648                ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1649                RING_NO_REPORT | RING_ENABLE);
1650        refresh_ring(dinfo);
1651        dinfo->ring_active = 1;
1652}
1653
1654/* 2D fillrect (solid fill or invert) */
1655void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1656                           u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1657{
1658        u32 br00, br09, br13, br14, br16;
1659
1660#if VERBOSE > 0
1661        DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1662                "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1663#endif
1664
1665        br00 = COLOR_BLT_CMD;
1666        br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1667        br13 = (rop << ROP_SHIFT) | pitch;
1668        br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1669        br16 = color;
1670
1671        switch (bpp) {
1672        case 8:
1673                br13 |= COLOR_DEPTH_8;
1674                break;
1675        case 16:
1676                br13 |= COLOR_DEPTH_16;
1677                break;
1678        case 32:
1679                br13 |= COLOR_DEPTH_32;
1680                br00 |= WRITE_ALPHA | WRITE_RGB;
1681                break;
1682        }
1683
1684        START_RING(6);
1685        OUT_RING(br00);
1686        OUT_RING(br13);
1687        OUT_RING(br14);
1688        OUT_RING(br09);
1689        OUT_RING(br16);
1690        OUT_RING(MI_NOOP);
1691        ADVANCE_RING();
1692
1693#if VERBOSE > 0
1694        DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1695                dinfo->ring_tail, dinfo->ring_space);
1696#endif
1697}
1698
1699void
1700intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1701                    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1702{
1703        u32 br00, br09, br11, br12, br13, br22, br23, br26;
1704
1705#if VERBOSE > 0
1706        DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1707                curx, cury, dstx, dsty, w, h, pitch, bpp);
1708#endif
1709
1710        br00 = XY_SRC_COPY_BLT_CMD;
1711        br09 = dinfo->fb_start;
1712        br11 = (pitch << PITCH_SHIFT);
1713        br12 = dinfo->fb_start;
1714        br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1715        br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1716        br23 = ((dstx + w) << WIDTH_SHIFT) |
1717               ((dsty + h) << HEIGHT_SHIFT);
1718        br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1719
1720        switch (bpp) {
1721        case 8:
1722                br13 |= COLOR_DEPTH_8;
1723                break;
1724        case 16:
1725                br13 |= COLOR_DEPTH_16;
1726                break;
1727        case 32:
1728                br13 |= COLOR_DEPTH_32;
1729                br00 |= WRITE_ALPHA | WRITE_RGB;
1730                break;
1731        }
1732
1733        START_RING(8);
1734        OUT_RING(br00);
1735        OUT_RING(br13);
1736        OUT_RING(br22);
1737        OUT_RING(br23);
1738        OUT_RING(br09);
1739        OUT_RING(br26);
1740        OUT_RING(br11);
1741        OUT_RING(br12);
1742        ADVANCE_RING();
1743}
1744
1745int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1746                           u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1747                           u32 bpp)
1748{
1749        int nbytes, ndwords, pad, tmp;
1750        u32 br00, br09, br13, br18, br19, br22, br23;
1751        int dat, ix, iy, iw;
1752        int i, j;
1753
1754#if VERBOSE > 0
1755        DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1756#endif
1757
1758        /* size in bytes of a padded scanline */
1759        nbytes = ROUND_UP_TO(w, 16) / 8;
1760
1761        /* Total bytes of padded scanline data to write out. */
1762        nbytes = nbytes * h;
1763
1764        /*
1765         * Check if the glyph data exceeds the immediate mode limit.
1766         * It would take a large font (1K pixels) to hit this limit.
