linux/fs/fat/misc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/fat/misc.c
   4 *
   5 *  Written 1992,1993 by Werner Almesberger
   6 *  22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
   7 *               and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
   8 */
   9
  10#include "fat.h"
  11#include <linux/iversion.h>
  12
  13/*
  14 * fat_fs_error reports a file system problem that might indicate fa data
  15 * corruption/inconsistency. Depending on 'errors' mount option the
  16 * panic() is called, or error message is printed FAT and nothing is done,
  17 * or filesystem is remounted read-only (default behavior).
  18 * In case the file system is remounted read-only, it can be made writable
  19 * again by remounting it.
  20 */
  21void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
  22{
  23        struct fat_mount_options *opts = &MSDOS_SB(sb)->options;
  24        va_list args;
  25        struct va_format vaf;
  26
  27        if (report) {
  28                va_start(args, fmt);
  29                vaf.fmt = fmt;
  30                vaf.va = &args;
  31                fat_msg(sb, KERN_ERR, "error, %pV", &vaf);
  32                va_end(args);
  33        }
  34
  35        if (opts->errors == FAT_ERRORS_PANIC)
  36                panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id);
  37        else if (opts->errors == FAT_ERRORS_RO && !sb_rdonly(sb)) {
  38                sb->s_flags |= SB_RDONLY;
  39                fat_msg(sb, KERN_ERR, "Filesystem has been set read-only");
  40        }
  41}
  42EXPORT_SYMBOL_GPL(__fat_fs_error);
  43
  44/**
  45 * _fat_msg() - Print a preformatted FAT message based on a superblock.
  46 * @sb: A pointer to a &struct super_block
  47 * @level: A Kernel printk level constant
  48 * @fmt: The printf-style format string to print.
  49 *
  50 * Everything that is not fat_fs_error() should be fat_msg().
  51 *
  52 * fat_msg() wraps _fat_msg() for printk indexing.
  53 */
  54void _fat_msg(struct super_block *sb, const char *level, const char *fmt, ...)
  55{
  56        struct va_format vaf;
  57        va_list args;
  58
  59        va_start(args, fmt);
  60        vaf.fmt = fmt;
  61        vaf.va = &args;
  62        _printk(FAT_PRINTK_PREFIX "%pV\n", level, sb->s_id, &vaf);
  63        va_end(args);
  64}
  65
  66/* Flushes the number of free clusters on FAT32 */
  67/* XXX: Need to write one per FSINFO block.  Currently only writes 1 */
  68int fat_clusters_flush(struct super_block *sb)
  69{
  70        struct msdos_sb_info *sbi = MSDOS_SB(sb);
  71        struct buffer_head *bh;
  72        struct fat_boot_fsinfo *fsinfo;
  73
  74        if (!is_fat32(sbi))
  75                return 0;
  76
  77        bh = sb_bread(sb, sbi->fsinfo_sector);
  78        if (bh == NULL) {
  79                fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush");
  80                return -EIO;
  81        }
  82
  83        fsinfo = (struct fat_boot_fsinfo *)bh->b_data;
  84        /* Sanity check */
  85        if (!IS_FSINFO(fsinfo)) {
  86                fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: "
  87                       "0x%08x, 0x%08x (sector = %lu)",
  88                       le32_to_cpu(fsinfo->signature1),
  89                       le32_to_cpu(fsinfo->signature2),
  90                       sbi->fsinfo_sector);
  91        } else {
  92                if (sbi->free_clusters != -1)
  93                        fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters);
  94                if (sbi->prev_free != -1)
  95                        fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);
  96                mark_buffer_dirty(bh);
  97        }
  98        brelse(bh);
  99
 100        return 0;
 101}
 102
 103/*
 104 * fat_chain_add() adds a new cluster to the chain of clusters represented
 105 * by inode.
 106 */
 107int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster)
 108{
 109        struct super_block *sb = inode->i_sb;
 110        struct msdos_sb_info *sbi = MSDOS_SB(sb);
 111        int ret, new_fclus, last;
 112
 113        /*
 114         * We must locate the last cluster of the file to add this new
 115         * one (new_dclus) to the end of the link list (the FAT).
