linux/fs/btrfs/tree-log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
  18#include "compression.h"
  19#include "qgroup.h"
  20#include "block-group.h"
  21#include "space-info.h"
  22#include "zoned.h"
  23#include "inode-item.h"
  24
  25/* magic values for the inode_only field in btrfs_log_inode:
  26 *
  27 * LOG_INODE_ALL means to log everything
  28 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  29 * during log replay
  30 */
  31enum {
  32        LOG_INODE_ALL,
  33        LOG_INODE_EXISTS,
  34        LOG_OTHER_INODE,
  35        LOG_OTHER_INODE_ALL,
  36};
  37
  38/*
  39 * directory trouble cases
  40 *
  41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  42 * log, we must force a full commit before doing an fsync of the directory
  43 * where the unlink was done.
  44 * ---> record transid of last unlink/rename per directory
  45 *
  46 * mkdir foo/some_dir
  47 * normal commit
  48 * rename foo/some_dir foo2/some_dir
  49 * mkdir foo/some_dir
  50 * fsync foo/some_dir/some_file
  51 *
  52 * The fsync above will unlink the original some_dir without recording
  53 * it in its new location (foo2).  After a crash, some_dir will be gone
  54 * unless the fsync of some_file forces a full commit
  55 *
  56 * 2) we must log any new names for any file or dir that is in the fsync
  57 * log. ---> check inode while renaming/linking.
  58 *
  59 * 2a) we must log any new names for any file or dir during rename
  60 * when the directory they are being removed from was logged.
  61 * ---> check inode and old parent dir during rename
  62 *
  63 *  2a is actually the more important variant.  With the extra logging
  64 *  a crash might unlink the old name without recreating the new one
  65 *
  66 * 3) after a crash, we must go through any directories with a link count
  67 * of zero and redo the rm -rf
  68 *
  69 * mkdir f1/foo
  70 * normal commit
  71 * rm -rf f1/foo
  72 * fsync(f1)
  73 *
  74 * The directory f1 was fully removed from the FS, but fsync was never
  75 * called on f1, only its parent dir.  After a crash the rm -rf must
  76 * be replayed.  This must be able to recurse down the entire
  77 * directory tree.  The inode link count fixup code takes care of the
  78 * ugly details.
  79 */
  80
  81/*
  82 * stages for the tree walking.  The first
  83 * stage (0) is to only pin down the blocks we find
  84 * the second stage (1) is to make sure that all the inodes
  85 * we find in the log are created in the subvolume.
  86 *
  87 * The last stage is to deal with directories and links and extents
  88 * and all the other fun semantics
  89 */
  90enum {
  91        LOG_WALK_PIN_ONLY,
  92        LOG_WALK_REPLAY_INODES,
  93        LOG_WALK_REPLAY_DIR_INDEX,
  94        LOG_WALK_REPLAY_ALL,
  95};
  96
  97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  98                           struct btrfs_inode *inode,
  99                           int inode_only,
 100                           struct btrfs_log_ctx *ctx);
 101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 102                             struct btrfs_root *root,
 103                             struct btrfs_path *path, u64 objectid);
 104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 105                                       struct btrfs_root *root,
 106                                       struct btrfs_root *log,
 107                                       struct btrfs_path *path,
 108                                       u64 dirid, int del_all);
 109static void wait_log_commit(struct btrfs_root *root, int transid);
 110
 111/*
 112 * tree logging is a special write ahead log used to make sure that
 113 * fsyncs and O_SYNCs can happen without doing full tree commits.
 114 *
 115 * Full tree commits are expensive because they require commonly
 116 * modified blocks to be recowed, creating many dirty pages in the
 117 * extent tree an 4x-6x higher write load than ext3.
 118 *
 119 * Instead of doing a tree commit on every fsync, we use the
 120 * key ranges and transaction ids to find items for a given file or directory
 121 * that have changed in this transaction.  Those items are copied into
 122 * a special tree (one per subvolume root), that tree is written to disk
 123 * and then the fsync is considered complete.
 124 *
 125 * After a crash, items are copied out of the log-tree back into the
 126 * subvolume tree.  Any file data extents found are recorded in the extent
 127 * allocation tree, and the log-tree freed.
 128 *
 129 * The log tree is read three times, once to pin down all the extents it is
 130 * using in ram and once, once to create all the inodes logged in the tree
 131 * and once to do all the other items.
 132 */
 133
 134/*
 135 * start a sub transaction and setup the log tree
 136 * this increments the log tree writer count to make the people
 137 * syncing the tree wait for us to finish
 138 */
 139static int start_log_trans(struct btrfs_trans_handle *trans,
 140                           struct btrfs_root *root,
 141                           struct btrfs_log_ctx *ctx)
 142{
 143        struct btrfs_fs_info *fs_info = root->fs_info;
 144        struct btrfs_root *tree_root = fs_info->tree_root;
 145        const bool zoned = btrfs_is_zoned(fs_info);
 146        int ret = 0;
 147        bool created = false;
 148
 149        /*
 150         * First check if the log root tree was already created. If not, create
 151         * it before locking the root's log_mutex, just to keep lockdep happy.
 152         */
 153        if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
 154                mutex_lock(&tree_root->log_mutex);
 155                if (!fs_info->log_root_tree) {
 156                        ret = btrfs_init_log_root_tree(trans, fs_info);
 157                        if (!ret) {
 158                                set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
 159                                created = true;
 160                        }
 161                }
 162                mutex_unlock(&tree_root->log_mutex);
 163                if (ret)
 164                        return ret;
 165        }
 166
 167        mutex_lock(&root->log_mutex);
 168
 169again:
 170        if (root->log_root) {
 171                int index = (root->log_transid + 1) % 2;
 172
 173                if (btrfs_need_log_full_commit(trans)) {
 174                        ret = -EAGAIN;
 175                        goto out;
 176                }
 177
 178                if (zoned && atomic_read(&root->log_commit[index])) {
 179                        wait_log_commit(root, root->log_transid - 1);
 180                        goto again;
 181                }
 182
 183                if (!root->log_start_pid) {
 184                        clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 185                        root->log_start_pid = current->pid;
 186                } else if (root->log_start_pid != current->pid) {
 187                        set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 188                }
 189        } else {
 190                /*
 191                 * This means fs_info->log_root_tree was already created
 192                 * for some other FS trees. Do the full commit not to mix
 193                 * nodes from multiple log transactions to do sequential
 194                 * writing.
 195                 */
 196                if (zoned && !created) {
 197                        ret = -EAGAIN;
 198                        goto out;
 199                }
 200
 201                ret = btrfs_add_log_tree(trans, root);
 202                if (ret)
 203                        goto out;
 204
 205                set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
 206                clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 207                root->log_start_pid = current->pid;
 208        }
 209
 210        atomic_inc(&root->log_writers);
 211        if (!ctx->logging_new_name) {
 212                int index = root->log_transid % 2;
 213                list_add_tail(&ctx->list, &root->log_ctxs[index]);
 214                ctx->log_transid = root->log_transid;
 215        }
 216
 217out:
 218        mutex_unlock(&root->log_mutex);
 219        return ret;
 220}
 221
 222/*
 223 * returns 0 if there was a log transaction running and we were able
 224 * to join, or returns -ENOENT if there were not transactions
 225 * in progress
 226 */
 227static int join_running_log_trans(struct btrfs_root *root)
 228{
 229        const bool zoned = btrfs_is_zoned(root->fs_info);
 230        int ret = -ENOENT;
 231
 232        if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
 233                return ret;
 234
 235        mutex_lock(&root->log_mutex);
 236again:
 237        if (root->log_root) {
 238                int index = (root->log_transid + 1) % 2;
 239
 240                ret = 0;
 241                if (zoned && atomic_read(&root->log_commit[index])) {
 242                        wait_log_commit(root, root->log_transid - 1);
 243                        goto again;
 244                }
 245                atomic_inc(&root->log_writers);
 246        }
 247        mutex_unlock(&root->log_mutex);
 248        return ret;
 249}
 250
 251/*
 252 * This either makes the current running log transaction wait
 253 * until you call btrfs_end_log_trans() or it makes any future
 254 * log transactions wait until you call btrfs_end_log_trans()
 255 */
 256void btrfs_pin_log_trans(struct btrfs_root *root)
 257{
 258        atomic_inc(&root->log_writers);
 259}
 260
 261/*
 262 * indicate we're done making changes to the log tree
 263 * and wake up anyone waiting to do a sync
 264 */
 265void btrfs_end_log_trans(struct btrfs_root *root)
 266{
 267        if (atomic_dec_and_test(&root->log_writers)) {
 268                /* atomic_dec_and_test implies a barrier */
 269                cond_wake_up_nomb(&root->log_writer_wait);
 270        }
 271}
 272
 273static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
 274{
 275        filemap_fdatawait_range(buf->pages[0]->mapping,
 276                                buf->start, buf->start + buf->len - 1);
 277}
 278
 279/*
 280 * the walk control struct is used to pass state down the chain when
 281 * processing the log tree.  The stage field tells us which part
 282 * of the log tree processing we are currently doing.  The others
 283 * are state fields used for that specific part
 284 */
 285struct walk_control {
 286        /* should we free the extent on disk when done?  This is used
 287         * at transaction commit time while freeing a log tree
 288         */
 289        int free;
 290
 291        /* pin only walk, we record which extents on disk belong to the
 292         * log trees
 293         */
 294        int pin;
 295
 296        /* what stage of the replay code we're currently in */
 297        int stage;
 298
 299        /*
 300         * Ignore any items from the inode currently being processed. Needs
 301         * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 302         * the LOG_WALK_REPLAY_INODES stage.
 303         */
 304        bool ignore_cur_inode;
 305
 306        /* the root we are currently replaying */
 307        struct btrfs_root *replay_dest;
 308
 309        /* the trans handle for the current replay */
 310        struct btrfs_trans_handle *trans;
 311
 312        /* the function that gets used to process blocks we find in the
 313         * tree.  Note the extent_buffer might not be up to date when it is
 314         * passed in, and it must be checked or read if you need the data
 315         * inside it
 316         */
 317        int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 318                            struct walk_control *wc, u64 gen, int level);
 319};
 320
 321/*
 322 * process_func used to pin down extents, write them or wait on them
 323 */
 324static int process_one_buffer(struct btrfs_root *log,
 325                              struct extent_buffer *eb,
 326                              struct walk_control *wc, u64 gen, int level)
 327{
 328        struct btrfs_fs_info *fs_info = log->fs_info;
 329        int ret = 0;
 330
 331        /*
 332         * If this fs is mixed then we need to be able to process the leaves to
 333         * pin down any logged extents, so we have to read the block.
 334         */
 335        if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 336                ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
 337                if (ret)
 338                        return ret;
 339        }
 340
 341        if (wc->pin) {
 342                ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
 343                                                      eb->len);
 344                if (ret)
 345                        return ret;
 346
 347                if (btrfs_buffer_uptodate(eb, gen, 0) &&
 348                    btrfs_header_level(eb) == 0)
 349                        ret = btrfs_exclude_logged_extents(eb);
 350        }
 351        return ret;
 352}
 353
 354static int do_overwrite_item(struct btrfs_trans_handle *trans,
 355                             struct btrfs_root *root,
 356                             struct btrfs_path *path,
 357                             struct extent_buffer *eb, int slot,
 358                             struct btrfs_key *key)
 359{
 360        int ret;
 361        u32 item_size;
 362        u64 saved_i_size = 0;
 363        int save_old_i_size = 0;
 364        unsigned long src_ptr;
 365        unsigned long dst_ptr;
 366        int overwrite_root = 0;
 367        bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 368
 369        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 370                overwrite_root = 1;
 371
 372        item_size = btrfs_item_size(eb, slot);
 373        src_ptr = btrfs_item_ptr_offset(eb, slot);
 374
 375        /* Our caller must have done a search for the key for us. */
 376        ASSERT(path->nodes[0] != NULL);
 377
 378        /*
 379         * And the slot must point to the exact key or the slot where the key
 380         * should be at (the first item with a key greater than 'key')
 381         */
 382        if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
 383                struct btrfs_key found_key;
 384
 385                btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
 386                ret = btrfs_comp_cpu_keys(&found_key, key);
 387                ASSERT(ret >= 0);
 388        } else {
 389                ret = 1;
 390        }
 391
 392        if (ret == 0) {
 393                char *src_copy;
 394                char *dst_copy;
 395                u32 dst_size = btrfs_item_size(path->nodes[0],
 396                                                  path->slots[0]);
 397                if (dst_size != item_size)
 398                        goto insert;
 399
 400                if (item_size == 0) {
 401                        btrfs_release_path(path);
 402                        return 0;
 403                }
 404                dst_copy = kmalloc(item_size, GFP_NOFS);
 405                src_copy = kmalloc(item_size, GFP_NOFS);
 406                if (!dst_copy || !src_copy) {
 407                        btrfs_release_path(path);
 408                        kfree(dst_copy);
 409                        kfree(src_copy);
 410                        return -ENOMEM;
 411                }
 412
 413                read_extent_buffer(eb, src_copy, src_ptr, item_size);
 414
 415                dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 416                read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 417                                   item_size);
 418                ret = memcmp(dst_copy, src_copy, item_size);
 419
 420                kfree(dst_copy);
 421                kfree(src_copy);
 422                /*
 423                 * they have the same contents, just return, this saves
 424                 * us from cowing blocks in the destination tree and doing
 425                 * extra writes that may not have been done by a previous
 426                 * sync
 427                 */
 428                if (ret == 0) {
 429                        btrfs_release_path(path);
 430                        return 0;
 431                }
 432
 433                /*
 434                 * We need to load the old nbytes into the inode so when we
 435                 * replay the extents we've logged we get the right nbytes.
 436                 */
 437                if (inode_item) {
 438                        struct btrfs_inode_item *item;
 439                        u64 nbytes;
 440                        u32 mode;
 441
 442                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 443                                              struct btrfs_inode_item);
 444                        nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 445                        item = btrfs_item_ptr(eb, slot,
 446                                              struct btrfs_inode_item);
 447                        btrfs_set_inode_nbytes(eb, item, nbytes);
 448
 449                        /*
 450                         * If this is a directory we need to reset the i_size to
 451                         * 0 so that we can set it up properly when replaying
 452                         * the rest of the items in this log.
 453                         */
 454                        mode = btrfs_inode_mode(eb, item);
 455                        if (S_ISDIR(mode))
 456                                btrfs_set_inode_size(eb, item, 0);
 457                }
 458        } else if (inode_item) {
 459                struct btrfs_inode_item *item;
 460                u32 mode;
 461
 462                /*
 463                 * New inode, set nbytes to 0 so that the nbytes comes out
 464                 * properly when we replay the extents.
 465                 */
 466                item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 467                btrfs_set_inode_nbytes(eb, item, 0);
 468
 469                /*
 470                 * If this is a directory we need to reset the i_size to 0 so
 471                 * that we can set it up properly when replaying the rest of
 472                 * the items in this log.
 473                 */
 474                mode = btrfs_inode_mode(eb, item);
 475                if (S_ISDIR(mode))
 476                        btrfs_set_inode_size(eb, item, 0);
 477        }
 478insert:
 479        btrfs_release_path(path);
 480        /* try to insert the key into the destination tree */
 481        path->skip_release_on_error = 1;
 482        ret = btrfs_insert_empty_item(trans, root, path,
 483                                      key, item_size);
 484        path->skip_release_on_error = 0;
 485
 486        /* make sure any existing item is the correct size */
 487        if (ret == -EEXIST || ret == -EOVERFLOW) {
 488                u32 found_size;
 489                found_size = btrfs_item_size(path->nodes[0],
 490                                                path->slots[0]);
 491                if (found_size > item_size)
 492                        btrfs_truncate_item(path, item_size, 1);
 493                else if (found_size < item_size)
 494                        btrfs_extend_item(path, item_size - found_size);
 495        } else if (ret) {
 496                return ret;
 497        }
 498        dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 499                                        path->slots[0]);
 500
 501        /* don't overwrite an existing inode if the generation number
 502         * was logged as zero.  This is done when the tree logging code
 503         * is just logging an inode to make sure it exists after recovery.
 504         *
 505         * Also, don't overwrite i_size on directories during replay.
 506         * log replay inserts and removes directory items based on the
 507         * state of the tree found in the subvolume, and i_size is modified
 508         * as it goes
 509         */
 510        if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 511                struct btrfs_inode_item *src_item;
 512                struct btrfs_inode_item *dst_item;
 513
 514                src_item = (struct btrfs_inode_item *)src_ptr;
 515                dst_item = (struct btrfs_inode_item *)dst_ptr;
 516
 517                if (btrfs_inode_generation(eb, src_item) == 0) {
 518                        struct extent_buffer *dst_eb = path->nodes[0];
 519                        const u64 ino_size = btrfs_inode_size(eb, src_item);
 520
 521                        /*
 522                         * For regular files an ino_size == 0 is used only when
 523                         * logging that an inode exists, as part of a directory
 524                         * fsync, and the inode wasn't fsynced before. In this
 525                         * case don't set the size of the inode in the fs/subvol
 526                         * tree, otherwise we would be throwing valid data away.
 527                         */
 528                        if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 529                            S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 530                            ino_size != 0)
 531                                btrfs_set_inode_size(dst_eb, dst_item, ino_size);
 532                        goto no_copy;
 533                }
 534
 535                if (overwrite_root &&
 536                    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 537                    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 538                        save_old_i_size = 1;
 539                        saved_i_size = btrfs_inode_size(path->nodes[0],
 540                                                        dst_item);
 541                }
 542        }
 543
 544        copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 545                           src_ptr, item_size);
 546
 547        if (save_old_i_size) {
 548                struct btrfs_inode_item *dst_item;
 549                dst_item = (struct btrfs_inode_item *)dst_ptr;
 550                btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 551        }
 552
 553        /* make sure the generation is filled in */
 554        if (key->type == BTRFS_INODE_ITEM_KEY) {
 555                struct btrfs_inode_item *dst_item;
 556                dst_item = (struct btrfs_inode_item *)dst_ptr;
 557                if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 558                        btrfs_set_inode_generation(path->nodes[0], dst_item,
 559                                                   trans->transid);
 560                }
 561        }
 562no_copy:
 563        btrfs_mark_buffer_dirty(path->nodes[0]);
 564        btrfs_release_path(path);
 565        return 0;
 566}
 567
 568/*
 569 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 570 * to the src data we are copying out.
 571 *
 572 * root is the tree we are copying into, and path is a scratch
 573 * path for use in this function (it should be released on entry and
 574 * will be released on exit).
 575 *
 576 * If the key is already in the destination tree the existing item is
 577 * overwritten.  If the existing item isn't big enough, it is extended.
 578 * If it is too large, it is truncated.
 579 *
 580 * If the key isn't in the destination yet, a new item is inserted.
 581 */
 582static int overwrite_item(struct btrfs_trans_handle *trans,
 583                          struct btrfs_root *root,
 584                          struct btrfs_path *path,
 585                          struct extent_buffer *eb, int slot,
 586                          struct btrfs_key *key)
 587{
 588        int ret;
 589
 590        /* Look for the key in the destination tree. */
 591        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 592        if (ret < 0)
 593                return ret;
 594
 595        return do_overwrite_item(trans, root, path, eb, slot, key);
 596}
 597
 598/*
 599 * simple helper to read an inode off the disk from a given root
 600 * This can only be called for subvolume roots and not for the log
 601 */
 602static noinline struct inode *read_one_inode(struct btrfs_root *root,
 603                                             u64 objectid)
 604{
 605        struct inode *inode;
 606
 607        inode = btrfs_iget(root->fs_info->sb, objectid, root);
 608        if (IS_ERR(inode))
 609                inode = NULL;
 610        return inode;
 611}
 612
 613/* replays a single extent in 'eb' at 'slot' with 'key' into the
 614 * subvolume 'root'.  path is released on entry and should be released
 615 * on exit.
 616 *
 617 * extents in the log tree have not been allocated out of the extent
 618 * tree yet.  So, this completes the allocation, taking a reference
 619 * as required if the extent already exists or creating a new extent
 620 * if it isn't in the extent allocation tree yet.
 621 *
 622 * The extent is inserted into the file, dropping any existing extents
 623 * from the file that overlap the new one.
 624 */
 625static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 626                                      struct btrfs_root *root,
 627                                      struct btrfs_path *path,
 628                                      struct extent_buffer *eb, int slot,
 629                                      struct btrfs_key *key)
 630{
 631        struct btrfs_drop_extents_args drop_args = { 0 };
 632        struct btrfs_fs_info *fs_info = root->fs_info;
 633        int found_type;
 634        u64 extent_end;
 635        u64 start = key->offset;
 636        u64 nbytes = 0;
 637        struct btrfs_file_extent_item *item;
 638        struct inode *inode = NULL;
 639        unsigned long size;
 640        int ret = 0;
 641
 642        item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 643        found_type = btrfs_file_extent_type(eb, item);
 644
 645        if (found_type == BTRFS_FILE_EXTENT_REG ||
 646            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 647                nbytes = btrfs_file_extent_num_bytes(eb, item);
 648                extent_end = start + nbytes;
 649
 650                /*
 651                 * We don't add to the inodes nbytes if we are prealloc or a
 652                 * hole.
 653                 */
 654                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 655                        nbytes = 0;
 656        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 657                size = btrfs_file_extent_ram_bytes(eb, item);
 658                nbytes = btrfs_file_extent_ram_bytes(eb, item);
 659                extent_end = ALIGN(start + size,
 660                                   fs_info->sectorsize);
 661        } else {
 662                ret = 0;
 663                goto out;
 664        }
 665
 666        inode = read_one_inode(root, key->objectid);
 667        if (!inode) {
 668                ret = -EIO;
 669                goto out;
 670        }
 671
 672        /*
 673         * first check to see if we already have this extent in the
 674         * file.  This must be done before the btrfs_drop_extents run
 675         * so we don't try to drop this extent.
 676         */
 677        ret = btrfs_lookup_file_extent(trans, root, path,
 678                        btrfs_ino(BTRFS_I(inode)), start, 0);
 679
 680        if (ret == 0 &&
 681            (found_type == BTRFS_FILE_EXTENT_REG ||
 682             found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 683                struct btrfs_file_extent_item cmp1;
 684                struct btrfs_file_extent_item cmp2;
 685                struct btrfs_file_extent_item *existing;
 686                struct extent_buffer *leaf;
 687
 688                leaf = path->nodes[0];
 689                existing = btrfs_item_ptr(leaf, path->slots[0],
 690                                          struct btrfs_file_extent_item);
 691
 692                read_extent_buffer(eb, &cmp1, (unsigned long)item,
 693                                   sizeof(cmp1));
 694                read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 695                                   sizeof(cmp2));
 696
 697                /*
 698                 * we already have a pointer to this exact extent,
 699                 * we don't have to do anything
 700                 */
 701                if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 702                        btrfs_release_path(path);
 703                        goto out;
 704                }
 705        }
 706        btrfs_release_path(path);
 707
 708        /* drop any overlapping extents */
 709        drop_args.start = start;
 710        drop_args.end = extent_end;
 711        drop_args.drop_cache = true;
 712        ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
 713        if (ret)
 714                goto out;
 715
 716        if (found_type == BTRFS_FILE_EXTENT_REG ||
 717            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 718                u64 offset;
 719                unsigned long dest_offset;
 720                struct btrfs_key ins;
 721
 722                if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 723                    btrfs_fs_incompat(fs_info, NO_HOLES))
 724                        goto update_inode;
 725
 726                ret = btrfs_insert_empty_item(trans, root, path, key,
 727                                              sizeof(*item));
 728                if (ret)
 729                        goto out;
 730                dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 731                                                    path->slots[0]);
 732                copy_extent_buffer(path->nodes[0], eb, dest_offset,
 733                                (unsigned long)item,  sizeof(*item));
 734
 735                ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 736                ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 737                ins.type = BTRFS_EXTENT_ITEM_KEY;
 738                offset = key->offset - btrfs_file_extent_offset(eb, item);
 739
 740                /*
 741                 * Manually record dirty extent, as here we did a shallow
 742                 * file extent item copy and skip normal backref update,
 743                 * but modifying extent tree all by ourselves.
 744                 * So need to manually record dirty extent for qgroup,
 745                 * as the owner of the file extent changed from log tree
 746                 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 747                 */
 748                ret = btrfs_qgroup_trace_extent(trans,
 749                                btrfs_file_extent_disk_bytenr(eb, item),
 750                                btrfs_file_extent_disk_num_bytes(eb, item),
 751                                GFP_NOFS);
 752                if (ret < 0)
 753                        goto out;
 754
 755                if (ins.objectid > 0) {
 756                        struct btrfs_ref ref = { 0 };
 757                        u64 csum_start;
 758                        u64 csum_end;
 759                        LIST_HEAD(ordered_sums);
 760
 761                        /*
 762                         * is this extent already allocated in the extent
 763                         * allocation tree?  If so, just add a reference
 764                         */
 765                        ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 766                                                ins.offset);
 767                        if (ret < 0) {
 768                                goto out;
 769                        } else if (ret == 0) {
 770                                btrfs_init_generic_ref(&ref,
 771                                                BTRFS_ADD_DELAYED_REF,
 772                                                ins.objectid, ins.offset, 0);
 773                                btrfs_init_data_ref(&ref,
 774                                                root->root_key.objectid,
 775                                                key->objectid, offset, 0, false);
 776                                ret = btrfs_inc_extent_ref(trans, &ref);
 777                                if (ret)
 778                                        goto out;
 779                        } else {
 780                                /*
 781                                 * insert the extent pointer in the extent
 782                                 * allocation tree
 783                                 */
 784                                ret = btrfs_alloc_logged_file_extent(trans,
 785                                                root->root_key.objectid,
 786                                                key->objectid, offset, &ins);
 787                                if (ret)
 788                                        goto out;
 789                        }
 790                        btrfs_release_path(path);
 791
 792                        if (btrfs_file_extent_compression(eb, item)) {
 793                                csum_start = ins.objectid;
 794                                csum_end = csum_start + ins.offset;
 795                        } else {
 796                                csum_start = ins.objectid +
 797                                        btrfs_file_extent_offset(eb, item);
 798                                csum_end = csum_start +
 799                                        btrfs_file_extent_num_bytes(eb, item);
 800                        }
 801
 802                        ret = btrfs_lookup_csums_range(root->log_root,
 803                                                csum_start, csum_end - 1,
 804                                                &ordered_sums, 0);
 805                        if (ret)
 806                                goto out;
 807                        /*
 808                         * Now delete all existing cums in the csum root that
 809                         * cover our range. We do this because we can have an
 810                         * extent that is completely referenced by one file
 811                         * extent item and partially referenced by another
 812                         * file extent item (like after using the clone or
 813                         * extent_same ioctls). In this case if we end up doing
 814                         * the replay of the one that partially references the
 815                         * extent first, and we do not do the csum deletion
 816                         * below, we can get 2 csum items in the csum tree that
 817                         * overlap each other. For example, imagine our log has
 818                         * the two following file extent items:
 819                         *
 820                         * key (257 EXTENT_DATA 409600)
 821                         *     extent data disk byte 12845056 nr 102400
 822                         *     extent data offset 20480 nr 20480 ram 102400
 823                         *
 824                         * key (257 EXTENT_DATA 819200)
 825                         *     extent data disk byte 12845056 nr 102400
 826                         *     extent data offset 0 nr 102400 ram 102400
 827                         *
 828                         * Where the second one fully references the 100K extent
 829                         * that starts at disk byte 12845056, and the log tree
 830                         * has a single csum item that covers the entire range
 831                         * of the extent:
 832                         *
 833                         * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 834                         *
 835                         * After the first file extent item is replayed, the
 836                         * csum tree gets the following csum item:
 837                         *
 838                         * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 839                         *
 840                         * Which covers the 20K sub-range starting at offset 20K
 841                         * of our extent. Now when we replay the second file
 842                         * extent item, if we do not delete existing csum items
 843                         * that cover any of its blocks, we end up getting two
 844                         * csum items in our csum tree that overlap each other:
 845                         *
 846                         * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 847                         * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 848                         *
 849                         * Which is a problem, because after this anyone trying
 850                         * to lookup up for the checksum of any block of our
 851                         * extent starting at an offset of 40K or higher, will
 852                         * end up looking at the second csum item only, which
 853                         * does not contain the checksum for any block starting
 854                         * at offset 40K or higher of our extent.
