linux/fs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/mm.h>
   9#include <linux/backing-dev.h>
  10#include <linux/hash.h>
  11#include <linux/swap.h>
  12#include <linux/security.h>
  13#include <linux/cdev.h>
  14#include <linux/memblock.h>
  15#include <linux/fsnotify.h>
  16#include <linux/mount.h>
  17#include <linux/posix_acl.h>
  18#include <linux/prefetch.h>
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
  23#include <trace/events/writeback.h>
  24#include "internal.h"
  25
  26/*
  27 * Inode locking rules:
  28 *
  29 * inode->i_lock protects:
  30 *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
  31 * Inode LRU list locks protect:
  32 *   inode->i_sb->s_inode_lru, inode->i_lru
  33 * inode->i_sb->s_inode_list_lock protects:
  34 *   inode->i_sb->s_inodes, inode->i_sb_list
  35 * bdi->wb.list_lock protects:
  36 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  37 * inode_hash_lock protects:
  38 *   inode_hashtable, inode->i_hash
  39 *
  40 * Lock ordering:
  41 *
  42 * inode->i_sb->s_inode_list_lock
  43 *   inode->i_lock
  44 *     Inode LRU list locks
  45 *
  46 * bdi->wb.list_lock
  47 *   inode->i_lock
  48 *
  49 * inode_hash_lock
  50 *   inode->i_sb->s_inode_list_lock
  51 *   inode->i_lock
  52 *
  53 * iunique_lock
  54 *   inode_hash_lock
  55 */
  56
  57static unsigned int i_hash_mask __read_mostly;
  58static unsigned int i_hash_shift __read_mostly;
  59static struct hlist_head *inode_hashtable __read_mostly;
  60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  61
  62/*
  63 * Empty aops. Can be used for the cases where the user does not
  64 * define any of the address_space operations.
  65 */
  66const struct address_space_operations empty_aops = {
  67};
  68EXPORT_SYMBOL(empty_aops);
  69
  70static DEFINE_PER_CPU(unsigned long, nr_inodes);
  71static DEFINE_PER_CPU(unsigned long, nr_unused);
  72
  73static struct kmem_cache *inode_cachep __read_mostly;
  74
  75static long get_nr_inodes(void)
  76{
  77        int i;
  78        long sum = 0;
  79        for_each_possible_cpu(i)
  80                sum += per_cpu(nr_inodes, i);
  81        return sum < 0 ? 0 : sum;
  82}
  83
  84static inline long get_nr_inodes_unused(void)
  85{
  86        int i;
  87        long sum = 0;
  88        for_each_possible_cpu(i)
  89                sum += per_cpu(nr_unused, i);
  90        return sum < 0 ? 0 : sum;
  91}
  92
  93long get_nr_dirty_inodes(void)
  94{
  95        /* not actually dirty inodes, but a wild approximation */
  96        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
  97        return nr_dirty > 0 ? nr_dirty : 0;
  98}
  99
 100/*
 101 * Handle nr_inode sysctl
 102 */
 103#ifdef CONFIG_SYSCTL
 104/*
 105 * Statistics gathering..
 106 */
 107static struct inodes_stat_t inodes_stat;
 108
 109static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
 110                          size_t *lenp, loff_t *ppos)
 111{
 112        inodes_stat.nr_inodes = get_nr_inodes();
 113        inodes_stat.nr_unused = get_nr_inodes_unused();
 114        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 115}
 116
 117static struct ctl_table inodes_sysctls[] = {
 118        {
 119                .procname       = "inode-nr",
 120                .data           = &inodes_stat,
 121                .maxlen         = 2*sizeof(long),
 122                .mode           = 0444,
 123                .proc_handler   = proc_nr_inodes,
 124        },
 125        {
 126                .procname       = "inode-state",
 127                .data           = &inodes_stat,
 128                .maxlen         = 7*sizeof(long),
 129                .mode           = 0444,
 130                .proc_handler   = proc_nr_inodes,
 131        },
 132        { }
 133};
 134
 135static int __init init_fs_inode_sysctls(void)
 136{
 137        register_sysctl_init("fs", inodes_sysctls);
 138        return 0;
 139}
 140early_initcall(init_fs_inode_sysctls);
 141#endif
 142
 143static int no_open(struct inode *inode, struct file *file)
 144{
 145        return -ENXIO;
 146}
 147
 148/**
 149 * inode_init_always - perform inode structure initialisation
 150 * @sb: superblock inode belongs to
 151 * @inode: inode to initialise
 152 *
 153 * These are initializations that need to be done on every inode
 154 * allocation as the fields are not initialised by slab allocation.
 155 */
 156int inode_init_always(struct super_block *sb, struct inode *inode)
 157{
 158        static const struct inode_operations empty_iops;
 159        static const struct file_operations no_open_fops = {.open = no_open};
 160        struct address_space *const mapping = &inode->i_data;
 161
 162        inode->i_sb = sb;
 163        inode->i_blkbits = sb->s_blocksize_bits;
 164        inode->i_flags = 0;
 165        atomic64_set(&inode->i_sequence, 0);
 166        atomic_set(&inode->i_count, 1);
 167        inode->i_op = &empty_iops;
 168        inode->i_fop = &no_open_fops;
 169        inode->i_ino = 0;
 170        inode->__i_nlink = 1;
 171        inode->i_opflags = 0;
 172        if (sb->s_xattr)
 173                inode->i_opflags |= IOP_XATTR;
 174        i_uid_write(inode, 0);
 175        i_gid_write(inode, 0);
 176        atomic_set(&inode->i_writecount, 0);
 177        inode->i_size = 0;
 178        inode->i_write_hint = WRITE_LIFE_NOT_SET;
 179        inode->i_blocks = 0;
 180        inode->i_bytes = 0;
 181        inode->i_generation = 0;
 182        inode->i_pipe = NULL;
 183        inode->i_cdev = NULL;
 184        inode->i_link = NULL;
 185        inode->i_dir_seq = 0;
 186        inode->i_rdev = 0;
 187        inode->dirtied_when = 0;
 188
 189#ifdef CONFIG_CGROUP_WRITEBACK
 190        inode->i_wb_frn_winner = 0;
 191        inode->i_wb_frn_avg_time = 0;
 192        inode->i_wb_frn_history = 0;
 193#endif
 194
 195        if (security_inode_alloc(inode))
 196                goto out;
 197        spin_lock_init(&inode->i_lock);
 198        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 199
 200        init_rwsem(&inode->i_rwsem);
 201        lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 202
 203        atomic_set(&inode->i_dio_count, 0);
 204
 205        mapping->a_ops = &empty_aops;
 206        mapping->host = inode;
 207        mapping->flags = 0;
 208        mapping->wb_err = 0;
 209        atomic_set(&mapping->i_mmap_writable, 0);
 210#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 211        atomic_set(&mapping->nr_thps, 0);
 212#endif
 213        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 214        mapping->private_data = NULL;
 215        mapping->writeback_index = 0;
 216        init_rwsem(&mapping->invalidate_lock);
 217        lockdep_set_class_and_name(&mapping->invalidate_lock,
 218                                   &sb->s_type->invalidate_lock_key,
 219                                   "mapping.invalidate_lock");
 220        inode->i_private = NULL;
 221        inode->i_mapping = mapping;
 222        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 223#ifdef CONFIG_FS_POSIX_ACL
 224        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 225#endif
 226
 227#ifdef CONFIG_FSNOTIFY
 228        inode->i_fsnotify_mask = 0;
 229#endif
 230        inode->i_flctx = NULL;
 231        this_cpu_inc(nr_inodes);
 232
 233        return 0;
 234out:
 235        return -ENOMEM;
 236}
 237EXPORT_SYMBOL(inode_init_always);
 238
 239void free_inode_nonrcu(struct inode *inode)
 240{
 241        kmem_cache_free(inode_cachep, inode);
 242}
 243EXPORT_SYMBOL(free_inode_nonrcu);
 244
 245static void i_callback(struct rcu_head *head)
 246{
 247        struct inode *inode = container_of(head, struct inode, i_rcu);
 248        if (inode->free_inode)
 249                inode->free_inode(inode);
 250        else
 251                free_inode_nonrcu(inode);
 252}
 253
 254static struct inode *alloc_inode(struct super_block *sb)
 255{
 256        const struct super_operations *ops = sb->s_op;
 257        struct inode *inode;
 258
 259        if (ops->alloc_inode)
 260                inode = ops->alloc_inode(sb);
 261        else
 262                inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
 263
 264        if (!inode)
 265                return NULL;
 266
 267        if (unlikely(inode_init_always(sb, inode))) {
 268                if (ops->destroy_inode) {
 269                        ops->destroy_inode(inode);
 270                        if (!ops->free_inode)
 271                                return NULL;
 272                }
 273                inode->free_inode = ops->free_inode;
 274                i_callback(&inode->i_rcu);
 275                return NULL;
 276        }
 277
 278        return inode;
 279}
 280
 281void __destroy_inode(struct inode *inode)
 282{
 283        BUG_ON(inode_has_buffers(inode));
 284        inode_detach_wb(inode);
 285        security_inode_free(inode);
 286        fsnotify_inode_delete(inode);
 287        locks_free_lock_context(inode);
 288        if (!inode->i_nlink) {
 289                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 290                atomic_long_dec(&inode->i_sb->s_remove_count);
 291        }
 292
 293#ifdef CONFIG_FS_POSIX_ACL
 294        if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 295                posix_acl_release(inode->i_acl);
 296        if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 297                posix_acl_release(inode->i_default_acl);
 298#endif
 299        this_cpu_dec(nr_inodes);
 300}
 301EXPORT_SYMBOL(__destroy_inode);
 302
 303static void destroy_inode(struct inode *inode)
 304{
 305        const struct super_operations *ops = inode->i_sb->s_op;
 306
 307        BUG_ON(!list_empty(&inode->i_lru));
 308        __destroy_inode(inode);
 309        if (ops->destroy_inode) {
 310                ops->destroy_inode(inode);
 311                if (!ops->free_inode)
 312                        return;
 313        }
 314        inode->free_inode = ops->free_inode;
 315        call_rcu(&inode->i_rcu, i_callback);
 316}
 317
 318/**
 319 * drop_nlink - directly drop an inode's link count
 320 * @inode: inode
 321 *
 322 * This is a low-level filesystem helper to replace any
 323 * direct filesystem manipulation of i_nlink.  In cases
 324 * where we are attempting to track writes to the
 325 * filesystem, a decrement to zero means an imminent
 326 * write when the file is truncated and actually unlinked
 327 * on the filesystem.