1767         */
1768        if (nbytes > MAX_MONO_IMM_SIZE)
1769                return 0;
1770
1771        /* Src data is packaged a dword (32-bit) at a time. */
1772        ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1773
1774        /*
1775         * Ring has to be padded to a quad word. But because the command starts
1776           with 7 bytes, pad only if there is an even number of ndwords
1777         */
1778        pad = !(ndwords % 2);
1779
1780        tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1781        br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1782        br09 = dinfo->fb_start;
1783        br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1784        br18 = bg;
1785        br19 = fg;
1786        br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1787        br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1788
1789        switch (bpp) {
1790        case 8:
1791                br13 |= COLOR_DEPTH_8;
1792                break;
1793        case 16:
1794                br13 |= COLOR_DEPTH_16;
1795                break;
1796        case 32:
1797                br13 |= COLOR_DEPTH_32;
1798                br00 |= WRITE_ALPHA | WRITE_RGB;
1799                break;
1800        }
1801
1802        START_RING(8 + ndwords);
1803        OUT_RING(br00);
1804        OUT_RING(br13);
1805        OUT_RING(br22);
1806        OUT_RING(br23);
1807        OUT_RING(br09);
1808        OUT_RING(br18);
1809        OUT_RING(br19);
1810        ix = iy = 0;
1811        iw = ROUND_UP_TO(w, 8) / 8;
1812        while (ndwords--) {
1813                dat = 0;
1814                for (j = 0; j < 2; ++j) {
1815                        for (i = 0; i < 2; ++i) {
1816                                if (ix != iw || i == 0)
1817                                        dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1818                        }
1819                        if (ix == iw && iy != (h-1)) {
1820                                ix = 0;
1821                                ++iy;
1822                        }
1823                }
1824                OUT_RING(dat);
1825        }
1826        if (pad)
1827                OUT_RING(MI_NOOP);
1828        ADVANCE_RING();
1829
1830        return 1;
1831}
1832
1833/* HW cursor functions. */
1834void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1835{
1836        u32 tmp;
1837
1838#if VERBOSE > 0
1839        DBG_MSG("intelfbhw_cursor_init\n");
1840#endif
1841
1842        if (dinfo->mobile || IS_I9XX(dinfo)) {
1843                if (!dinfo->cursor.physical)
1844                        return;
1845                tmp = INREG(CURSOR_A_CONTROL);
1846                tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1847                         CURSOR_MEM_TYPE_LOCAL |
1848                         (1 << CURSOR_PIPE_SELECT_SHIFT));
1849                tmp |= CURSOR_MODE_DISABLE;
1850                OUTREG(CURSOR_A_CONTROL, tmp);
1851                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1852        } else {
1853                tmp = INREG(CURSOR_CONTROL);
1854                tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1855                         CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1856                tmp |= CURSOR_FORMAT_3C;
1857                OUTREG(CURSOR_CONTROL, tmp);
1858                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1859                tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1860                      (64 << CURSOR_SIZE_V_SHIFT);
1861                OUTREG(CURSOR_SIZE, tmp);
1862        }
1863}
1864
1865void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1866{
1867        u32 tmp;
1868
1869#if VERBOSE > 0
1870        DBG_MSG("intelfbhw_cursor_hide\n");
1871#endif
1872
1873        dinfo->cursor_on = 0;
1874        if (dinfo->mobile || IS_I9XX(dinfo)) {
1875                if (!dinfo->cursor.physical)
1876                        return;
1877                tmp = INREG(CURSOR_A_CONTROL);
1878                tmp &= ~CURSOR_MODE_MASK;
1879                tmp |= CURSOR_MODE_DISABLE;
1880                OUTREG(CURSOR_A_CONTROL, tmp);
1881                /* Flush changes */
1882                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1883        } else {
1884                tmp = INREG(CURSOR_CONTROL);
1885                tmp &= ~CURSOR_ENABLE;
1886                OUTREG(CURSOR_CONTROL, tmp);
1887        }
1888}
1889
1890void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1891{
1892        u32 tmp;
1893
1894#if VERBOSE > 0
1895        DBG_MSG("intelfbhw_cursor_show\n");
1896#endif
1897
1898        dinfo->cursor_on = 1;
1899
1900        if (dinfo->cursor_blanked)
1901                return;
1902
1903        if (dinfo->mobile || IS_I9XX(dinfo)) {
1904                if (!dinfo->cursor.physical)
1905                        return;
1906                tmp = INREG(CURSOR_A_CONTROL);
1907                tmp &= ~CURSOR_MODE_MASK;
1908                tmp |= CURSOR_MODE_64_4C_AX;
1909                OUTREG(CURSOR_A_CONTROL, tmp);
1910                /* Flush changes */
1911                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1912        } else {
1913                tmp = INREG(CURSOR_CONTROL);
1914                tmp |= CURSOR_ENABLE;
1915                OUTREG(CURSOR_CONTROL, tmp);
1916        }
1917}
1918
1919void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1920{
1921        u32 tmp;
1922
1923#if VERBOSE > 0
1924        DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1925#endif
1926
1927        /*
1928         * Sets the position. The coordinates are assumed to already
1929         * have any offset adjusted. Assume that the cursor is never
1930         * completely off-screen, and that x, y are always >= 0.