 855                         */
 856                        while (!list_empty(&ordered_sums)) {
 857                                struct btrfs_ordered_sum *sums;
 858                                struct btrfs_root *csum_root;
 859
 860                                sums = list_entry(ordered_sums.next,
 861                                                struct btrfs_ordered_sum,
 862                                                list);
 863                                csum_root = btrfs_csum_root(fs_info,
 864                                                            sums->bytenr);
 865                                if (!ret)
 866                                        ret = btrfs_del_csums(trans, csum_root,
 867                                                              sums->bytenr,
 868                                                              sums->len);
 869                                if (!ret)
 870                                        ret = btrfs_csum_file_blocks(trans,
 871                                                                     csum_root,
 872                                                                     sums);
 873                                list_del(&sums->list);
 874                                kfree(sums);
 875                        }
 876                        if (ret)
 877                                goto out;
 878                } else {
 879                        btrfs_release_path(path);
 880                }
 881        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 882                /* inline extents are easy, we just overwrite them */
 883                ret = overwrite_item(trans, root, path, eb, slot, key);
 884                if (ret)
 885                        goto out;
 886        }
 887
 888        ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
 889                                                extent_end - start);
 890        if (ret)
 891                goto out;
 892
 893update_inode:
 894        btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
 895        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 896out:
 897        iput(inode);
 898        return ret;
 899}
 900
 901static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
 902                                       struct btrfs_inode *dir,
 903                                       struct btrfs_inode *inode,
 904                                       const char *name,
 905                                       int name_len)
 906{
 907        int ret;
 908
 909        ret = btrfs_unlink_inode(trans, dir, inode, name, name_len);
 910        if (ret)
 911                return ret;
 912        /*
 913         * Whenever we need to check if a name exists or not, we check the
 914         * fs/subvolume tree. So after an unlink we must run delayed items, so
 915         * that future checks for a name during log replay see that the name
 916         * does not exists anymore.
 917         */
 918        return btrfs_run_delayed_items(trans);
 919}
 920
 921/*
 922 * when cleaning up conflicts between the directory names in the
 923 * subvolume, directory names in the log and directory names in the
 924 * inode back references, we may have to unlink inodes from directories.
 925 *
 926 * This is a helper function to do the unlink of a specific directory
 927 * item
 928 */
 929static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 930                                      struct btrfs_path *path,
 931                                      struct btrfs_inode *dir,
 932                                      struct btrfs_dir_item *di)
 933{
 934        struct btrfs_root *root = dir->root;
 935        struct inode *inode;
 936        char *name;
 937        int name_len;
 938        struct extent_buffer *leaf;
 939        struct btrfs_key location;
 940        int ret;
 941
 942        leaf = path->nodes[0];
 943
 944        btrfs_dir_item_key_to_cpu(leaf, di, &location);
 945        name_len = btrfs_dir_name_len(leaf, di);
 946        name = kmalloc(name_len, GFP_NOFS);
 947        if (!name)
 948                return -ENOMEM;
 949
 950        read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 951        btrfs_release_path(path);
 952
 953        inode = read_one_inode(root, location.objectid);
 954        if (!inode) {
 955                ret = -EIO;
 956                goto out;
 957        }
 958
 959        ret = link_to_fixup_dir(trans, root, path, location.objectid);
 960        if (ret)
 961                goto out;
 962
 963        ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), name,
 964                        name_len);
 965out:
 966        kfree(name);
 967        iput(inode);
 968        return ret;
 969}
 970
 971/*
 972 * See if a given name and sequence number found in an inode back reference are
 973 * already in a directory and correctly point to this inode.
 974 *
 975 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
 976 * exists.
 977 */
 978static noinline int inode_in_dir(struct btrfs_root *root,
 979                                 struct btrfs_path *path,
 980                                 u64 dirid, u64 objectid, u64 index,
 981                                 const char *name, int name_len)
 982{
 983        struct btrfs_dir_item *di;
 984        struct btrfs_key location;
 985        int ret = 0;
 986
 987        di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 988                                         index, name, name_len, 0);
 989        if (IS_ERR(di)) {
 990                ret = PTR_ERR(di);
 991                goto out;
 992        } else if (di) {
 993                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 994                if (location.objectid != objectid)
 995                        goto out;
 996        } else {
 997                goto out;
 998        }
 999
1000        btrfs_release_path(path);
1001        di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
1002        if (IS_ERR(di)) {
1003                ret = PTR_ERR(di);
1004                goto out;
1005        } else if (di) {
1006                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1007                if (location.objectid == objectid)
1008                        ret = 1;
1009        }
1010out:
1011        btrfs_release_path(path);
1012        return ret;
1013}
1014
1015/*
1016 * helper function to check a log tree for a named back reference in
1017 * an inode.  This is used to decide if a back reference that is
1018 * found in the subvolume conflicts with what we find in the log.
1019 *
1020 * inode backreferences may have multiple refs in a single item,
1021 * during replay we process one reference at a time, and we don't
1022 * want to delete valid links to a file from the subvolume if that
1023 * link is also in the log.
1024 */
1025static noinline int backref_in_log(struct btrfs_root *log,
1026                                   struct btrfs_key *key,
1027                                   u64 ref_objectid,
1028                                   const char *name, int namelen)
1029{
1030        struct btrfs_path *path;
1031        int ret;
1032
1033        path = btrfs_alloc_path();
1034        if (!path)
1035                return -ENOMEM;
1036
1037        ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1038        if (ret < 0) {
1039                goto out;
1040        } else if (ret == 1) {
1041                ret = 0;
1042                goto out;
1043        }
1044
1045        if (key->type == BTRFS_INODE_EXTREF_KEY)
1046                ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1047                                                       path->slots[0],
1048                                                       ref_objectid,
1049                                                       name, namelen);
1050        else
1051                ret = !!btrfs_find_name_in_backref(path->nodes[0],
1052                                                   path->slots[0],
1053                                                   name, namelen);
1054out:
1055        btrfs_free_path(path);
1056        return ret;
1057}
1058
1059static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1060                                  struct btrfs_root *root,
1061                                  struct btrfs_path *path,
1062                                  struct btrfs_root *log_root,
1063                                  struct btrfs_inode *dir,
1064                                  struct btrfs_inode *inode,
1065                                  u64 inode_objectid, u64 parent_objectid,
1066                                  u64 ref_index, char *name, int namelen,
1067                                  int *search_done)
1068{
1069        int ret;
1070        char *victim_name;
1071        int victim_name_len;
1072        struct extent_buffer *leaf;
1073        struct btrfs_dir_item *di;
1074        struct btrfs_key search_key;
1075        struct btrfs_inode_extref *extref;
1076
1077again:
1078        /* Search old style refs */
1079        search_key.objectid = inode_objectid;
1080        search_key.type = BTRFS_INODE_REF_KEY;
1081        search_key.offset = parent_objectid;
1082        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1083        if (ret == 0) {
1084                struct btrfs_inode_ref *victim_ref;
1085                unsigned long ptr;
1086                unsigned long ptr_end;
1087
1088                leaf = path->nodes[0];
1089
1090                /* are we trying to overwrite a back ref for the root directory
1091                 * if so, just jump out, we're done
1092                 */
1093                if (search_key.objectid == search_key.offset)
1094                        return 1;
1095
1096                /* check all the names in this back reference to see
1097                 * if they are in the log.  if so, we allow them to stay
1098                 * otherwise they must be unlinked as a conflict
1099                 */
1100                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1101                ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1102                while (ptr < ptr_end) {
1103                        victim_ref = (struct btrfs_inode_ref *)ptr;
1104                        victim_name_len = btrfs_inode_ref_name_len(leaf,
1105                                                                   victim_ref);
1106                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
1107                        if (!victim_name)
1108                                return -ENOMEM;
1109
1110                        read_extent_buffer(leaf, victim_name,
1111                                           (unsigned long)(victim_ref + 1),
1112                                           victim_name_len);
1113
1114                        ret = backref_in_log(log_root, &search_key,
1115                                             parent_objectid, victim_name,
1116                                             victim_name_len);
1117                        if (ret < 0) {
1118                                kfree(victim_name);
1119                                return ret;
1120                        } else if (!ret) {
1121                                inc_nlink(&inode->vfs_inode);
1122                                btrfs_release_path(path);
1123
1124                                ret = unlink_inode_for_log_replay(trans, dir, inode,
1125                                                victim_name, victim_name_len);
1126                                kfree(victim_name);
1127                                if (ret)
1128                                        return ret;
1129                                *search_done = 1;
1130                                goto again;
1131                        }
1132                        kfree(victim_name);
1133
1134                        ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1135                }
1136
1137                /*
1138                 * NOTE: we have searched root tree and checked the
1139                 * corresponding ref, it does not need to check again.
1140                 */
1141                *search_done = 1;
1142        }
1143        btrfs_release_path(path);
1144
1145        /* Same search but for extended refs */
1146        extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1147                                           inode_objectid, parent_objectid, 0,
1148                                           0);
1149        if (!IS_ERR_OR_NULL(extref)) {
1150                u32 item_size;
1151                u32 cur_offset = 0;
1152                unsigned long base;
1153                struct inode *victim_parent;
1154
1155                leaf = path->nodes[0];
1156
1157                item_size = btrfs_item_size(leaf, path->slots[0]);
1158                base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1159
1160                while (cur_offset < item_size) {
1161                        extref = (struct btrfs_inode_extref *)(base + cur_offset);
1162
1163                        victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1164
1165                        if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1166                                goto next;
1167
1168                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
1169                        if (!victim_name)
1170                                return -ENOMEM;
1171                        read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1172                                           victim_name_len);
1173
1174                        search_key.objectid = inode_objectid;
1175                        search_key.type = BTRFS_INODE_EXTREF_KEY;
1176                        search_key.offset = btrfs_extref_hash(parent_objectid,
1177                                                              victim_name,
1178                                                              victim_name_len);
1179                        ret = backref_in_log(log_root, &search_key,
1180                                             parent_objectid, victim_name,
1181                                             victim_name_len);
1182                        if (ret < 0) {
1183                                kfree(victim_name);
1184                                return ret;
1185                        } else if (!ret) {
1186                                ret = -ENOENT;
1187                                victim_parent = read_one_inode(root,
1188                                                parent_objectid);
1189                                if (victim_parent) {
1190                                        inc_nlink(&inode->vfs_inode);
1191                                        btrfs_release_path(path);
1192
1193                                        ret = unlink_inode_for_log_replay(trans,
1194                                                        BTRFS_I(victim_parent),
1195                                                        inode,
1196                                                        victim_name,
1197                                                        victim_name_len);
1198                                }
1199                                iput(victim_parent);
1200                                kfree(victim_name);
1201                                if (ret)
1202                                        return ret;
1203                                *search_done = 1;
1204                                goto again;
1205                        }
1206                        kfree(victim_name);
1207next:
1208                        cur_offset += victim_name_len + sizeof(*extref);
1209                }
1210                *search_done = 1;
1211        }
1212        btrfs_release_path(path);
1213
1214        /* look for a conflicting sequence number */
1215        di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1216                                         ref_index, name, namelen, 0);
1217        if (IS_ERR(di)) {
1218                return PTR_ERR(di);
1219        } else if (di) {
1220                ret = drop_one_dir_item(trans, path, dir, di);
1221                if (ret)
1222                        return ret;
1223        }
1224        btrfs_release_path(path);
1225
1226        /* look for a conflicting name */
1227        di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1228                                   name, namelen, 0);
1229        if (IS_ERR(di)) {
1230                return PTR_ERR(di);
1231        } else if (di) {
1232                ret = drop_one_dir_item(trans, path, dir, di);
1233                if (ret)
1234                        return ret;
1235        }
1236        btrfs_release_path(path);
1237
1238        return 0;
1239}
1240
1241static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1242                             u32 *namelen, char **name, u64 *index,
1243                             u64 *parent_objectid)
1244{
1245        struct btrfs_inode_extref *extref;
1246
1247        extref = (struct btrfs_inode_extref *)ref_ptr;
1248
1249        *namelen = btrfs_inode_extref_name_len(eb, extref);
1250        *name = kmalloc(*namelen, GFP_NOFS);
1251        if (*name == NULL)
1252                return -ENOMEM;
1253
1254        read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1255                           *namelen);
1256
1257        if (index)
1258                *index = btrfs_inode_extref_index(eb, extref);
1259        if (parent_objectid)
1260                *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1261
1262        return 0;
1263}
1264
1265static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1266                          u32 *namelen, char **name, u64 *index)
1267{
1268        struct btrfs_inode_ref *ref;
1269
1270        ref = (struct btrfs_inode_ref *)ref_ptr;
1271
1272        *namelen = btrfs_inode_ref_name_len(eb, ref);
1273        *name = kmalloc(*namelen, GFP_NOFS);
1274        if (*name == NULL)
1275                return -ENOMEM;
1276
1277        read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1278
1279        if (index)
1280                *index = btrfs_inode_ref_index(eb, ref);
1281
1282        return 0;
1283}
1284
1285/*
1286 * Take an inode reference item from the log tree and iterate all names from the
1287 * inode reference item in the subvolume tree with the same key (if it exists).
1288 * For any name that is not in the inode reference item from the log tree, do a
1289 * proper unlink of that name (that is, remove its entry from the inode
1290 * reference item and both dir index keys).
1291 */
1292static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1293                                 struct btrfs_root *root,
1294                                 struct btrfs_path *path,
1295                                 struct btrfs_inode *inode,
1296                                 struct extent_buffer *log_eb,
1297                                 int log_slot,
1298                                 struct btrfs_key *key)
1299{
1300        int ret;
1301        unsigned long ref_ptr;
1302        unsigned long ref_end;
1303        struct extent_buffer *eb;
1304
1305again:
1306        btrfs_release_path(path);
1307        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1308        if (ret > 0) {
1309                ret = 0;
1310                goto out;
1311        }
1312        if (ret < 0)
1313                goto out;
1314
1315        eb = path->nodes[0];
1316        ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1317        ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1318        while (ref_ptr < ref_end) {
1319                char *name = NULL;
1320                int namelen;
1321                u64 parent_id;
1322
1323                if (key->type == BTRFS_INODE_EXTREF_KEY) {
1324                        ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1325                                                NULL, &parent_id);
1326                } else {
1327                        parent_id = key->offset;
1328                        ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1329                                             NULL);
1330                }
1331                if (ret)
1332                        goto out;
1333
1334                if (key->type == BTRFS_INODE_EXTREF_KEY)
1335                        ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1336                                                               parent_id, name,
1337                                                               namelen);
1338                else
1339                        ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1340                                                           name, namelen);
1341
1342                if (!ret) {
1343                        struct inode *dir;
1344
1345                        btrfs_release_path(path);
1346                        dir = read_one_inode(root, parent_id);
1347                        if (!dir) {
1348                                ret = -ENOENT;
1349                                kfree(name);
1350                                goto out;
1351                        }
1352                        ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1353                                                 inode, name, namelen);
1354                        kfree(name);
1355                        iput(dir);
1356                        if (ret)
1357                                goto out;
1358                        goto again;
1359                }
1360
1361                kfree(name);
1362                ref_ptr += namelen;
1363                if (key->type == BTRFS_INODE_EXTREF_KEY)
1364                        ref_ptr += sizeof(struct btrfs_inode_extref);
1365                else
1366                        ref_ptr += sizeof(struct btrfs_inode_ref);
1367        }
1368        ret = 0;
1369 out:
1370        btrfs_release_path(path);
1371        return ret;
1372}
1373
1374static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1375                                  const u8 ref_type, const char *name,
1376                                  const int namelen)
1377{
1378        struct btrfs_key key;
1379        struct btrfs_path *path;
1380        const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1381        int ret;
1382
1383        path = btrfs_alloc_path();
1384        if (!path)
1385                return -ENOMEM;
1386
1387        key.objectid = btrfs_ino(BTRFS_I(inode));
1388        key.type = ref_type;
1389        if (key.type == BTRFS_INODE_REF_KEY)
1390                key.offset = parent_id;
1391        else
1392                key.offset = btrfs_extref_hash(parent_id, name, namelen);
1393
1394        ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1395        if (ret < 0)
1396                goto out;
1397        if (ret > 0) {
1398                ret = 0;
1399                goto out;
1400        }
1401        if (key.type == BTRFS_INODE_EXTREF_KEY)
1402                ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1403                                path->slots[0], parent_id, name, namelen);
1404        else
1405                ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1406                                                   name, namelen);
1407
1408out:
1409        btrfs_free_path(path);
1410        return ret;
1411}
1412
1413static int add_link(struct btrfs_trans_handle *trans,
1414                    struct inode *dir, struct inode *inode, const char *name,
1415                    int namelen, u64 ref_index)
1416{
1417        struct btrfs_root *root = BTRFS_I(dir)->root;
1418        struct btrfs_dir_item *dir_item;
1419        struct btrfs_key key;
1420        struct btrfs_path *path;
1421        struct inode *other_inode = NULL;
1422        int ret;
1423
1424        path = btrfs_alloc_path();
1425        if (!path)
1426                return -ENOMEM;
1427
1428        dir_item = btrfs_lookup_dir_item(NULL, root, path,
1429                                         btrfs_ino(BTRFS_I(dir)),
1430                                         name, namelen, 0);
1431        if (!dir_item) {
1432                btrfs_release_path(path);
1433                goto add_link;
1434        } else if (IS_ERR(dir_item)) {
1435                ret = PTR_ERR(dir_item);
1436                goto out;
1437        }
1438
1439        /*
1440         * Our inode's dentry collides with the dentry of another inode which is
1441         * in the log but not yet processed since it has a higher inode number.
1442         * So delete that other dentry.
1443         */
1444        btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1445        btrfs_release_path(path);
1446        other_inode = read_one_inode(root, key.objectid);
1447        if (!other_inode) {
1448                ret = -ENOENT;
1449                goto out;
1450        }
1451        ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(other_inode),
1452                                          name, namelen);
1453        if (ret)
1454                goto out;
1455        /*
1456         * If we dropped the link count to 0, bump it so that later the iput()
1457         * on the inode will not free it. We will fixup the link count later.
1458         */
1459        if (other_inode->i_nlink == 0)
1460                inc_nlink(other_inode);
1461add_link:
1462        ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1463                             name, namelen, 0, ref_index);
1464out:
1465        iput(other_inode);
1466        btrfs_free_path(path);
1467
1468        return ret;
1469}
1470
1471/*
1472 * replay one inode back reference item found in the log tree.
1473 * eb, slot and key refer to the buffer and key found in the log tree.
1474 * root is the destination we are replaying into, and path is for temp
1475 * use by this function.  (it should be released on return).
1476 */
1477static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1478                                  struct btrfs_root *root,
1479                                  struct btrfs_root *log,
1480                                  struct btrfs_path *path,
1481                                  struct extent_buffer *eb, int slot,
1482                                  struct btrfs_key *key)
1483{
1484        struct inode *dir = NULL;
1485        struct inode *inode = NULL;
1486        unsigned long ref_ptr;
1487        unsigned long ref_end;
1488        char *name = NULL;
1489        int namelen;
1490        int ret;
1491        int search_done = 0;
1492        int log_ref_ver = 0;
1493        u64 parent_objectid;
1494        u64 inode_objectid;
1495        u64 ref_index = 0;
1496        int ref_struct_size;
1497
1498        ref_ptr = btrfs_item_ptr_offset(eb, slot);
1499        ref_end = ref_ptr + btrfs_item_size(eb, slot);
1500
1501        if (key->type == BTRFS_INODE_EXTREF_KEY) {
1502                struct btrfs_inode_extref *r;
1503
1504                ref_struct_size = sizeof(struct btrfs_inode_extref);
1505                log_ref_ver = 1;
1506                r = (struct btrfs_inode_extref *)ref_ptr;
1507                parent_objectid = btrfs_inode_extref_parent(eb, r);
1508        } else {
1509                ref_struct_size = sizeof(struct btrfs_inode_ref);
1510                parent_objectid = key->offset;
1511        }
1512        inode_objectid = key->objectid;
1513
1514        /*
1515         * it is possible that we didn't log all the parent directories
1516         * for a given inode.  If we don't find the dir, just don't
1517         * copy the back ref in.  The link count fixup code will take
1518         * care of the rest
1519         */
1520        dir = read_one_inode(root, parent_objectid);
1521        if (!dir) {
1522                ret = -ENOENT;
1523                goto out;
1524        }
1525
1526        inode = read_one_inode(root, inode_objectid);
1527        if (!inode) {
1528                ret = -EIO;
1529                goto out;
1530        }
1531
1532        while (ref_ptr < ref_end) {
1533                if (log_ref_ver) {
1534                        ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1535                                                &ref_index, &parent_objectid);
1536                        /*
1537                         * parent object can change from one array
1538                         * item to another.
1539                         */
1540                        if (!dir)
1541                                dir = read_one_inode(root, parent_objectid);
1542                        if (!dir) {
1543                                ret = -ENOENT;
1544                                goto out;
1545                        }
1546                } else {
1547                        ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1548                                             &ref_index);
1549                }
1550                if (ret)
1551                        goto out;
1552
1553                ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1554                                   btrfs_ino(BTRFS_I(inode)), ref_index,
1555                                   name, namelen);
1556                if (ret < 0) {
1557                        goto out;
1558                } else if (ret == 0) {
1559                        /*
1560                         * look for a conflicting back reference in the
1561                         * metadata. if we find one we have to unlink that name
1562                         * of the file before we add our new link.  Later on, we
1563                         * overwrite any existing back reference, and we don't
1564                         * want to create dangling pointers in the directory.
1565                         */
1566
1567                        if (!search_done) {
1568                                ret = __add_inode_ref(trans, root, path, log,
1569                                                      BTRFS_I(dir),
1570                                                      BTRFS_I(inode),
1571                                                      inode_objectid,
1572                                                      parent_objectid,
1573                                                      ref_index, name, namelen,
1574                                                      &search_done);
1575                                if (ret) {
1576                                        if (ret == 1)
1577                                                ret = 0;
1578                                        goto out;
1579                                }
1580                        }
1581
1582                        /*
1583                         * If a reference item already exists for this inode
1584                         * with the same parent and name, but different index,
1585                         * drop it and the corresponding directory index entries
1586                         * from the parent before adding the new reference item
1587                         * and dir index entries, otherwise we would fail with
1588                         * -EEXIST returned from btrfs_add_link() below.
1589                         */
1590                        ret = btrfs_inode_ref_exists(inode, dir, key->type,
1591                                                     name, namelen);
1592                        if (ret > 0) {
1593                                ret = unlink_inode_for_log_replay(trans,
1594                                                         BTRFS_I(dir),
1595                                                         BTRFS_I(inode),
1596                                                         name, namelen);
1597                                /*
1598                                 * If we dropped the link count to 0, bump it so
1599                                 * that later the iput() on the inode will not
1600                                 * free it. We will fixup the link count later.
1601                                 */
1602                                if (!ret && inode->i_nlink == 0)
1603                                        inc_nlink(inode);
1604                        }
1605                        if (ret < 0)
1606                                goto out;
1607
1608                        /* insert our name */
1609                        ret = add_link(trans, dir, inode, name, namelen,
1610                                       ref_index);
1611                        if (ret)
1612                                goto out;
1613
1614                        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1615                        if (ret)
1616                                goto out;
1617                }
1618                /* Else, ret == 1, we already have a perfect match, we're done. */
1619
1620                ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1621                kfree(name);
1622                name = NULL;
1623                if (log_ref_ver) {
1624                        iput(dir);
1625                        dir = NULL;
1626                }
1627        }
1628
1629        /*
1630         * Before we overwrite the inode reference item in the subvolume tree
1631         * with the item from the log tree, we must unlink all names from the
1632         * parent directory that are in the subvolume's tree inode reference
1633         * item, otherwise we end up with an inconsistent subvolume tree where
1634         * dir index entries exist for a name but there is no inode reference
1635         * item with the same name.
1636         */
1637        ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1638                                    key);
1639        if (ret)
1640                goto out;
1641
1642        /* finally write the back reference in the inode */
1643        ret = overwrite_item(trans, root, path, eb, slot, key);
1644out:
1645        btrfs_release_path(path);
1646        kfree(name);
1647        iput(dir);
1648        iput(inode);
1649        return ret;
1650}
1651
1652static int count_inode_extrefs(struct btrfs_root *root,
1653                struct btrfs_inode *inode, struct btrfs_path *path)
1654{
1655        int ret = 0;
1656        int name_len;
1657        unsigned int nlink = 0;
1658        u32 item_size;
1659        u32 cur_offset = 0;
1660        u64 inode_objectid = btrfs_ino(inode);
1661        u64 offset = 0;
1662        unsigned long ptr;
1663        struct btrfs_inode_extref *extref;
1664        struct extent_buffer *leaf;
1665
1666        while (1) {
1667                ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1668                                            &extref, &offset);
1669                if (ret)
1670                        break;
1671
1672                leaf = path->nodes[0];
1673                item_size = btrfs_item_size(leaf, path->slots[0]);
1674                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1675                cur_offset = 0;
1676
1677                while (cur_offset < item_size) {
1678                        extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1679                        name_len = btrfs_inode_extref_name_len(leaf, extref);
1680
1681                        nlink++;
1682
1683                        cur_offset += name_len + sizeof(*extref);
1684                }
1685
1686                offset++;
1687                btrfs_release_path(path);
1688        }
1689        btrfs_release_path(path);
1690
1691        if (ret < 0 && ret != -ENOENT)
1692                return ret;
1693        return nlink;
1694}
1695
1696static int count_inode_refs(struct btrfs_root *root,
1697                        struct btrfs_inode *inode, struct btrfs_path *path)
1698{
1699        int ret;
1700        struct btrfs_key key;
1701        unsigned int nlink = 0;
1702        unsigned long ptr;
1703        unsigned long ptr_end;
1704        int name_len;
1705        u64 ino = btrfs_ino(inode);
1706
1707        key.objectid = ino;
1708        key.type = BTRFS_INODE_REF_KEY;
1709        key.offset = (u64)-1;
1710
1711        while (1) {
1712                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1713                if (ret < 0)
1714                        break;
1715                if (ret > 0) {
1716                        if (path->slots[0] == 0)
1717                                break;
1718                        path->slots[0]--;
1719                }
1720process_slot:
1721                btrfs_item_key_to_cpu(path->nodes[0], &key,
1722                                      path->slots[0]);
1723                if (key.objectid != ino ||
1724                    key.type != BTRFS_INODE_REF_KEY)
1725                        break;
1726                ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1727                ptr_end = ptr + btrfs_item_size(path->nodes[0],
1728                                                   path->slots[0]);
1729                while (ptr < ptr_end) {
1730                        struct btrfs_inode_ref *ref;
1731
1732                        ref = (struct btrfs_inode_ref *)ptr;
1733                        name_len = btrfs_inode_ref_name_len(path->nodes[0],
1734                                                            ref);
1735                        ptr = (unsigned long)(ref + 1) + name_len;
1736                        nlink++;
1737                }
1738
1739                if (key.offset == 0)
1740                        break;
1741                if (path->slots[0] > 0) {
1742                        path->slots[0]--;
1743                        goto process_slot;
1744                }
1745                key.offset--;
1746                btrfs_release_path(path);
1747        }
1748        btrfs_release_path(path);
1749
1750        return nlink;
1751}
1752
1753/*
1754 * There are a few corners where the link count of the file can't
1755 * be properly maintained during replay.  So, instead of adding
1756 * lots of complexity to the log code, we just scan the backrefs
1757 * for any file that has been through replay.
1758 *
1759 * The scan will update the link count on the inode to reflect the
1760 * number of back refs found.  If it goes down to zero, the iput
1761 * will free the inode.
