linux/fs/jfs/jfs_dmap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *   Copyright (C) International Business Machines Corp., 2000-2004
   4 *   Portions Copyright (C) Tino Reichardt, 2012
   5 */
   6
   7#include <linux/fs.h>
   8#include <linux/slab.h>
   9#include "jfs_incore.h"
  10#include "jfs_superblock.h"
  11#include "jfs_dmap.h"
  12#include "jfs_imap.h"
  13#include "jfs_lock.h"
  14#include "jfs_metapage.h"
  15#include "jfs_debug.h"
  16#include "jfs_discard.h"
  17
  18/*
  19 *      SERIALIZATION of the Block Allocation Map.
  20 *
  21 *      the working state of the block allocation map is accessed in
  22 *      two directions:
  23 *
  24 *      1) allocation and free requests that start at the dmap
  25 *         level and move up through the dmap control pages (i.e.
  26 *         the vast majority of requests).
  27 *
  28 *      2) allocation requests that start at dmap control page
  29 *         level and work down towards the dmaps.
  30 *
  31 *      the serialization scheme used here is as follows.
  32 *
  33 *      requests which start at the bottom are serialized against each
  34 *      other through buffers and each requests holds onto its buffers
  35 *      as it works it way up from a single dmap to the required level
  36 *      of dmap control page.
  37 *      requests that start at the top are serialized against each other
  38 *      and request that start from the bottom by the multiple read/single
  39 *      write inode lock of the bmap inode. requests starting at the top
  40 *      take this lock in write mode while request starting at the bottom
  41 *      take the lock in read mode.  a single top-down request may proceed
  42 *      exclusively while multiple bottoms-up requests may proceed
  43 *      simultaneously (under the protection of busy buffers).
  44 *
  45 *      in addition to information found in dmaps and dmap control pages,
  46 *      the working state of the block allocation map also includes read/
  47 *      write information maintained in the bmap descriptor (i.e. total
  48 *      free block count, allocation group level free block counts).
  49 *      a single exclusive lock (BMAP_LOCK) is used to guard this information
  50 *      in the face of multiple-bottoms up requests.
  51 *      (lock ordering: IREAD_LOCK, BMAP_LOCK);
  52 *
  53 *      accesses to the persistent state of the block allocation map (limited
  54 *      to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
  55 */
  56
  57#define BMAP_LOCK_INIT(bmp)     mutex_init(&bmp->db_bmaplock)
  58#define BMAP_LOCK(bmp)          mutex_lock(&bmp->db_bmaplock)
  59#define BMAP_UNLOCK(bmp)        mutex_unlock(&bmp->db_bmaplock)
  60
  61/*
  62 * forward references
  63 */
  64static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
  65                        int nblocks);
  66static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
  67static int dbBackSplit(dmtree_t * tp, int leafno);
  68static int dbJoin(dmtree_t * tp, int leafno, int newval);
  69static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
  70static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
  71                    int level);
  72static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
  73static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
  74                       int nblocks);
  75static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
  76                       int nblocks,
  77                       int l2nb, s64 * results);
  78static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
  79                       int nblocks);
  80static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
  81                          int l2nb,
  82                          s64 * results);
  83static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
  84                     s64 * results);
  85static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
  86                      s64 * results);
  87static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
  88static int dbFindBits(u32 word, int l2nb);
  89static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
  90static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
  91static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
  92                      int nblocks);
  93static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
  94                      int nblocks);
  95static int dbMaxBud(u8 * cp);
  96static int blkstol2(s64 nb);
  97
  98static int cntlz(u32 value);
  99static int cnttz(u32 word);
 100
 101static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
 102                         int nblocks);
 103static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
 104static int dbInitDmapTree(struct dmap * dp);
 105static int dbInitTree(struct dmaptree * dtp);
 106static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
 107static int dbGetL2AGSize(s64 nblocks);
 108
 109/*
 110 *      buddy table
 111 *
 112 * table used for determining buddy sizes within characters of
 113 * dmap bitmap words.  the characters themselves serve as indexes
 114 * into the table, with the table elements yielding the maximum
 115 * binary buddy of free bits within the character.