 116         */
 117        last = new_fclus = 0;
 118        if (MSDOS_I(inode)->i_start) {
 119                int fclus, dclus;
 120
 121                ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);
 122                if (ret < 0)
 123                        return ret;
 124                new_fclus = fclus + 1;
 125                last = dclus;
 126        }
 127
 128        /* add new one to the last of the cluster chain */
 129        if (last) {
 130                struct fat_entry fatent;
 131
 132                fatent_init(&fatent);
 133                ret = fat_ent_read(inode, &fatent, last);
 134                if (ret >= 0) {
 135                        int wait = inode_needs_sync(inode);
 136                        ret = fat_ent_write(inode, &fatent, new_dclus, wait);
 137                        fatent_brelse(&fatent);
 138                }
 139                if (ret < 0)
 140                        return ret;
 141                /*
 142                 * FIXME:Although we can add this cache, fat_cache_add() is
 143                 * assuming to be called after linear search with fat_cache_id.
 144                 */
 145//              fat_cache_add(inode, new_fclus, new_dclus);
 146        } else {
 147                MSDOS_I(inode)->i_start = new_dclus;
 148                MSDOS_I(inode)->i_logstart = new_dclus;
 149                /*
 150                 * Since generic_write_sync() synchronizes regular files later,
 151                 * we sync here only directories.
 152                 */
 153                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {
 154                        ret = fat_sync_inode(inode);
 155                        if (ret)
 156                                return ret;
 157                } else
 158                        mark_inode_dirty(inode);
 159        }
 160        if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) {
 161                fat_fs_error(sb, "clusters badly computed (%d != %llu)",
 162                             new_fclus,
 163                             (llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));
 164                fat_cache_inval_inode(inode);
 165        }
 166        inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);
 167
 168        return 0;
 169}
 170
 171/*
 172 * The epoch of FAT timestamp is 1980.
 173 *     :  bits :     value
 174 * date:  0 -  4: day   (1 -  31)
 175 * date:  5 -  8: month (1 -  12)
 176 * date:  9 - 15: year  (0 - 127) from 1980
 177 * time:  0 -  4: sec   (0 -  29) 2sec counts
 178 * time:  5 - 10: min   (0 -  59)
 179 * time: 11 - 15: hour  (0 -  23)
 180 */
 181#define SECS_PER_MIN    60
 182#define SECS_PER_HOUR   (60 * 60)
 183#define SECS_PER_DAY    (SECS_PER_HOUR * 24)
 184/* days between 1.1.70 and 1.1.80 (2 leap days) */
 185#define DAYS_DELTA      (365 * 10 + 2)
 186/* 120 (2100 - 1980) isn't leap year */
 187#define YEAR_2100       120
 188#define IS_LEAP_YEAR(y) (!((y) & 3) && (y) != YEAR_2100)
 189
 190/* Linear day numbers of the respective 1sts in non-leap years. */
 191static long days_in_year[] = {
 192        /* Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec */
 193        0,   0,  31,  59,  90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
 194};
 195
 196static inline int fat_tz_offset(const struct msdos_sb_info *sbi)
 197{
 198        return (sbi->options.tz_set ?
 199               -sbi->options.time_offset :
 200               sys_tz.tz_minuteswest) * SECS_PER_MIN;
 201}
 202
 203/* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
 204void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts,
 205                       __le16 __time, __le16 __date, u8 time_cs)
 206{
 207        u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date);
 208        time64_t second;
 209        long day, leap_day, month, year;
 210
 211        year  = date >> 9;
 212        month = max(1, (date >> 5) & 0xf);
 213        day   = max(1, date & 0x1f) - 1;
 214
 215        leap_day = (year + 3) / 4;
 216        if (year > YEAR_2100)           /* 2100 isn't leap year */
 217                leap_day--;
 218        if (IS_LEAP_YEAR(year) && month > 2)
 219                leap_day++;
 220
 221        second =  (time & 0x1f) << 1;
 222        second += ((time >> 5) & 0x3f) * SECS_PER_MIN;
 223        second += (time >> 11) * SECS_PER_HOUR;
 224        second += (time64_t)(year * 365 + leap_day
 225                   + days_in_year[month] + day
 226                   + DAYS_DELTA) * SECS_PER_DAY;
 227
 228        second += fat_tz_offset(sbi);
 229
 230        if (time_cs) {
 231                ts->tv_sec = second + (time_cs / 100);
 232                ts->tv_nsec = (time_cs % 100) * 10000000;
 233        } else {
 234                ts->tv_sec = second;
 235                ts->tv_nsec = 0;
 236        }
 237}
 238