1762 */
1763static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1764                                           struct btrfs_root *root,
1765                                           struct inode *inode)
1766{
1767        struct btrfs_path *path;
1768        int ret;
1769        u64 nlink = 0;
1770        u64 ino = btrfs_ino(BTRFS_I(inode));
1771
1772        path = btrfs_alloc_path();
1773        if (!path)
1774                return -ENOMEM;
1775
1776        ret = count_inode_refs(root, BTRFS_I(inode), path);
1777        if (ret < 0)
1778                goto out;
1779
1780        nlink = ret;
1781
1782        ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1783        if (ret < 0)
1784                goto out;
1785
1786        nlink += ret;
1787
1788        ret = 0;
1789
1790        if (nlink != inode->i_nlink) {
1791                set_nlink(inode, nlink);
1792                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1793                if (ret)
1794                        goto out;
1795        }
1796        BTRFS_I(inode)->index_cnt = (u64)-1;
1797
1798        if (inode->i_nlink == 0) {
1799                if (S_ISDIR(inode->i_mode)) {
1800                        ret = replay_dir_deletes(trans, root, NULL, path,
1801                                                 ino, 1);
1802                        if (ret)
1803                                goto out;
1804                }
1805                ret = btrfs_insert_orphan_item(trans, root, ino);
1806                if (ret == -EEXIST)
1807                        ret = 0;
1808        }
1809
1810out:
1811        btrfs_free_path(path);
1812        return ret;
1813}
1814
1815static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1816                                            struct btrfs_root *root,
1817                                            struct btrfs_path *path)
1818{
1819        int ret;
1820        struct btrfs_key key;
1821        struct inode *inode;
1822
1823        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1824        key.type = BTRFS_ORPHAN_ITEM_KEY;
1825        key.offset = (u64)-1;
1826        while (1) {
1827                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1828                if (ret < 0)
1829                        break;
1830
1831                if (ret == 1) {
1832                        ret = 0;
1833                        if (path->slots[0] == 0)
1834                                break;
1835                        path->slots[0]--;
1836                }
1837
1838                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1839                if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1840                    key.type != BTRFS_ORPHAN_ITEM_KEY)
1841                        break;
1842
1843                ret = btrfs_del_item(trans, root, path);
1844                if (ret)
1845                        break;
1846
1847                btrfs_release_path(path);
1848                inode = read_one_inode(root, key.offset);
1849                if (!inode) {
1850                        ret = -EIO;
1851                        break;
1852                }
1853
1854                ret = fixup_inode_link_count(trans, root, inode);
1855                iput(inode);
1856                if (ret)
1857                        break;
1858
1859                /*
1860                 * fixup on a directory may create new entries,
1861                 * make sure we always look for the highset possible
1862                 * offset
1863                 */
1864                key.offset = (u64)-1;
1865        }
1866        btrfs_release_path(path);
1867        return ret;
1868}
1869
1870
1871/*
1872 * record a given inode in the fixup dir so we can check its link
1873 * count when replay is done.  The link count is incremented here
1874 * so the inode won't go away until we check it
1875 */
1876static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1877                                      struct btrfs_root *root,
1878                                      struct btrfs_path *path,
1879                                      u64 objectid)
1880{
1881        struct btrfs_key key;
1882        int ret = 0;
1883        struct inode *inode;
1884
1885        inode = read_one_inode(root, objectid);
1886        if (!inode)
1887                return -EIO;
1888
1889        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1890        key.type = BTRFS_ORPHAN_ITEM_KEY;
1891        key.offset = objectid;
1892
1893        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1894
1895        btrfs_release_path(path);
1896        if (ret == 0) {
1897                if (!inode->i_nlink)
1898                        set_nlink(inode, 1);
1899                else
1900                        inc_nlink(inode);
1901                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1902        } else if (ret == -EEXIST) {
1903                ret = 0;
1904        }
1905        iput(inode);
1906
1907        return ret;
1908}
1909
1910/*
1911 * when replaying the log for a directory, we only insert names
1912 * for inodes that actually exist.  This means an fsync on a directory
1913 * does not implicitly fsync all the new files in it
1914 */
1915static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1916                                    struct btrfs_root *root,
1917                                    u64 dirid, u64 index,
1918                                    char *name, int name_len,
1919                                    struct btrfs_key *location)
1920{
1921        struct inode *inode;
1922        struct inode *dir;
1923        int ret;
1924
1925        inode = read_one_inode(root, location->objectid);
1926        if (!inode)
1927                return -ENOENT;
1928
1929        dir = read_one_inode(root, dirid);
1930        if (!dir) {
1931                iput(inode);
1932                return -EIO;
1933        }
1934
1935        ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1936                        name_len, 1, index);
1937
1938        /* FIXME, put inode into FIXUP list */
1939
1940        iput(inode);
1941        iput(dir);
1942        return ret;
1943}
1944
1945static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1946                                        struct btrfs_inode *dir,
1947                                        struct btrfs_path *path,
1948                                        struct btrfs_dir_item *dst_di,
1949                                        const struct btrfs_key *log_key,
1950                                        u8 log_type,
1951                                        bool exists)
1952{
1953        struct btrfs_key found_key;
1954
1955        btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1956        /* The existing dentry points to the same inode, don't delete it. */
1957        if (found_key.objectid == log_key->objectid &&
1958            found_key.type == log_key->type &&
1959            found_key.offset == log_key->offset &&
1960            btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1961                return 1;
1962
1963        /*
1964         * Don't drop the conflicting directory entry if the inode for the new
1965         * entry doesn't exist.
1966         */
1967        if (!exists)
1968                return 0;
1969
1970        return drop_one_dir_item(trans, path, dir, dst_di);
1971}
1972
1973/*
1974 * take a single entry in a log directory item and replay it into
1975 * the subvolume.
1976 *
1977 * if a conflicting item exists in the subdirectory already,
1978 * the inode it points to is unlinked and put into the link count
1979 * fix up tree.
1980 *
1981 * If a name from the log points to a file or directory that does
1982 * not exist in the FS, it is skipped.  fsyncs on directories
1983 * do not force down inodes inside that directory, just changes to the
1984 * names or unlinks in a directory.
1985 *
1986 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1987 * non-existing inode) and 1 if the name was replayed.
1988 */
1989static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1990                                    struct btrfs_root *root,
1991                                    struct btrfs_path *path,
1992                                    struct extent_buffer *eb,
1993                                    struct btrfs_dir_item *di,
1994                                    struct btrfs_key *key)
1995{
1996        char *name;
1997        int name_len;
1998        struct btrfs_dir_item *dir_dst_di;
1999        struct btrfs_dir_item *index_dst_di;
2000        bool dir_dst_matches = false;
2001        bool index_dst_matches = false;
2002        struct btrfs_key log_key;
2003        struct btrfs_key search_key;
2004        struct inode *dir;
2005        u8 log_type;
2006        bool exists;
2007        int ret;
2008        bool update_size = true;
2009        bool name_added = false;
2010
2011        dir = read_one_inode(root, key->objectid);
2012        if (!dir)
2013                return -EIO;
2014
2015        name_len = btrfs_dir_name_len(eb, di);
2016        name = kmalloc(name_len, GFP_NOFS);
2017        if (!name) {
2018                ret = -ENOMEM;
2019                goto out;
2020        }
2021
2022        log_type = btrfs_dir_type(eb, di);
2023        read_extent_buffer(eb, name, (unsigned long)(di + 1),
2024                   name_len);
2025
2026        btrfs_dir_item_key_to_cpu(eb, di, &log_key);
2027        ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
2028        btrfs_release_path(path);
2029        if (ret < 0)
2030                goto out;
2031        exists = (ret == 0);
2032        ret = 0;
2033
2034        dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2035                                           name, name_len, 1);
2036        if (IS_ERR(dir_dst_di)) {
2037                ret = PTR_ERR(dir_dst_di);
2038                goto out;
2039        } else if (dir_dst_di) {
2040                ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2041                                                   dir_dst_di, &log_key, log_type,
2042                                                   exists);
2043                if (ret < 0)
2044                        goto out;
2045                dir_dst_matches = (ret == 1);
2046        }
2047
2048        btrfs_release_path(path);
2049
2050        index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2051                                                   key->objectid, key->offset,
2052                                                   name, name_len, 1);
2053        if (IS_ERR(index_dst_di)) {
2054                ret = PTR_ERR(index_dst_di);
2055                goto out;
2056        } else if (index_dst_di) {
2057                ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2058                                                   index_dst_di, &log_key,
2059                                                   log_type, exists);
2060                if (ret < 0)
2061                        goto out;
2062                index_dst_matches = (ret == 1);
2063        }
2064
2065        btrfs_release_path(path);
2066
2067        if (dir_dst_matches && index_dst_matches) {
2068                ret = 0;
2069                update_size = false;
2070                goto out;
2071        }
2072
2073        /*
2074         * Check if the inode reference exists in the log for the given name,
2075         * inode and parent inode
2076         */
2077        search_key.objectid = log_key.objectid;
2078        search_key.type = BTRFS_INODE_REF_KEY;
2079        search_key.offset = key->objectid;
2080        ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
2081        if (ret < 0) {
2082                goto out;
2083        } else if (ret) {
2084                /* The dentry will be added later. */
2085                ret = 0;
2086                update_size = false;
2087                goto out;
2088        }
2089
2090        search_key.objectid = log_key.objectid;
2091        search_key.type = BTRFS_INODE_EXTREF_KEY;
2092        search_key.offset = key->objectid;
2093        ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
2094                             name_len);
2095        if (ret < 0) {
2096                goto out;
2097        } else if (ret) {
2098                /* The dentry will be added later. */
2099                ret = 0;
2100                update_size = false;
2101                goto out;
2102        }
2103        btrfs_release_path(path);
2104        ret = insert_one_name(trans, root, key->objectid, key->offset,
2105                              name, name_len, &log_key);
2106        if (ret && ret != -ENOENT && ret != -EEXIST)
2107                goto out;
2108        if (!ret)
2109                name_added = true;
2110        update_size = false;
2111        ret = 0;
2112
2113out:
2114        if (!ret && update_size) {
2115                btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2116                ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2117        }
2118        kfree(name);
2119        iput(dir);
2120        if (!ret && name_added)
2121                ret = 1;
2122        return ret;
2123}
2124
2125/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
2126static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2127                                        struct btrfs_root *root,
2128                                        struct btrfs_path *path,
2129                                        struct extent_buffer *eb, int slot,
2130                                        struct btrfs_key *key)
2131{
2132        int ret;
2133        struct btrfs_dir_item *di;
2134
2135        /* We only log dir index keys, which only contain a single dir item. */
2136        ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
2137
2138        di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2139        ret = replay_one_name(trans, root, path, eb, di, key);
2140        if (ret < 0)
2141                return ret;
2142
2143        /*
2144         * If this entry refers to a non-directory (directories can not have a
2145         * link count > 1) and it was added in the transaction that was not
2146         * committed, make sure we fixup the link count of the inode the entry
2147         * points to. Otherwise something like the following would result in a
2148         * directory pointing to an inode with a wrong link that does not account
2149         * for this dir entry:
2150         *
2151         * mkdir testdir
2152         * touch testdir/foo
2153         * touch testdir/bar
2154         * sync
2155         *
2156         * ln testdir/bar testdir/bar_link
2157         * ln testdir/foo testdir/foo_link
2158         * xfs_io -c "fsync" testdir/bar
2159         *
2160         * <power failure>
2161         *
2162         * mount fs, log replay happens
2163         *
2164         * File foo would remain with a link count of 1 when it has two entries
2165         * pointing to it in the directory testdir. This would make it impossible
2166         * to ever delete the parent directory has it would result in stale
2167         * dentries that can never be deleted.
2168         */
2169        if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2170                struct btrfs_path *fixup_path;
2171                struct btrfs_key di_key;
2172
2173                fixup_path = btrfs_alloc_path();
2174                if (!fixup_path)
2175                        return -ENOMEM;
2176
2177                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2178                ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2179                btrfs_free_path(fixup_path);
2180        }
2181
2182        return ret;
2183}
2184
2185/*
2186 * directory replay has two parts.  There are the standard directory
2187 * items in the log copied from the subvolume, and range items
2188 * created in the log while the subvolume was logged.
2189 *
2190 * The range items tell us which parts of the key space the log
2191 * is authoritative for.  During replay, if a key in the subvolume
2192 * directory is in a logged range item, but not actually in the log
2193 * that means it was deleted from the directory before the fsync
2194 * and should be removed.
2195 */
2196static noinline int find_dir_range(struct btrfs_root *root,
2197                                   struct btrfs_path *path,
2198                                   u64 dirid,
2199                                   u64 *start_ret, u64 *end_ret)
2200{
2201        struct btrfs_key key;
2202        u64 found_end;
2203        struct btrfs_dir_log_item *item;
2204        int ret;
2205        int nritems;
2206
2207        if (*start_ret == (u64)-1)
2208                return 1;
2209
2210        key.objectid = dirid;
2211        key.type = BTRFS_DIR_LOG_INDEX_KEY;
2212        key.offset = *start_ret;
2213
2214        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2215        if (ret < 0)
2216                goto out;
2217        if (ret > 0) {
2218                if (path->slots[0] == 0)
2219                        goto out;
2220                path->slots[0]--;
2221        }
2222        if (ret != 0)
2223                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2224
2225        if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2226                ret = 1;
2227                goto next;
2228        }
2229        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2230                              struct btrfs_dir_log_item);
2231        found_end = btrfs_dir_log_end(path->nodes[0], item);
2232
2233        if (*start_ret >= key.offset && *start_ret <= found_end) {
2234                ret = 0;
2235                *start_ret = key.offset;
2236                *end_ret = found_end;
2237                goto out;
2238        }
2239        ret = 1;
2240next:
2241        /* check the next slot in the tree to see if it is a valid item */
2242        nritems = btrfs_header_nritems(path->nodes[0]);
2243        path->slots[0]++;
2244        if (path->slots[0] >= nritems) {
2245                ret = btrfs_next_leaf(root, path);
2246                if (ret)
2247                        goto out;
2248        }
2249
2250        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2251
2252        if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2253                ret = 1;
2254                goto out;
2255        }
2256        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2257                              struct btrfs_dir_log_item);
2258        found_end = btrfs_dir_log_end(path->nodes[0], item);
2259        *start_ret = key.offset;
2260        *end_ret = found_end;
2261        ret = 0;
2262out:
2263        btrfs_release_path(path);
2264        return ret;
2265}
2266
2267/*
2268 * this looks for a given directory item in the log.  If the directory
2269 * item is not in the log, the item is removed and the inode it points
2270 * to is unlinked
2271 */
2272static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2273                                      struct btrfs_root *log,
2274                                      struct btrfs_path *path,
2275                                      struct btrfs_path *log_path,
2276                                      struct inode *dir,
2277                                      struct btrfs_key *dir_key)
2278{
2279        struct btrfs_root *root = BTRFS_I(dir)->root;
2280        int ret;
2281        struct extent_buffer *eb;
2282        int slot;
2283        struct btrfs_dir_item *di;
2284        int name_len;
2285        char *name;
2286        struct inode *inode = NULL;
2287        struct btrfs_key location;
2288
2289        /*
2290         * Currenly we only log dir index keys. Even if we replay a log created
2291         * by an older kernel that logged both dir index and dir item keys, all
2292         * we need to do is process the dir index keys, we (and our caller) can
2293         * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2294         */
2295        ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2296
2297        eb = path->nodes[0];
2298        slot = path->slots[0];
2299        di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2300        name_len = btrfs_dir_name_len(eb, di);
2301        name = kmalloc(name_len, GFP_NOFS);
2302        if (!name) {
2303                ret = -ENOMEM;
2304                goto out;
2305        }
2306
2307        read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
2308
2309        if (log) {
2310                struct btrfs_dir_item *log_di;
2311
2312                log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2313                                                     dir_key->objectid,
2314                                                     dir_key->offset,
2315                                                     name, name_len, 0);
2316                if (IS_ERR(log_di)) {
2317                        ret = PTR_ERR(log_di);
2318                        goto out;
2319                } else if (log_di) {
2320                        /* The dentry exists in the log, we have nothing to do. */
2321                        ret = 0;
2322                        goto out;
2323                }
2324        }
2325
2326        btrfs_dir_item_key_to_cpu(eb, di, &location);
2327        btrfs_release_path(path);
2328        btrfs_release_path(log_path);
2329        inode = read_one_inode(root, location.objectid);
2330        if (!inode) {
2331                ret = -EIO;
2332                goto out;
2333        }
2334
2335        ret = link_to_fixup_dir(trans, root, path, location.objectid);
2336        if (ret)
2337                goto out;
2338
2339        inc_nlink(inode);
2340        ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2341                                          name, name_len);
2342        /*
2343         * Unlike dir item keys, dir index keys can only have one name (entry) in
2344         * them, as there are no key collisions since each key has a unique offset
2345         * (an index number), so we're done.
2346         */
2347out:
2348        btrfs_release_path(path);
2349        btrfs_release_path(log_path);
2350        kfree(name);
2351        iput(inode);
2352        return ret;
2353}
2354
2355static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2356                              struct btrfs_root *root,
2357                              struct btrfs_root *log,
2358                              struct btrfs_path *path,
2359                              const u64 ino)
2360{
2361        struct btrfs_key search_key;
2362        struct btrfs_path *log_path;
2363        int i;
2364        int nritems;
2365        int ret;
2366
2367        log_path = btrfs_alloc_path();
2368        if (!log_path)
2369                return -ENOMEM;
2370
2371        search_key.objectid = ino;
2372        search_key.type = BTRFS_XATTR_ITEM_KEY;
2373        search_key.offset = 0;
2374again:
2375        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2376        if (ret < 0)
2377                goto out;
2378process_leaf:
2379        nritems = btrfs_header_nritems(path->nodes[0]);
2380        for (i = path->slots[0]; i < nritems; i++) {
2381                struct btrfs_key key;
2382                struct btrfs_dir_item *di;
2383                struct btrfs_dir_item *log_di;
2384                u32 total_size;
2385                u32 cur;
2386
2387                btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2388                if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2389                        ret = 0;
2390                        goto out;
2391                }
2392
2393                di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2394                total_size = btrfs_item_size(path->nodes[0], i);
2395                cur = 0;
2396                while (cur < total_size) {
2397                        u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2398                        u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2399                        u32 this_len = sizeof(*di) + name_len + data_len;
2400                        char *name;
2401
2402                        name = kmalloc(name_len, GFP_NOFS);
2403                        if (!name) {
2404                                ret = -ENOMEM;
2405                                goto out;
2406                        }
2407                        read_extent_buffer(path->nodes[0], name,
2408                                           (unsigned long)(di + 1), name_len);
2409
2410                        log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2411                                                    name, name_len, 0);
2412                        btrfs_release_path(log_path);
2413                        if (!log_di) {
2414                                /* Doesn't exist in log tree, so delete it. */
2415                                btrfs_release_path(path);
2416                                di = btrfs_lookup_xattr(trans, root, path, ino,
2417                                                        name, name_len, -1);
2418                                kfree(name);
2419                                if (IS_ERR(di)) {
2420                                        ret = PTR_ERR(di);
2421                                        goto out;
2422                                }
2423                                ASSERT(di);
2424                                ret = btrfs_delete_one_dir_name(trans, root,
2425                                                                path, di);
2426                                if (ret)
2427                                        goto out;
2428                                btrfs_release_path(path);
2429                                search_key = key;
2430                                goto again;
2431                        }
2432                        kfree(name);
2433                        if (IS_ERR(log_di)) {
2434                                ret = PTR_ERR(log_di);
2435                                goto out;
2436                        }
2437                        cur += this_len;
2438                        di = (struct btrfs_dir_item *)((char *)di + this_len);
2439                }
2440        }
2441        ret = btrfs_next_leaf(root, path);
2442        if (ret > 0)
2443                ret = 0;
2444        else if (ret == 0)
2445                goto process_leaf;
2446out:
2447        btrfs_free_path(log_path);
2448        btrfs_release_path(path);
2449        return ret;
2450}
2451
2452
2453/*
2454 * deletion replay happens before we copy any new directory items
2455 * out of the log or out of backreferences from inodes.  It
2456 * scans the log to find ranges of keys that log is authoritative for,
2457 * and then scans the directory to find items in those ranges that are
2458 * not present in the log.
2459 *
2460 * Anything we don't find in the log is unlinked and removed from the
2461 * directory.
2462 */
2463static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2464                                       struct btrfs_root *root,
2465                                       struct btrfs_root *log,
2466                                       struct btrfs_path *path,
2467                                       u64 dirid, int del_all)
2468{
2469        u64 range_start;
2470        u64 range_end;
2471        int ret = 0;
2472        struct btrfs_key dir_key;
2473        struct btrfs_key found_key;
2474        struct btrfs_path *log_path;
2475        struct inode *dir;
2476
2477        dir_key.objectid = dirid;
2478        dir_key.type = BTRFS_DIR_INDEX_KEY;
2479        log_path = btrfs_alloc_path();
2480        if (!log_path)
2481                return -ENOMEM;
2482
2483        dir = read_one_inode(root, dirid);
2484        /* it isn't an error if the inode isn't there, that can happen
2485         * because we replay the deletes before we copy in the inode item
2486         * from the log
2487         */
2488        if (!dir) {
2489                btrfs_free_path(log_path);
2490                return 0;
2491        }
2492
2493        range_start = 0;
2494        range_end = 0;
2495        while (1) {
2496                if (del_all)
2497                        range_end = (u64)-1;
2498                else {
2499                        ret = find_dir_range(log, path, dirid,
2500                                             &range_start, &range_end);
2501                        if (ret < 0)
2502                                goto out;
2503                        else if (ret > 0)
2504                                break;
2505                }
2506
2507                dir_key.offset = range_start;
2508                while (1) {
2509                        int nritems;
2510                        ret = btrfs_search_slot(NULL, root, &dir_key, path,
2511                                                0, 0);
2512                        if (ret < 0)
2513                                goto out;
2514
2515                        nritems = btrfs_header_nritems(path->nodes[0]);
2516                        if (path->slots[0] >= nritems) {
2517                                ret = btrfs_next_leaf(root, path);
2518                                if (ret == 1)
2519                                        break;
2520                                else if (ret < 0)
2521                                        goto out;
2522                        }
2523                        btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2524                                              path->slots[0]);
2525                        if (found_key.objectid != dirid ||
2526                            found_key.type != dir_key.type) {
2527                                ret = 0;
2528                                goto out;
2529                        }
2530
2531                        if (found_key.offset > range_end)
2532                                break;
2533
2534                        ret = check_item_in_log(trans, log, path,
2535                                                log_path, dir,
2536                                                &found_key);
2537                        if (ret)
2538                                goto out;
2539                        if (found_key.offset == (u64)-1)
2540                                break;
2541                        dir_key.offset = found_key.offset + 1;
2542                }
2543                btrfs_release_path(path);
2544                if (range_end == (u64)-1)
2545                        break;
2546                range_start = range_end + 1;
2547        }
2548        ret = 0;
2549out:
2550        btrfs_release_path(path);
2551        btrfs_free_path(log_path);
2552        iput(dir);
2553        return ret;
2554}
2555
2556/*
2557 * the process_func used to replay items from the log tree.  This
2558 * gets called in two different stages.  The first stage just looks
2559 * for inodes and makes sure they are all copied into the subvolume.
2560 *
2561 * The second stage copies all the other item types from the log into
2562 * the subvolume.  The two stage approach is slower, but gets rid of
2563 * lots of complexity around inodes referencing other inodes that exist
2564 * only in the log (references come from either directory items or inode
2565 * back refs).
2566 */
2567static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2568                             struct walk_control *wc, u64 gen, int level)
2569{
2570        int nritems;
2571        struct btrfs_path *path;
2572        struct btrfs_root *root = wc->replay_dest;
2573        struct btrfs_key key;
2574        int i;
2575        int ret;
2576
2577        ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
2578        if (ret)
2579                return ret;
2580
2581        level = btrfs_header_level(eb);
2582
2583        if (level != 0)
2584                return 0;
2585
2586        path = btrfs_alloc_path();
2587        if (!path)
2588                return -ENOMEM;
2589
2590        nritems = btrfs_header_nritems(eb);
2591        for (i = 0; i < nritems; i++) {
2592                btrfs_item_key_to_cpu(eb, &key, i);
2593
2594                /* inode keys are done during the first stage */
2595                if (key.type == BTRFS_INODE_ITEM_KEY &&
2596                    wc->stage == LOG_WALK_REPLAY_INODES) {
2597                        struct btrfs_inode_item *inode_item;
2598                        u32 mode;
2599
2600                        inode_item = btrfs_item_ptr(eb, i,
2601                                            struct btrfs_inode_item);
2602                        /*
2603                         * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2604                         * and never got linked before the fsync, skip it, as
2605                         * replaying it is pointless since it would be deleted
2606                         * later. We skip logging tmpfiles, but it's always
2607                         * possible we are replaying a log created with a kernel
2608                         * that used to log tmpfiles.
2609                         */
2610                        if (btrfs_inode_nlink(eb, inode_item) == 0) {
2611                                wc->ignore_cur_inode = true;
2612                                continue;
2613                        } else {
2614                                wc->ignore_cur_inode = false;
2615                        }
2616                        ret = replay_xattr_deletes(wc->trans, root, log,
2617                                                   path, key.objectid);
2618                        if (ret)
2619                                break;
2620                        mode = btrfs_inode_mode(eb, inode_item);
2621                        if (S_ISDIR(mode)) {
2622                                ret = replay_dir_deletes(wc->trans,
2623                                         root, log, path, key.objectid, 0);
2624                                if (ret)
2625                                        break;
2626                        }
2627                        ret = overwrite_item(wc->trans, root, path,
2628                                             eb, i, &key);
2629                        if (ret)
2630                                break;
2631
2632                        /*
2633                         * Before replaying extents, truncate the inode to its
2634                         * size. We need to do it now and not after log replay
2635                         * because before an fsync we can have prealloc extents
2636                         * added beyond the inode's i_size. If we did it after,
2637                         * through orphan cleanup for example, we would drop
2638                         * those prealloc extents just after replaying them.
2639                         */
2640                        if (S_ISREG(mode)) {
2641                                struct btrfs_drop_extents_args drop_args = { 0 };
2642                                struct inode *inode;
2643                                u64 from;
2644
2645                                inode = read_one_inode(root, key.objectid);
2646                                if (!inode) {
2647                                        ret = -EIO;
2648                                        break;
2649                                }
2650                                from = ALIGN(i_size_read(inode),
2651                                             root->fs_info->sectorsize);
2652                                drop_args.start = from;
2653                                drop_args.end = (u64)-1;
2654                                drop_args.drop_cache = true;
2655                                ret = btrfs_drop_extents(wc->trans, root,
2656                                                         BTRFS_I(inode),
2657                                                         &drop_args);
2658                                if (!ret) {
2659                                        inode_sub_bytes(inode,
2660                                                        drop_args.bytes_found);
2661                                        /* Update the inode's nbytes. */
2662                                        ret = btrfs_update_inode(wc->trans,
2663                                                        root, BTRFS_I(inode));
2664                                }
2665                                iput(inode);
2666                                if (ret)
2667                                        break;
2668                        }
2669
2670                        ret = link_to_fixup_dir(wc->trans, root,
2671                                                path, key.objectid);
2672                        if (ret)
2673                                break;
2674                }
2675
2676                if (wc->ignore_cur_inode)
2677                        continue;
2678
2679                if (key.type == BTRFS_DIR_INDEX_KEY &&
2680                    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2681                        ret = replay_one_dir_item(wc->trans, root, path,
2682                                                  eb, i, &key);
2683                        if (ret)
2684                                break;
2685                }
2686
2687                if (wc->stage < LOG_WALK_REPLAY_ALL)
2688                        continue;
2689
2690                /* these keys are simply copied */
2691                if (key.type == BTRFS_XATTR_ITEM_KEY) {
2692                        ret = overwrite_item(wc->trans, root, path,
2693                                             eb, i, &key);
2694                        if (ret)
2695                                break;
2696                } else if (key.type == BTRFS_INODE_REF_KEY ||
2697                           key.type == BTRFS_INODE_EXTREF_KEY) {
2698                        ret = add_inode_ref(wc->trans, root, log, path,
2699                                            eb, i, &key);
2700                        if (ret && ret != -ENOENT)
2701                                break;
2702                        ret = 0;
2703                } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2704                        ret = replay_one_extent(wc->trans, root, path,
2705                                                eb, i, &key);
2706                        if (ret)
2707                                break;
2708                }
2709                /*
2710                 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2711                 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2712                 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2713                 * older kernel with such keys, ignore them.