 328 */
 329void drop_nlink(struct inode *inode)
 330{
 331        WARN_ON(inode->i_nlink == 0);
 332        inode->__i_nlink--;
 333        if (!inode->i_nlink)
 334                atomic_long_inc(&inode->i_sb->s_remove_count);
 335}
 336EXPORT_SYMBOL(drop_nlink);
 337
 338/**
 339 * clear_nlink - directly zero an inode's link count
 340 * @inode: inode
 341 *
 342 * This is a low-level filesystem helper to replace any
 343 * direct filesystem manipulation of i_nlink.  See
 344 * drop_nlink() for why we care about i_nlink hitting zero.
 345 */
 346void clear_nlink(struct inode *inode)
 347{
 348        if (inode->i_nlink) {
 349                inode->__i_nlink = 0;
 350                atomic_long_inc(&inode->i_sb->s_remove_count);
 351        }
 352}
 353EXPORT_SYMBOL(clear_nlink);
 354
 355/**
 356 * set_nlink - directly set an inode's link count
 357 * @inode: inode
 358 * @nlink: new nlink (should be non-zero)
 359 *
 360 * This is a low-level filesystem helper to replace any
 361 * direct filesystem manipulation of i_nlink.
 362 */
 363void set_nlink(struct inode *inode, unsigned int nlink)
 364{
 365        if (!nlink) {
 366                clear_nlink(inode);
 367        } else {
 368                /* Yes, some filesystems do change nlink from zero to one */
 369                if (inode->i_nlink == 0)
 370                        atomic_long_dec(&inode->i_sb->s_remove_count);
 371
 372                inode->__i_nlink = nlink;
 373        }
 374}
 375EXPORT_SYMBOL(set_nlink);
 376
 377/**
 378 * inc_nlink - directly increment an inode's link count
 379 * @inode: inode
 380 *
 381 * This is a low-level filesystem helper to replace any
 382 * direct filesystem manipulation of i_nlink.  Currently,
 383 * it is only here for parity with dec_nlink().
 384 */
 385void inc_nlink(struct inode *inode)
 386{
 387        if (unlikely(inode->i_nlink == 0)) {
 388                WARN_ON(!(inode->i_state & I_LINKABLE));
 389                atomic_long_dec(&inode->i_sb->s_remove_count);
 390        }
 391
 392        inode->__i_nlink++;
 393}
 394EXPORT_SYMBOL(inc_nlink);
 395
 396static void __address_space_init_once(struct address_space *mapping)
 397{
 398        xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 399        init_rwsem(&mapping->i_mmap_rwsem);
 400        INIT_LIST_HEAD(&mapping->private_list);
 401        spin_lock_init(&mapping->private_lock);
 402        mapping->i_mmap = RB_ROOT_CACHED;
 403}
 404
 405void address_space_init_once(struct address_space *mapping)
 406{
 407        memset(mapping, 0, sizeof(*mapping));
 408        __address_space_init_once(mapping);
 409}
 410EXPORT_SYMBOL(address_space_init_once);
 411
 412/*
 413 * These are initializations that only need to be done
 414 * once, because the fields are idempotent across use
 415 * of the inode, so let the slab aware of that.
 416 */
 417void inode_init_once(struct inode *inode)
 418{
 419        memset(inode, 0, sizeof(*inode));
 420        INIT_HLIST_NODE(&inode->i_hash);
 421        INIT_LIST_HEAD(&inode->i_devices);
 422        INIT_LIST_HEAD(&inode->i_io_list);
 423        INIT_LIST_HEAD(&inode->i_wb_list);
 424        INIT_LIST_HEAD(&inode->i_lru);
 425        __address_space_init_once(&inode->i_data);
 426        i_size_ordered_init(inode);
 427}
 428EXPORT_SYMBOL(inode_init_once);
 429
 430static void init_once(void *foo)
 431{
 432        struct inode *inode = (struct inode *) foo;
 433
 434        inode_init_once(inode);
 435}
 436
 437/*
 438 * inode->i_lock must be held
 439 */
 440void __iget(struct inode *inode)
 441{
 442        atomic_inc(&inode->i_count);
 443}
 444
 445/*
 446 * get additional reference to inode; caller must already hold one.
 447 */
 448void ihold(struct inode *inode)
 449{
 450        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 451}
 452EXPORT_SYMBOL(ihold);
 453
 454static void __inode_add_lru(struct inode *inode, bool rotate)
 455{
 456        if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
 457                return;
 458        if (atomic_read(&inode->i_count))
 459                return;
 460        if (!(inode->i_sb->s_flags & SB_ACTIVE))
 461                return;
 462        if (!mapping_shrinkable(&inode->i_data))
 463                return;
 464
 465        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 466                this_cpu_inc(nr_unused);
 467        else if (rotate)
 468                inode->i_state |= I_REFERENCED;
 469}
 470
 471/*
 472 * Add inode to LRU if needed (inode is unused and clean).
 473 *
 474 * Needs inode->i_lock held.
 475 */
 476void inode_add_lru(struct inode *inode)
 477{
 478        __inode_add_lru(inode, false);
 479}
 480
 481static void inode_lru_list_del(struct inode *inode)
 482{
 483        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 484                this_cpu_dec(nr_unused);
 485}
 486
 487/**
 488 * inode_sb_list_add - add inode to the superblock list of inodes
 489 * @inode: inode to add
 490 */
 491void inode_sb_list_add(struct inode *inode)
 492{
 493        spin_lock(&inode->i_sb->s_inode_list_lock);
 494        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 495        spin_unlock(&inode->i_sb->s_inode_list_lock);
 496}
 497EXPORT_SYMBOL_GPL(inode_sb_list_add);
 498
 499static inline void inode_sb_list_del(struct inode *inode)
 500{
 501        if (!list_empty(&inode->i_sb_list)) {
 502                spin_lock(&inode->i_sb->s_inode_list_lock);
 503                list_del_init(&inode->i_sb_list);
 504                spin_unlock(&inode->i_sb->s_inode_list_lock);
 505        }
 506}
 507
 508static unsigned long hash(struct super_block *sb, unsigned long hashval)
 509{
 510        unsigned long tmp;
 511
 512        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 513                        L1_CACHE_BYTES;
 514        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 515        return tmp & i_hash_mask;
 516}
 517
 518/**
 519 *      __insert_inode_hash - hash an inode
 520 *      @inode: unhashed inode
 521 *      @hashval: unsigned long value used to locate this object in the
 522 *              inode_hashtable.
 523 *
 524 *      Add an inode to the inode hash for this superblock.
 525 */
 526void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 527{
 528        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 529
 530        spin_lock(&inode_hash_lock);
 531        spin_lock(&inode->i_lock);
 532        hlist_add_head_rcu(&inode->i_hash, b);
 533        spin_unlock(&inode->i_lock);
 534        spin_unlock(&inode_hash_lock);
 535}
 536EXPORT_SYMBOL(__insert_inode_hash);
 537
 538/**
 539 *      __remove_inode_hash - remove an inode from the hash
 540 *      @inode: inode to unhash
 541 *
 542 *      Remove an inode from the superblock.
 543 */
 544void __remove_inode_hash(struct inode *inode)
 545{
 546        spin_lock(&inode_hash_lock);
 547        spin_lock(&inode->i_lock);
 548        hlist_del_init_rcu(&inode->i_hash);
 549        spin_unlock(&inode->i_lock);
 550        spin_unlock(&inode_hash_lock);
 551}
 552EXPORT_SYMBOL(__remove_inode_hash);
 553
 554void dump_mapping(const struct address_space *mapping)
 555{
 556        struct inode *host;
 557        const struct address_space_operations *a_ops;
 558        struct hlist_node *dentry_first;
 559        struct dentry *dentry_ptr;
 560        struct dentry dentry;
 561        unsigned long ino;
 562
 563        /*
 564         * If mapping is an invalid pointer, we don't want to crash
 565         * accessing it, so probe everything depending on it carefully.
 566         */
 567        if (get_kernel_nofault(host, &mapping->host) ||
 568            get_kernel_nofault(a_ops, &mapping->a_ops)) {
 569                pr_warn("invalid mapping:%px\n", mapping);
 570                return;
 571        }
 572
 573        if (!host) {
 574                pr_warn("aops:%ps\n", a_ops);
 575                return;
 576        }
 577
 578        if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
 579            get_kernel_nofault(ino, &host->i_ino)) {
 580                pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
 581                return;
 582        }
 583
 584        if (!dentry_first) {
 585                pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
 586                return;
 587        }
 588
 589        dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
 590        if (get_kernel_nofault(dentry, dentry_ptr)) {
 591                pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
 592                                a_ops, ino, dentry_ptr);
 593                return;
 594        }
 595
 596        /*
 597         * if dentry is corrupted, the %pd handler may still crash,
 598         * but it's unlikely that we reach here with a corrupt mapping
 599         */
 600        pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
 601}
 602
 603void clear_inode(struct inode *inode)
 604{
 605        /*
 606         * We have to cycle the i_pages lock here because reclaim can be in the
 607         * process of removing the last page (in __delete_from_page_cache())
 608         * and we must not free the mapping under it.