1931         */
1932
1933        tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1934              ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1935        OUTREG(CURSOR_A_POSITION, tmp);
1936
1937        if (IS_I9XX(dinfo))
1938                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1939}
1940
1941void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1942{
1943#if VERBOSE > 0
1944        DBG_MSG("intelfbhw_cursor_setcolor\n");
1945#endif
1946
1947        OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1948        OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1949        OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1950        OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1951}
1952
1953void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1954                           u8 *data)
1955{
1956        u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1957        int i, j, w = width / 8;
1958        int mod = width % 8, t_mask, d_mask;
1959
1960#if VERBOSE > 0
1961        DBG_MSG("intelfbhw_cursor_load\n");
1962#endif
1963
1964        if (!dinfo->cursor.virtual)
1965                return;
1966
1967        t_mask = 0xff >> mod;
1968        d_mask = ~(0xff >> mod);
1969        for (i = height; i--; ) {
1970                for (j = 0; j < w; j++) {
1971                        writeb(0x00, addr + j);
1972                        writeb(*(data++), addr + j+8);
1973                }
1974                if (mod) {
1975                        writeb(t_mask, addr + j);
1976                        writeb(*(data++) & d_mask, addr + j+8);
1977                }
1978                addr += 16;
1979        }
1980}
1981
1982void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1983{
1984        u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1985        int i, j;
1986
1987#if VERBOSE > 0
1988        DBG_MSG("intelfbhw_cursor_reset\n");
1989#endif
1990
1991        if (!dinfo->cursor.virtual)
1992                return;
1993
1994        for (i = 64; i--; ) {
1995                for (j = 0; j < 8; j++) {
1996                        writeb(0xff, addr + j+0);
1997                        writeb(0x00, addr + j+8);
1998                }
1999                addr += 16;
2000        }
2001}
2002
2003static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2004{
2005        u16 tmp;
2006        struct intelfb_info *dinfo = dev_id;
2007
2008        spin_lock(&dinfo->int_lock);
2009
2010        tmp = INREG16(IIR);
2011        if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2012                tmp &= PIPE_A_EVENT_INTERRUPT;
2013        else
2014                tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2015
2016        if (tmp == 0) {
2017                spin_unlock(&dinfo->int_lock);
2018                return IRQ_RETVAL(0); /* not us */
2019        }
2020
2021        /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2022        OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2023
2024        OUTREG16(IIR, tmp);
2025        if (dinfo->vsync.pan_display) {
2026                dinfo->vsync.pan_display = 0;
2027                OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2028        }
2029
2030        dinfo->vsync.count++;
2031        wake_up_interruptible(&dinfo->vsync.wait);
2032
2033        spin_unlock(&dinfo->int_lock);
2034
2035        return IRQ_RETVAL(1);
2036}
2037
2038int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2039{
2040        u16 tmp;
2041        if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2042                if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2043                                "intelfb", dinfo)) {
2044                        clear_bit(0, &dinfo->irq_flags);
2045                        return -EINVAL;
2046                }
2047
2048                spin_lock_irq(&dinfo->int_lock);
2049                OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2050                OUTREG16(IMR, 0);
2051        } else
2052                spin_lock_irq(&dinfo->int_lock);
2053
2054        if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2055                tmp = PIPE_A_EVENT_INTERRUPT;
2056        else
2057                tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2058        if (tmp != INREG16(IER)) {
2059                DBG_MSG("changing IER to 0x%X\n", tmp);
2060                OUTREG16(IER, tmp);
2061        }
2062
2063        spin_unlock_irq(&dinfo->int_lock);
2064        return 0;
2065}
2066
2067void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2068{
2069        if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2070                if (dinfo->vsync.pan_display) {
2071                        dinfo->vsync.pan_display = 0;
2072                        OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2073                }
2074                spin_lock_irq(&dinfo->int_lock);
2075                OUTREG16(HWSTAM, 0xffff);
2076                OUTREG16(IMR, 0xffff);
2077                OUTREG16(IER, 0x0);
2078
2079                OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2080                spin_unlock_irq(&dinfo->int_lock);
2081
2082                free_irq(dinfo->pdev->irq, dinfo);
2083        }
2084}
2085
2086int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2087{
2088        struct intelfb_vsync *vsync;
2089        unsigned int count;
2090        int ret;
2091
2092        switch (pipe) {
2093                case 0:
2094                        vsync = &dinfo->vsync;
2095                        break;
2096                default:
2097                        return -ENODEV;
2098        }
2099
2100        ret = intelfbhw_enable_irq(dinfo);
2101        if (ret)
2102                return ret;
2103
2104        count = vsync->count;
2105        ret = wait_event_interruptible_timeout(vsync->wait,
2106                                               count != vsync->count, HZ / 10);
2107        if (ret < 0)
2108                return ret;
2109        if (ret == 0) {
2110                DBG_MSG("wait_for_vsync timed out!\n");
2111                return -ETIMEDOUT;
2112        }
2113
2114        return 0;
2115}
2116