2714                 */
2715        }
2716        btrfs_free_path(path);
2717        return ret;
2718}
2719
2720/*
2721 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2722 */
2723static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2724{
2725        struct btrfs_block_group *cache;
2726
2727        cache = btrfs_lookup_block_group(fs_info, start);
2728        if (!cache) {
2729                btrfs_err(fs_info, "unable to find block group for %llu", start);
2730                return;
2731        }
2732
2733        spin_lock(&cache->space_info->lock);
2734        spin_lock(&cache->lock);
2735        cache->reserved -= fs_info->nodesize;
2736        cache->space_info->bytes_reserved -= fs_info->nodesize;
2737        spin_unlock(&cache->lock);
2738        spin_unlock(&cache->space_info->lock);
2739
2740        btrfs_put_block_group(cache);
2741}
2742
2743static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2744                                   struct btrfs_root *root,
2745                                   struct btrfs_path *path, int *level,
2746                                   struct walk_control *wc)
2747{
2748        struct btrfs_fs_info *fs_info = root->fs_info;
2749        u64 bytenr;
2750        u64 ptr_gen;
2751        struct extent_buffer *next;
2752        struct extent_buffer *cur;
2753        u32 blocksize;
2754        int ret = 0;
2755
2756        while (*level > 0) {
2757                struct btrfs_key first_key;
2758
2759                cur = path->nodes[*level];
2760
2761                WARN_ON(btrfs_header_level(cur) != *level);
2762
2763                if (path->slots[*level] >=
2764                    btrfs_header_nritems(cur))
2765                        break;
2766
2767                bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2768                ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2769                btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2770                blocksize = fs_info->nodesize;
2771
2772                next = btrfs_find_create_tree_block(fs_info, bytenr,
2773                                                    btrfs_header_owner(cur),
2774                                                    *level - 1);
2775                if (IS_ERR(next))
2776                        return PTR_ERR(next);
2777
2778                if (*level == 1) {
2779                        ret = wc->process_func(root, next, wc, ptr_gen,
2780                                               *level - 1);
2781                        if (ret) {
2782                                free_extent_buffer(next);
2783                                return ret;
2784                        }
2785
2786                        path->slots[*level]++;
2787                        if (wc->free) {
2788                                ret = btrfs_read_extent_buffer(next, ptr_gen,
2789                                                        *level - 1, &first_key);
2790                                if (ret) {
2791                                        free_extent_buffer(next);
2792                                        return ret;
2793                                }
2794
2795                                if (trans) {
2796                                        btrfs_tree_lock(next);
2797                                        btrfs_clean_tree_block(next);
2798                                        btrfs_wait_tree_block_writeback(next);
2799                                        btrfs_tree_unlock(next);
2800                                        ret = btrfs_pin_reserved_extent(trans,
2801                                                        bytenr, blocksize);
2802                                        if (ret) {
2803                                                free_extent_buffer(next);
2804                                                return ret;
2805                                        }
2806                                        btrfs_redirty_list_add(
2807                                                trans->transaction, next);
2808                                } else {
2809                                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2810                                                clear_extent_buffer_dirty(next);
2811                                        unaccount_log_buffer(fs_info, bytenr);
2812                                }
2813                        }
2814                        free_extent_buffer(next);
2815                        continue;
2816                }
2817                ret = btrfs_read_extent_buffer(next, ptr_gen, *level - 1, &first_key);
2818                if (ret) {
2819                        free_extent_buffer(next);
2820                        return ret;
2821                }
2822
2823                if (path->nodes[*level-1])
2824                        free_extent_buffer(path->nodes[*level-1]);
2825                path->nodes[*level-1] = next;
2826                *level = btrfs_header_level(next);
2827                path->slots[*level] = 0;
2828                cond_resched();
2829        }
2830        path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2831
2832        cond_resched();
2833        return 0;
2834}
2835
2836static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2837                                 struct btrfs_root *root,
2838                                 struct btrfs_path *path, int *level,
2839                                 struct walk_control *wc)
2840{
2841        struct btrfs_fs_info *fs_info = root->fs_info;
2842        int i;
2843        int slot;
2844        int ret;
2845
2846        for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2847                slot = path->slots[i];
2848                if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2849                        path->slots[i]++;
2850                        *level = i;
2851                        WARN_ON(*level == 0);
2852                        return 0;
2853                } else {
2854                        ret = wc->process_func(root, path->nodes[*level], wc,
2855                                 btrfs_header_generation(path->nodes[*level]),
2856                                 *level);
2857                        if (ret)
2858                                return ret;
2859
2860                        if (wc->free) {
2861                                struct extent_buffer *next;
2862
2863                                next = path->nodes[*level];
2864
2865                                if (trans) {
2866                                        btrfs_tree_lock(next);
2867                                        btrfs_clean_tree_block(next);
2868                                        btrfs_wait_tree_block_writeback(next);
2869                                        btrfs_tree_unlock(next);
2870                                        ret = btrfs_pin_reserved_extent(trans,
2871                                                     path->nodes[*level]->start,
2872                                                     path->nodes[*level]->len);
2873                                        if (ret)
2874                                                return ret;
2875                                        btrfs_redirty_list_add(trans->transaction,
2876                                                               next);
2877                                } else {
2878                                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2879                                                clear_extent_buffer_dirty(next);
2880
2881                                        unaccount_log_buffer(fs_info,
2882                                                path->nodes[*level]->start);
2883                                }
2884                        }
2885                        free_extent_buffer(path->nodes[*level]);
2886                        path->nodes[*level] = NULL;
2887                        *level = i + 1;
2888                }
2889        }
2890        return 1;
2891}
2892
2893/*
2894 * drop the reference count on the tree rooted at 'snap'.  This traverses
2895 * the tree freeing any blocks that have a ref count of zero after being
2896 * decremented.
2897 */
2898static int walk_log_tree(struct btrfs_trans_handle *trans,
2899                         struct btrfs_root *log, struct walk_control *wc)
2900{
2901        struct btrfs_fs_info *fs_info = log->fs_info;
2902        int ret = 0;
2903        int wret;
2904        int level;
2905        struct btrfs_path *path;
2906        int orig_level;
2907
2908        path = btrfs_alloc_path();
2909        if (!path)
2910                return -ENOMEM;
2911
2912        level = btrfs_header_level(log->node);
2913        orig_level = level;
2914        path->nodes[level] = log->node;
2915        atomic_inc(&log->node->refs);
2916        path->slots[level] = 0;
2917
2918        while (1) {
2919                wret = walk_down_log_tree(trans, log, path, &level, wc);
2920                if (wret > 0)
2921                        break;
2922                if (wret < 0) {
2923                        ret = wret;
2924                        goto out;
2925                }
2926
2927                wret = walk_up_log_tree(trans, log, path, &level, wc);
2928                if (wret > 0)
2929                        break;
2930                if (wret < 0) {
2931                        ret = wret;
2932                        goto out;
2933                }
2934        }
2935
2936        /* was the root node processed? if not, catch it here */
2937        if (path->nodes[orig_level]) {
2938                ret = wc->process_func(log, path->nodes[orig_level], wc,
2939                         btrfs_header_generation(path->nodes[orig_level]),
2940                         orig_level);
2941                if (ret)
2942                        goto out;
2943                if (wc->free) {
2944                        struct extent_buffer *next;
2945
2946                        next = path->nodes[orig_level];
2947
2948                        if (trans) {
2949                                btrfs_tree_lock(next);
2950                                btrfs_clean_tree_block(next);
2951                                btrfs_wait_tree_block_writeback(next);
2952                                btrfs_tree_unlock(next);
2953                                ret = btrfs_pin_reserved_extent(trans,
2954                                                next->start, next->len);
2955                                if (ret)
2956                                        goto out;
2957                                btrfs_redirty_list_add(trans->transaction, next);
2958                        } else {
2959                                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2960                                        clear_extent_buffer_dirty(next);
2961                                unaccount_log_buffer(fs_info, next->start);
2962                        }
2963                }
2964        }
2965
2966out:
2967        btrfs_free_path(path);
2968        return ret;
2969}
2970
2971/*
2972 * helper function to update the item for a given subvolumes log root
2973 * in the tree of log roots
2974 */
2975static int update_log_root(struct btrfs_trans_handle *trans,
2976                           struct btrfs_root *log,
2977                           struct btrfs_root_item *root_item)
2978{
2979        struct btrfs_fs_info *fs_info = log->fs_info;
2980        int ret;
2981
2982        if (log->log_transid == 1) {
2983                /* insert root item on the first sync */
2984                ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2985                                &log->root_key, root_item);
2986        } else {
2987                ret = btrfs_update_root(trans, fs_info->log_root_tree,
2988                                &log->root_key, root_item);
2989        }
2990        return ret;
2991}
2992
2993static void wait_log_commit(struct btrfs_root *root, int transid)
2994{
2995        DEFINE_WAIT(wait);
2996        int index = transid % 2;
2997
2998        /*
2999         * we only allow two pending log transactions at a time,
3000         * so we know that if ours is more than 2 older than the
3001         * current transaction, we're done
3002         */
3003        for (;;) {
3004                prepare_to_wait(&root->log_commit_wait[index],
3005                                &wait, TASK_UNINTERRUPTIBLE);
3006
3007                if (!(root->log_transid_committed < transid &&
3008                      atomic_read(&root->log_commit[index])))
3009                        break;
3010
3011                mutex_unlock(&root->log_mutex);
3012                schedule();
3013                mutex_lock(&root->log_mutex);
3014        }
3015        finish_wait(&root->log_commit_wait[index], &wait);
3016}
3017
3018static void wait_for_writer(struct btrfs_root *root)
3019{
3020        DEFINE_WAIT(wait);
3021
3022        for (;;) {
3023                prepare_to_wait(&root->log_writer_wait, &wait,
3024                                TASK_UNINTERRUPTIBLE);
3025                if (!atomic_read(&root->log_writers))
3026                        break;
3027
3028                mutex_unlock(&root->log_mutex);
3029                schedule();
3030                mutex_lock(&root->log_mutex);
3031        }
3032        finish_wait(&root->log_writer_wait, &wait);
3033}
3034
3035static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3036                                        struct btrfs_log_ctx *ctx)
3037{
3038        mutex_lock(&root->log_mutex);
3039        list_del_init(&ctx->list);
3040        mutex_unlock(&root->log_mutex);
3041}
3042
3043/* 
3044 * Invoked in log mutex context, or be sure there is no other task which
3045 * can access the list.
3046 */
3047static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3048                                             int index, int error)
3049{
3050        struct btrfs_log_ctx *ctx;
3051        struct btrfs_log_ctx *safe;
3052
3053        list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3054                list_del_init(&ctx->list);
3055                ctx->log_ret = error;
3056        }
3057}
3058
3059/*
3060 * btrfs_sync_log does sends a given tree log down to the disk and
3061 * updates the super blocks to record it.  When this call is done,
3062 * you know that any inodes previously logged are safely on disk only
3063 * if it returns 0.
3064 *
3065 * Any other return value means you need to call btrfs_commit_transaction.
3066 * Some of the edge cases for fsyncing directories that have had unlinks
3067 * or renames done in the past mean that sometimes the only safe
3068 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3069 * that has happened.
3070 */
3071int btrfs_sync_log(struct btrfs_trans_handle *trans,
3072                   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3073{
3074        int index1;
3075        int index2;
3076        int mark;
3077        int ret;
3078        struct btrfs_fs_info *fs_info = root->fs_info;
3079        struct btrfs_root *log = root->log_root;
3080        struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3081        struct btrfs_root_item new_root_item;
3082        int log_transid = 0;
3083        struct btrfs_log_ctx root_log_ctx;
3084        struct blk_plug plug;
3085        u64 log_root_start;
3086        u64 log_root_level;
3087
3088        mutex_lock(&root->log_mutex);
3089        log_transid = ctx->log_transid;
3090        if (root->log_transid_committed >= log_transid) {
3091                mutex_unlock(&root->log_mutex);
3092                return ctx->log_ret;
3093        }
3094
3095        index1 = log_transid % 2;
3096        if (atomic_read(&root->log_commit[index1])) {
3097                wait_log_commit(root, log_transid);
3098                mutex_unlock(&root->log_mutex);
3099                return ctx->log_ret;
3100        }
3101        ASSERT(log_transid == root->log_transid);
3102        atomic_set(&root->log_commit[index1], 1);
3103
3104        /* wait for previous tree log sync to complete */
3105        if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3106                wait_log_commit(root, log_transid - 1);
3107
3108        while (1) {
3109                int batch = atomic_read(&root->log_batch);
3110                /* when we're on an ssd, just kick the log commit out */
3111                if (!btrfs_test_opt(fs_info, SSD) &&
3112                    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3113                        mutex_unlock(&root->log_mutex);
3114                        schedule_timeout_uninterruptible(1);
3115                        mutex_lock(&root->log_mutex);
3116                }
3117                wait_for_writer(root);
3118                if (batch == atomic_read(&root->log_batch))
3119                        break;
3120        }
3121
3122        /* bail out if we need to do a full commit */
3123        if (btrfs_need_log_full_commit(trans)) {
3124                ret = -EAGAIN;
3125                mutex_unlock(&root->log_mutex);
3126                goto out;
3127        }
3128
3129        if (log_transid % 2 == 0)
3130                mark = EXTENT_DIRTY;
3131        else
3132                mark = EXTENT_NEW;
3133
3134        /* we start IO on  all the marked extents here, but we don't actually
3135         * wait for them until later.
3136         */
3137        blk_start_plug(&plug);
3138        ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3139        /*
3140         * -EAGAIN happens when someone, e.g., a concurrent transaction
3141         *  commit, writes a dirty extent in this tree-log commit. This
3142         *  concurrent write will create a hole writing out the extents,
3143         *  and we cannot proceed on a zoned filesystem, requiring
3144         *  sequential writing. While we can bail out to a full commit
3145         *  here, but we can continue hoping the concurrent writing fills
3146         *  the hole.
3147         */
3148        if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3149                ret = 0;
3150        if (ret) {
3151                blk_finish_plug(&plug);
3152                btrfs_abort_transaction(trans, ret);
3153                btrfs_set_log_full_commit(trans);
3154                mutex_unlock(&root->log_mutex);
3155                goto out;
3156        }
3157
3158        /*
3159         * We _must_ update under the root->log_mutex in order to make sure we
3160         * have a consistent view of the log root we are trying to commit at
3161         * this moment.
3162         *
3163         * We _must_ copy this into a local copy, because we are not holding the
3164         * log_root_tree->log_mutex yet.  This is important because when we
3165         * commit the log_root_tree we must have a consistent view of the
3166         * log_root_tree when we update the super block to point at the
3167         * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3168         * with the commit and possibly point at the new block which we may not
3169         * have written out.
3170         */
3171        btrfs_set_root_node(&log->root_item, log->node);
3172        memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3173
3174        root->log_transid++;
3175        log->log_transid = root->log_transid;
3176        root->log_start_pid = 0;
3177        /*
3178         * IO has been started, blocks of the log tree have WRITTEN flag set
3179         * in their headers. new modifications of the log will be written to
3180         * new positions. so it's safe to allow log writers to go in.
3181         */
3182        mutex_unlock(&root->log_mutex);
3183
3184        if (btrfs_is_zoned(fs_info)) {
3185                mutex_lock(&fs_info->tree_root->log_mutex);
3186                if (!log_root_tree->node) {
3187                        ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3188                        if (ret) {
3189                                mutex_unlock(&fs_info->tree_root->log_mutex);
3190                                blk_finish_plug(&plug);
3191                                goto out;
3192                        }
3193                }
3194                mutex_unlock(&fs_info->tree_root->log_mutex);
3195        }
3196
3197        btrfs_init_log_ctx(&root_log_ctx, NULL);
3198
3199        mutex_lock(&log_root_tree->log_mutex);
3200
3201        index2 = log_root_tree->log_transid % 2;
3202        list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3203        root_log_ctx.log_transid = log_root_tree->log_transid;
3204
3205        /*
3206         * Now we are safe to update the log_root_tree because we're under the
3207         * log_mutex, and we're a current writer so we're holding the commit
3208         * open until we drop the log_mutex.
3209         */
3210        ret = update_log_root(trans, log, &new_root_item);
3211        if (ret) {
3212                if (!list_empty(&root_log_ctx.list))
3213                        list_del_init(&root_log_ctx.list);
3214
3215                blk_finish_plug(&plug);
3216                btrfs_set_log_full_commit(trans);
3217
3218                if (ret != -ENOSPC) {
3219                        btrfs_abort_transaction(trans, ret);
3220                        mutex_unlock(&log_root_tree->log_mutex);
3221                        goto out;
3222                }
3223                btrfs_wait_tree_log_extents(log, mark);
3224                mutex_unlock(&log_root_tree->log_mutex);
3225                ret = -EAGAIN;
3226                goto out;
3227        }
3228
3229        if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3230                blk_finish_plug(&plug);
3231                list_del_init(&root_log_ctx.list);
3232                mutex_unlock(&log_root_tree->log_mutex);
3233                ret = root_log_ctx.log_ret;
3234                goto out;
3235        }
3236
3237        index2 = root_log_ctx.log_transid % 2;
3238        if (atomic_read(&log_root_tree->log_commit[index2])) {
3239                blk_finish_plug(&plug);
3240                ret = btrfs_wait_tree_log_extents(log, mark);
3241                wait_log_commit(log_root_tree,
3242                                root_log_ctx.log_transid);
3243                mutex_unlock(&log_root_tree->log_mutex);
3244                if (!ret)
3245                        ret = root_log_ctx.log_ret;
3246                goto out;
3247        }
3248        ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3249        atomic_set(&log_root_tree->log_commit[index2], 1);
3250
3251        if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3252                wait_log_commit(log_root_tree,
3253                                root_log_ctx.log_transid - 1);
3254        }
3255
3256        /*
3257         * now that we've moved on to the tree of log tree roots,
3258         * check the full commit flag again
3259         */
3260        if (btrfs_need_log_full_commit(trans)) {
3261                blk_finish_plug(&plug);
3262                btrfs_wait_tree_log_extents(log, mark);
3263                mutex_unlock(&log_root_tree->log_mutex);
3264                ret = -EAGAIN;
3265                goto out_wake_log_root;
3266        }
3267
3268        ret = btrfs_write_marked_extents(fs_info,
3269                                         &log_root_tree->dirty_log_pages,
3270                                         EXTENT_DIRTY | EXTENT_NEW);
3271        blk_finish_plug(&plug);
3272        /*
3273         * As described above, -EAGAIN indicates a hole in the extents. We
3274         * cannot wait for these write outs since the waiting cause a
3275         * deadlock. Bail out to the full commit instead.
3276         */
3277        if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3278                btrfs_set_log_full_commit(trans);
3279                btrfs_wait_tree_log_extents(log, mark);
3280                mutex_unlock(&log_root_tree->log_mutex);
3281                goto out_wake_log_root;
3282        } else if (ret) {
3283                btrfs_set_log_full_commit(trans);
3284                btrfs_abort_transaction(trans, ret);
3285                mutex_unlock(&log_root_tree->log_mutex);
3286                goto out_wake_log_root;
3287        }
3288        ret = btrfs_wait_tree_log_extents(log, mark);
3289        if (!ret)
3290                ret = btrfs_wait_tree_log_extents(log_root_tree,
3291                                                  EXTENT_NEW | EXTENT_DIRTY);
3292        if (ret) {
3293                btrfs_set_log_full_commit(trans);
3294                mutex_unlock(&log_root_tree->log_mutex);
3295                goto out_wake_log_root;
3296        }
3297
3298        log_root_start = log_root_tree->node->start;
3299        log_root_level = btrfs_header_level(log_root_tree->node);
3300        log_root_tree->log_transid++;
3301        mutex_unlock(&log_root_tree->log_mutex);
3302
3303        /*
3304         * Here we are guaranteed that nobody is going to write the superblock
3305         * for the current transaction before us and that neither we do write
3306         * our superblock before the previous transaction finishes its commit
3307         * and writes its superblock, because:
3308         *
3309         * 1) We are holding a handle on the current transaction, so no body
3310         *    can commit it until we release the handle;
3311         *
3312         * 2) Before writing our superblock we acquire the tree_log_mutex, so
3313         *    if the previous transaction is still committing, and hasn't yet
3314         *    written its superblock, we wait for it to do it, because a
3315         *    transaction commit acquires the tree_log_mutex when the commit
3316         *    begins and releases it only after writing its superblock.
3317         */
3318        mutex_lock(&fs_info->tree_log_mutex);
3319
3320        /*
3321         * The previous transaction writeout phase could have failed, and thus
3322         * marked the fs in an error state.  We must not commit here, as we
3323         * could have updated our generation in the super_for_commit and
3324         * writing the super here would result in transid mismatches.  If there
3325         * is an error here just bail.
3326         */
3327        if (BTRFS_FS_ERROR(fs_info)) {
3328                ret = -EIO;
3329                btrfs_set_log_full_commit(trans);
3330                btrfs_abort_transaction(trans, ret);
3331                mutex_unlock(&fs_info->tree_log_mutex);
3332                goto out_wake_log_root;
3333        }
3334
3335        btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3336        btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3337        ret = write_all_supers(fs_info, 1);
3338        mutex_unlock(&fs_info->tree_log_mutex);
3339        if (ret) {
3340                btrfs_set_log_full_commit(trans);
3341                btrfs_abort_transaction(trans, ret);
3342                goto out_wake_log_root;
3343        }
3344
3345        /*
3346         * We know there can only be one task here, since we have not yet set
3347         * root->log_commit[index1] to 0 and any task attempting to sync the
3348         * log must wait for the previous log transaction to commit if it's
3349         * still in progress or wait for the current log transaction commit if
3350         * someone else already started it. We use <= and not < because the
3351         * first log transaction has an ID of 0.
3352         */
3353        ASSERT(root->last_log_commit <= log_transid);
3354        root->last_log_commit = log_transid;
3355
3356out_wake_log_root:
3357        mutex_lock(&log_root_tree->log_mutex);
3358        btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3359
3360        log_root_tree->log_transid_committed++;
3361        atomic_set(&log_root_tree->log_commit[index2], 0);
3362        mutex_unlock(&log_root_tree->log_mutex);
3363
3364        /*
3365         * The barrier before waitqueue_active (in cond_wake_up) is needed so
3366         * all the updates above are seen by the woken threads. It might not be
3367         * necessary, but proving that seems to be hard.
3368         */
3369        cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3370out:
3371        mutex_lock(&root->log_mutex);
3372        btrfs_remove_all_log_ctxs(root, index1, ret);
3373        root->log_transid_committed++;
3374        atomic_set(&root->log_commit[index1], 0);
3375        mutex_unlock(&root->log_mutex);
3376
3377        /*
3378         * The barrier before waitqueue_active (in cond_wake_up) is needed so
3379         * all the updates above are seen by the woken threads. It might not be
3380         * necessary, but proving that seems to be hard.
3381         */
3382        cond_wake_up(&root->log_commit_wait[index1]);
3383        return ret;
3384}
3385
3386static void free_log_tree(struct btrfs_trans_handle *trans,
3387                          struct btrfs_root *log)
3388{
3389        int ret;
3390        struct walk_control wc = {
3391                .free = 1,
3392                .process_func = process_one_buffer
3393        };
3394
3395        if (log->node) {
3396                ret = walk_log_tree(trans, log, &wc);
3397                if (ret) {
3398                        /*
3399                         * We weren't able to traverse the entire log tree, the
3400                         * typical scenario is getting an -EIO when reading an
3401                         * extent buffer of the tree, due to a previous writeback
3402                         * failure of it.
3403                         */
3404                        set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3405                                &log->fs_info->fs_state);
3406
3407                        /*
3408                         * Some extent buffers of the log tree may still be dirty
3409                         * and not yet written back to storage, because we may
3410                         * have updates to a log tree without syncing a log tree,
3411                         * such as during rename and link operations. So flush
3412                         * them out and wait for their writeback to complete, so
3413                         * that we properly cleanup their state and pages.
3414                         */
3415                        btrfs_write_marked_extents(log->fs_info,
3416                                                   &log->dirty_log_pages,
3417                                                   EXTENT_DIRTY | EXTENT_NEW);
3418                        btrfs_wait_tree_log_extents(log,
3419                                                    EXTENT_DIRTY | EXTENT_NEW);
3420
3421                        if (trans)
3422                                btrfs_abort_transaction(trans, ret);
3423                        else
3424                                btrfs_handle_fs_error(log->fs_info, ret, NULL);
3425                }
3426        }
3427
3428        clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3429                          EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3430        extent_io_tree_release(&log->log_csum_range);
3431
3432        btrfs_put_root(log);
3433}
3434
3435/*
3436 * free all the extents used by the tree log.  This should be called
3437 * at commit time of the full transaction
3438 */
3439int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3440{
3441        if (root->log_root) {
3442                free_log_tree(trans, root->log_root);
3443                root->log_root = NULL;
3444                clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3445        }
3446        return 0;
3447}
3448
3449int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3450                             struct btrfs_fs_info *fs_info)
3451{
3452        if (fs_info->log_root_tree) {
3453                free_log_tree(trans, fs_info->log_root_tree);
3454                fs_info->log_root_tree = NULL;
3455                clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3456        }
3457        return 0;
3458}
3459
3460/*
3461 * Check if an inode was logged in the current transaction. This correctly deals
3462 * with the case where the inode was logged but has a logged_trans of 0, which
3463 * happens if the inode is evicted and loaded again, as logged_trans is an in
3464 * memory only field (not persisted).
3465 *
3466 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3467 * and < 0 on error.
3468 */
3469static int inode_logged(struct btrfs_trans_handle *trans,
3470                        struct btrfs_inode *inode,
3471                        struct btrfs_path *path_in)
3472{
3473        struct btrfs_path *path = path_in;
3474        struct btrfs_key key;
3475        int ret;
3476
3477        if (inode->logged_trans == trans->transid)
3478                return 1;
3479
3480        /*
3481         * If logged_trans is not 0, then we know the inode logged was not logged
3482         * in this transaction, so we can return false right away.
3483         */
3484        if (inode->logged_trans > 0)
3485                return 0;
3486
3487        /*
3488         * If no log tree was created for this root in this transaction, then
3489         * the inode can not have been logged in this transaction. In that case
3490         * set logged_trans to anything greater than 0 and less than the current
3491         * transaction's ID, to avoid the search below in a future call in case
3492         * a log tree gets created after this.
3493         */
3494        if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3495                inode->logged_trans = trans->transid - 1;
3496                return 0;
3497        }
3498
3499        /*
3500         * We have a log tree and the inode's logged_trans is 0. We can't tell
3501         * for sure if the inode was logged before in this transaction by looking
3502         * only at logged_trans. We could be pessimistic and assume it was, but
3503         * that can lead to unnecessarily logging an inode during rename and link
3504         * operations, and then further updating the log in followup rename and
3505         * link operations, specially if it's a directory, which adds latency
3506         * visible to applications doing a series of rename or link operations.
3507         *
3508         * A logged_trans of 0 here can mean several things:
3509         *
3510         * 1) The inode was never logged since the filesystem was mounted, and may
3511         *    or may have not been evicted and loaded again;
3512         *
3513         * 2) The inode was logged in a previous transaction, then evicted and
3514         *    then loaded again;
3515         *
3516         * 3) The inode was logged in the current transaction, then evicted and
3517         *    then loaded again.
3518         *
3519         * For cases 1) and 2) we don't want to return true, but we need to detect
3520         * case 3) and return true. So we do a search in the log root for the inode
3521         * item.
3522         */
3523        key.objectid = btrfs_ino(inode);
3524        key.type = BTRFS_INODE_ITEM_KEY;
3525        key.offset = 0;
3526
3527        if (!path) {
3528                path = btrfs_alloc_path();
3529                if (!path)
3530                        return -ENOMEM;
3531        }
3532
3533        ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3534
3535        if (path_in)
3536                btrfs_release_path(path);
3537        else
3538                btrfs_free_path(path);
3539
3540        /*
3541         * Logging an inode always results in logging its inode item. So if we
3542         * did not find the item we know the inode was not logged for sure.
3543         */
3544        if (ret < 0) {
3545                return ret;
3546        } else if (ret > 0) {
3547                /*
3548                 * Set logged_trans to a value greater than 0 and less then the
3549                 * current transaction to avoid doing the search in future calls.
3550                 */
3551                inode->logged_trans = trans->transid - 1;
3552                return 0;
3553        }
3554
3555        /*
3556         * The inode was previously logged and then evicted, set logged_trans to
3557         * the current transacion's ID, to avoid future tree searches as long as
3558         * the inode is not evicted again.
3559         */
3560        inode->logged_trans = trans->transid;
3561
3562        /*
3563         * If it's a directory, then we must set last_dir_index_offset to the
3564         * maximum possible value, so that the next attempt to log the inode does
3565         * not skip checking if dir index keys found in modified subvolume tree
3566         * leaves have been logged before, otherwise it would result in attempts
3567         * to insert duplicate dir index keys in the log tree. This must be done
3568         * because last_dir_index_offset is an in-memory only field, not persisted
3569         * in the inode item or any other on-disk structure, so its value is lost
3570         * once the inode is evicted.
3571         */
3572        if (S_ISDIR(inode->vfs_inode.i_mode))
3573                inode->last_dir_index_offset = (u64)-1;
3574
3575        return 1;
3576}
3577
3578/*
3579 * Delete a directory entry from the log if it exists.
3580 *
3581 * Returns < 0 on error
3582 *           1 if the entry does not exists
3583 *           0 if the entry existed and was successfully deleted
3584 */
3585static int del_logged_dentry(struct btrfs_trans_handle *trans,
3586                             struct btrfs_root *log,
3587                             struct btrfs_path *path,
3588                             u64 dir_ino,
3589                             const char *name, int name_len,
3590                             u64 index)
3591{
3592        struct btrfs_dir_item *di;
3593
3594        /*
3595         * We only log dir index items of a directory, so we don't need to look
3596         * for dir item keys.
3597         */
3598        di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3599                                         index, name, name_len, -1);
3600        if (IS_ERR(di))
3601                return PTR_ERR(di);
3602        else if (!di)
3603                return 1;
3604
3605        /*
3606         * We do not need to update the size field of the directory's
3607         * inode item because on log replay we update the field to reflect
3608         * all existing entries in the directory (see overwrite_item()).
3609         */
3610        return btrfs_delete_one_dir_name(trans, log, path, di);
3611}
3612
3613/*
3614 * If both a file and directory are logged, and unlinks or renames are
3615 * mixed in, we have a few interesting corners:
3616 *
3617 * create file X in dir Y
3618 * link file X to X.link in dir Y
3619 * fsync file X
3620 * unlink file X but leave X.link
3621 * fsync dir Y
3622 *
3623 * After a crash we would expect only X.link to exist.  But file X
3624 * didn't get fsync'd again so the log has back refs for X and X.link.