 609         */
 610        xa_lock_irq(&inode->i_data.i_pages);
 611        BUG_ON(inode->i_data.nrpages);
 612        /*
 613         * Almost always, mapping_empty(&inode->i_data) here; but there are
 614         * two known and long-standing ways in which nodes may get left behind
 615         * (when deep radix-tree node allocation failed partway; or when THP
 616         * collapse_file() failed). Until those two known cases are cleaned up,
 617         * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
 618         * nor even WARN_ON(!mapping_empty).
 619         */
 620        xa_unlock_irq(&inode->i_data.i_pages);
 621        BUG_ON(!list_empty(&inode->i_data.private_list));
 622        BUG_ON(!(inode->i_state & I_FREEING));
 623        BUG_ON(inode->i_state & I_CLEAR);
 624        BUG_ON(!list_empty(&inode->i_wb_list));
 625        /* don't need i_lock here, no concurrent mods to i_state */
 626        inode->i_state = I_FREEING | I_CLEAR;
 627}
 628EXPORT_SYMBOL(clear_inode);
 629
 630/*
 631 * Free the inode passed in, removing it from the lists it is still connected
 632 * to. We remove any pages still attached to the inode and wait for any IO that
 633 * is still in progress before finally destroying the inode.
 634 *
 635 * An inode must already be marked I_FREEING so that we avoid the inode being
 636 * moved back onto lists if we race with other code that manipulates the lists
 637 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 638 *
 639 * An inode must already be removed from the LRU list before being evicted from
 640 * the cache. This should occur atomically with setting the I_FREEING state
 641 * flag, so no inodes here should ever be on the LRU when being evicted.
 642 */
 643static void evict(struct inode *inode)
 644{
 645        const struct super_operations *op = inode->i_sb->s_op;
 646
 647        BUG_ON(!(inode->i_state & I_FREEING));
 648        BUG_ON(!list_empty(&inode->i_lru));
 649
 650        if (!list_empty(&inode->i_io_list))
 651                inode_io_list_del(inode);
 652
 653        inode_sb_list_del(inode);
 654
 655        /*
 656         * Wait for flusher thread to be done with the inode so that filesystem
 657         * does not start destroying it while writeback is still running. Since
 658         * the inode has I_FREEING set, flusher thread won't start new work on
 659         * the inode.  We just have to wait for running writeback to finish.
 660         */
 661        inode_wait_for_writeback(inode);
 662
 663        if (op->evict_inode) {
 664                op->evict_inode(inode);
 665        } else {
 666                truncate_inode_pages_final(&inode->i_data);
 667                clear_inode(inode);
 668        }
 669        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 670                cd_forget(inode);
 671
 672        remove_inode_hash(inode);
 673
 674        spin_lock(&inode->i_lock);
 675        wake_up_bit(&inode->i_state, __I_NEW);
 676        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 677        spin_unlock(&inode->i_lock);
 678
 679        destroy_inode(inode);
 680}
 681
 682/*
 683 * dispose_list - dispose of the contents of a local list
 684 * @head: the head of the list to free
 685 *
 686 * Dispose-list gets a local list with local inodes in it, so it doesn't
 687 * need to worry about list corruption and SMP locks.
 688 */
 689static void dispose_list(struct list_head *head)
 690{
 691        while (!list_empty(head)) {
 692                struct inode *inode;
 693
 694                inode = list_first_entry(head, struct inode, i_lru);
 695                list_del_init(&inode->i_lru);
 696
 697                evict(inode);
 698                cond_resched();
 699        }
 700}
 701
 702/**
 703 * evict_inodes - evict all evictable inodes for a superblock
 704 * @sb:         superblock to operate on
 705 *
 706 * Make sure that no inodes with zero refcount are retained.  This is
 707 * called by superblock shutdown after having SB_ACTIVE flag removed,
 708 * so any inode reaching zero refcount during or after that call will
 709 * be immediately evicted.
 710 */
 711void evict_inodes(struct super_block *sb)
 712{
 713        struct inode *inode, *next;
 714        LIST_HEAD(dispose);
 715
 716again:
 717        spin_lock(&sb->s_inode_list_lock);
 718        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 719                if (atomic_read(&inode->i_count))
 720                        continue;
 721
 722                spin_lock(&inode->i_lock);
 723                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 724                        spin_unlock(&inode->i_lock);
 725                        continue;
 726                }
 727
 728                inode->i_state |= I_FREEING;
 729                inode_lru_list_del(inode);
 730                spin_unlock(&inode->i_lock);
 731                list_add(&inode->i_lru, &dispose);
 732
 733                /*
 734                 * We can have a ton of inodes to evict at unmount time given
 735                 * enough memory, check to see if we need to go to sleep for a
 736                 * bit so we don't livelock.
 737                 */
 738                if (need_resched()) {
 739                        spin_unlock(&sb->s_inode_list_lock);
 740                        cond_resched();
 741                        dispose_list(&dispose);
 742                        goto again;
 743                }
 744        }
 745        spin_unlock(&sb->s_inode_list_lock);
 746
 747        dispose_list(&dispose);
 748}
 749EXPORT_SYMBOL_GPL(evict_inodes);
 750
 751/**
 752 * invalidate_inodes    - attempt to free all inodes on a superblock
 753 * @sb:         superblock to operate on
 754 * @kill_dirty: flag to guide handling of dirty inodes
 755 *
 756 * Attempts to free all inodes for a given superblock.  If there were any
 757 * busy inodes return a non-zero value, else zero.
 758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 759 * them as busy.
 760 */
 761int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 762{
 763        int busy = 0;
 764        struct inode *inode, *next;
 765        LIST_HEAD(dispose);
 766
 767again:
 768        spin_lock(&sb->s_inode_list_lock);
 769        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 770                spin_lock(&inode->i_lock);
 771                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 772                        spin_unlock(&inode->i_lock);
 773                        continue;
 774                }
 775                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 776                        spin_unlock(&inode->i_lock);
 777                        busy = 1;
 778                        continue;
 779                }
 780                if (atomic_read(&inode->i_count)) {
 781                        spin_unlock(&inode->i_lock);
 782                        busy = 1;
 783                        continue;
 784                }
 785
 786                inode->i_state |= I_FREEING;
 787                inode_lru_list_del(inode);
 788                spin_unlock(&inode->i_lock);
 789                list_add(&inode->i_lru, &dispose);
 790                if (need_resched()) {
 791                        spin_unlock(&sb->s_inode_list_lock);
 792                        cond_resched();
 793                        dispose_list(&dispose);
 794                        goto again;
 795                }
 796        }
 797        spin_unlock(&sb->s_inode_list_lock);
 798
 799        dispose_list(&dispose);
 800
 801        return busy;
 802}
 803
 804/*
 805 * Isolate the inode from the LRU in preparation for freeing it.
 806 *
 807 * If the inode has the I_REFERENCED flag set, then it means that it has been
 808 * used recently - the flag is set in iput_final(). When we encounter such an
 809 * inode, clear the flag and move it to the back of the LRU so it gets another
 810 * pass through the LRU before it gets reclaimed. This is necessary because of
 811 * the fact we are doing lazy LRU updates to minimise lock contention so the
 812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 813 * with this flag set because they are the inodes that are out of order.
 814 */
 815static enum lru_status inode_lru_isolate(struct list_head *item,
 816                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 817{
 818        struct list_head *freeable = arg;
 819        struct inode    *inode = container_of(item, struct inode, i_lru);
 820
 821        /*
 822         * We are inverting the lru lock/inode->i_lock here, so use a
 823         * trylock. If we fail to get the lock, just skip it.
 824         */
 825        if (!spin_trylock(&inode->i_lock))
 826                return LRU_SKIP;
 827
 828        /*
 829         * Inodes can get referenced, redirtied, or repopulated while
 830         * they're already on the LRU, and this can make them
 831         * unreclaimable for a while. Remove them lazily here; iput,
 832         * sync, or the last page cache deletion will requeue them.
 833         */
 834        if (atomic_read(&inode->i_count) ||
 835            (inode->i_state & ~I_REFERENCED) ||
 836            !mapping_shrinkable(&inode->i_data)) {
 837                list_lru_isolate(lru, &inode->i_lru);
 838                spin_unlock(&inode->i_lock);
 839                this_cpu_dec(nr_unused);
 840                return LRU_REMOVED;
 841        }
 842
 843        /* Recently referenced inodes get one more pass */
 844        if (inode->i_state & I_REFERENCED) {
 845                inode->i_state &= ~I_REFERENCED;
 846                spin_unlock(&inode->i_lock);
 847                return LRU_ROTATE;
 848        }
 849
 850        /*
 851         * On highmem systems, mapping_shrinkable() permits dropping
 852         * page cache in order to free up struct inodes: lowmem might
 853         * be under pressure before the cache inside the highmem zone.
 854         */
 855        if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
 856                __iget(inode);
 857                spin_unlock(&inode->i_lock);
 858                spin_unlock(lru_lock);
 859                if (remove_inode_buffers(inode)) {
 860                        unsigned long reap;
 861                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 862                        if (current_is_kswapd())
 863                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 864                        else
 865                                __count_vm_events(PGINODESTEAL, reap);
 866                        if (current->reclaim_state)
 867                                current->reclaim_state->reclaimed_slab += reap;
 868                }
 869                iput(inode);
 870                spin_lock(lru_lock);
 871                return LRU_RETRY;
 872        }
 873
 874        WARN_ON(inode->i_state & I_NEW);
 875        inode->i_state |= I_FREEING;
 876        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 877        spin_unlock(&inode->i_lock);
 878
 879        this_cpu_dec(nr_unused);
 880        return LRU_REMOVED;
 881}
 882
 883/*
 884 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 885 * This is called from the superblock shrinker function with a number of inodes
 886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 887 * then are freed outside inode_lock by dispose_list().