 239/* Export fat_time_fat2unix() for the fat_test KUnit tests. */
 240EXPORT_SYMBOL_GPL(fat_time_fat2unix);
 241
 242/* Convert linear UNIX date to a FAT time/date pair. */
 243void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts,
 244                       __le16 *time, __le16 *date, u8 *time_cs)
 245{
 246        struct tm tm;
 247        time64_to_tm(ts->tv_sec, -fat_tz_offset(sbi), &tm);
 248
 249        /*  FAT can only support year between 1980 to 2107 */
 250        if (tm.tm_year < 1980 - 1900) {
 251                *time = 0;
 252                *date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
 253                if (time_cs)
 254                        *time_cs = 0;
 255                return;
 256        }
 257        if (tm.tm_year > 2107 - 1900) {
 258                *time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
 259                *date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
 260                if (time_cs)
 261                        *time_cs = 199;
 262                return;
 263        }
 264
 265        /* from 1900 -> from 1980 */
 266        tm.tm_year -= 80;
 267        /* 0~11 -> 1~12 */
 268        tm.tm_mon++;
 269        /* 0~59 -> 0~29(2sec counts) */
 270        tm.tm_sec >>= 1;
 271
 272        *time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec);
 273        *date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday);
 274        if (time_cs)
 275                *time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000;
 276}
 277EXPORT_SYMBOL_GPL(fat_time_unix2fat);
 278
 279static inline struct timespec64 fat_timespec64_trunc_2secs(struct timespec64 ts)
 280{
 281        return (struct timespec64){ ts.tv_sec & ~1ULL, 0 };
 282}
 283
 284/*
 285 * truncate atime to 24 hour granularity (00:00:00 in local timezone)
 286 */
 287struct timespec64 fat_truncate_atime(const struct msdos_sb_info *sbi,
 288                                     const struct timespec64 *ts)
 289{
 290        /* to localtime */
 291        time64_t seconds = ts->tv_sec - fat_tz_offset(sbi);
 292        s32 remainder;
 293
 294        div_s64_rem(seconds, SECS_PER_DAY, &remainder);
 295        /* to day boundary, and back to unix time */
 296        seconds = seconds + fat_tz_offset(sbi) - remainder;
 297
 298        return (struct timespec64){ seconds, 0 };
 299}
 300
 301/*
 302 * truncate mtime to 2 second granularity
 303 */
 304struct timespec64 fat_truncate_mtime(const struct msdos_sb_info *sbi,
 305                                     const struct timespec64 *ts)
 306{
 307        return fat_timespec64_trunc_2secs(*ts);
 308}
 309
 310/*
 311 * truncate the various times with appropriate granularity:
 312 *   all times in root node are always 0
 313 */
 314int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags)
 315{
 316        struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
 317        struct timespec64 ts;
 318
 319        if (inode->i_ino == MSDOS_ROOT_INO)
 320                return 0;
 321
 322        if (now == NULL) {
 323                now = &ts;
 324                ts = current_time(inode);
 325        }
 326
 327        if (flags & S_ATIME)
 328                inode->i_atime = fat_truncate_atime(sbi, now);
 329        /*
 330         * ctime and mtime share the same on-disk field, and should be
 331         * identical in memory. all mtime updates will be applied to ctime,
 332         * but ctime updates are ignored.
 333         */
 334        if (flags & S_MTIME)
 335                inode->i_mtime = inode->i_ctime = fat_truncate_mtime(sbi, now);
 336
 337        return 0;
 338}
 339EXPORT_SYMBOL_GPL(fat_truncate_time);
 340
 341int fat_update_time(struct inode *inode, struct timespec64 *now, int flags)
 342{
 343        int dirty_flags = 0;
 344
 345        if (inode->i_ino == MSDOS_ROOT_INO)
 346                return 0;
 347
 348        if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
 349                fat_truncate_time(inode, now, flags);
 350                if (inode->i_sb->s_flags & SB_LAZYTIME)
 351                        dirty_flags |= I_DIRTY_TIME;
 352                else
 353                        dirty_flags |= I_DIRTY_SYNC;
 354        }
 355
 356        if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
 357                dirty_flags |= I_DIRTY_SYNC;
 358
 359        __mark_inode_dirty(inode, dirty_flags);
 360        return 0;
 361}
 362EXPORT_SYMBOL_GPL(fat_update_time);
 363
 364int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
 365{
 366        int i, err = 0;
 367
 368        for (i = 0; i < nr_bhs; i++)
 369                write_dirty_buffer(bhs[i], 0);
 370
 371        for (i = 0; i < nr_bhs; i++) {
 372                wait_on_buffer(bhs[i]);
 373                if (!err && !buffer_uptodate(bhs[i]))
 374                        err = -EIO;
 375        }
 376        return err;
 377}
 378