3625 *
3626 * We solve this by removing directory entries and inode backrefs from the
3627 * log when a file that was logged in the current transaction is
3628 * unlinked.  Any later fsync will include the updated log entries, and
3629 * we'll be able to reconstruct the proper directory items from backrefs.
3630 *
3631 * This optimizations allows us to avoid relogging the entire inode
3632 * or the entire directory.
3633 */
3634void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3635                                  struct btrfs_root *root,
3636                                  const char *name, int name_len,
3637                                  struct btrfs_inode *dir, u64 index)
3638{
3639        struct btrfs_path *path;
3640        int ret;
3641
3642        ret = inode_logged(trans, dir, NULL);
3643        if (ret == 0)
3644                return;
3645        else if (ret < 0) {
3646                btrfs_set_log_full_commit(trans);
3647                return;
3648        }
3649
3650        ret = join_running_log_trans(root);
3651        if (ret)
3652                return;
3653
3654        mutex_lock(&dir->log_mutex);
3655
3656        path = btrfs_alloc_path();
3657        if (!path) {
3658                ret = -ENOMEM;
3659                goto out_unlock;
3660        }
3661
3662        ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3663                                name, name_len, index);
3664        btrfs_free_path(path);
3665out_unlock:
3666        mutex_unlock(&dir->log_mutex);
3667        if (ret < 0)
3668                btrfs_set_log_full_commit(trans);
3669        btrfs_end_log_trans(root);
3670}
3671
3672/* see comments for btrfs_del_dir_entries_in_log */
3673void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3674                                struct btrfs_root *root,
3675                                const char *name, int name_len,
3676                                struct btrfs_inode *inode, u64 dirid)
3677{
3678        struct btrfs_root *log;
3679        u64 index;
3680        int ret;
3681
3682        ret = inode_logged(trans, inode, NULL);
3683        if (ret == 0)
3684                return;
3685        else if (ret < 0) {
3686                btrfs_set_log_full_commit(trans);
3687                return;
3688        }
3689
3690        ret = join_running_log_trans(root);
3691        if (ret)
3692                return;
3693        log = root->log_root;
3694        mutex_lock(&inode->log_mutex);
3695
3696        ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3697                                  dirid, &index);
3698        mutex_unlock(&inode->log_mutex);
3699        if (ret < 0 && ret != -ENOENT)
3700                btrfs_set_log_full_commit(trans);
3701        btrfs_end_log_trans(root);
3702}
3703
3704/*
3705 * creates a range item in the log for 'dirid'.  first_offset and
3706 * last_offset tell us which parts of the key space the log should
3707 * be considered authoritative for.
3708 */
3709static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3710                                       struct btrfs_root *log,
3711                                       struct btrfs_path *path,
3712                                       u64 dirid,
3713                                       u64 first_offset, u64 last_offset)
3714{
3715        int ret;
3716        struct btrfs_key key;
3717        struct btrfs_dir_log_item *item;
3718
3719        key.objectid = dirid;
3720        key.offset = first_offset;
3721        key.type = BTRFS_DIR_LOG_INDEX_KEY;
3722        ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3723        /*
3724         * -EEXIST is fine and can happen sporadically when we are logging a
3725         * directory and have concurrent insertions in the subvolume's tree for
3726         * items from other inodes and that result in pushing off some dir items
3727         * from one leaf to another in order to accommodate for the new items.
3728         * This results in logging the same dir index range key.
3729         */
3730        if (ret && ret != -EEXIST)
3731                return ret;
3732
3733        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3734                              struct btrfs_dir_log_item);
3735        if (ret == -EEXIST) {
3736                const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3737
3738                /*
3739                 * btrfs_del_dir_entries_in_log() might have been called during
3740                 * an unlink between the initial insertion of this key and the
3741                 * current update, or we might be logging a single entry deletion
3742                 * during a rename, so set the new last_offset to the max value.
3743                 */
3744                last_offset = max(last_offset, curr_end);
3745        }
3746        btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3747        btrfs_mark_buffer_dirty(path->nodes[0]);
3748        btrfs_release_path(path);
3749        return 0;
3750}
3751
3752static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3753                                 struct btrfs_root *log,
3754                                 struct extent_buffer *src,
3755                                 struct btrfs_path *dst_path,
3756                                 int start_slot,
3757                                 int count)
3758{
3759        char *ins_data = NULL;
3760        struct btrfs_item_batch batch;
3761        struct extent_buffer *dst;
3762        unsigned long src_offset;
3763        unsigned long dst_offset;
3764        struct btrfs_key key;
3765        u32 item_size;
3766        int ret;
3767        int i;
3768
3769        ASSERT(count > 0);
3770        batch.nr = count;
3771
3772        if (count == 1) {
3773                btrfs_item_key_to_cpu(src, &key, start_slot);
3774                item_size = btrfs_item_size(src, start_slot);
3775                batch.keys = &key;
3776                batch.data_sizes = &item_size;
3777                batch.total_data_size = item_size;
3778        } else {
3779                struct btrfs_key *ins_keys;
3780                u32 *ins_sizes;
3781
3782                ins_data = kmalloc(count * sizeof(u32) +
3783                                   count * sizeof(struct btrfs_key), GFP_NOFS);
3784                if (!ins_data)
3785                        return -ENOMEM;
3786
3787                ins_sizes = (u32 *)ins_data;
3788                ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3789                batch.keys = ins_keys;
3790                batch.data_sizes = ins_sizes;
3791                batch.total_data_size = 0;
3792
3793                for (i = 0; i < count; i++) {
3794                        const int slot = start_slot + i;
3795
3796                        btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3797                        ins_sizes[i] = btrfs_item_size(src, slot);
3798                        batch.total_data_size += ins_sizes[i];
3799                }
3800        }
3801
3802        ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3803        if (ret)
3804                goto out;
3805
3806        dst = dst_path->nodes[0];
3807        /*
3808         * Copy all the items in bulk, in a single copy operation. Item data is
3809         * organized such that it's placed at the end of a leaf and from right
3810         * to left. For example, the data for the second item ends at an offset
3811         * that matches the offset where the data for the first item starts, the
3812         * data for the third item ends at an offset that matches the offset
3813         * where the data of the second items starts, and so on.
3814         * Therefore our source and destination start offsets for copy match the
3815         * offsets of the last items (highest slots).
3816         */
3817        dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3818        src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3819        copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3820        btrfs_release_path(dst_path);
3821out:
3822        kfree(ins_data);
3823
3824        return ret;
3825}
3826
3827static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3828                                  struct btrfs_inode *inode,
3829                                  struct btrfs_path *path,
3830                                  struct btrfs_path *dst_path,
3831                                  struct btrfs_log_ctx *ctx,
3832                                  u64 *last_old_dentry_offset)
3833{
3834        struct btrfs_root *log = inode->root->log_root;
3835        struct extent_buffer *src = path->nodes[0];
3836        const int nritems = btrfs_header_nritems(src);
3837        const u64 ino = btrfs_ino(inode);
3838        bool last_found = false;
3839        int batch_start = 0;
3840        int batch_size = 0;
3841        int i;
3842
3843        for (i = path->slots[0]; i < nritems; i++) {
3844                struct btrfs_dir_item *di;
3845                struct btrfs_key key;
3846                int ret;
3847
3848                btrfs_item_key_to_cpu(src, &key, i);
3849
3850                if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3851                        last_found = true;
3852                        break;
3853                }
3854
3855                di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3856                ctx->last_dir_item_offset = key.offset;
3857
3858                /*
3859                 * Skip ranges of items that consist only of dir item keys created
3860                 * in past transactions. However if we find a gap, we must log a
3861                 * dir index range item for that gap, so that index keys in that
3862                 * gap are deleted during log replay.
3863                 */
3864                if (btrfs_dir_transid(src, di) < trans->transid) {
3865                        if (key.offset > *last_old_dentry_offset + 1) {
3866                                ret = insert_dir_log_key(trans, log, dst_path,
3867                                                 ino, *last_old_dentry_offset + 1,
3868                                                 key.offset - 1);
3869                                if (ret < 0)
3870                                        return ret;
3871                        }
3872
3873                        *last_old_dentry_offset = key.offset;
3874                        continue;
3875                }
3876                /*
3877                 * We must make sure that when we log a directory entry, the
3878                 * corresponding inode, after log replay, has a matching link
3879                 * count. For example:
3880                 *
3881                 * touch foo
3882                 * mkdir mydir
3883                 * sync
3884                 * ln foo mydir/bar
3885                 * xfs_io -c "fsync" mydir
3886                 * <crash>
3887                 * <mount fs and log replay>
3888                 *
3889                 * Would result in a fsync log that when replayed, our file inode
3890                 * would have a link count of 1, but we get two directory entries
3891                 * pointing to the same inode. After removing one of the names,
3892                 * it would not be possible to remove the other name, which
3893                 * resulted always in stale file handle errors, and would not be
3894                 * possible to rmdir the parent directory, since its i_size could
3895                 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3896                 * resulting in -ENOTEMPTY errors.
3897                 */
3898                if (!ctx->log_new_dentries) {
3899                        struct btrfs_key di_key;
3900
3901                        btrfs_dir_item_key_to_cpu(src, di, &di_key);
3902                        if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3903                                ctx->log_new_dentries = true;
3904                }
3905
3906                if (!ctx->logged_before)
3907                        goto add_to_batch;
3908
3909                /*
3910                 * If we were logged before and have logged dir items, we can skip
3911                 * checking if any item with a key offset larger than the last one
3912                 * we logged is in the log tree, saving time and avoiding adding
3913                 * contention on the log tree. We can only rely on the value of
3914                 * last_dir_index_offset when we know for sure that the inode was
3915                 * previously logged in the current transaction.
3916                 */
3917                if (key.offset > inode->last_dir_index_offset)
3918                        goto add_to_batch;
3919                /*
3920                 * Check if the key was already logged before. If not we can add
3921                 * it to a batch for bulk insertion.
3922                 */
3923                ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0);
3924                if (ret < 0) {
3925                        return ret;
3926                } else if (ret > 0) {
3927                        btrfs_release_path(dst_path);
3928                        goto add_to_batch;
3929                }
3930
3931                /*
3932                 * Item exists in the log. Overwrite the item in the log if it
3933                 * has different content or do nothing if it has exactly the same
3934                 * content. And then flush the current batch if any - do it after
3935                 * overwriting the current item, or we would deadlock otherwise,
3936                 * since we are holding a path for the existing item.
3937                 */
3938                ret = do_overwrite_item(trans, log, dst_path, src, i, &key);
3939                if (ret < 0)
3940                        return ret;
3941
3942                if (batch_size > 0) {
3943                        ret = flush_dir_items_batch(trans, log, src, dst_path,
3944                                                    batch_start, batch_size);
3945                        if (ret < 0)
3946                                return ret;
3947                        batch_size = 0;
3948                }
3949                continue;
3950add_to_batch:
3951                if (batch_size == 0)
3952                        batch_start = i;
3953                batch_size++;
3954        }
3955
3956        if (batch_size > 0) {
3957                int ret;
3958
3959                ret = flush_dir_items_batch(trans, log, src, dst_path,
3960                                            batch_start, batch_size);
3961                if (ret < 0)
3962                        return ret;
3963        }
3964
3965        return last_found ? 1 : 0;
3966}
3967
3968/*
3969 * log all the items included in the current transaction for a given
3970 * directory.  This also creates the range items in the log tree required
3971 * to replay anything deleted before the fsync
3972 */
3973static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3974                          struct btrfs_inode *inode,
3975                          struct btrfs_path *path,
3976                          struct btrfs_path *dst_path,
3977                          struct btrfs_log_ctx *ctx,
3978                          u64 min_offset, u64 *last_offset_ret)
3979{
3980        struct btrfs_key min_key;
3981        struct btrfs_root *root = inode->root;
3982        struct btrfs_root *log = root->log_root;
3983        int err = 0;
3984        int ret;
3985        u64 last_old_dentry_offset = min_offset - 1;
3986        u64 last_offset = (u64)-1;
3987        u64 ino = btrfs_ino(inode);
3988
3989        min_key.objectid = ino;
3990        min_key.type = BTRFS_DIR_INDEX_KEY;
3991        min_key.offset = min_offset;
3992
3993        ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3994
3995        /*
3996         * we didn't find anything from this transaction, see if there
3997         * is anything at all
3998         */
3999        if (ret != 0 || min_key.objectid != ino ||
4000            min_key.type != BTRFS_DIR_INDEX_KEY) {
4001                min_key.objectid = ino;
4002                min_key.type = BTRFS_DIR_INDEX_KEY;
4003                min_key.offset = (u64)-1;
4004                btrfs_release_path(path);
4005                ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4006                if (ret < 0) {
4007                        btrfs_release_path(path);
4008                        return ret;
4009                }
4010                ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4011
4012                /* if ret == 0 there are items for this type,
4013                 * create a range to tell us the last key of this type.
4014                 * otherwise, there are no items in this directory after
4015                 * *min_offset, and we create a range to indicate that.
4016                 */
4017                if (ret == 0) {
4018                        struct btrfs_key tmp;
4019
4020                        btrfs_item_key_to_cpu(path->nodes[0], &tmp,
4021                                              path->slots[0]);
4022                        if (tmp.type == BTRFS_DIR_INDEX_KEY)
4023                                last_old_dentry_offset = tmp.offset;
4024                }
4025                goto done;
4026        }
4027
4028        /* go backward to find any previous key */
4029        ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4030        if (ret == 0) {
4031                struct btrfs_key tmp;
4032
4033                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
4034                /*
4035                 * The dir index key before the first one we found that needs to
4036                 * be logged might be in a previous leaf, and there might be a
4037                 * gap between these keys, meaning that we had deletions that
4038                 * happened. So the key range item we log (key type
4039                 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
4040                 * previous key's offset plus 1, so that those deletes are replayed.
4041                 */
4042                if (tmp.type == BTRFS_DIR_INDEX_KEY)
4043                        last_old_dentry_offset = tmp.offset;
4044        }
4045        btrfs_release_path(path);
4046
4047        /*
4048         * Find the first key from this transaction again.  See the note for
4049         * log_new_dir_dentries, if we're logging a directory recursively we
4050         * won't be holding its i_mutex, which means we can modify the directory
4051         * while we're logging it.  If we remove an entry between our first
4052         * search and this search we'll not find the key again and can just
4053         * bail.
4054         */
4055search:
4056        ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4057        if (ret != 0)
4058                goto done;
4059
4060        /*
4061         * we have a block from this transaction, log every item in it
4062         * from our directory
4063         */
4064        while (1) {
4065                ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
4066                                             &last_old_dentry_offset);
4067                if (ret != 0) {
4068                        if (ret < 0)
4069                                err = ret;
4070                        goto done;
4071                }
4072                path->slots[0] = btrfs_header_nritems(path->nodes[0]);
4073
4074                /*
4075                 * look ahead to the next item and see if it is also
4076                 * from this directory and from this transaction
4077                 */
4078                ret = btrfs_next_leaf(root, path);
4079                if (ret) {
4080                        if (ret == 1)
4081                                last_offset = (u64)-1;
4082                        else
4083                                err = ret;
4084                        goto done;
4085                }
4086                btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
4087                if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
4088                        last_offset = (u64)-1;
4089                        goto done;
4090                }
4091                if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
4092                        /*
4093                         * The next leaf was not changed in the current transaction
4094                         * and has at least one dir index key.
4095                         * We check for the next key because there might have been
4096                         * one or more deletions between the last key we logged and
4097                         * that next key. So the key range item we log (key type
4098                         * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4099                         * offset minus 1, so that those deletes are replayed.
4100                         */
4101                        last_offset = min_key.offset - 1;
4102                        goto done;
4103                }
4104                if (need_resched()) {
4105                        btrfs_release_path(path);
4106                        cond_resched();
4107                        goto search;
4108                }
4109        }
4110done:
4111        btrfs_release_path(path);
4112        btrfs_release_path(dst_path);
4113
4114        if (err == 0) {
4115                *last_offset_ret = last_offset;
4116                /*
4117                 * In case the leaf was changed in the current transaction but
4118                 * all its dir items are from a past transaction, the last item
4119                 * in the leaf is a dir item and there's no gap between that last
4120                 * dir item and the first one on the next leaf (which did not
4121                 * change in the current transaction), then we don't need to log
4122                 * a range, last_old_dentry_offset is == to last_offset.
4123                 */
4124                ASSERT(last_old_dentry_offset <= last_offset);
4125                if (last_old_dentry_offset < last_offset) {
4126                        ret = insert_dir_log_key(trans, log, path, ino,
4127                                                 last_old_dentry_offset + 1,
4128                                                 last_offset);
4129                        if (ret)
4130                                err = ret;
4131                }
4132        }
4133        return err;
4134}
4135
4136/*
4137 * logging directories is very similar to logging inodes, We find all the items
4138 * from the current transaction and write them to the log.
4139 *
4140 * The recovery code scans the directory in the subvolume, and if it finds a
4141 * key in the range logged that is not present in the log tree, then it means
4142 * that dir entry was unlinked during the transaction.
4143 *
4144 * In order for that scan to work, we must include one key smaller than
4145 * the smallest logged by this transaction and one key larger than the largest
4146 * key logged by this transaction.
4147 */
4148static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4149                          struct btrfs_inode *inode,
4150                          struct btrfs_path *path,
4151                          struct btrfs_path *dst_path,
4152                          struct btrfs_log_ctx *ctx)
4153{
4154        u64 min_key;
4155        u64 max_key;
4156        int ret;
4157
4158        min_key = BTRFS_DIR_START_INDEX;
4159        max_key = 0;
4160        ctx->last_dir_item_offset = inode->last_dir_index_offset;
4161
4162        while (1) {
4163                ret = log_dir_items(trans, inode, path, dst_path,
4164                                ctx, min_key, &max_key);
4165                if (ret)
4166                        return ret;
4167                if (max_key == (u64)-1)
4168                        break;
4169                min_key = max_key + 1;
4170        }
4171
4172        inode->last_dir_index_offset = ctx->last_dir_item_offset;
4173
4174        return 0;
4175}
4176
4177/*
4178 * a helper function to drop items from the log before we relog an
4179 * inode.  max_key_type indicates the highest item type to remove.
4180 * This cannot be run for file data extents because it does not
4181 * free the extents they point to.
4182 */
4183static int drop_inode_items(struct btrfs_trans_handle *trans,
4184                                  struct btrfs_root *log,
4185                                  struct btrfs_path *path,
4186                                  struct btrfs_inode *inode,
4187                                  int max_key_type)
4188{
4189        int ret;
4190        struct btrfs_key key;
4191        struct btrfs_key found_key;
4192        int start_slot;
4193
4194        key.objectid = btrfs_ino(inode);
4195        key.type = max_key_type;
4196        key.offset = (u64)-1;
4197
4198        while (1) {
4199                ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4200                BUG_ON(ret == 0); /* Logic error */
4201                if (ret < 0)
4202                        break;
4203
4204                if (path->slots[0] == 0)
4205                        break;
4206
4207                path->slots[0]--;
4208                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4209                                      path->slots[0]);
4210
4211                if (found_key.objectid != key.objectid)
4212                        break;
4213
4214                found_key.offset = 0;
4215                found_key.type = 0;
4216                ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4217                if (ret < 0)
4218                        break;
4219
4220                ret = btrfs_del_items(trans, log, path, start_slot,
4221                                      path->slots[0] - start_slot + 1);
4222                /*
4223                 * If start slot isn't 0 then we don't need to re-search, we've
4224                 * found the last guy with the objectid in this tree.
4225                 */
4226                if (ret || start_slot != 0)
4227                        break;
4228                btrfs_release_path(path);
4229        }
4230        btrfs_release_path(path);
4231        if (ret > 0)
4232                ret = 0;
4233        return ret;
4234}
4235
4236static int truncate_inode_items(struct btrfs_trans_handle *trans,
4237                                struct btrfs_root *log_root,
4238                                struct btrfs_inode *inode,
4239                                u64 new_size, u32 min_type)
4240{
4241        struct btrfs_truncate_control control = {
4242                .new_size = new_size,
4243                .ino = btrfs_ino(inode),
4244                .min_type = min_type,
4245                .skip_ref_updates = true,
4246        };
4247
4248        return btrfs_truncate_inode_items(trans, log_root, &control);
4249}
4250
4251static void fill_inode_item(struct btrfs_trans_handle *trans,
4252                            struct extent_buffer *leaf,
4253                            struct btrfs_inode_item *item,
4254                            struct inode *inode, int log_inode_only,
4255                            u64 logged_isize)
4256{
4257        struct btrfs_map_token token;
4258        u64 flags;
4259
4260        btrfs_init_map_token(&token, leaf);
4261
4262        if (log_inode_only) {
4263                /* set the generation to zero so the recover code
4264                 * can tell the difference between an logging
4265                 * just to say 'this inode exists' and a logging
4266                 * to say 'update this inode with these values'
4267                 */
4268                btrfs_set_token_inode_generation(&token, item, 0);
4269                btrfs_set_token_inode_size(&token, item, logged_isize);
4270        } else {
4271                btrfs_set_token_inode_generation(&token, item,
4272                                                 BTRFS_I(inode)->generation);
4273                btrfs_set_token_inode_size(&token, item, inode->i_size);
4274        }
4275
4276        btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4277        btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4278        btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4279        btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4280
4281        btrfs_set_token_timespec_sec(&token, &item->atime,
4282                                     inode->i_atime.tv_sec);
4283        btrfs_set_token_timespec_nsec(&token, &item->atime,
4284                                      inode->i_atime.tv_nsec);
4285
4286        btrfs_set_token_timespec_sec(&token, &item->mtime,
4287                                     inode->i_mtime.tv_sec);
4288        btrfs_set_token_timespec_nsec(&token, &item->mtime,
4289                                      inode->i_mtime.tv_nsec);
4290
4291        btrfs_set_token_timespec_sec(&token, &item->ctime,
4292                                     inode->i_ctime.tv_sec);
4293        btrfs_set_token_timespec_nsec(&token, &item->ctime,
4294                                      inode->i_ctime.tv_nsec);
4295
4296        /*
4297         * We do not need to set the nbytes field, in fact during a fast fsync
4298         * its value may not even be correct, since a fast fsync does not wait
4299         * for ordered extent completion, which is where we update nbytes, it
4300         * only waits for writeback to complete. During log replay as we find
4301         * file extent items and replay them, we adjust the nbytes field of the
4302         * inode item in subvolume tree as needed (see overwrite_item()).
4303         */
4304
4305        btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4306        btrfs_set_token_inode_transid(&token, item, trans->transid);
4307        btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4308        flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4309                                          BTRFS_I(inode)->ro_flags);
4310        btrfs_set_token_inode_flags(&token, item, flags);
4311        btrfs_set_token_inode_block_group(&token, item, 0);
4312}
4313
4314static int log_inode_item(struct btrfs_trans_handle *trans,
4315                          struct btrfs_root *log, struct btrfs_path *path,
4316                          struct btrfs_inode *inode, bool inode_item_dropped)
4317{
4318        struct btrfs_inode_item *inode_item;
4319        int ret;
4320
4321        /*
4322         * If we are doing a fast fsync and the inode was logged before in the
4323         * current transaction, then we know the inode was previously logged and
4324         * it exists in the log tree. For performance reasons, in this case use
4325         * btrfs_search_slot() directly with ins_len set to 0 so that we never
4326         * attempt a write lock on the leaf's parent, which adds unnecessary lock
4327         * contention in case there are concurrent fsyncs for other inodes of the
4328         * same subvolume. Using btrfs_insert_empty_item() when the inode item
4329         * already exists can also result in unnecessarily splitting a leaf.
4330         */
4331        if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4332                ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4333                ASSERT(ret <= 0);
4334                if (ret > 0)
4335                        ret = -ENOENT;
4336        } else {
4337                /*
4338                 * This means it is the first fsync in the current transaction,
4339                 * so the inode item is not in the log and we need to insert it.
4340                 * We can never get -EEXIST because we are only called for a fast
4341                 * fsync and in case an inode eviction happens after the inode was
4342                 * logged before in the current transaction, when we load again
4343                 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4344                 * flags and set ->logged_trans to 0.
4345                 */
4346                ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4347                                              sizeof(*inode_item));
4348                ASSERT(ret != -EEXIST);
4349        }
4350        if (ret)
4351                return ret;
4352        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4353                                    struct btrfs_inode_item);
4354        fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4355                        0, 0);
4356        btrfs_release_path(path);
4357        return 0;
4358}
4359
4360static int log_csums(struct btrfs_trans_handle *trans,
4361                     struct btrfs_inode *inode,
4362                     struct btrfs_root *log_root,
4363                     struct btrfs_ordered_sum *sums)
4364{
4365        const u64 lock_end = sums->bytenr + sums->len - 1;
4366        struct extent_state *cached_state = NULL;
4367        int ret;
4368
4369        /*
4370         * If this inode was not used for reflink operations in the current
4371         * transaction with new extents, then do the fast path, no need to
4372         * worry about logging checksum items with overlapping ranges.
4373         */
4374        if (inode->last_reflink_trans < trans->transid)
4375                return btrfs_csum_file_blocks(trans, log_root, sums);
4376
4377        /*
4378         * Serialize logging for checksums. This is to avoid racing with the
4379         * same checksum being logged by another task that is logging another
4380         * file which happens to refer to the same extent as well. Such races
4381         * can leave checksum items in the log with overlapping ranges.
4382         */
4383        ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4384                               lock_end, &cached_state);
4385        if (ret)
4386                return ret;
4387        /*
4388         * Due to extent cloning, we might have logged a csum item that covers a
4389         * subrange of a cloned extent, and later we can end up logging a csum
4390         * item for a larger subrange of the same extent or the entire range.
4391         * This would leave csum items in the log tree that cover the same range
4392         * and break the searches for checksums in the log tree, resulting in
4393         * some checksums missing in the fs/subvolume tree. So just delete (or
4394         * trim and adjust) any existing csum items in the log for this range.
4395         */
4396        ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4397        if (!ret)
4398                ret = btrfs_csum_file_blocks(trans, log_root, sums);
4399
4400        unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4401                             &cached_state);
4402
4403        return ret;
4404}
4405
4406static noinline int copy_items(struct btrfs_trans_handle *trans,
4407                               struct btrfs_inode *inode,
4408                               struct btrfs_path *dst_path,
4409                               struct btrfs_path *src_path,
4410                               int start_slot, int nr, int inode_only,
4411                               u64 logged_isize)
4412{
4413        struct btrfs_root *log = inode->root->log_root;
4414        struct btrfs_file_extent_item *extent;
4415        struct extent_buffer *src = src_path->nodes[0];
4416        int ret = 0;
4417        struct btrfs_key *ins_keys;
4418        u32 *ins_sizes;
4419        struct btrfs_item_batch batch;
4420        char *ins_data;
4421        int i;
4422        int dst_index;
4423        const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4424        const u64 i_size = i_size_read(&inode->vfs_inode);
4425
4426        ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4427                           nr * sizeof(u32), GFP_NOFS);
4428        if (!ins_data)
4429                return -ENOMEM;
4430
4431        ins_sizes = (u32 *)ins_data;
4432        ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4433        batch.keys = ins_keys;
4434        batch.data_sizes = ins_sizes;
4435        batch.total_data_size = 0;
4436        batch.nr = 0;
4437
4438        dst_index = 0;
4439        for (i = 0; i < nr; i++) {
4440                const int src_slot = start_slot + i;
4441                struct btrfs_root *csum_root;
4442                struct btrfs_ordered_sum *sums;
4443                struct btrfs_ordered_sum *sums_next;
4444                LIST_HEAD(ordered_sums);
4445                u64 disk_bytenr;
4446                u64 disk_num_bytes;
4447                u64 extent_offset;
4448                u64 extent_num_bytes;
4449                bool is_old_extent;
4450
4451                btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4452
4453                if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4454                        goto add_to_batch;
4455
4456                extent = btrfs_item_ptr(src, src_slot,
4457                                        struct btrfs_file_extent_item);
4458
4459                is_old_extent = (btrfs_file_extent_generation(src, extent) <
4460                                 trans->transid);
4461
4462                /*
4463                 * Don't copy extents from past generations. That would make us
4464                 * log a lot more metadata for common cases like doing only a
4465                 * few random writes into a file and then fsync it for the first
4466                 * time or after the full sync flag is set on the inode. We can
4467                 * get leaves full of extent items, most of which are from past
4468                 * generations, so we can skip them - as long as the inode has
4469                 * not been the target of a reflink operation in this transaction,
4470                 * as in that case it might have had file extent items with old
4471                 * generations copied into it. We also must always log prealloc
4472                 * extents that start at or beyond eof, otherwise we would lose
4473                 * them on log replay.