 888 */
 889long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 890{
 891        LIST_HEAD(freeable);
 892        long freed;
 893
 894        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 895                                     inode_lru_isolate, &freeable);
 896        dispose_list(&freeable);
 897        return freed;
 898}
 899
 900static void __wait_on_freeing_inode(struct inode *inode);
 901/*
 902 * Called with the inode lock held.
 903 */
 904static struct inode *find_inode(struct super_block *sb,
 905                                struct hlist_head *head,
 906                                int (*test)(struct inode *, void *),
 907                                void *data)
 908{
 909        struct inode *inode = NULL;
 910
 911repeat:
 912        hlist_for_each_entry(inode, head, i_hash) {
 913                if (inode->i_sb != sb)
 914                        continue;
 915                if (!test(inode, data))
 916                        continue;
 917                spin_lock(&inode->i_lock);
 918                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 919                        __wait_on_freeing_inode(inode);
 920                        goto repeat;
 921                }
 922                if (unlikely(inode->i_state & I_CREATING)) {
 923                        spin_unlock(&inode->i_lock);
 924                        return ERR_PTR(-ESTALE);
 925                }
 926                __iget(inode);
 927                spin_unlock(&inode->i_lock);
 928                return inode;
 929        }
 930        return NULL;
 931}
 932
 933/*
 934 * find_inode_fast is the fast path version of find_inode, see the comment at
 935 * iget_locked for details.
 936 */
 937static struct inode *find_inode_fast(struct super_block *sb,
 938                                struct hlist_head *head, unsigned long ino)
 939{
 940        struct inode *inode = NULL;
 941
 942repeat:
 943        hlist_for_each_entry(inode, head, i_hash) {
 944                if (inode->i_ino != ino)
 945                        continue;
 946                if (inode->i_sb != sb)
 947                        continue;
 948                spin_lock(&inode->i_lock);
 949                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 950                        __wait_on_freeing_inode(inode);
 951                        goto repeat;
 952                }
 953                if (unlikely(inode->i_state & I_CREATING)) {
 954                        spin_unlock(&inode->i_lock);
 955                        return ERR_PTR(-ESTALE);
 956                }
 957                __iget(inode);
 958                spin_unlock(&inode->i_lock);
 959                return inode;
 960        }
 961        return NULL;
 962}
 963
 964/*
 965 * Each cpu owns a range of LAST_INO_BATCH numbers.
 966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 967 * to renew the exhausted range.
 968 *
 969 * This does not significantly increase overflow rate because every CPU can
 970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 973 * overflow rate by 2x, which does not seem too significant.
 974 *
 975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 976 * error if st_ino won't fit in target struct field. Use 32bit counter
 977 * here to attempt to avoid that.
 978 */
 979#define LAST_INO_BATCH 1024
 980static DEFINE_PER_CPU(unsigned int, last_ino);
 981
 982unsigned int get_next_ino(void)
 983{
 984        unsigned int *p = &get_cpu_var(last_ino);
 985        unsigned int res = *p;
 986
 987#ifdef CONFIG_SMP
 988        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 989                static atomic_t shared_last_ino;
 990                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 991
 992                res = next - LAST_INO_BATCH;
 993        }
 994#endif
 995
 996        res++;
 997        /* get_next_ino should not provide a 0 inode number */
 998        if (unlikely(!res))
 999                res++;
1000        *p = res;
1001        put_cpu_var(last_ino);
1002        return res;
1003}
1004EXPORT_SYMBOL(get_next_ino);
1005
1006/**
1007 *      new_inode_pseudo        - obtain an inode
1008 *      @sb: superblock
1009 *
1010 *      Allocates a new inode for given superblock.
1011 *      Inode wont be chained in superblock s_inodes list
1012 *      This means :
1013 *      - fs can't be unmount
1014 *      - quotas, fsnotify, writeback can't work
1015 */
1016struct inode *new_inode_pseudo(struct super_block *sb)
1017{
1018        struct inode *inode = alloc_inode(sb);
1019
1020        if (inode) {
1021                spin_lock(&inode->i_lock);
1022                inode->i_state = 0;
1023                spin_unlock(&inode->i_lock);
1024                INIT_LIST_HEAD(&inode->i_sb_list);
1025        }
1026        return inode;
1027}
1028
1029/**
1030 *      new_inode       - obtain an inode
1031 *      @sb: superblock
1032 *
1033 *      Allocates a new inode for given superblock. The default gfp_mask
1034 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1035 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
1036 *      for the page cache are not reclaimable or migratable,
1037 *      mapping_set_gfp_mask() must be called with suitable flags on the
1038 *      newly created inode's mapping
1039 *
1040 */
1041struct inode *new_inode(struct super_block *sb)
1042{
1043        struct inode *inode;
1044
1045        spin_lock_prefetch(&sb->s_inode_list_lock);
1046
1047        inode = new_inode_pseudo(sb);
1048        if (inode)
1049                inode_sb_list_add(inode);
1050        return inode;
1051}
1052EXPORT_SYMBOL(new_inode);
1053
1054#ifdef CONFIG_DEBUG_LOCK_ALLOC
1055void lockdep_annotate_inode_mutex_key(struct inode *inode)
1056{
1057        if (S_ISDIR(inode->i_mode)) {
1058                struct file_system_type *type = inode->i_sb->s_type;
1059
1060                /* Set new key only if filesystem hasn't already changed it */
1061                if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1062                        /*
1063                         * ensure nobody is actually holding i_mutex
1064                         */
1065                        // mutex_destroy(&inode->i_mutex);
1066                        init_rwsem(&inode->i_rwsem);
1067                        lockdep_set_class(&inode->i_rwsem,
1068                                          &type->i_mutex_dir_key);
1069                }
1070        }
1071}
1072EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1073#endif
1074
1075/**
1076 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1077 * @inode:      new inode to unlock
1078 *
1079 * Called when the inode is fully initialised to clear the new state of the
1080 * inode and wake up anyone waiting for the inode to finish initialisation.
1081 */
1082void unlock_new_inode(struct inode *inode)
1083{
1084        lockdep_annotate_inode_mutex_key(inode);
1085        spin_lock(&inode->i_lock);
1086        WARN_ON(!(inode->i_state & I_NEW));
1087        inode->i_state &= ~I_NEW & ~I_CREATING;
1088        smp_mb();
1089        wake_up_bit(&inode->i_state, __I_NEW);
1090        spin_unlock(&inode->i_lock);
1091}
1092EXPORT_SYMBOL(unlock_new_inode);
1093
1094void discard_new_inode(struct inode *inode)
1095{
1096        lockdep_annotate_inode_mutex_key(inode);
1097        spin_lock(&inode->i_lock);
1098        WARN_ON(!(inode->i_state & I_NEW));
1099        inode->i_state &= ~I_NEW;
1100        smp_mb();
1101        wake_up_bit(&inode->i_state, __I_NEW);
1102        spin_unlock(&inode->i_lock);
1103        iput(inode);
1104}
1105EXPORT_SYMBOL(discard_new_inode);
1106
1107/**
1108 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1109 *
1110 * Lock any non-NULL argument that is not a directory.
1111 * Zero, one or two objects may be locked by this function.
1112 *
1113 * @inode1: first inode to lock
1114 * @inode2: second inode to lock
1115 */
1116void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1117{
1118        if (inode1 > inode2)
1119                swap(inode1, inode2);
1120
1121        if (inode1 && !S_ISDIR(inode1->i_mode))
1122                inode_lock(inode1);
1123        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1124                inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1125}
1126EXPORT_SYMBOL(lock_two_nondirectories);
1127
1128/**
1129 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1130 * @inode1: first inode to unlock
1131 * @inode2: second inode to unlock
1132 */
1133void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1134{
1135        if (inode1 && !S_ISDIR(inode1->i_mode))
1136                inode_unlock(inode1);
1137        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1138                inode_unlock(inode2);
1139}
1140EXPORT_SYMBOL(unlock_two_nondirectories);
1141
1142/**
1143 * inode_insert5 - obtain an inode from a mounted file system
1144 * @inode:      pre-allocated inode to use for insert to cache
1145 * @hashval:    hash value (usually inode number) to get
1146 * @test:       callback used for comparisons between inodes
1147 * @set:        callback used to initialize a new struct inode
1148 * @data:       opaque data pointer to pass to @test and @set
1149 *
1150 * Search for the inode specified by @hashval and @data in the inode cache,
1151 * and if present it is return it with an increased reference count. This is
1152 * a variant of iget5_locked() for callers that don't want to fail on memory
1153 * allocation of inode.
1154 *
1155 * If the inode is not in cache, insert the pre-allocated inode to cache and
1156 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1157 * to fill it in before unlocking it via unlock_new_inode().
1158 *
1159 * Note both @test and @set are called with the inode_hash_lock held, so can't
1160 * sleep.
1161 */
1162struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1163                            int (*test)(struct inode *, void *),
1164                            int (*set)(struct inode *, void *), void *data)
1165{
1166        struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1167        struct inode *old;
1168        bool creating = inode->i_state & I_CREATING;
1169
1170again:
1171        spin_lock(&inode_hash_lock);
1172        old = find_inode(inode->i_sb, head, test, data);
1173        if (unlikely(old)) {
1174                /*
1175                 * Uhhuh, somebody else created the same inode under us.
1176                 * Use the old inode instead of the preallocated one.