4474                 */
4475                if (is_old_extent &&
4476                    ins_keys[dst_index].offset < i_size &&
4477                    inode->last_reflink_trans < trans->transid)
4478                        continue;
4479
4480                if (skip_csum)
4481                        goto add_to_batch;
4482
4483                /* Only regular extents have checksums. */
4484                if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4485                        goto add_to_batch;
4486
4487                /*
4488                 * If it's an extent created in a past transaction, then its
4489                 * checksums are already accessible from the committed csum tree,
4490                 * no need to log them.
4491                 */
4492                if (is_old_extent)
4493                        goto add_to_batch;
4494
4495                disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4496                /* If it's an explicit hole, there are no checksums. */
4497                if (disk_bytenr == 0)
4498                        goto add_to_batch;
4499
4500                disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4501
4502                if (btrfs_file_extent_compression(src, extent)) {
4503                        extent_offset = 0;
4504                        extent_num_bytes = disk_num_bytes;
4505                } else {
4506                        extent_offset = btrfs_file_extent_offset(src, extent);
4507                        extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4508                }
4509
4510                csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4511                disk_bytenr += extent_offset;
4512                ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4513                                               disk_bytenr + extent_num_bytes - 1,
4514                                               &ordered_sums, 0);
4515                if (ret)
4516                        goto out;
4517
4518                list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4519                        if (!ret)
4520                                ret = log_csums(trans, inode, log, sums);
4521                        list_del(&sums->list);
4522                        kfree(sums);
4523                }
4524                if (ret)
4525                        goto out;
4526
4527add_to_batch:
4528                ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4529                batch.total_data_size += ins_sizes[dst_index];
4530                batch.nr++;
4531                dst_index++;
4532        }
4533
4534        /*
4535         * We have a leaf full of old extent items that don't need to be logged,
4536         * so we don't need to do anything.
4537         */
4538        if (batch.nr == 0)
4539                goto out;
4540
4541        ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4542        if (ret)
4543                goto out;
4544
4545        dst_index = 0;
4546        for (i = 0; i < nr; i++) {
4547                const int src_slot = start_slot + i;
4548                const int dst_slot = dst_path->slots[0] + dst_index;
4549                struct btrfs_key key;
4550                unsigned long src_offset;
4551                unsigned long dst_offset;
4552
4553                /*
4554                 * We're done, all the remaining items in the source leaf
4555                 * correspond to old file extent items.
4556                 */
4557                if (dst_index >= batch.nr)
4558                        break;
4559
4560                btrfs_item_key_to_cpu(src, &key, src_slot);
4561
4562                if (key.type != BTRFS_EXTENT_DATA_KEY)
4563                        goto copy_item;
4564
4565                extent = btrfs_item_ptr(src, src_slot,
4566                                        struct btrfs_file_extent_item);
4567
4568                /* See the comment in the previous loop, same logic. */
4569                if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4570                    key.offset < i_size &&
4571                    inode->last_reflink_trans < trans->transid)
4572                        continue;
4573
4574copy_item:
4575                dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4576                src_offset = btrfs_item_ptr_offset(src, src_slot);
4577
4578                if (key.type == BTRFS_INODE_ITEM_KEY) {
4579                        struct btrfs_inode_item *inode_item;
4580
4581                        inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4582                                                    struct btrfs_inode_item);
4583                        fill_inode_item(trans, dst_path->nodes[0], inode_item,
4584                                        &inode->vfs_inode,
4585                                        inode_only == LOG_INODE_EXISTS,
4586                                        logged_isize);
4587                } else {
4588                        copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4589                                           src_offset, ins_sizes[dst_index]);
4590                }
4591
4592                dst_index++;
4593        }
4594
4595        btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4596        btrfs_release_path(dst_path);
4597out:
4598        kfree(ins_data);
4599
4600        return ret;
4601}
4602
4603static int extent_cmp(void *priv, const struct list_head *a,
4604                      const struct list_head *b)
4605{
4606        const struct extent_map *em1, *em2;
4607
4608        em1 = list_entry(a, struct extent_map, list);
4609        em2 = list_entry(b, struct extent_map, list);
4610
4611        if (em1->start < em2->start)
4612                return -1;
4613        else if (em1->start > em2->start)
4614                return 1;
4615        return 0;
4616}
4617
4618static int log_extent_csums(struct btrfs_trans_handle *trans,
4619                            struct btrfs_inode *inode,
4620                            struct btrfs_root *log_root,
4621                            const struct extent_map *em,
4622                            struct btrfs_log_ctx *ctx)
4623{
4624        struct btrfs_ordered_extent *ordered;
4625        struct btrfs_root *csum_root;
4626        u64 csum_offset;
4627        u64 csum_len;
4628        u64 mod_start = em->mod_start;
4629        u64 mod_len = em->mod_len;
4630        LIST_HEAD(ordered_sums);
4631        int ret = 0;
4632
4633        if (inode->flags & BTRFS_INODE_NODATASUM ||
4634            test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4635            em->block_start == EXTENT_MAP_HOLE)
4636                return 0;
4637
4638        list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4639                const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4640                const u64 mod_end = mod_start + mod_len;
4641                struct btrfs_ordered_sum *sums;
4642
4643                if (mod_len == 0)
4644                        break;
4645
4646                if (ordered_end <= mod_start)
4647                        continue;
4648                if (mod_end <= ordered->file_offset)
4649                        break;
4650
4651                /*
4652                 * We are going to copy all the csums on this ordered extent, so
4653                 * go ahead and adjust mod_start and mod_len in case this ordered
4654                 * extent has already been logged.
4655                 */
4656                if (ordered->file_offset > mod_start) {
4657                        if (ordered_end >= mod_end)
4658                                mod_len = ordered->file_offset - mod_start;
4659                        /*
4660                         * If we have this case
4661                         *
4662                         * |--------- logged extent ---------|
4663                         *       |----- ordered extent ----|
4664                         *
4665                         * Just don't mess with mod_start and mod_len, we'll
4666                         * just end up logging more csums than we need and it
4667                         * will be ok.
4668                         */
4669                } else {
4670                        if (ordered_end < mod_end) {
4671                                mod_len = mod_end - ordered_end;
4672                                mod_start = ordered_end;
4673                        } else {
4674                                mod_len = 0;
4675                        }
4676                }
4677
4678                /*
4679                 * To keep us from looping for the above case of an ordered
4680                 * extent that falls inside of the logged extent.
4681                 */
4682                if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4683                        continue;
4684
4685                list_for_each_entry(sums, &ordered->list, list) {
4686                        ret = log_csums(trans, inode, log_root, sums);
4687                        if (ret)
4688                                return ret;
4689                }
4690        }
4691
4692        /* We're done, found all csums in the ordered extents. */
4693        if (mod_len == 0)
4694                return 0;
4695
4696        /* If we're compressed we have to save the entire range of csums. */
4697        if (em->compress_type) {
4698                csum_offset = 0;
4699                csum_len = max(em->block_len, em->orig_block_len);
4700        } else {
4701                csum_offset = mod_start - em->start;
4702                csum_len = mod_len;
4703        }
4704
4705        /* block start is already adjusted for the file extent offset. */
4706        csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4707        ret = btrfs_lookup_csums_range(csum_root,
4708                                       em->block_start + csum_offset,
4709                                       em->block_start + csum_offset +
4710                                       csum_len - 1, &ordered_sums, 0);
4711        if (ret)
4712                return ret;
4713
4714        while (!list_empty(&ordered_sums)) {
4715                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4716                                                   struct btrfs_ordered_sum,
4717                                                   list);
4718                if (!ret)
4719                        ret = log_csums(trans, inode, log_root, sums);
4720                list_del(&sums->list);
4721                kfree(sums);
4722        }
4723
4724        return ret;
4725}
4726
4727static int log_one_extent(struct btrfs_trans_handle *trans,
4728                          struct btrfs_inode *inode,
4729                          const struct extent_map *em,
4730                          struct btrfs_path *path,
4731                          struct btrfs_log_ctx *ctx)
4732{
4733        struct btrfs_drop_extents_args drop_args = { 0 };
4734        struct btrfs_root *log = inode->root->log_root;
4735        struct btrfs_file_extent_item fi = { 0 };
4736        struct extent_buffer *leaf;
4737        struct btrfs_key key;
4738        u64 extent_offset = em->start - em->orig_start;
4739        u64 block_len;
4740        int ret;
4741
4742        btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4743        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4744                btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4745        else
4746                btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4747
4748        block_len = max(em->block_len, em->orig_block_len);
4749        if (em->compress_type != BTRFS_COMPRESS_NONE) {
4750                btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4751                btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4752        } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4753                btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4754                                                        extent_offset);
4755                btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4756        }
4757
4758        btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4759        btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4760        btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4761        btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4762
4763        ret = log_extent_csums(trans, inode, log, em, ctx);
4764        if (ret)
4765                return ret;
4766
4767        /*
4768         * If this is the first time we are logging the inode in the current
4769         * transaction, we can avoid btrfs_drop_extents(), which is expensive
4770         * because it does a deletion search, which always acquires write locks
4771         * for extent buffers at levels 2, 1 and 0. This not only wastes time
4772         * but also adds significant contention in a log tree, since log trees
4773         * are small, with a root at level 2 or 3 at most, due to their short
4774         * life span.
4775         */
4776        if (ctx->logged_before) {
4777                drop_args.path = path;
4778                drop_args.start = em->start;
4779                drop_args.end = em->start + em->len;
4780                drop_args.replace_extent = true;
4781                drop_args.extent_item_size = sizeof(fi);
4782                ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4783                if (ret)
4784                        return ret;
4785        }
4786
4787        if (!drop_args.extent_inserted) {
4788                key.objectid = btrfs_ino(inode);
4789                key.type = BTRFS_EXTENT_DATA_KEY;
4790                key.offset = em->start;
4791
4792                ret = btrfs_insert_empty_item(trans, log, path, &key,
4793                                              sizeof(fi));
4794                if (ret)
4795                        return ret;
4796        }
4797        leaf = path->nodes[0];
4798        write_extent_buffer(leaf, &fi,
4799                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4800                            sizeof(fi));
4801        btrfs_mark_buffer_dirty(leaf);
4802
4803        btrfs_release_path(path);
4804
4805        return ret;
4806}
4807
4808/*
4809 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4810 * lose them after doing a full/fast fsync and replaying the log. We scan the
4811 * subvolume's root instead of iterating the inode's extent map tree because
4812 * otherwise we can log incorrect extent items based on extent map conversion.
4813 * That can happen due to the fact that extent maps are merged when they
4814 * are not in the extent map tree's list of modified extents.
4815 */
4816static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4817                                      struct btrfs_inode *inode,
4818                                      struct btrfs_path *path)
4819{
4820        struct btrfs_root *root = inode->root;
4821        struct btrfs_key key;
4822        const u64 i_size = i_size_read(&inode->vfs_inode);
4823        const u64 ino = btrfs_ino(inode);
4824        struct btrfs_path *dst_path = NULL;
4825        bool dropped_extents = false;
4826        u64 truncate_offset = i_size;
4827        struct extent_buffer *leaf;
4828        int slot;
4829        int ins_nr = 0;
4830        int start_slot;
4831        int ret;
4832
4833        if (!(inode->flags & BTRFS_INODE_PREALLOC))
4834                return 0;
4835
4836        key.objectid = ino;
4837        key.type = BTRFS_EXTENT_DATA_KEY;
4838        key.offset = i_size;
4839        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4840        if (ret < 0)
4841                goto out;
4842
4843        /*
4844         * We must check if there is a prealloc extent that starts before the
4845         * i_size and crosses the i_size boundary. This is to ensure later we
4846         * truncate down to the end of that extent and not to the i_size, as
4847         * otherwise we end up losing part of the prealloc extent after a log
4848         * replay and with an implicit hole if there is another prealloc extent
4849         * that starts at an offset beyond i_size.
4850         */
4851        ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4852        if (ret < 0)
4853                goto out;
4854
4855        if (ret == 0) {
4856                struct btrfs_file_extent_item *ei;
4857
4858                leaf = path->nodes[0];
4859                slot = path->slots[0];
4860                ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4861
4862                if (btrfs_file_extent_type(leaf, ei) ==
4863                    BTRFS_FILE_EXTENT_PREALLOC) {
4864                        u64 extent_end;
4865
4866                        btrfs_item_key_to_cpu(leaf, &key, slot);
4867                        extent_end = key.offset +
4868                                btrfs_file_extent_num_bytes(leaf, ei);
4869
4870                        if (extent_end > i_size)
4871                                truncate_offset = extent_end;
4872                }
4873        } else {
4874                ret = 0;
4875        }
4876
4877        while (true) {
4878                leaf = path->nodes[0];
4879                slot = path->slots[0];
4880
4881                if (slot >= btrfs_header_nritems(leaf)) {
4882                        if (ins_nr > 0) {
4883                                ret = copy_items(trans, inode, dst_path, path,
4884                                                 start_slot, ins_nr, 1, 0);
4885                                if (ret < 0)
4886                                        goto out;
4887                                ins_nr = 0;
4888                        }
4889                        ret = btrfs_next_leaf(root, path);
4890                        if (ret < 0)
4891                                goto out;
4892                        if (ret > 0) {
4893                                ret = 0;
4894                                break;
4895                        }
4896                        continue;
4897                }
4898
4899                btrfs_item_key_to_cpu(leaf, &key, slot);
4900                if (key.objectid > ino)
4901                        break;
4902                if (WARN_ON_ONCE(key.objectid < ino) ||
4903                    key.type < BTRFS_EXTENT_DATA_KEY ||
4904                    key.offset < i_size) {
4905                        path->slots[0]++;
4906                        continue;
4907                }
4908                if (!dropped_extents) {
4909                        /*
4910                         * Avoid logging extent items logged in past fsync calls
4911                         * and leading to duplicate keys in the log tree.
4912                         */
4913                        ret = truncate_inode_items(trans, root->log_root, inode,
4914                                                   truncate_offset,
4915                                                   BTRFS_EXTENT_DATA_KEY);
4916                        if (ret)
4917                                goto out;
4918                        dropped_extents = true;
4919                }
4920                if (ins_nr == 0)
4921                        start_slot = slot;
4922                ins_nr++;
4923                path->slots[0]++;
4924                if (!dst_path) {
4925                        dst_path = btrfs_alloc_path();
4926                        if (!dst_path) {
4927                                ret = -ENOMEM;
4928                                goto out;
4929                        }
4930                }
4931        }
4932        if (ins_nr > 0)
4933                ret = copy_items(trans, inode, dst_path, path,
4934                                 start_slot, ins_nr, 1, 0);
4935out:
4936        btrfs_release_path(path);
4937        btrfs_free_path(dst_path);
4938        return ret;
4939}
4940
4941static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4942                                     struct btrfs_inode *inode,
4943                                     struct btrfs_path *path,
4944                                     struct btrfs_log_ctx *ctx)
4945{
4946        struct btrfs_ordered_extent *ordered;
4947        struct btrfs_ordered_extent *tmp;
4948        struct extent_map *em, *n;
4949        struct list_head extents;
4950        struct extent_map_tree *tree = &inode->extent_tree;
4951        int ret = 0;
4952        int num = 0;
4953
4954        INIT_LIST_HEAD(&extents);
4955
4956        write_lock(&tree->lock);
4957
4958        list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4959                list_del_init(&em->list);
4960                /*
4961                 * Just an arbitrary number, this can be really CPU intensive
4962                 * once we start getting a lot of extents, and really once we
4963                 * have a bunch of extents we just want to commit since it will
4964                 * be faster.
4965                 */
4966                if (++num > 32768) {
4967                        list_del_init(&tree->modified_extents);
4968                        ret = -EFBIG;
4969                        goto process;
4970                }
4971
4972                if (em->generation < trans->transid)
4973                        continue;
4974
4975                /* We log prealloc extents beyond eof later. */
4976                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4977                    em->start >= i_size_read(&inode->vfs_inode))
4978                        continue;
4979
4980                /* Need a ref to keep it from getting evicted from cache */
4981                refcount_inc(&em->refs);
4982                set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4983                list_add_tail(&em->list, &extents);
4984                num++;
4985        }
4986
4987        list_sort(NULL, &extents, extent_cmp);
4988process:
4989        while (!list_empty(&extents)) {
4990                em = list_entry(extents.next, struct extent_map, list);
4991
4992                list_del_init(&em->list);
4993
4994                /*
4995                 * If we had an error we just need to delete everybody from our
4996                 * private list.
4997                 */
4998                if (ret) {
4999                        clear_em_logging(tree, em);
5000                        free_extent_map(em);
5001                        continue;
5002                }
5003
5004                write_unlock(&tree->lock);
5005
5006                ret = log_one_extent(trans, inode, em, path, ctx);
5007                write_lock(&tree->lock);
5008                clear_em_logging(tree, em);
5009                free_extent_map(em);
5010        }
5011        WARN_ON(!list_empty(&extents));
5012        write_unlock(&tree->lock);
5013
5014        if (!ret)
5015                ret = btrfs_log_prealloc_extents(trans, inode, path);
5016        if (ret)
5017                return ret;
5018
5019        /*
5020         * We have logged all extents successfully, now make sure the commit of
5021         * the current transaction waits for the ordered extents to complete
5022         * before it commits and wipes out the log trees, otherwise we would
5023         * lose data if an ordered extents completes after the transaction
5024         * commits and a power failure happens after the transaction commit.
5025         */
5026        list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5027                list_del_init(&ordered->log_list);
5028                set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5029
5030                if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5031                        spin_lock_irq(&inode->ordered_tree.lock);
5032                        if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5033                                set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5034                                atomic_inc(&trans->transaction->pending_ordered);
5035                        }
5036                        spin_unlock_irq(&inode->ordered_tree.lock);
5037                }
5038                btrfs_put_ordered_extent(ordered);
5039        }
5040
5041        return 0;
5042}
5043
5044static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5045                             struct btrfs_path *path, u64 *size_ret)
5046{
5047        struct btrfs_key key;
5048        int ret;
5049
5050        key.objectid = btrfs_ino(inode);
5051        key.type = BTRFS_INODE_ITEM_KEY;
5052        key.offset = 0;
5053
5054        ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5055        if (ret < 0) {
5056                return ret;
5057        } else if (ret > 0) {
5058                *size_ret = 0;
5059        } else {
5060                struct btrfs_inode_item *item;
5061
5062                item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5063                                      struct btrfs_inode_item);
5064                *size_ret = btrfs_inode_size(path->nodes[0], item);
5065                /*
5066                 * If the in-memory inode's i_size is smaller then the inode
5067                 * size stored in the btree, return the inode's i_size, so
5068                 * that we get a correct inode size after replaying the log
5069                 * when before a power failure we had a shrinking truncate
5070                 * followed by addition of a new name (rename / new hard link).
5071                 * Otherwise return the inode size from the btree, to avoid
5072                 * data loss when replaying a log due to previously doing a
5073                 * write that expands the inode's size and logging a new name
5074                 * immediately after.
5075                 */
5076                if (*size_ret > inode->vfs_inode.i_size)
5077                        *size_ret = inode->vfs_inode.i_size;
5078        }
5079
5080        btrfs_release_path(path);
5081        return 0;
5082}
5083
5084/*
5085 * At the moment we always log all xattrs. This is to figure out at log replay
5086 * time which xattrs must have their deletion replayed. If a xattr is missing
5087 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5088 * because if a xattr is deleted, the inode is fsynced and a power failure
5089 * happens, causing the log to be replayed the next time the fs is mounted,
5090 * we want the xattr to not exist anymore (same behaviour as other filesystems
5091 * with a journal, ext3/4, xfs, f2fs, etc).
5092 */
5093static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5094                                struct btrfs_inode *inode,
5095                                struct btrfs_path *path,
5096                                struct btrfs_path *dst_path)
5097{
5098        struct btrfs_root *root = inode->root;
5099        int ret;
5100        struct btrfs_key key;
5101        const u64 ino = btrfs_ino(inode);
5102        int ins_nr = 0;
5103        int start_slot = 0;
5104        bool found_xattrs = false;
5105
5106        if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5107                return 0;
5108
5109        key.objectid = ino;
5110        key.type = BTRFS_XATTR_ITEM_KEY;
5111        key.offset = 0;
5112
5113        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5114        if (ret < 0)
5115                return ret;
5116
5117        while (true) {
5118                int slot = path->slots[0];
5119                struct extent_buffer *leaf = path->nodes[0];
5120                int nritems = btrfs_header_nritems(leaf);
5121
5122                if (slot >= nritems) {
5123                        if (ins_nr > 0) {
5124                                ret = copy_items(trans, inode, dst_path, path,
5125                                                 start_slot, ins_nr, 1, 0);
5126                                if (ret < 0)
5127                                        return ret;
5128                                ins_nr = 0;
5129                        }
5130                        ret = btrfs_next_leaf(root, path);
5131                        if (ret < 0)
5132                                return ret;
5133                        else if (ret > 0)
5134                                break;
5135                        continue;
5136                }
5137
5138                btrfs_item_key_to_cpu(leaf, &key, slot);
5139                if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5140                        break;
5141
5142                if (ins_nr == 0)
5143                        start_slot = slot;
5144                ins_nr++;
5145                path->slots[0]++;
5146                found_xattrs = true;
5147                cond_resched();
5148        }
5149        if (ins_nr > 0) {
5150                ret = copy_items(trans, inode, dst_path, path,
5151                                 start_slot, ins_nr, 1, 0);
5152                if (ret < 0)
5153                        return ret;
5154        }
5155
5156        if (!found_xattrs)
5157                set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5158
5159        return 0;
5160}
5161
5162/*
5163 * When using the NO_HOLES feature if we punched a hole that causes the
5164 * deletion of entire leafs or all the extent items of the first leaf (the one
5165 * that contains the inode item and references) we may end up not processing
5166 * any extents, because there are no leafs with a generation matching the
5167 * current transaction that have extent items for our inode. So we need to find
5168 * if any holes exist and then log them. We also need to log holes after any
5169 * truncate operation that changes the inode's size.
5170 */
5171static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5172                           struct btrfs_inode *inode,
5173                           struct btrfs_path *path)
5174{
5175        struct btrfs_root *root = inode->root;
5176        struct btrfs_fs_info *fs_info = root->fs_info;
5177        struct btrfs_key key;
5178        const u64 ino = btrfs_ino(inode);
5179        const u64 i_size = i_size_read(&inode->vfs_inode);
5180        u64 prev_extent_end = 0;
5181        int ret;
5182
5183        if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5184                return 0;
5185
5186        key.objectid = ino;
5187        key.type = BTRFS_EXTENT_DATA_KEY;
5188        key.offset = 0;
5189
5190        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5191        if (ret < 0)
5192                return ret;
5193
5194        while (true) {
5195                struct extent_buffer *leaf = path->nodes[0];
5196
5197                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5198                        ret = btrfs_next_leaf(root, path);
5199                        if (ret < 0)
5200                                return ret;
5201                        if (ret > 0) {
5202                                ret = 0;
5203                                break;
5204                        }
5205                        leaf = path->nodes[0];
5206                }
5207
5208                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5209                if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5210                        break;
5211
5212                /* We have a hole, log it. */
5213                if (prev_extent_end < key.offset) {
5214                        const u64 hole_len = key.offset - prev_extent_end;
5215
5216                        /*
5217                         * Release the path to avoid deadlocks with other code
5218                         * paths that search the root while holding locks on
5219                         * leafs from the log root.
5220                         */
5221                        btrfs_release_path(path);
5222                        ret = btrfs_insert_file_extent(trans, root->log_root,
5223                                                       ino, prev_extent_end, 0,
5224                                                       0, hole_len, 0, hole_len,
5225                                                       0, 0, 0);
5226                        if (ret < 0)
5227                                return ret;
5228
5229                        /*
5230                         * Search for the same key again in the root. Since it's
5231                         * an extent item and we are holding the inode lock, the
5232                         * key must still exist. If it doesn't just emit warning
5233                         * and return an error to fall back to a transaction
5234                         * commit.
5235                         */
5236                        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5237                        if (ret < 0)
5238                                return ret;
5239                        if (WARN_ON(ret > 0))
5240                                return -ENOENT;
5241                        leaf = path->nodes[0];
5242                }
5243
5244                prev_extent_end = btrfs_file_extent_end(path);
5245                path->slots[0]++;
5246                cond_resched();
5247        }
5248
5249        if (prev_extent_end < i_size) {
5250                u64 hole_len;
5251
5252                btrfs_release_path(path);
5253                hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5254                ret = btrfs_insert_file_extent(trans, root->log_root,
5255                                               ino, prev_extent_end, 0, 0,
5256                                               hole_len, 0, hole_len,
5257                                               0, 0, 0);
5258                if (ret < 0)
5259                        return ret;
5260        }
5261
5262        return 0;
5263}
5264
5265/*
5266 * When we are logging a new inode X, check if it doesn't have a reference that
5267 * matches the reference from some other inode Y created in a past transaction
5268 * and that was renamed in the current transaction. If we don't do this, then at
5269 * log replay time we can lose inode Y (and all its files if it's a directory):
5270 *
5271 * mkdir /mnt/x
5272 * echo "hello world" > /mnt/x/foobar
5273 * sync
5274 * mv /mnt/x /mnt/y
5275 * mkdir /mnt/x                 # or touch /mnt/x
5276 * xfs_io -c fsync /mnt/x
5277 * <power fail>
5278 * mount fs, trigger log replay
5279 *
5280 * After the log replay procedure, we would lose the first directory and all its
5281 * files (file foobar).
5282 * For the case where inode Y is not a directory we simply end up losing it:
5283 *
5284 * echo "123" > /mnt/foo
5285 * sync
5286 * mv /mnt/foo /mnt/bar
5287 * echo "abc" > /mnt/foo
5288 * xfs_io -c fsync /mnt/foo
5289 * <power fail>
5290 *
5291 * We also need this for cases where a snapshot entry is replaced by some other
5292 * entry (file or directory) otherwise we end up with an unreplayable log due to
5293 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5294 * if it were a regular entry:
5295 *
5296 * mkdir /mnt/x
5297 * btrfs subvolume snapshot /mnt /mnt/x/snap
5298 * btrfs subvolume delete /mnt/x/snap
5299 * rmdir /mnt/x
5300 * mkdir /mnt/x
5301 * fsync /mnt/x or fsync some new file inside it
5302 * <power fail>
5303 *
5304 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5305 * the same transaction.
5306 */
5307static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5308                                         const int slot,
5309                                         const struct btrfs_key *key,
5310                                         struct btrfs_inode *inode,
5311                                         u64 *other_ino, u64 *other_parent)
5312{
5313        int ret;
5314        struct btrfs_path *search_path;
5315        char *name = NULL;
5316        u32 name_len = 0;
5317        u32 item_size = btrfs_item_size(eb, slot);
5318        u32 cur_offset = 0;
5319        unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5320
5321        search_path = btrfs_alloc_path();
5322        if (!search_path)
5323                return -ENOMEM;
5324        search_path->search_commit_root = 1;
5325        search_path->skip_locking = 1;
5326
5327        while (cur_offset < item_size) {
5328                u64 parent;
5329                u32 this_name_len;
5330                u32 this_len;
5331                unsigned long name_ptr;
5332                struct btrfs_dir_item *di;
5333
5334                if (key->type == BTRFS_INODE_REF_KEY) {
5335                        struct btrfs_inode_ref *iref;
5336
5337                        iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5338                        parent = key->offset;
5339                        this_name_len = btrfs_inode_ref_name_len(eb, iref);
5340                        name_ptr = (unsigned long)(iref + 1);
5341                        this_len = sizeof(*iref) + this_name_len;
5342                } else {
5343                        struct btrfs_inode_extref *extref;
5344
5345                        extref = (struct btrfs_inode_extref *)(ptr +
5346                                                               cur_offset);
5347                        parent = btrfs_inode_extref_parent(eb, extref);
5348                        this_name_len = btrfs_inode_extref_name_len(eb, extref);
5349                        name_ptr = (unsigned long)&extref->name;
5350                        this_len = sizeof(*extref) + this_name_len;
5351                }
5352
5353                if (this_name_len > name_len) {
5354                        char *new_name;
5355
5356                        new_name = krealloc(name, this_name_len, GFP_NOFS);
5357                        if (!new_name) {
5358                                ret = -ENOMEM;
5359                                goto out;
5360                        }
5361                        name_len = this_name_len;
5362                        name = new_name;
5363                }
5364
5365                read_extent_buffer(eb, name, name_ptr, this_name_len);
5366                di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5367                                parent, name, this_name_len, 0);
5368                if (di && !IS_ERR(di)) {
5369                        struct btrfs_key di_key;
5370
5371                        btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5372                                                  di, &di_key);
5373                        if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5374                                if (di_key.objectid != key->objectid) {
5375                                        ret = 1;
5376                                        *other_ino = di_key.objectid;
5377                                        *other_parent = parent;
5378                                } else {
5379                                        ret = 0;
5380                                }
5381                        } else {
5382                                ret = -EAGAIN;
5383                        }
5384                        goto out;
5385                } else if (IS_ERR(di)) {
5386                        ret = PTR_ERR(di);
5387                        goto out;
5388                }
5389                btrfs_release_path(search_path);
5390
5391                cur_offset += this_len;
5392        }
5393        ret = 0;
5394out:
5395        btrfs_free_path(search_path);
5396        kfree(name);
5397        return ret;
5398}
5399
5400struct btrfs_ino_list {
5401        u64 ino;
5402        u64 parent;
5403        struct list_head list;
5404};
5405
5406static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5407                                  struct btrfs_root *root,
5408                                  struct btrfs_path *path,
5409                                  struct btrfs_log_ctx *ctx,
5410                                  u64 ino, u64 parent)
5411{
5412        struct btrfs_ino_list *ino_elem;
5413        LIST_HEAD(inode_list);
5414        int ret = 0;
5415
5416        ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5417        if (!ino_elem)
5418                return -ENOMEM;
5419        ino_elem->ino = ino;
5420        ino_elem->parent = parent;
5421        list_add_tail(&ino_elem->list, &inode_list);
5422
5423        while (!list_empty(&inode_list)) {
5424                struct btrfs_fs_info *fs_info = root->fs_info;
5425                struct btrfs_key key;
5426                struct inode *inode;
5427
5428                ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5429                                            list);
5430                ino = ino_elem->ino;
5431                parent = ino_elem->parent;
5432                list_del(&ino_elem->list);
5433                kfree(ino_elem);
5434                if (ret)
5435                        continue;
5436
5437                btrfs_release_path(path);
5438
5439                inode = btrfs_iget(fs_info->sb, ino, root);
5440                /*
5441                 * If the other inode that had a conflicting dir entry was
5442                 * deleted in the current transaction, we need to log its parent
5443                 * directory.
5444                 */
5445                if (IS_ERR(inode)) {
5446                        ret = PTR_ERR(inode);
5447                        if (ret == -ENOENT) {
5448                                inode = btrfs_iget(fs_info->sb, parent, root);
5449                                if (IS_ERR(inode)) {
5450                                        ret = PTR_ERR(inode);
5451                                } else {
5452                                        ret = btrfs_log_inode(trans,
5453                                                      BTRFS_I(inode),
5454                                                      LOG_OTHER_INODE_ALL,
5455                                                      ctx);
5456                                        btrfs_add_delayed_iput(inode);
5457                                }
5458                        }
5459                        continue;
5460                }
5461                /*
5462                 * If the inode was already logged skip it - otherwise we can
5463                 * hit an infinite loop. Example:
5464                 *
5465                 * From the commit root (previous transaction) we have the
5466                 * following inodes:
5467                 *
5468                 * inode 257 a directory
5469                 * inode 258 with references "zz" and "zz_link" on inode 257
5470                 * inode 259 with reference "a" on inode 257
5471                 *
5472                 * And in the current (uncommitted) transaction we have:
5473                 *
5474                 * inode 257 a directory, unchanged
5475                 * inode 258 with references "a" and "a2" on inode 257
5476                 * inode 259 with reference "zz_link" on inode 257
5477                 * inode 261 with reference "zz" on inode 257
5478                 *
5479                 * When logging inode 261 the following infinite loop could
5480                 * happen if we don't skip already logged inodes:
5481                 *
5482                 * - we detect inode 258 as a conflicting inode, with inode 261
5483                 *   on reference "zz", and log it;
5484                 *
5485                 * - we detect inode 259 as a conflicting inode, with inode 258
5486                 *   on reference "a", and log it;
5487                 *
5488                 * - we detect inode 258 as a conflicting inode, with inode 259
5489                 *   on reference "zz_link", and log it - again! After this we
5490                 *   repeat the above steps forever.
5491                 */
5492                spin_lock(&BTRFS_I(inode)->lock);
5493                /*
5494                 * Check the inode's logged_trans only instead of
5495                 * btrfs_inode_in_log(). This is because the last_log_commit of
5496                 * the inode is not updated when we only log that it exists (see
5497                 * btrfs_log_inode()).
5498                 */
5499                if (BTRFS_I(inode)->logged_trans == trans->transid) {
5500                        spin_unlock(&BTRFS_I(inode)->lock);
5501                        btrfs_add_delayed_iput(inode);
5502                        continue;
5503                }
5504                spin_unlock(&BTRFS_I(inode)->lock);
5505                /*
5506                 * We are safe logging the other inode without acquiring its
5507                 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5508                 * are safe against concurrent renames of the other inode as
5509                 * well because during a rename we pin the log and update the
5510                 * log with the new name before we unpin it.
5511                 */
5512                ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
5513                if (ret) {
5514                        btrfs_add_delayed_iput(inode);
5515                        continue;
5516                }
5517
5518                key.objectid = ino;
5519                key.type = BTRFS_INODE_REF_KEY;
5520                key.offset = 0;
5521                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5522                if (ret < 0) {
5523                        btrfs_add_delayed_iput(inode);
5524                        continue;
5525                }
5526
5527                while (true) {
5528                        struct extent_buffer *leaf = path->nodes[0];
5529                        int slot = path->slots[0];
5530                        u64 other_ino = 0;
5531                        u64 other_parent = 0;
5532
5533                        if (slot >= btrfs_header_nritems(leaf)) {
5534                                ret = btrfs_next_leaf(root, path);
5535                                if (ret < 0) {
5536                                        break;
5537                                } else if (ret > 0) {
5538                                        ret = 0;
5539                                        break;
5540                                }
5541                                continue;
5542                        }
5543
5544                        btrfs_item_key_to_cpu(leaf, &key, slot);
5545                        if (key.objectid != ino ||
5546                            (key.type != BTRFS_INODE_REF_KEY &&
5547                             key.type != BTRFS_INODE_EXTREF_KEY)) {
5548                                ret = 0;
5549                                break;
5550                        }
5551
5552                        ret = btrfs_check_ref_name_override(leaf, slot, &key,
5553                                        BTRFS_I(inode), &other_ino,
5554                                        &other_parent);
5555                        if (ret < 0)
5556                                break;
5557                        if (ret > 0) {
5558                                ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5559                                if (!ino_elem) {
5560                                        ret = -ENOMEM;
5561                                        break;
5562                                }
5563                                ino_elem->ino = other_ino;
5564                                ino_elem->parent = other_parent;
5565                                list_add_tail(&ino_elem->list, &inode_list);
5566                                ret = 0;
5567                        }
5568                        path->slots[0]++;
5569                }
5570                btrfs_add_delayed_iput(inode);
5571        }
5572
5573        return ret;
5574}
5575
5576static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5577                                   struct btrfs_inode *inode,
5578                                   struct btrfs_key *min_key,
5579                                   const struct btrfs_key *max_key,
5580                                   struct btrfs_path *path,
5581                                   struct btrfs_path *dst_path,
5582                                   const u64 logged_isize,
5583                                   const bool recursive_logging,
5584                                   const int inode_only,
5585                                   struct btrfs_log_ctx *ctx,
5586                                   bool *need_log_inode_item)
5587{
5588        const u64 i_size = i_size_read(&inode->vfs_inode);
5589        struct btrfs_root *root = inode->root;
5590        int ins_start_slot = 0;
5591        int ins_nr = 0;
5592        int ret;
5593
5594        while (1) {
5595                ret = btrfs_search_forward(root, min_key, path, trans->transid);
5596                if (ret < 0)
5597                        return ret;
5598                if (ret > 0) {
5599                        ret = 0;
5600                        break;
5601                }
5602again:
5603                /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5604                if (min_key->objectid != max_key->objectid)
5605                        break;
5606                if (min_key->type > max_key->type)
5607                        break;
5608
5609                if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5610                        *need_log_inode_item = false;
5611                } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5612                           min_key->offset >= i_size) {
5613                        /*
5614                         * Extents at and beyond eof are logged with
5615                         * btrfs_log_prealloc_extents().
5616                         * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5617                         * and no keys greater than that, so bail out.
5618                         */
5619                        break;
5620                } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5621                            min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5622                           inode->generation == trans->transid &&
5623                           !recursive_logging) {
5624                        u64 other_ino = 0;
5625                        u64 other_parent = 0;
5626
5627                        ret = btrfs_check_ref_name_override(path->nodes[0],
5628                                        path->slots[0], min_key, inode,
5629                                        &other_ino, &other_parent);
5630                        if (ret < 0) {
5631                                return ret;
5632                        } else if (ret > 0 &&
5633                                   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5634                                if (ins_nr > 0) {
5635                                        ins_nr++;
5636                                } else {
5637                                        ins_nr = 1;
5638                                        ins_start_slot = path->slots[0];
5639                                }
5640                                ret = copy_items(trans, inode, dst_path, path,
5641                                                 ins_start_slot, ins_nr,
5642                                                 inode_only, logged_isize);
5643                                if (ret < 0)
5644                                        return ret;
5645                                ins_nr = 0;
5646
5647                                ret = log_conflicting_inodes(trans, root, path,
5648                                                ctx, other_ino, other_parent);
5649                                if (ret)
5650                                        return ret;
5651                                btrfs_release_path(path);
5652                                goto next_key;
5653                        }
5654                } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5655                        /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5656                        if (ins_nr == 0)
5657                                goto next_slot;
5658                        ret = copy_items(trans, inode, dst_path, path,
5659                                         ins_start_slot,
5660                                         ins_nr, inode_only, logged_isize);
5661                        if (ret < 0)
5662                                return ret;
5663                        ins_nr = 0;
5664                        goto next_slot;
5665                }
5666
5667                if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5668                        ins_nr++;
5669                        goto next_slot;
5670                } else if (!ins_nr) {
5671                        ins_start_slot = path->slots[0];
5672                        ins_nr = 1;
5673                        goto next_slot;
5674                }
5675
5676                ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5677                                 ins_nr, inode_only, logged_isize);
5678                if (ret < 0)
5679                        return ret;
5680                ins_nr = 1;
5681                ins_start_slot = path->slots[0];
5682next_slot:
5683                path->slots[0]++;
5684                if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5685                        btrfs_item_key_to_cpu(path->nodes[0], min_key,
5686                                              path->slots[0]);
5687                        goto again;
5688                }
5689                if (ins_nr) {
5690                        ret = copy_items(trans, inode, dst_path, path,
5691                                         ins_start_slot, ins_nr, inode_only,
5692                                         logged_isize);
5693                        if (ret < 0)
5694                                return ret;
5695                        ins_nr = 0;
5696                }
5697                btrfs_release_path(path);
5698next_key:
5699                if (min_key->offset < (u64)-1) {
5700                        min_key->offset++;
5701                } else if (min_key->type < max_key->type) {
5702                        min_key->type++;
5703                        min_key->offset = 0;
5704                } else {
5705                        break;
5706                }
5707
5708                /*
5709                 * We may process many leaves full of items for our inode, so
5710                 * avoid monopolizing a cpu for too long by rescheduling while
5711                 * not holding locks on any tree.
5712                 */
5713                cond_resched();
5714        }
5715        if (ins_nr) {
5716                ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5717                                 ins_nr, inode_only, logged_isize);
5718                if (ret)
5719                        return ret;
5720        }
5721
5722        if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5723                /*
5724                 * Release the path because otherwise we might attempt to double
5725                 * lock the same leaf with btrfs_log_prealloc_extents() below.
5726                 */
5727                btrfs_release_path(path);
5728                ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5729        }
5730
5731        return ret;
5732}
5733
5734/* log a single inode in the tree log.
5735 * At least one parent directory for this inode must exist in the tree
5736 * or be logged already.
5737 *
5738 * Any items from this inode changed by the current transaction are copied
5739 * to the log tree.  An extra reference is taken on any extents in this
5740 * file, allowing us to avoid a whole pile of corner cases around logging
5741 * blocks that have been removed from the tree.
5742 *
5743 * See LOG_INODE_ALL and related defines for a description of what inode_only
5744 * does.
5745 *
5746 * This handles both files and directories.
5747 */
5748static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5749                           struct btrfs_inode *inode,
5750                           int inode_only,
5751                           struct btrfs_log_ctx *ctx)
5752{
5753        struct btrfs_path *path;
5754        struct btrfs_path *dst_path;
5755        struct btrfs_key min_key;
5756        struct btrfs_key max_key;
5757        struct btrfs_root *log = inode->root->log_root;
5758        int ret;
5759        bool fast_search = false;
5760        u64 ino = btrfs_ino(inode);
5761        struct extent_map_tree *em_tree = &inode->extent_tree;
5762        u64 logged_isize = 0;
5763        bool need_log_inode_item = true;
5764        bool xattrs_logged = false;
5765        bool recursive_logging = false;
5766        bool inode_item_dropped = true;
5767        const bool orig_logged_before = ctx->logged_before;
5768
5769        path = btrfs_alloc_path();
5770        if (!path)
5771                return -ENOMEM;
5772        dst_path = btrfs_alloc_path();
5773        if (!dst_path) {
5774                btrfs_free_path(path);
5775                return -ENOMEM;
5776        }
5777
5778        min_key.objectid = ino;
5779        min_key.type = BTRFS_INODE_ITEM_KEY;
5780        min_key.offset = 0;
5781
5782        max_key.objectid = ino;
5783
5784
5785        /* today the code can only do partial logging of directories */
5786        if (S_ISDIR(inode->vfs_inode.i_mode) ||
5787            (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5788                       &inode->runtime_flags) &&
5789             inode_only >= LOG_INODE_EXISTS))
5790                max_key.type = BTRFS_XATTR_ITEM_KEY;
5791        else
5792                max_key.type = (u8)-1;
5793        max_key.offset = (u64)-1;
5794
5795        /*
5796         * Only run delayed items if we are a directory. We want to make sure
5797         * all directory indexes hit the fs/subvolume tree so we can find them
5798         * and figure out which index ranges have to be logged.
5799         */
5800        if (S_ISDIR(inode->vfs_inode.i_mode)) {
5801                ret = btrfs_commit_inode_delayed_items(trans, inode);
5802                if (ret)
5803                        goto out;
5804        }
5805
5806        if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5807                recursive_logging = true;
5808                if (inode_only == LOG_OTHER_INODE)
5809                        inode_only = LOG_INODE_EXISTS;
5810                else
5811                        inode_only = LOG_INODE_ALL;
5812                mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5813        } else {
5814                mutex_lock(&inode->log_mutex);
5815        }
5816
5817        /*
5818         * For symlinks, we must always log their content, which is stored in an
5819         * inline extent, otherwise we could end up with an empty symlink after
5820         * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
5821         * one attempts to create an empty symlink).
5822         * We don't need to worry about flushing delalloc, because when we create
5823         * the inline extent when the symlink is created (we never have delalloc
5824         * for symlinks).
5825         */
5826        if (S_ISLNK(inode->vfs_inode.i_mode))
5827                inode_only = LOG_INODE_ALL;
5828
5829        /*
5830         * Before logging the inode item, cache the value returned by
5831         * inode_logged(), because after that we have the need to figure out if
5832         * the inode was previously logged in this transaction.
5833         */
5834        ret = inode_logged(trans, inode, path);
5835        if (ret < 0)
5836                goto out_unlock;
5837        ctx->logged_before = (ret == 1);
5838        ret = 0;
5839
5840        /*
5841         * This is for cases where logging a directory could result in losing a
5842         * a file after replaying the log. For example, if we move a file from a
5843         * directory A to a directory B, then fsync directory A, we have no way
5844         * to known the file was moved from A to B, so logging just A would
5845         * result in losing the file after a log replay.
5846         */
5847        if (S_ISDIR(inode->vfs_inode.i_mode) &&
5848            inode_only == LOG_INODE_ALL &&
5849            inode->last_unlink_trans >= trans->transid) {
5850                btrfs_set_log_full_commit(trans);
5851                ret = 1;
5852                goto out_unlock;
5853        }
5854
5855        /*
5856         * a brute force approach to making sure we get the most uptodate
5857         * copies of everything.
5858         */
5859        if (S_ISDIR(inode->vfs_inode.i_mode)) {
5860                int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5861
5862                clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5863                if (inode_only == LOG_INODE_EXISTS)
5864                        max_key_type = BTRFS_XATTR_ITEM_KEY;
5865                if (ctx->logged_before)
5866                        ret = drop_inode_items(trans, log, path, inode,
5867                                               max_key_type);
5868        } else {
5869                if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
5870                        /*
5871                         * Make sure the new inode item we write to the log has
5872                         * the same isize as the current one (if it exists).
5873                         * This is necessary to prevent data loss after log
5874                         * replay, and also to prevent doing a wrong expanding
5875                         * truncate - for e.g. create file, write 4K into offset
5876                         * 0, fsync, write 4K into offset 4096, add hard link,
5877                         * fsync some other file (to sync log), power fail - if
5878                         * we use the inode's current i_size, after log replay
5879                         * we get a 8Kb file, with the last 4Kb extent as a hole
5880                         * (zeroes), as if an expanding truncate happened,
5881                         * instead of getting a file of 4Kb only.
5882                         */
5883                        ret = logged_inode_size(log, inode, path, &logged_isize);
5884                        if (ret)
5885                                goto out_unlock;
5886                }
5887                if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5888                             &inode->runtime_flags)) {
5889                        if (inode_only == LOG_INODE_EXISTS) {
5890                                max_key.type = BTRFS_XATTR_ITEM_KEY;
5891                                if (ctx->logged_before)
5892                                        ret = drop_inode_items(trans, log, path,
5893                                                               inode, max_key.type);
5894                        } else {
5895                                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5896                                          &inode->runtime_flags);
5897                                clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5898                                          &inode->runtime_flags);
5899                                if (ctx->logged_before)
5900                                        ret = truncate_inode_items(trans, log,
5901                                                                   inode, 0, 0);
5902                        }
5903                } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5904                                              &inode->runtime_flags) ||
5905                           inode_only == LOG_INODE_EXISTS) {
5906                        if (inode_only == LOG_INODE_ALL)
5907                                fast_search = true;
5908                        max_key.type = BTRFS_XATTR_ITEM_KEY;
5909                        if (ctx->logged_before)
5910                                ret = drop_inode_items(trans, log, path, inode,
5911                                                       max_key.type);
5912                } else {
5913                        if (inode_only == LOG_INODE_ALL)
5914                                fast_search = true;
5915                        inode_item_dropped = false;
5916                        goto log_extents;
5917                }
5918
5919        }
5920        if (ret)
5921                goto out_unlock;
5922
5923        ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5924                                      path, dst_path, logged_isize,
5925                                      recursive_logging, inode_only, ctx,
5926                                      &need_log_inode_item);
5927        if (ret)
5928                goto out_unlock;
5929
5930        btrfs_release_path(path);
5931        btrfs_release_path(dst_path);
5932        ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5933        if (ret)
5934                goto out_unlock;
5935        xattrs_logged = true;
5936        if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5937                btrfs_release_path(path);
5938                btrfs_release_path(dst_path);
5939                ret = btrfs_log_holes(trans, inode, path);
5940                if (ret)
5941                        goto out_unlock;
5942        }
5943log_extents:
5944        btrfs_release_path(path);
5945        btrfs_release_path(dst_path);
5946        if (need_log_inode_item) {
5947                ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5948                if (ret)
5949                        goto out_unlock;
5950                /*
5951                 * If we are doing a fast fsync and the inode was logged before
5952                 * in this transaction, we don't need to log the xattrs because
5953                 * they were logged before. If xattrs were added, changed or
5954                 * deleted since the last time we logged the inode, then we have
5955                 * already logged them because the inode had the runtime flag
5956                 * BTRFS_INODE_COPY_EVERYTHING set.
5957                 */
5958                if (!xattrs_logged && inode->logged_trans < trans->transid) {
5959                        ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5960                        if (ret)
5961                                goto out_unlock;
5962                        btrfs_release_path(path);
5963                }
5964        }
5965        if (fast_search) {
5966                ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
5967                if (ret)
5968                        goto out_unlock;
5969        } else if (inode_only == LOG_INODE_ALL) {
5970                struct extent_map *em, *n;
5971
5972                write_lock(&em_tree->lock);
5973                list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5974                        list_del_init(&em->list);
5975                write_unlock(&em_tree->lock);
5976        }
5977
5978        if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5979                ret = log_directory_changes(trans, inode, path, dst_path, ctx);
5980                if (ret)
5981                        goto out_unlock;
5982        }
5983
5984        spin_lock(&inode->lock);
5985        inode->logged_trans = trans->transid;
5986        /*
5987         * Don't update last_log_commit if we logged that an inode exists.
5988         * We do this for three reasons:
5989         *
5990         * 1) We might have had buffered writes to this inode that were
5991         *    flushed and had their ordered extents completed in this
5992         *    transaction, but we did not previously log the inode with
5993         *    LOG_INODE_ALL. Later the inode was evicted and after that
5994         *    it was loaded again and this LOG_INODE_EXISTS log operation
5995         *    happened. We must make sure that if an explicit fsync against
5996         *    the inode is performed later, it logs the new extents, an
5997         *    updated inode item, etc, and syncs the log. The same logic
5998         *    applies to direct IO writes instead of buffered writes.
5999         *
6000         * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6001         *    is logged with an i_size of 0 or whatever value was logged
6002         *    before. If later the i_size of the inode is increased by a
6003         *    truncate operation, the log is synced through an fsync of
6004         *    some other inode and then finally an explicit fsync against
6005         *    this inode is made, we must make sure this fsync logs the
6006         *    inode with the new i_size, the hole between old i_size and
6007         *    the new i_size, and syncs the log.
6008         *
6009         * 3) If we are logging that an ancestor inode exists as part of
6010         *    logging a new name from a link or rename operation, don't update
6011         *    its last_log_commit - otherwise if an explicit fsync is made
6012         *    against an ancestor, the fsync considers the inode in the log
6013         *    and doesn't sync the log, resulting in the ancestor missing after
6014         *    a power failure unless the log was synced as part of an fsync
6015         *    against any other unrelated inode.
6016         */
6017        if (inode_only != LOG_INODE_EXISTS)
6018                inode->last_log_commit = inode->last_sub_trans;
6019        spin_unlock(&inode->lock);
6020
6021        /*
6022         * Reset the last_reflink_trans so that the next fsync does not need to
6023         * go through the slower path when logging extents and their checksums.
6024         */
6025        if (inode_only == LOG_INODE_ALL)
6026                inode->last_reflink_trans = 0;
6027
6028out_unlock:
6029        mutex_unlock(&inode->log_mutex);
6030out:
6031        btrfs_free_path(path);
6032        btrfs_free_path(dst_path);
6033
6034        if (recursive_logging)
6035                ctx->logged_before = orig_logged_before;
6036
6037        return ret;
6038}
6039
6040/*
6041 * Check if we need to log an inode. This is used in contexts where while
6042 * logging an inode we need to log another inode (either that it exists or in
6043 * full mode). This is used instead of btrfs_inode_in_log() because the later
6044 * requires the inode to be in the log and have the log transaction committed,
6045 * while here we do not care if the log transaction was already committed - our
6046 * caller will commit the log later - and we want to avoid logging an inode
6047 * multiple times when multiple tasks have joined the same log transaction.
6048 */
6049static bool need_log_inode(struct btrfs_trans_handle *trans,
6050                           struct btrfs_inode *inode)
6051{
6052        /*
6053         * If a directory was not modified, no dentries added or removed, we can
6054         * and should avoid logging it.
6055         */
6056        if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
6057                return false;
6058
6059        /*
6060         * If this inode does not have new/updated/deleted xattrs since the last
6061         * time it was logged and is flagged as logged in the current transaction,
6062         * we can skip logging it. As for new/deleted names, those are updated in
6063         * the log by link/unlink/rename operations.
6064         * In case the inode was logged and then evicted and reloaded, its
6065         * logged_trans will be 0, in which case we have to fully log it since
6066         * logged_trans is a transient field, not persisted.
6067         */
6068        if (inode->logged_trans == trans->transid &&
6069            !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
6070                return false;
6071
6072        return true;
6073}
6074
6075struct btrfs_dir_list {
6076        u64 ino;
6077        struct list_head list;
6078};
6079
6080/*
6081 * Log the inodes of the new dentries of a directory. See log_dir_items() for
6082 * details about the why it is needed.
6083 * This is a recursive operation - if an existing dentry corresponds to a
6084 * directory, that directory's new entries are logged too (same behaviour as
6085 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
6086 * the dentries point to we do not lock their i_mutex, otherwise lockdep
6087 * complains about the following circular lock dependency / possible deadlock:
6088 *
6089 *        CPU0                                        CPU1
6090 *        ----                                        ----
6091 * lock(&type->i_mutex_dir_key#3/2);
6092 *                                            lock(sb_internal#2);
6093 *                                            lock(&type->i_mutex_dir_key#3/2);
6094 * lock(&sb->s_type->i_mutex_key#14);
6095 *
6096 * Where sb_internal is the lock (a counter that works as a lock) acquired by
6097 * sb_start_intwrite() in btrfs_start_transaction().
6098 * Not locking i_mutex of the inodes is still safe because:
6099 *
6100 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
6101 *    that while logging the inode new references (names) are added or removed
6102 *    from the inode, leaving the logged inode item with a link count that does
6103 *    not match the number of logged inode reference items. This is fine because
6104 *    at log replay time we compute the real number of links and correct the
6105 *    link count in the inode item (see replay_one_buffer() and
6106 *    link_to_fixup_dir());
6107 *
6108 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
6109 *    while logging the inode's items new index items (key type
6110 *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
6111 *    has a size that doesn't match the sum of the lengths of all the logged
6112 *    names - this is ok, not a problem, because at log replay time we set the
6113 *    directory's i_size to the correct value (see replay_one_name() and
6114 *    do_overwrite_item()).
6115 */
6116static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
6117                                struct btrfs_root *root,
6118                                struct btrfs_inode *start_inode,
6119                                struct btrfs_log_ctx *ctx)
6120{
6121        struct btrfs_fs_info *fs_info = root->fs_info;
6122        struct btrfs_path *path;
6123        LIST_HEAD(dir_list);
6124        struct btrfs_dir_list *dir_elem;
6125        int ret = 0;
6126
6127        /*
6128         * If we are logging a new name, as part of a link or rename operation,
6129         * don't bother logging new dentries, as we just want to log the names
6130         * of an inode and that any new parents exist.