1177                 */
1178                spin_unlock(&inode_hash_lock);
1179                if (IS_ERR(old))
1180                        return NULL;
1181                wait_on_inode(old);
1182                if (unlikely(inode_unhashed(old))) {
1183                        iput(old);
1184                        goto again;
1185                }
1186                return old;
1187        }
1188
1189        if (set && unlikely(set(inode, data))) {
1190                inode = NULL;
1191                goto unlock;
1192        }
1193
1194        /*
1195         * Return the locked inode with I_NEW set, the
1196         * caller is responsible for filling in the contents
1197         */
1198        spin_lock(&inode->i_lock);
1199        inode->i_state |= I_NEW;
1200        hlist_add_head_rcu(&inode->i_hash, head);
1201        spin_unlock(&inode->i_lock);
1202        if (!creating)
1203                inode_sb_list_add(inode);
1204unlock:
1205        spin_unlock(&inode_hash_lock);
1206
1207        return inode;
1208}
1209EXPORT_SYMBOL(inode_insert5);
1210
1211/**
1212 * iget5_locked - obtain an inode from a mounted file system
1213 * @sb:         super block of file system
1214 * @hashval:    hash value (usually inode number) to get
1215 * @test:       callback used for comparisons between inodes
1216 * @set:        callback used to initialize a new struct inode
1217 * @data:       opaque data pointer to pass to @test and @set
1218 *
1219 * Search for the inode specified by @hashval and @data in the inode cache,
1220 * and if present it is return it with an increased reference count. This is
1221 * a generalized version of iget_locked() for file systems where the inode
1222 * number is not sufficient for unique identification of an inode.
1223 *
1224 * If the inode is not in cache, allocate a new inode and return it locked,
1225 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1226 * before unlocking it via unlock_new_inode().
1227 *
1228 * Note both @test and @set are called with the inode_hash_lock held, so can't
1229 * sleep.
1230 */
1231struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1232                int (*test)(struct inode *, void *),
1233                int (*set)(struct inode *, void *), void *data)
1234{
1235        struct inode *inode = ilookup5(sb, hashval, test, data);
1236
1237        if (!inode) {
1238                struct inode *new = alloc_inode(sb);
1239
1240                if (new) {
1241                        new->i_state = 0;
1242                        inode = inode_insert5(new, hashval, test, set, data);
1243                        if (unlikely(inode != new))
1244                                destroy_inode(new);
1245                }
1246        }
1247        return inode;
1248}
1249EXPORT_SYMBOL(iget5_locked);
1250
1251/**
1252 * iget_locked - obtain an inode from a mounted file system
1253 * @sb:         super block of file system
1254 * @ino:        inode number to get
1255 *
1256 * Search for the inode specified by @ino in the inode cache and if present
1257 * return it with an increased reference count. This is for file systems
1258 * where the inode number is sufficient for unique identification of an inode.
1259 *
1260 * If the inode is not in cache, allocate a new inode and return it locked,
1261 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1262 * before unlocking it via unlock_new_inode().
1263 */
1264struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1265{
1266        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1267        struct inode *inode;
1268again:
1269        spin_lock(&inode_hash_lock);
1270        inode = find_inode_fast(sb, head, ino);
1271        spin_unlock(&inode_hash_lock);
1272        if (inode) {
1273                if (IS_ERR(inode))
1274                        return NULL;
1275                wait_on_inode(inode);
1276                if (unlikely(inode_unhashed(inode))) {
1277                        iput(inode);
1278                        goto again;
1279                }
1280                return inode;
1281        }
1282
1283        inode = alloc_inode(sb);
1284        if (inode) {
1285                struct inode *old;
1286
1287                spin_lock(&inode_hash_lock);
1288                /* We released the lock, so.. */
1289                old = find_inode_fast(sb, head, ino);
1290                if (!old) {
1291                        inode->i_ino = ino;
1292                        spin_lock(&inode->i_lock);
1293                        inode->i_state = I_NEW;
1294                        hlist_add_head_rcu(&inode->i_hash, head);
1295                        spin_unlock(&inode->i_lock);
1296                        inode_sb_list_add(inode);
1297                        spin_unlock(&inode_hash_lock);
1298
1299                        /* Return the locked inode with I_NEW set, the
1300                         * caller is responsible for filling in the contents
1301                         */
1302                        return inode;
1303                }
1304
1305                /*
1306                 * Uhhuh, somebody else created the same inode under
1307                 * us. Use the old inode instead of the one we just
1308                 * allocated.
1309                 */
1310                spin_unlock(&inode_hash_lock);
1311                destroy_inode(inode);
1312                if (IS_ERR(old))
1313                        return NULL;
1314                inode = old;
1315                wait_on_inode(inode);
1316                if (unlikely(inode_unhashed(inode))) {
1317                        iput(inode);
1318                        goto again;
1319                }
1320        }
1321        return inode;
1322}
1323EXPORT_SYMBOL(iget_locked);
1324
1325/*
1326 * search the inode cache for a matching inode number.
1327 * If we find one, then the inode number we are trying to
1328 * allocate is not unique and so we should not use it.
1329 *
1330 * Returns 1 if the inode number is unique, 0 if it is not.
1331 */
1332static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1333{
1334        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1335        struct inode *inode;
1336
1337        hlist_for_each_entry_rcu(inode, b, i_hash) {
1338                if (inode->i_ino == ino && inode->i_sb == sb)
1339                        return 0;
1340        }
1341        return 1;
1342}
1343
1344/**
1345 *      iunique - get a unique inode number
1346 *      @sb: superblock
1347 *      @max_reserved: highest reserved inode number
1348 *
1349 *      Obtain an inode number that is unique on the system for a given
1350 *      superblock. This is used by file systems that have no natural
1351 *      permanent inode numbering system. An inode number is returned that
1352 *      is higher than the reserved limit but unique.
1353 *
1354 *      BUGS:
1355 *      With a large number of inodes live on the file system this function
1356 *      currently becomes quite slow.
1357 */
1358ino_t iunique(struct super_block *sb, ino_t max_reserved)
1359{
1360        /*
1361         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1362         * error if st_ino won't fit in target struct field. Use 32bit counter
1363         * here to attempt to avoid that.
1364         */
1365        static DEFINE_SPINLOCK(iunique_lock);
1366        static unsigned int counter;
1367        ino_t res;
1368
1369        rcu_read_lock();
1370        spin_lock(&iunique_lock);
1371        do {
1372                if (counter <= max_reserved)
1373                        counter = max_reserved + 1;
1374                res = counter++;
1375        } while (!test_inode_iunique(sb, res));
1376        spin_unlock(&iunique_lock);
1377        rcu_read_unlock();
1378
1379        return res;
1380}
1381EXPORT_SYMBOL(iunique);
1382
1383struct inode *igrab(struct inode *inode)
1384{
1385        spin_lock(&inode->i_lock);
1386        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1387                __iget(inode);
1388                spin_unlock(&inode->i_lock);
1389        } else {
1390                spin_unlock(&inode->i_lock);
1391                /*
1392                 * Handle the case where s_op->clear_inode is not been
1393                 * called yet, and somebody is calling igrab
1394                 * while the inode is getting freed.
1395                 */
1396                inode = NULL;
1397        }
1398        return inode;
1399}
1400EXPORT_SYMBOL(igrab);
1401
1402/**
1403 * ilookup5_nowait - search for an inode in the inode cache
1404 * @sb:         super block of file system to search
1405 * @hashval:    hash value (usually inode number) to search for
1406 * @test:       callback used for comparisons between inodes
1407 * @data:       opaque data pointer to pass to @test
1408 *
1409 * Search for the inode specified by @hashval and @data in the inode cache.
1410 * If the inode is in the cache, the inode is returned with an incremented
1411 * reference count.
1412 *
1413 * Note: I_NEW is not waited upon so you have to be very careful what you do
1414 * with the returned inode.  You probably should be using ilookup5() instead.
1415 *
1416 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1417 */
1418struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1419                int (*test)(struct inode *, void *), void *data)
1420{
1421        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1422        struct inode *inode;
1423
1424        spin_lock(&inode_hash_lock);
1425        inode = find_inode(sb, head, test, data);
1426        spin_unlock(&inode_hash_lock);
1427
1428        return IS_ERR(inode) ? NULL : inode;
1429}
1430EXPORT_SYMBOL(ilookup5_nowait);
1431
1432/**
1433 * ilookup5 - search for an inode in the inode cache
1434 * @sb:         super block of file system to search
1435 * @hashval:    hash value (usually inode number) to search for
1436 * @test:       callback used for comparisons between inodes
1437 * @data:       opaque data pointer to pass to @test
1438 *
1439 * Search for the inode specified by @hashval and @data in the inode cache,
1440 * and if the inode is in the cache, return the inode with an incremented
1441 * reference count.  Waits on I_NEW before returning the inode.
1442 * returned with an incremented reference count.
1443 *
1444 * This is a generalized version of ilookup() for file systems where the
1445 * inode number is not sufficient for unique identification of an inode.
1446 *
1447 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1448 */
1449struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1450                int (*test)(struct inode *, void *), void *data)
1451{
1452        struct inode *inode;
1453again:
1454        inode = ilookup5_nowait(sb, hashval, test, data);
1455        if (inode) {
1456                wait_on_inode(inode);
1457                if (unlikely(inode_unhashed(inode))) {
1458                        iput(inode);
1459                        goto again;
1460                }
1461        }
1462        return inode;
1463}
1464EXPORT_SYMBOL(ilookup5);
1465
1466/**
1467 * ilookup - search for an inode in the inode cache
1468 * @sb:         super block of file system to search
1469 * @ino:        inode number to search for
1470 *
1471 * Search for the inode @ino in the inode cache, and if the inode is in the
1472 * cache, the inode is returned with an incremented reference count.
1473 */
1474struct inode *ilookup(struct super_block *sb, unsigned long ino)
1475{
1476        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1477        struct inode *inode;
1478again:
1479        spin_lock(&inode_hash_lock);
1480        inode = find_inode_fast(sb, head, ino);
1481        spin_unlock(&inode_hash_lock);
1482
1483        if (inode) {
1484                if (IS_ERR(inode))
1485                        return NULL;
1486                wait_on_inode(inode);
1487                if (unlikely(inode_unhashed(inode))) {
1488                        iput(inode);
1489                        goto again;
1490                }
1491        }
1492        return inode;
1493}
1494EXPORT_SYMBOL(ilookup);
1495
1496/**
1497 * find_inode_nowait - find an inode in the inode cache
1498 * @sb:         super block of file system to search
1499 * @hashval:    hash value (usually inode number) to search for
1500 * @match:      callback used for comparisons between inodes
1501 * @data:       opaque data pointer to pass to @match
1502 *
1503 * Search for the inode specified by @hashval and @data in the inode
1504 * cache, where the helper function @match will return 0 if the inode
1505 * does not match, 1 if the inode does match, and -1 if the search
1506 * should be stopped.  The @match function must be responsible for
1507 * taking the i_lock spin_lock and checking i_state for an inode being
1508 * freed or being initialized, and incrementing the reference count
1509 * before returning 1.  It also must not sleep, since it is called with
1510 * the inode_hash_lock spinlock held.
1511 *
1512 * This is a even more generalized version of ilookup5() when the
1513 * function must never block --- find_inode() can block in
1514 * __wait_on_freeing_inode() --- or when the caller can not increment
1515 * the reference count because the resulting iput() might cause an
1516 * inode eviction.  The tradeoff is that the @match funtion must be
1517 * very carefully implemented.
1518 */
1519struct inode *find_inode_nowait(struct super_block *sb,
1520                                unsigned long hashval,
1521                                int (*match)(struct inode *, unsigned long,
1522                                             void *),
1523                                void *data)
1524{
1525        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1526        struct inode *inode, *ret_inode = NULL;
1527        int mval;
1528
1529        spin_lock(&inode_hash_lock);
1530        hlist_for_each_entry(inode, head, i_hash) {
1531                if (inode->i_sb != sb)
1532                        continue;
1533                mval = match(inode, hashval, data);
1534                if (mval == 0)
1535                        continue;
1536                if (mval == 1)
1537                        ret_inode = inode;
1538                goto out;
1539        }
1540out:
1541        spin_unlock(&inode_hash_lock);
1542        return ret_inode;
1543}
1544EXPORT_SYMBOL(find_inode_nowait);
1545
1546/**
1547 * find_inode_rcu - find an inode in the inode cache
1548 * @sb:         Super block of file system to search
1549 * @hashval:    Key to hash
1550 * @test:       Function to test match on an inode
1551 * @data:       Data for test function
1552 *
1553 * Search for the inode specified by @hashval and @data in the inode cache,
1554 * where the helper function @test will return 0 if the inode does not match
1555 * and 1 if it does.  The @test function must be responsible for taking the
1556 * i_lock spin_lock and checking i_state for an inode being freed or being
1557 * initialized.
1558 *
1559 * If successful, this will return the inode for which the @test function
1560 * returned 1 and NULL otherwise.
1561 *
1562 * The @test function is not permitted to take a ref on any inode presented.
1563 * It is also not permitted to sleep.
1564 *
1565 * The caller must hold the RCU read lock.
1566 */
1567struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1568                             int (*test)(struct inode *, void *), void *data)
1569{
1570        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1571        struct inode *inode;
1572
1573        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1574                         "suspicious find_inode_rcu() usage");
1575
1576        hlist_for_each_entry_rcu(inode, head, i_hash) {
1577                if (inode->i_sb == sb &&
1578                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1579                    test(inode, data))
1580                        return inode;
1581        }
1582        return NULL;
1583}
1584EXPORT_SYMBOL(find_inode_rcu);
1585
1586/**
1587 * find_inode_by_ino_rcu - Find an inode in the inode cache
1588 * @sb:         Super block of file system to search
1589 * @ino:        The inode number to match
1590 *
1591 * Search for the inode specified by @hashval and @data in the inode cache,
1592 * where the helper function @test will return 0 if the inode does not match
1593 * and 1 if it does.  The @test function must be responsible for taking the
1594 * i_lock spin_lock and checking i_state for an inode being freed or being
1595 * initialized.
1596 *
1597 * If successful, this will return the inode for which the @test function
1598 * returned 1 and NULL otherwise.
1599 *
1600 * The @test function is not permitted to take a ref on any inode presented.
1601 * It is also not permitted to sleep.
1602 *
1603 * The caller must hold the RCU read lock.
1604 */
1605struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1606                                    unsigned long ino)
1607{
1608        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1609        struct inode *inode;
1610
1611        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1612                         "suspicious find_inode_by_ino_rcu() usage");
1613
1614        hlist_for_each_entry_rcu(inode, head, i_hash) {
1615                if (inode->i_ino == ino &&
1616                    inode->i_sb == sb &&
1617                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1618                    return inode;
1619        }
1620        return NULL;
1621}
1622EXPORT_SYMBOL(find_inode_by_ino_rcu);
1623
1624int insert_inode_locked(struct inode *inode)
1625{
1626        struct super_block *sb = inode->i_sb;
1627        ino_t ino = inode->i_ino;
1628        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1629
1630        while (1) {
1631                struct inode *old = NULL;
1632                spin_lock(&inode_hash_lock);
1633                hlist_for_each_entry(old, head, i_hash) {
1634                        if (old->i_ino != ino)
1635                                continue;
1636                        if (old->i_sb != sb)
1637                                continue;
1638                        spin_lock(&old->i_lock);
1639                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1640                                spin_unlock(&old->i_lock);
1641                                continue;
1642                        }
1643                        break;
1644                }
1645                if (likely(!old)) {
1646                        spin_lock(&inode->i_lock);
1647                        inode->i_state |= I_NEW | I_CREATING;
1648                        hlist_add_head_rcu(&inode->i_hash, head);
1649                        spin_unlock(&inode->i_lock);
1650                        spin_unlock(&inode_hash_lock);
1651                        return 0;
1652                }
1653                if (unlikely(old->i_state & I_CREATING)) {
1654                        spin_unlock(&old->i_lock);
1655                        spin_unlock(&inode_hash_lock);
1656                        return -EBUSY;
1657                }
1658                __iget(old);
1659                spin_unlock(&old->i_lock);
1660                spin_unlock(&inode_hash_lock);
1661                wait_on_inode(old);
1662                if (unlikely(!inode_unhashed(old))) {
1663                        iput(old);
1664                        return -EBUSY;
1665                }
1666                iput(old);
1667        }
1668}
1669EXPORT_SYMBOL(insert_inode_locked);
1670
1671int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1672                int (*test)(struct inode *, void *), void *data)
1673{
1674        struct inode *old;
1675
1676        inode->i_state |= I_CREATING;
1677        old = inode_insert5(inode, hashval, test, NULL, data);
1678
1679        if (old != inode) {
1680                iput(old);
1681                return -EBUSY;
1682        }
1683        return 0;
1684}
1685EXPORT_SYMBOL(insert_inode_locked4);
1686
1687
1688int generic_delete_inode(struct inode *inode)
1689{
1690        return 1;
1691}
1692EXPORT_SYMBOL(generic_delete_inode);
1693
1694/*
1695 * Called when we're dropping the last reference
1696 * to an inode.
1697 *
1698 * Call the FS "drop_inode()" function, defaulting to
1699 * the legacy UNIX filesystem behaviour.  If it tells
1700 * us to evict inode, do so.  Otherwise, retain inode
1701 * in cache if fs is alive, sync and evict if fs is
1702 * shutting down.
1703 */
1704static void iput_final(struct inode *inode)
1705{
1706        struct super_block *sb = inode->i_sb;
1707        const struct super_operations *op = inode->i_sb->s_op;
1708        unsigned long state;
1709        int drop;
1710
1711        WARN_ON(inode->i_state & I_NEW);
1712
1713        if (op->drop_inode)
1714                drop = op->drop_inode(inode);
1715        else
1716                drop = generic_drop_inode(inode);
1717
1718        if (!drop &&
1719            !(inode->i_state & I_DONTCACHE) &&
1720            (sb->s_flags & SB_ACTIVE)) {
1721                __inode_add_lru(inode, true);
1722                spin_unlock(&inode->i_lock);
1723                return;
1724        }
1725
1726        state = inode->i_state;
1727        if (!drop) {
1728                WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1729                spin_unlock(&inode->i_lock);
1730
1731                write_inode_now(inode, 1);
1732
1733                spin_lock(&inode->i_lock);
1734                state = inode->i_state;
1735                WARN_ON(state & I_NEW);
1736                state &= ~I_WILL_FREE;
1737        }
1738
1739        WRITE_ONCE(inode->i_state, state | I_FREEING);
1740        if (!list_empty(&inode->i_lru))
1741                inode_lru_list_del(inode);
1742        spin_unlock(&inode->i_lock);
1743
1744        evict(inode);
1745}
1746
1747/**
1748 *      iput    - put an inode
1749 *      @inode: inode to put
1750 *
1751 *      Puts an inode, dropping its usage count. If the inode use count hits
1752 *      zero, the inode is then freed and may also be destroyed.
1753 *
1754 *      Consequently, iput() can sleep.
1755 */
1756void iput(struct inode *inode)
1757{
1758        if (!inode)
1759                return;
1760        BUG_ON(inode->i_state & I_CLEAR);
1761retry:
1762        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1763                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1764                        atomic_inc(&inode->i_count);
1765                        spin_unlock(&inode->i_lock);
1766                        trace_writeback_lazytime_iput(inode);
1767                        mark_inode_dirty_sync(inode);
1768                        goto retry;
1769                }
1770                iput_final(inode);
1771        }
1772}
1773EXPORT_SYMBOL(iput);
1774
1775#ifdef CONFIG_BLOCK
1776/**
1777 *      bmap    - find a block number in a file
1778 *      @inode:  inode owning the block number being requested
1779 *      @block: pointer containing the block to find
1780 *
1781 *      Replaces the value in ``*block`` with the block number on the device holding
1782 *      corresponding to the requested block number in the file.