6131         */
6132        if (ctx->logging_new_name)
6133                return 0;
6134
6135        path = btrfs_alloc_path();
6136        if (!path)
6137                return -ENOMEM;
6138
6139        dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
6140        if (!dir_elem) {
6141                btrfs_free_path(path);
6142                return -ENOMEM;
6143        }
6144        dir_elem->ino = btrfs_ino(start_inode);
6145        list_add_tail(&dir_elem->list, &dir_list);
6146
6147        while (!list_empty(&dir_list)) {
6148                struct extent_buffer *leaf;
6149                struct btrfs_key min_key;
6150                int nritems;
6151                int i;
6152
6153                dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
6154                                            list);
6155                if (ret)
6156                        goto next_dir_inode;
6157
6158                min_key.objectid = dir_elem->ino;
6159                min_key.type = BTRFS_DIR_INDEX_KEY;
6160                min_key.offset = 0;
6161again:
6162                btrfs_release_path(path);
6163                ret = btrfs_search_forward(root, &min_key, path, trans->transid);
6164                if (ret < 0) {
6165                        goto next_dir_inode;
6166                } else if (ret > 0) {
6167                        ret = 0;
6168                        goto next_dir_inode;
6169                }
6170
6171                leaf = path->nodes[0];
6172                nritems = btrfs_header_nritems(leaf);
6173                for (i = path->slots[0]; i < nritems; i++) {
6174                        struct btrfs_dir_item *di;
6175                        struct btrfs_key di_key;
6176                        struct inode *di_inode;
6177                        struct btrfs_dir_list *new_dir_elem;
6178                        int log_mode = LOG_INODE_EXISTS;
6179                        int type;
6180
6181                        btrfs_item_key_to_cpu(leaf, &min_key, i);
6182                        if (min_key.objectid != dir_elem->ino ||
6183                            min_key.type != BTRFS_DIR_INDEX_KEY)
6184                                goto next_dir_inode;
6185
6186                        di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
6187                        type = btrfs_dir_type(leaf, di);
6188                        if (btrfs_dir_transid(leaf, di) < trans->transid)
6189                                continue;
6190                        btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
6191                        if (di_key.type == BTRFS_ROOT_ITEM_KEY)
6192                                continue;
6193
6194                        btrfs_release_path(path);
6195                        di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
6196                        if (IS_ERR(di_inode)) {
6197                                ret = PTR_ERR(di_inode);
6198                                goto next_dir_inode;
6199                        }
6200
6201                        if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6202                                btrfs_add_delayed_iput(di_inode);
6203                                break;
6204                        }
6205
6206                        ctx->log_new_dentries = false;
6207                        if (type == BTRFS_FT_DIR)
6208                                log_mode = LOG_INODE_ALL;
6209                        ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
6210                                              log_mode, ctx);
6211                        btrfs_add_delayed_iput(di_inode);
6212                        if (ret)
6213                                goto next_dir_inode;
6214                        if (ctx->log_new_dentries) {
6215                                new_dir_elem = kmalloc(sizeof(*new_dir_elem),
6216                                                       GFP_NOFS);
6217                                if (!new_dir_elem) {
6218                                        ret = -ENOMEM;
6219                                        goto next_dir_inode;
6220                                }
6221                                new_dir_elem->ino = di_key.objectid;
6222                                list_add_tail(&new_dir_elem->list, &dir_list);
6223                        }
6224                        break;
6225                }
6226                if (min_key.offset < (u64)-1) {
6227                        min_key.offset++;
6228                        goto again;
6229                }
6230next_dir_inode:
6231                list_del(&dir_elem->list);
6232                kfree(dir_elem);
6233        }
6234
6235        btrfs_free_path(path);
6236        return ret;
6237}
6238
6239static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6240                                 struct btrfs_inode *inode,
6241                                 struct btrfs_log_ctx *ctx)
6242{
6243        struct btrfs_fs_info *fs_info = trans->fs_info;
6244        int ret;
6245        struct btrfs_path *path;
6246        struct btrfs_key key;
6247        struct btrfs_root *root = inode->root;
6248        const u64 ino = btrfs_ino(inode);
6249
6250        path = btrfs_alloc_path();
6251        if (!path)
6252                return -ENOMEM;
6253        path->skip_locking = 1;
6254        path->search_commit_root = 1;
6255
6256        key.objectid = ino;
6257        key.type = BTRFS_INODE_REF_KEY;
6258        key.offset = 0;
6259        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6260        if (ret < 0)
6261                goto out;
6262
6263        while (true) {
6264                struct extent_buffer *leaf = path->nodes[0];
6265                int slot = path->slots[0];
6266                u32 cur_offset = 0;
6267                u32 item_size;
6268                unsigned long ptr;
6269
6270                if (slot >= btrfs_header_nritems(leaf)) {
6271                        ret = btrfs_next_leaf(root, path);
6272                        if (ret < 0)
6273                                goto out;
6274                        else if (ret > 0)
6275                                break;
6276                        continue;
6277                }
6278
6279                btrfs_item_key_to_cpu(leaf, &key, slot);
6280                /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6281                if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6282                        break;
6283
6284                item_size = btrfs_item_size(leaf, slot);
6285                ptr = btrfs_item_ptr_offset(leaf, slot);
6286                while (cur_offset < item_size) {
6287                        struct btrfs_key inode_key;
6288                        struct inode *dir_inode;
6289
6290                        inode_key.type = BTRFS_INODE_ITEM_KEY;
6291                        inode_key.offset = 0;
6292
6293                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
6294                                struct btrfs_inode_extref *extref;
6295
6296                                extref = (struct btrfs_inode_extref *)
6297                                        (ptr + cur_offset);
6298                                inode_key.objectid = btrfs_inode_extref_parent(
6299                                        leaf, extref);
6300                                cur_offset += sizeof(*extref);
6301                                cur_offset += btrfs_inode_extref_name_len(leaf,
6302                                        extref);
6303                        } else {
6304                                inode_key.objectid = key.offset;
6305                                cur_offset = item_size;
6306                        }
6307
6308                        dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6309                                               root);
6310                        /*
6311                         * If the parent inode was deleted, return an error to
6312                         * fallback to a transaction commit. This is to prevent
6313                         * getting an inode that was moved from one parent A to
6314                         * a parent B, got its former parent A deleted and then
6315                         * it got fsync'ed, from existing at both parents after
6316                         * a log replay (and the old parent still existing).
6317                         * Example:
6318                         *
6319                         * mkdir /mnt/A
6320                         * mkdir /mnt/B
6321                         * touch /mnt/B/bar
6322                         * sync
6323                         * mv /mnt/B/bar /mnt/A/bar
6324                         * mv -T /mnt/A /mnt/B
6325                         * fsync /mnt/B/bar
6326                         * <power fail>
6327                         *
6328                         * If we ignore the old parent B which got deleted,
6329                         * after a log replay we would have file bar linked
6330                         * at both parents and the old parent B would still
6331                         * exist.
6332                         */
6333                        if (IS_ERR(dir_inode)) {
6334                                ret = PTR_ERR(dir_inode);
6335                                goto out;
6336                        }
6337
6338                        if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6339                                btrfs_add_delayed_iput(dir_inode);
6340                                continue;
6341                        }
6342
6343                        ctx->log_new_dentries = false;
6344                        ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6345                                              LOG_INODE_ALL, ctx);
6346                        if (!ret && ctx->log_new_dentries)
6347                                ret = log_new_dir_dentries(trans, root,
6348                                                   BTRFS_I(dir_inode), ctx);
6349                        btrfs_add_delayed_iput(dir_inode);
6350                        if (ret)
6351                                goto out;
6352                }
6353                path->slots[0]++;
6354        }
6355        ret = 0;
6356out:
6357        btrfs_free_path(path);
6358        return ret;
6359}
6360
6361static int log_new_ancestors(struct btrfs_trans_handle *trans,
6362                             struct btrfs_root *root,
6363                             struct btrfs_path *path,
6364                             struct btrfs_log_ctx *ctx)
6365{
6366        struct btrfs_key found_key;
6367
6368        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6369
6370        while (true) {
6371                struct btrfs_fs_info *fs_info = root->fs_info;
6372                struct extent_buffer *leaf = path->nodes[0];
6373                int slot = path->slots[0];
6374                struct btrfs_key search_key;
6375                struct inode *inode;
6376                u64 ino;
6377                int ret = 0;
6378
6379                btrfs_release_path(path);
6380
6381                ino = found_key.offset;
6382
6383                search_key.objectid = found_key.offset;
6384                search_key.type = BTRFS_INODE_ITEM_KEY;
6385                search_key.offset = 0;
6386                inode = btrfs_iget(fs_info->sb, ino, root);
6387                if (IS_ERR(inode))
6388                        return PTR_ERR(inode);
6389
6390                if (BTRFS_I(inode)->generation >= trans->transid &&
6391                    need_log_inode(trans, BTRFS_I(inode)))
6392                        ret = btrfs_log_inode(trans, BTRFS_I(inode),
6393                                              LOG_INODE_EXISTS, ctx);
6394                btrfs_add_delayed_iput(inode);
6395                if (ret)
6396                        return ret;
6397
6398                if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6399                        break;
6400
6401                search_key.type = BTRFS_INODE_REF_KEY;
6402                ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6403                if (ret < 0)
6404                        return ret;
6405
6406                leaf = path->nodes[0];
6407                slot = path->slots[0];
6408                if (slot >= btrfs_header_nritems(leaf)) {
6409                        ret = btrfs_next_leaf(root, path);
6410                        if (ret < 0)
6411                                return ret;
6412                        else if (ret > 0)
6413                                return -ENOENT;
6414                        leaf = path->nodes[0];
6415                        slot = path->slots[0];
6416                }
6417
6418                btrfs_item_key_to_cpu(leaf, &found_key, slot);
6419                if (found_key.objectid != search_key.objectid ||
6420                    found_key.type != BTRFS_INODE_REF_KEY)
6421                        return -ENOENT;
6422        }
6423        return 0;
6424}
6425
6426static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6427                                  struct btrfs_inode *inode,
6428                                  struct dentry *parent,
6429                                  struct btrfs_log_ctx *ctx)
6430{
6431        struct btrfs_root *root = inode->root;
6432        struct dentry *old_parent = NULL;
6433        struct super_block *sb = inode->vfs_inode.i_sb;
6434        int ret = 0;
6435
6436        while (true) {
6437                if (!parent || d_really_is_negative(parent) ||
6438                    sb != parent->d_sb)
6439                        break;
6440
6441                inode = BTRFS_I(d_inode(parent));
6442                if (root != inode->root)
6443                        break;
6444
6445                if (inode->generation >= trans->transid &&
6446                    need_log_inode(trans, inode)) {
6447                        ret = btrfs_log_inode(trans, inode,
6448                                              LOG_INODE_EXISTS, ctx);
6449                        if (ret)
6450                                break;
6451                }
6452                if (IS_ROOT(parent))
6453                        break;
6454
6455                parent = dget_parent(parent);
6456                dput(old_parent);
6457                old_parent = parent;
6458        }
6459        dput(old_parent);
6460
6461        return ret;
6462}
6463
6464static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6465                                 struct btrfs_inode *inode,
6466                                 struct dentry *parent,
6467                                 struct btrfs_log_ctx *ctx)
6468{
6469        struct btrfs_root *root = inode->root;
6470        const u64 ino = btrfs_ino(inode);
6471        struct btrfs_path *path;
6472        struct btrfs_key search_key;
6473        int ret;
6474
6475        /*
6476         * For a single hard link case, go through a fast path that does not
6477         * need to iterate the fs/subvolume tree.
6478         */
6479        if (inode->vfs_inode.i_nlink < 2)
6480                return log_new_ancestors_fast(trans, inode, parent, ctx);
6481
6482        path = btrfs_alloc_path();
6483        if (!path)
6484                return -ENOMEM;
6485
6486        search_key.objectid = ino;
6487        search_key.type = BTRFS_INODE_REF_KEY;
6488        search_key.offset = 0;
6489again:
6490        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6491        if (ret < 0)
6492                goto out;
6493        if (ret == 0)
6494                path->slots[0]++;
6495
6496        while (true) {
6497                struct extent_buffer *leaf = path->nodes[0];
6498                int slot = path->slots[0];
6499                struct btrfs_key found_key;
6500
6501                if (slot >= btrfs_header_nritems(leaf)) {
6502                        ret = btrfs_next_leaf(root, path);
6503                        if (ret < 0)
6504                                goto out;
6505                        else if (ret > 0)
6506                                break;
6507                        continue;
6508                }
6509
6510                btrfs_item_key_to_cpu(leaf, &found_key, slot);
6511                if (found_key.objectid != ino ||
6512                    found_key.type > BTRFS_INODE_EXTREF_KEY)
6513                        break;
6514
6515                /*
6516                 * Don't deal with extended references because they are rare
6517                 * cases and too complex to deal with (we would need to keep
6518                 * track of which subitem we are processing for each item in
6519                 * this loop, etc). So just return some error to fallback to
6520                 * a transaction commit.
6521                 */
6522                if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6523                        ret = -EMLINK;
6524                        goto out;
6525                }
6526
6527                /*
6528                 * Logging ancestors needs to do more searches on the fs/subvol
6529                 * tree, so it releases the path as needed to avoid deadlocks.
6530                 * Keep track of the last inode ref key and resume from that key
6531                 * after logging all new ancestors for the current hard link.
6532                 */
6533                memcpy(&search_key, &found_key, sizeof(search_key));
6534
6535                ret = log_new_ancestors(trans, root, path, ctx);
6536                if (ret)
6537                        goto out;
6538                btrfs_release_path(path);
6539                goto again;
6540        }
6541        ret = 0;
6542out:
6543        btrfs_free_path(path);
6544        return ret;
6545}
6546
6547/*
6548 * helper function around btrfs_log_inode to make sure newly created
6549 * parent directories also end up in the log.  A minimal inode and backref
6550 * only logging is done of any parent directories that are older than
6551 * the last committed transaction
6552 */
6553static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6554                                  struct btrfs_inode *inode,
6555                                  struct dentry *parent,
6556                                  int inode_only,
6557                                  struct btrfs_log_ctx *ctx)
6558{
6559        struct btrfs_root *root = inode->root;
6560        struct btrfs_fs_info *fs_info = root->fs_info;
6561        int ret = 0;
6562        bool log_dentries = false;
6563
6564        if (btrfs_test_opt(fs_info, NOTREELOG)) {
6565                ret = 1;
6566                goto end_no_trans;
6567        }
6568
6569        if (btrfs_root_refs(&root->root_item) == 0) {
6570                ret = 1;
6571                goto end_no_trans;
6572        }
6573
6574        /*
6575         * Skip already logged inodes or inodes corresponding to tmpfiles
6576         * (since logging them is pointless, a link count of 0 means they
6577         * will never be accessible).
6578         */
6579        if ((btrfs_inode_in_log(inode, trans->transid) &&
6580             list_empty(&ctx->ordered_extents)) ||
6581            inode->vfs_inode.i_nlink == 0) {
6582                ret = BTRFS_NO_LOG_SYNC;
6583                goto end_no_trans;
6584        }
6585
6586        ret = start_log_trans(trans, root, ctx);
6587        if (ret)
6588                goto end_no_trans;
6589
6590        ret = btrfs_log_inode(trans, inode, inode_only, ctx);
6591        if (ret)
6592                goto end_trans;
6593
6594        /*
6595         * for regular files, if its inode is already on disk, we don't
6596         * have to worry about the parents at all.  This is because
6597         * we can use the last_unlink_trans field to record renames
6598         * and other fun in this file.
6599         */
6600        if (S_ISREG(inode->vfs_inode.i_mode) &&
6601            inode->generation < trans->transid &&
6602            inode->last_unlink_trans < trans->transid) {
6603                ret = 0;
6604                goto end_trans;
6605        }
6606
6607        if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
6608                log_dentries = true;
6609
6610        /*
6611         * On unlink we must make sure all our current and old parent directory
6612         * inodes are fully logged. This is to prevent leaving dangling
6613         * directory index entries in directories that were our parents but are
6614         * not anymore. Not doing this results in old parent directory being
6615         * impossible to delete after log replay (rmdir will always fail with
6616         * error -ENOTEMPTY).
6617         *
6618         * Example 1:
6619         *
6620         * mkdir testdir
6621         * touch testdir/foo
6622         * ln testdir/foo testdir/bar
6623         * sync
6624         * unlink testdir/bar
6625         * xfs_io -c fsync testdir/foo
6626         * <power failure>
6627         * mount fs, triggers log replay
6628         *
6629         * If we don't log the parent directory (testdir), after log replay the
6630         * directory still has an entry pointing to the file inode using the bar
6631         * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6632         * the file inode has a link count of 1.
6633         *
6634         * Example 2:
6635         *
6636         * mkdir testdir
6637         * touch foo
6638         * ln foo testdir/foo2
6639         * ln foo testdir/foo3
6640         * sync
6641         * unlink testdir/foo3
6642         * xfs_io -c fsync foo
6643         * <power failure>
6644         * mount fs, triggers log replay
6645         *
6646         * Similar as the first example, after log replay the parent directory
6647         * testdir still has an entry pointing to the inode file with name foo3
6648         * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6649         * and has a link count of 2.
6650         */
6651        if (inode->last_unlink_trans >= trans->transid) {
6652                ret = btrfs_log_all_parents(trans, inode, ctx);
6653                if (ret)
6654                        goto end_trans;
6655        }
6656
6657        ret = log_all_new_ancestors(trans, inode, parent, ctx);
6658        if (ret)
6659                goto end_trans;
6660
6661        if (log_dentries)
6662                ret = log_new_dir_dentries(trans, root, inode, ctx);
6663        else
6664                ret = 0;
6665end_trans:
6666        if (ret < 0) {
6667                btrfs_set_log_full_commit(trans);
6668                ret = 1;
6669        }
6670
6671        if (ret)
6672                btrfs_remove_log_ctx(root, ctx);
6673        btrfs_end_log_trans(root);
6674end_no_trans:
6675        return ret;
6676}
6677
6678/*
6679 * it is not safe to log dentry if the chunk root has added new
6680 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6681 * If this returns 1, you must commit the transaction to safely get your
6682 * data on disk.
6683 */
6684int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6685                          struct dentry *dentry,
6686                          struct btrfs_log_ctx *ctx)
6687{
6688        struct dentry *parent = dget_parent(dentry);
6689        int ret;
6690
6691        ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6692                                     LOG_INODE_ALL, ctx);
6693        dput(parent);
6694
6695        return ret;
6696}
6697
6698/*
6699 * should be called during mount to recover any replay any log trees
6700 * from the FS
6701 */
6702int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6703{
6704        int ret;
6705        struct btrfs_path *path;
6706        struct btrfs_trans_handle *trans;
6707        struct btrfs_key key;
6708        struct btrfs_key found_key;
6709        struct btrfs_root *log;
6710        struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6711        struct walk_control wc = {
6712                .process_func = process_one_buffer,
6713                .stage = LOG_WALK_PIN_ONLY,
6714        };
6715
6716        path = btrfs_alloc_path();
6717        if (!path)
6718                return -ENOMEM;
6719
6720        set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6721
6722        trans = btrfs_start_transaction(fs_info->tree_root, 0);
6723        if (IS_ERR(trans)) {
6724                ret = PTR_ERR(trans);
6725                goto error;
6726        }
6727
6728        wc.trans = trans;
6729        wc.pin = 1;
6730
6731        ret = walk_log_tree(trans, log_root_tree, &wc);
6732        if (ret) {
6733                btrfs_abort_transaction(trans, ret);
6734                goto error;
6735        }
6736
6737again:
6738        key.objectid = BTRFS_TREE_LOG_OBJECTID;
6739        key.offset = (u64)-1;
6740        key.type = BTRFS_ROOT_ITEM_KEY;
6741
6742        while (1) {
6743                ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6744
6745                if (ret < 0) {
6746                        btrfs_abort_transaction(trans, ret);
6747                        goto error;
6748                }
6749                if (ret > 0) {
6750                        if (path->slots[0] == 0)
6751                                break;
6752                        path->slots[0]--;
6753                }
6754                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6755                                      path->slots[0]);
6756                btrfs_release_path(path);
6757                if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6758                        break;
6759
6760                log = btrfs_read_tree_root(log_root_tree, &found_key);
6761                if (IS_ERR(log)) {
6762                        ret = PTR_ERR(log);
6763                        btrfs_abort_transaction(trans, ret);
6764                        goto error;
6765                }
6766
6767                wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6768                                                   true);
6769                if (IS_ERR(wc.replay_dest)) {
6770                        ret = PTR_ERR(wc.replay_dest);
6771
6772                        /*
6773                         * We didn't find the subvol, likely because it was
6774                         * deleted.  This is ok, simply skip this log and go to
6775                         * the next one.
6776                         *
6777                         * We need to exclude the root because we can't have
6778                         * other log replays overwriting this log as we'll read
6779                         * it back in a few more times.  This will keep our
6780                         * block from being modified, and we'll just bail for
6781                         * each subsequent pass.
6782                         */
6783                        if (ret == -ENOENT)
6784                                ret = btrfs_pin_extent_for_log_replay(trans,
6785                                                        log->node->start,
6786                                                        log->node->len);
6787                        btrfs_put_root(log);
6788
6789                        if (!ret)
6790                                goto next;
6791                        btrfs_abort_transaction(trans, ret);
6792                        goto error;
6793                }
6794
6795                wc.replay_dest->log_root = log;
6796                ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6797                if (ret)
6798                        /* The loop needs to continue due to the root refs */
6799                        btrfs_abort_transaction(trans, ret);
6800                else
6801                        ret = walk_log_tree(trans, log, &wc);
6802
6803                if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6804                        ret = fixup_inode_link_counts(trans, wc.replay_dest,
6805                                                      path);
6806                        if (ret)
6807                                btrfs_abort_transaction(trans, ret);
6808                }
6809
6810                if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6811                        struct btrfs_root *root = wc.replay_dest;
6812
6813                        btrfs_release_path(path);
6814
6815                        /*
6816                         * We have just replayed everything, and the highest
6817                         * objectid of fs roots probably has changed in case
6818                         * some inode_item's got replayed.
6819                         *
6820                         * root->objectid_mutex is not acquired as log replay
6821                         * could only happen during mount.
6822                         */
6823                        ret = btrfs_init_root_free_objectid(root);
6824                        if (ret)
6825                                btrfs_abort_transaction(trans, ret);
6826                }
6827
6828                wc.replay_dest->log_root = NULL;
6829                btrfs_put_root(wc.replay_dest);
6830                btrfs_put_root(log);
6831
6832                if (ret)
6833                        goto error;
6834next:
6835                if (found_key.offset == 0)
6836                        break;
6837                key.offset = found_key.offset - 1;
6838        }
6839        btrfs_release_path(path);
6840
6841        /* step one is to pin it all, step two is to replay just inodes */
6842        if (wc.pin) {
6843                wc.pin = 0;
6844                wc.process_func = replay_one_buffer;
6845                wc.stage = LOG_WALK_REPLAY_INODES;
6846                goto again;
6847        }
6848        /* step three is to replay everything */
6849        if (wc.stage < LOG_WALK_REPLAY_ALL) {
6850                wc.stage++;
6851                goto again;
6852        }
6853
6854        btrfs_free_path(path);
6855
6856        /* step 4: commit the transaction, which also unpins the blocks */
6857        ret = btrfs_commit_transaction(trans);
6858        if (ret)
6859                return ret;
6860
6861        log_root_tree->log_root = NULL;
6862        clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6863        btrfs_put_root(log_root_tree);
6864
6865        return 0;
6866error:
6867        if (wc.trans)
6868                btrfs_end_transaction(wc.trans);
6869        clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6870        btrfs_free_path(path);
6871        return ret;
6872}
6873
6874/*
6875 * there are some corner cases where we want to force a full
6876 * commit instead of allowing a directory to be logged.
6877 *
6878 * They revolve around files there were unlinked from the directory, and
6879 * this function updates the parent directory so that a full commit is
6880 * properly done if it is fsync'd later after the unlinks are done.
6881 *
6882 * Must be called before the unlink operations (updates to the subvolume tree,
6883 * inodes, etc) are done.
6884 */
6885void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6886                             struct btrfs_inode *dir, struct btrfs_inode *inode,
6887                             int for_rename)
6888{
6889        /*
6890         * when we're logging a file, if it hasn't been renamed
6891         * or unlinked, and its inode is fully committed on disk,
6892         * we don't have to worry about walking up the directory chain
6893         * to log its parents.
6894         *
6895         * So, we use the last_unlink_trans field to put this transid
6896         * into the file.  When the file is logged we check it and
6897         * don't log the parents if the file is fully on disk.
6898         */
6899        mutex_lock(&inode->log_mutex);
6900        inode->last_unlink_trans = trans->transid;
6901        mutex_unlock(&inode->log_mutex);
6902
6903        /*
6904         * if this directory was already logged any new
6905         * names for this file/dir will get recorded
6906         */
6907        if (dir->logged_trans == trans->transid)
6908                return;
6909
6910        /*
6911         * if the inode we're about to unlink was logged,
6912         * the log will be properly updated for any new names
6913         */
6914        if (inode->logged_trans == trans->transid)
6915                return;
6916
6917        /*
6918         * when renaming files across directories, if the directory
6919         * there we're unlinking from gets fsync'd later on, there's
6920         * no way to find the destination directory later and fsync it
6921         * properly.  So, we have to be conservative and force commits
6922         * so the new name gets discovered.
6923         */
6924        if (for_rename)
6925                goto record;
6926
6927        /* we can safely do the unlink without any special recording */
6928        return;
6929
6930record:
6931        mutex_lock(&dir->log_mutex);
6932        dir->last_unlink_trans = trans->transid;
6933        mutex_unlock(&dir->log_mutex);
6934}
6935
6936/*
6937 * Make sure that if someone attempts to fsync the parent directory of a deleted
6938 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6939 * that after replaying the log tree of the parent directory's root we will not
6940 * see the snapshot anymore and at log replay time we will not see any log tree
6941 * corresponding to the deleted snapshot's root, which could lead to replaying
6942 * it after replaying the log tree of the parent directory (which would replay
6943 * the snapshot delete operation).
6944 *
6945 * Must be called before the actual snapshot destroy operation (updates to the
6946 * parent root and tree of tree roots trees, etc) are done.
6947 */
6948void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6949                                   struct btrfs_inode *dir)
6950{
6951        mutex_lock(&dir->log_mutex);
6952        dir->last_unlink_trans = trans->transid;
6953        mutex_unlock(&dir->log_mutex);
6954}
6955
6956/**
6957 * Update the log after adding a new name for an inode.
6958 *
6959 * @trans:              Transaction handle.
6960 * @old_dentry:         The dentry associated with the old name and the old
6961 *                      parent directory.
6962 * @old_dir:            The inode of the previous parent directory for the case
6963 *                      of a rename. For a link operation, it must be NULL.
6964 * @old_dir_index:      The index number associated with the old name, meaningful
6965 *                      only for rename operations (when @old_dir is not NULL).
6966 *                      Ignored for link operations.
6967 * @parent:             The dentry associated with the directory under which the
6968 *                      new name is located.
6969 *
6970 * Call this after adding a new name for an inode, as a result of a link or
6971 * rename operation, and it will properly update the log to reflect the new name.
6972 */
6973void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6974                        struct dentry *old_dentry, struct btrfs_inode *old_dir,
6975                        u64 old_dir_index, struct dentry *parent)
6976{
6977        struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
6978        struct btrfs_root *root = inode->root;
6979        struct btrfs_log_ctx ctx;
6980        bool log_pinned = false;
6981        int ret;
6982
6983        /*
6984         * this will force the logging code to walk the dentry chain
6985         * up for the file
6986         */
6987        if (!S_ISDIR(inode->vfs_inode.i_mode))
6988                inode->last_unlink_trans = trans->transid;
6989
6990        /*
6991         * if this inode hasn't been logged and directory we're renaming it
6992         * from hasn't been logged, we don't need to log it
6993         */
6994        ret = inode_logged(trans, inode, NULL);
6995        if (ret < 0) {
6996                goto out;
6997        } else if (ret == 0) {
6998                if (!old_dir)
6999                        return;
7000                /*
7001                 * If the inode was not logged and we are doing a rename (old_dir is not
7002                 * NULL), check if old_dir was logged - if it was not we can return and
7003                 * do nothing.
7004                 */
7005                ret = inode_logged(trans, old_dir, NULL);
7006                if (ret < 0)
7007                        goto out;
7008                else if (ret == 0)
7009                        return;
7010        }
7011        ret = 0;
7012
7013        /*
7014         * If we are doing a rename (old_dir is not NULL) from a directory that
7015         * was previously logged, make sure that on log replay we get the old
7016         * dir entry deleted. This is needed because we will also log the new
7017         * name of the renamed inode, so we need to make sure that after log
7018         * replay we don't end up with both the new and old dir entries existing.
7019         */
7020        if (old_dir && old_dir->logged_trans == trans->transid) {
7021                struct btrfs_root *log = old_dir->root->log_root;
7022                struct btrfs_path *path;
7023
7024                ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7025
7026                /*
7027                 * We have two inodes to update in the log, the old directory and
7028                 * the inode that got renamed, so we must pin the log to prevent
7029                 * anyone from syncing the log until we have updated both inodes
7030                 * in the log.
7031                 */
7032                log_pinned = true;
7033                btrfs_pin_log_trans(root);
7034
7035                path = btrfs_alloc_path();
7036                if (!path) {
7037                        ret = -ENOMEM;
7038                        goto out;
7039                }
7040
7041                /*
7042                 * Other concurrent task might be logging the old directory,
7043                 * as it can be triggered when logging other inode that had or
7044                 * still has a dentry in the old directory. We lock the old
7045                 * directory's log_mutex to ensure the deletion of the old
7046                 * name is persisted, because during directory logging we
7047                 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7048                 * the old name's dir index item is in the delayed items, so
7049                 * it could be missed by an in progress directory logging.
7050                 */
7051                mutex_lock(&old_dir->log_mutex);
7052                ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7053                                        old_dentry->d_name.name,
7054                                        old_dentry->d_name.len, old_dir_index);
7055                if (ret > 0) {
7056                        /*
7057                         * The dentry does not exist in the log, so record its
7058                         * deletion.
7059                         */
7060                        btrfs_release_path(path);
7061                        ret = insert_dir_log_key(trans, log, path,
7062                                                 btrfs_ino(old_dir),
7063                                                 old_dir_index, old_dir_index);
7064                }
7065                mutex_unlock(&old_dir->log_mutex);
7066
7067                btrfs_free_path(path);
7068                if (ret < 0)
7069                        goto out;
7070        }
7071
7072        btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7073        ctx.logging_new_name = true;
7074        /*
7075         * We don't care about the return value. If we fail to log the new name
7076         * then we know the next attempt to sync the log will fallback to a full
7077         * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7078         * we don't need to worry about getting a log committed that has an
7079         * inconsistent state after a rename operation.
7080         */
7081        btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7082out:
7083        /*
7084         * If an error happened mark the log for a full commit because it's not
7085         * consistent and up to date or we couldn't find out if one of the
7086         * inodes was logged before in this transaction. Do it before unpinning
7087         * the log, to avoid any races with someone else trying to commit it.
7088         */
7089        if (ret < 0)
7090                btrfs_set_log_full_commit(trans);
7091        if (log_pinned)
7092                btrfs_end_log_trans(root);
7093}
7094
7095