1783 *      That is, asked for block 4 of inode 1 the function will replace the
1784 *      4 in ``*block``, with disk block relative to the disk start that holds that
1785 *      block of the file.
1786 *
1787 *      Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1788 *      hole, returns 0 and ``*block`` is also set to 0.
1789 */
1790int bmap(struct inode *inode, sector_t *block)
1791{
1792        if (!inode->i_mapping->a_ops->bmap)
1793                return -EINVAL;
1794
1795        *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1796        return 0;
1797}
1798EXPORT_SYMBOL(bmap);
1799#endif
1800
1801/*
1802 * With relative atime, only update atime if the previous atime is
1803 * earlier than either the ctime or mtime or if at least a day has
1804 * passed since the last atime update.
1805 */
1806static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1807                             struct timespec64 now)
1808{
1809
1810        if (!(mnt->mnt_flags & MNT_RELATIME))
1811                return 1;
1812        /*
1813         * Is mtime younger than atime? If yes, update atime:
1814         */
1815        if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1816                return 1;
1817        /*
1818         * Is ctime younger than atime? If yes, update atime:
1819         */
1820        if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1821                return 1;
1822
1823        /*
1824         * Is the previous atime value older than a day? If yes,
1825         * update atime:
1826         */
1827        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1828                return 1;
1829        /*
1830         * Good, we can skip the atime update:
1831         */
1832        return 0;
1833}
1834
1835int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1836{
1837        int dirty_flags = 0;
1838
1839        if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1840                if (flags & S_ATIME)
1841                        inode->i_atime = *time;
1842                if (flags & S_CTIME)
1843                        inode->i_ctime = *time;
1844                if (flags & S_MTIME)
1845                        inode->i_mtime = *time;
1846
1847                if (inode->i_sb->s_flags & SB_LAZYTIME)
1848                        dirty_flags |= I_DIRTY_TIME;
1849                else
1850                        dirty_flags |= I_DIRTY_SYNC;
1851        }
1852
1853        if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1854                dirty_flags |= I_DIRTY_SYNC;
1855
1856        __mark_inode_dirty(inode, dirty_flags);
1857        return 0;
1858}
1859EXPORT_SYMBOL(generic_update_time);
1860
1861/*
1862 * This does the actual work of updating an inodes time or version.  Must have
1863 * had called mnt_want_write() before calling this.
1864 */
1865int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1866{
1867        if (inode->i_op->update_time)
1868                return inode->i_op->update_time(inode, time, flags);
1869        return generic_update_time(inode, time, flags);
1870}
1871EXPORT_SYMBOL(inode_update_time);
1872
1873/**
1874 *      atime_needs_update      -       update the access time
1875 *      @path: the &struct path to update
1876 *      @inode: inode to update
1877 *
1878 *      Update the accessed time on an inode and mark it for writeback.
1879 *      This function automatically handles read only file systems and media,
1880 *      as well as the "noatime" flag and inode specific "noatime" markers.
1881 */
1882bool atime_needs_update(const struct path *path, struct inode *inode)
1883{
1884        struct vfsmount *mnt = path->mnt;
1885        struct timespec64 now;
1886
1887        if (inode->i_flags & S_NOATIME)
1888                return false;
1889
1890        /* Atime updates will likely cause i_uid and i_gid to be written
1891         * back improprely if their true value is unknown to the vfs.
1892         */
1893        if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1894                return false;
1895
1896        if (IS_NOATIME(inode))
1897                return false;
1898        if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1899                return false;
1900
1901        if (mnt->mnt_flags & MNT_NOATIME)
1902                return false;
1903        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1904                return false;
1905
1906        now = current_time(inode);
1907
1908        if (!relatime_need_update(mnt, inode, now))
1909                return false;
1910
1911        if (timespec64_equal(&inode->i_atime, &now))
1912                return false;
1913
1914        return true;
1915}
1916
1917void touch_atime(const struct path *path)
1918{
1919        struct vfsmount *mnt = path->mnt;
1920        struct inode *inode = d_inode(path->dentry);
1921        struct timespec64 now;
1922
1923        if (!atime_needs_update(path, inode))
1924                return;
1925
1926        if (!sb_start_write_trylock(inode->i_sb))
1927                return;
1928
1929        if (__mnt_want_write(mnt) != 0)
1930                goto skip_update;
1931        /*
1932         * File systems can error out when updating inodes if they need to
1933         * allocate new space to modify an inode (such is the case for
1934         * Btrfs), but since we touch atime while walking down the path we
1935         * really don't care if we failed to update the atime of the file,
1936         * so just ignore the return value.
1937         * We may also fail on filesystems that have the ability to make parts
1938         * of the fs read only, e.g. subvolumes in Btrfs.
1939         */
1940        now = current_time(inode);
1941        inode_update_time(inode, &now, S_ATIME);
1942        __mnt_drop_write(mnt);
1943skip_update:
1944        sb_end_write(inode->i_sb);
1945}
1946EXPORT_SYMBOL(touch_atime);
1947
1948/*
1949 * The logic we want is
1950 *
1951 *      if suid or (sgid and xgrp)
1952 *              remove privs
1953 */
1954int should_remove_suid(struct dentry *dentry)
1955{
1956        umode_t mode = d_inode(dentry)->i_mode;
1957        int kill = 0;
1958
1959        /* suid always must be killed */
1960        if (unlikely(mode & S_ISUID))
1961                kill = ATTR_KILL_SUID;
1962
1963        /*
1964         * sgid without any exec bits is just a mandatory locking mark; leave
1965         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1966         */
1967        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1968                kill |= ATTR_KILL_SGID;
1969
1970        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1971                return kill;
1972
1973        return 0;
1974}
1975EXPORT_SYMBOL(should_remove_suid);
1976
1977/*
1978 * Return mask of changes for notify_change() that need to be done as a
1979 * response to write or truncate. Return 0 if nothing has to be changed.
1980 * Negative value on error (change should be denied).
1981 */
1982int dentry_needs_remove_privs(struct dentry *dentry)
1983{
1984        struct inode *inode = d_inode(dentry);
1985        int mask = 0;
1986        int ret;
1987
1988        if (IS_NOSEC(inode))
1989                return 0;
1990
1991        mask = should_remove_suid(dentry);
1992        ret = security_inode_need_killpriv(dentry);
1993        if (ret < 0)
1994                return ret;
1995        if (ret)
1996                mask |= ATTR_KILL_PRIV;
1997        return mask;
1998}
1999
2000static int __remove_privs(struct user_namespace *mnt_userns,
2001                          struct dentry *dentry, int kill)
2002{
2003        struct iattr newattrs;
2004
2005        newattrs.ia_valid = ATTR_FORCE | kill;
2006        /*
2007         * Note we call this on write, so notify_change will not
2008         * encounter any conflicting delegations:
2009         */
2010        return notify_change(mnt_userns, dentry, &newattrs, NULL);
2011}
2012
2013/*
2014 * Remove special file priviledges (suid, capabilities) when file is written
2015 * to or truncated.
2016 */
2017int file_remove_privs(struct file *file)
2018{
2019        struct dentry *dentry = file_dentry(file);
2020        struct inode *inode = file_inode(file);
2021        int kill;
2022        int error = 0;
2023
2024        /*
2025         * Fast path for nothing security related.
2026         * As well for non-regular files, e.g. blkdev inodes.
2027         * For example, blkdev_write_iter() might get here
2028         * trying to remove privs which it is not allowed to.
2029         */
2030        if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2031                return 0;
2032
2033        kill = dentry_needs_remove_privs(dentry);
2034        if (kill < 0)
2035                return kill;
2036        if (kill)
2037                error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2038        if (!error)
2039                inode_has_no_xattr(inode);
2040
2041        return error;
2042}
2043EXPORT_SYMBOL(file_remove_privs);
2044
2045/**
2046 *      file_update_time        -       update mtime and ctime time
2047 *      @file: file accessed
2048 *
2049 *      Update the mtime and ctime members of an inode and mark the inode
2050 *      for writeback.  Note that this function is meant exclusively for
2051 *      usage in the file write path of filesystems, and filesystems may
2052 *      choose to explicitly ignore update via this function with the
2053 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
2054 *      timestamps are handled by the server.  This can return an error for
2055 *      file systems who need to allocate space in order to update an inode.
2056 */
2057
2058int file_update_time(struct file *file)
2059{
2060        struct inode *inode = file_inode(file);
2061        struct timespec64 now;
2062        int sync_it = 0;
2063        int ret;
2064
2065        /* First try to exhaust all avenues to not sync */
2066        if (IS_NOCMTIME(inode))
2067                return 0;
2068
2069        now = current_time(inode);
2070        if (!timespec64_equal(&inode->i_mtime, &now))
2071                sync_it = S_MTIME;
2072
2073        if (!timespec64_equal(&inode->i_ctime, &now))
2074                sync_it |= S_CTIME;
2075
2076        if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2077                sync_it |= S_VERSION;
2078
2079        if (!sync_it)
2080                return 0;
2081
2082        /* Finally allowed to write? Takes lock. */
2083        if (__mnt_want_write_file(file))
2084                return 0;
2085
2086        ret = inode_update_time(inode, &now, sync_it);
2087        __mnt_drop_write_file(file);
2088
2089        return ret;
2090}
2091EXPORT_SYMBOL(file_update_time);
2092
2093/* Caller must hold the file's inode lock */
2094int file_modified(struct file *file)
2095{
2096        int err;
2097
2098        /*
2099         * Clear the security bits if the process is not being run by root.
2100         * This keeps people from modifying setuid and setgid binaries.
2101         */
2102        err = file_remove_privs(file);
2103        if (err)
2104                return err;
2105
2106        if (unlikely(file->f_mode & FMODE_NOCMTIME))
2107                return 0;
2108
2109        return file_update_time(file);
2110}
2111EXPORT_SYMBOL(file_modified);
2112
2113int inode_needs_sync(struct inode *inode)
2114{
2115        if (IS_SYNC(inode))
2116                return 1;
2117        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2118                return 1;
2119        return 0;
2120}
2121EXPORT_SYMBOL(inode_needs_sync);
2122
2123/*
2124 * If we try to find an inode in the inode hash while it is being
2125 * deleted, we have to wait until the filesystem completes its
2126 * deletion before reporting that it isn't found.  This function waits
2127 * until the deletion _might_ have completed.  Callers are responsible
2128 * to recheck inode state.
2129 *
2130 * It doesn't matter if I_NEW is not set initially, a call to
2131 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2132 * will DTRT.
2133 */
2134static void __wait_on_freeing_inode(struct inode *inode)
2135{
2136        wait_queue_head_t *wq;
2137        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2138        wq = bit_waitqueue(&inode->i_state, __I_NEW);
2139        prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2140        spin_unlock(&inode->i_lock);
2141        spin_unlock(&inode_hash_lock);
2142        schedule();
2143        finish_wait(wq, &wait.wq_entry);
2144        spin_lock(&inode_hash_lock);
2145}
2146
2147static __initdata unsigned long ihash_entries;
2148static int __init set_ihash_entries(char *str)
2149{
2150        if (!str)
2151                return 0;
2152        ihash_entries = simple_strtoul(str, &str, 0);
2153        return 1;
2154}
2155__setup("ihash_entries=", set_ihash_entries);
2156
2157/*
2158 * Initialize the waitqueues and inode hash table.
2159 */
2160void __init inode_init_early(void)
2161{
2162        /* If hashes are distributed across NUMA nodes, defer
2163         * hash allocation until vmalloc space is available.
2164         */
2165        if (hashdist)
2166                return;
2167
2168        inode_hashtable =
2169                alloc_large_system_hash("Inode-cache",
2170                                        sizeof(struct hlist_head),
2171                                        ihash_entries,
2172                                        14,
2173                                        HASH_EARLY | HASH_ZERO,
2174                                        &i_hash_shift,
2175                                        &i_hash_mask,
2176                                        0,
2177                                        0);
2178}
2179
2180void __init inode_init(void)
2181{
2182        /* inode slab cache */
2183        inode_cachep = kmem_cache_create("inode_cache",
2184                                         sizeof(struct inode),
2185                                         0,
2186                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2187                                         SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2188                                         init_once);
2189
2190        /* Hash may have been set up in inode_init_early */
2191        if (!hashdist)
2192                return;
2193
2194        inode_hashtable =
2195                alloc_large_system_hash("Inode-cache",
2196                                        sizeof(struct hlist_head),
2197                                        ihash_entries,
2198                                        14,
2199                                        HASH_ZERO,
2200                                        &i_hash_shift,
2201                                        &i_hash_mask,
2202                                        0,
2203                                        0);
2204}
2205
2206void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2207{
2208        inode->i_mode = mode;
2209        if (S_ISCHR(mode)) {
2210                inode->i_fop = &def_chr_fops;
2211                inode->i_rdev = rdev;
2212        } else if (S_ISBLK(mode)) {
2213                inode->i_fop = &def_blk_fops;
2214                inode->i_rdev = rdev;
2215        } else if (S_ISFIFO(mode))
2216                inode->i_fop = &pipefifo_fops;
2217        else if (S_ISSOCK(mode))
2218                ;       /* leave it no_open_fops */
2219        else
2220                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2221                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2222                                  inode->i_ino);
2223}
2224EXPORT_SYMBOL(init_special_inode);
2225
2226/**
2227 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2228 * @mnt_userns: User namespace of the mount the inode was created from
2229 * @inode: New inode
2230 * @dir: Directory inode
2231 * @mode: mode of the new inode
2232 *
2233 * If the inode has been created through an idmapped mount the user namespace of
2234 * the vfsmount must be passed through @mnt_userns. This function will then take
2235 * care to map the inode according to @mnt_userns before checking permissions
2236 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2237 * checking is to be performed on the raw inode simply passs init_user_ns.
2238 */
2239void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2240                      const struct inode *dir, umode_t mode)
2241{
2242        inode_fsuid_set(inode, mnt_userns);
2243        if (dir && dir->i_mode & S_ISGID) {
2244                inode->i_gid = dir->i_gid;
2245
2246                /* Directories are special, and always inherit S_ISGID */
2247                if (S_ISDIR(mode))
2248                        mode |= S_ISGID;
2249                else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2250                         !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2251                         !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2252                        mode &= ~S_ISGID;
2253        } else
2254                inode_fsgid_set(inode, mnt_userns);
2255        inode->i_mode = mode;
2256}
2257EXPORT_SYMBOL(inode_init_owner);
2258
2259/**
2260 * inode_owner_or_capable - check current task permissions to inode
2261 * @mnt_userns: user namespace of the mount the inode was found from
2262 * @inode: inode being checked
2263 *
2264 * Return true if current either has CAP_FOWNER in a namespace with the
2265 * inode owner uid mapped, or owns the file.
2266 *
2267 * If the inode has been found through an idmapped mount the user namespace of
2268 * the vfsmount must be passed through @mnt_userns. This function will then take
2269 * care to map the inode according to @mnt_userns before checking permissions.
2270 * On non-idmapped mounts or if permission checking is to be performed on the
2271 * raw inode simply passs init_user_ns.
2272 */
2273bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2274                            const struct inode *inode)
2275{
2276        kuid_t i_uid;
2277        struct user_namespace *ns;
2278
2279        i_uid = i_uid_into_mnt(mnt_userns, inode);
2280        if (uid_eq(current_fsuid(), i_uid))
2281                return true;
2282
2283        ns = current_user_ns();
2284        if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2285                return true;
2286        return false;
2287}
2288EXPORT_SYMBOL(inode_owner_or_capable);
2289
2290/*
2291 * Direct i/o helper functions
2292 */
2293static void __inode_dio_wait(struct inode *inode)
2294{
2295        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2296        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2297
2298        do {
2299                prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2300                if (atomic_read(&inode->i_dio_count))
2301                        schedule();
2302        } while (atomic_read(&inode->i_dio_count));
2303        finish_wait(wq, &q.wq_entry);
2304}
2305
2306/**
2307 * inode_dio_wait - wait for outstanding DIO requests to finish
2308 * @inode: inode to wait for
2309 *
2310 * Waits for all pending direct I/O requests to finish so that we can
2311 * proceed with a truncate or equivalent operation.
2312 *
2313 * Must be called under a lock that serializes taking new references
2314 * to i_dio_count, usually by inode->i_mutex.
2315 */
2316void inode_dio_wait(struct inode *inode)
2317{
2318        if (atomic_read(&inode->i_dio_count))
2319                __inode_dio_wait(inode);
2320}
2321EXPORT_SYMBOL(inode_dio_wait);
2322
2323/*
2324 * inode_set_flags - atomically set some inode flags
2325 *
2326 * Note: the caller should be holding i_mutex, or else be sure that
2327 * they have exclusive access to the inode structure (i.e., while the
2328 * inode is being instantiated).  The reason for the cmpxchg() loop
2329 * --- which wouldn't be necessary if all code paths which modify
2330 * i_flags actually followed this rule, is that there is at least one
2331 * code path which doesn't today so we use cmpxchg() out of an abundance
2332 * of caution.
2333 *
2334 * In the long run, i_mutex is overkill, and we should probably look
2335 * at using the i_lock spinlock to protect i_flags, and then make sure
2336 * it is so documented in include/linux/fs.h and that all code follows
2337 * the locking convention!!
2338 */
2339void inode_set_flags(struct inode *inode, unsigned int flags,
2340                     unsigned int mask)
2341{
2342        WARN_ON_ONCE(flags & ~mask);
2343        set_mask_bits(&inode->i_flags, mask, flags);
2344}
2345EXPORT_SYMBOL(inode_set_flags);
2346
2347void inode_nohighmem(struct inode *inode)
2348{
2349        mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2350}
2351EXPORT_SYMBOL(inode_nohighmem);
2352
2353/**
2354 * timestamp_truncate - Truncate timespec to a granularity
2355 * @t: Timespec
2356 * @inode: inode being updated
2357 *
2358 * Truncate a timespec to the granularity supported by the fs
2359 * containing the inode. Always rounds down. gran must
2360 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2361 */
2362struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2363{
2364        struct super_block *sb = inode->i_sb;
2365        unsigned int gran = sb->s_time_gran;
2366
2367        t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2368        if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2369                t.tv_nsec = 0;
2370
2371        /* Avoid division in the common cases 1 ns and 1 s. */
2372        if (gran == 1)
2373                ; /* nothing */
2374        else if (gran == NSEC_PER_SEC)
2375                t.tv_nsec = 0;
2376        else if (gran > 1 && gran < NSEC_PER_SEC)
2377                t.tv_nsec -= t.tv_nsec % gran;
2378        else
2379                WARN(1, "invalid file time granularity: %u", gran);
2380        return t;
2381}
2382EXPORT_SYMBOL(timestamp_truncate);
2383
2384/**
2385 * current_time - Return FS time
2386 * @inode: inode.
2387 *
2388 * Return the current time truncated to the time granularity supported by
2389 * the fs.
2390 *
2391 * Note that inode and inode->sb cannot be NULL.
2392 * Otherwise, the function warns and returns time without truncation.
2393 */
2394struct timespec64 current_time(struct inode *inode)
2395{
2396        struct timespec64 now;
2397
2398        ktime_get_coarse_real_ts64(&now);
2399
2400        if (unlikely(!inode->i_sb)) {
2401                WARN(1, "current_time() called with uninitialized super_block in the inode");
2402                return now;
2403        }
2404
2405        return timestamp_truncate(now, inode);
2406}
2407EXPORT_SYMBOL(current_time);
2408