 116 */
 117static const s8 budtab[256] = {
 118        3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 119        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 120        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 121        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 122        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 123        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 124        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 125        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 126        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 127        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 128        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 129        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 130        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 131        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 132        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 133        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
 134};
 135
 136/*
 137 * NAME:        dbMount()
 138 *
 139 * FUNCTION:    initializate the block allocation map.
 140 *
 141 *              memory is allocated for the in-core bmap descriptor and
 142 *              the in-core descriptor is initialized from disk.
 143 *
 144 * PARAMETERS:
 145 *      ipbmap  - pointer to in-core inode for the block map.
 146 *
 147 * RETURN VALUES:
 148 *      0       - success
 149 *      -ENOMEM - insufficient memory
 150 *      -EIO    - i/o error
 151 *      -EINVAL - wrong bmap data
 152 */
 153int dbMount(struct inode *ipbmap)
 154{
 155        struct bmap *bmp;
 156        struct dbmap_disk *dbmp_le;
 157        struct metapage *mp;
 158        int i;
 159
 160        /*
 161         * allocate/initialize the in-memory bmap descriptor
 162         */
 163        /* allocate memory for the in-memory bmap descriptor */
 164        bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
 165        if (bmp == NULL)
 166                return -ENOMEM;
 167
 168        /* read the on-disk bmap descriptor. */
 169        mp = read_metapage(ipbmap,
 170                           BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
 171                           PSIZE, 0);
 172        if (mp == NULL) {
 173                kfree(bmp);
 174                return -EIO;
 175        }
 176
 177        /* copy the on-disk bmap descriptor to its in-memory version. */
 178        dbmp_le = (struct dbmap_disk *) mp->data;
 179        bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
 180        bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
 181        bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
 182        bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
 183        if (!bmp->db_numag) {
 184                release_metapage(mp);
 185                kfree(bmp);
 186                return -EINVAL;
 187        }
 188
 189        bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
 190        bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
 191        bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
 192        bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
 193        bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
 194        bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
 195        bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
 196        bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
 197        for (i = 0; i < MAXAG; i++)
 198                bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
 199        bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
 200        bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
 201
 202        /* release the buffer. */
 203        release_metapage(mp);
 204
 205        /* bind the bmap inode and the bmap descriptor to each other. */
 206        bmp->db_ipbmap = ipbmap;
 207        JFS_SBI(ipbmap->i_sb)->bmap = bmp;
 208
 209        memset(bmp->db_active, 0, sizeof(bmp->db_active));
 210
 211        /*
 212         * allocate/initialize the bmap lock
 213         */
 214        BMAP_LOCK_INIT(bmp);
 215
 216        return (0);
 217}
 218
 219
 220/*
 221 * NAME:        dbUnmount()
 222 *
 223 * FUNCTION:    terminate the block allocation map in preparation for
 224 *              file system unmount.
 225 *
 226 *              the in-core bmap descriptor is written to disk and
 227 *              the memory for this descriptor is freed.
 228 *
 229 * PARAMETERS:
 230 *      ipbmap  - pointer to in-core inode for the block map.
 231 *
 232 * RETURN VALUES:
 233 *      0       - success
 234 *      -EIO    - i/o error
 235 */
 236int dbUnmount(struct inode *ipbmap, int mounterror)
 237{
 238        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 239
 240        if (!(mounterror || isReadOnly(ipbmap)))
 241                dbSync(ipbmap);
 242
 243        /*
 244         * Invalidate the page cache buffers
 245         */
 246        truncate_inode_pages(ipbmap->i_mapping, 0);
 247
 248        /* free the memory for the in-memory bmap. */
 249        kfree(bmp);
 250
 251        return (0);
 252}
 253
 254/*
 255 *      dbSync()
 256 */
 257int dbSync(struct inode *ipbmap)
 258{
 259        struct dbmap_disk *dbmp_le;
 260        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 261        struct metapage *mp;
 262        int i;
 263
 264        /*
 265         * write bmap global control page
 266         */
 267        /* get the buffer for the on-disk bmap descriptor. */
 268        mp = read_metapage(ipbmap,
 269                           BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
 270                           PSIZE, 0);
 271        if (mp == NULL) {
 272                jfs_err("dbSync: read_metapage failed!");
 273                return -EIO;
 274        }
 275        /* copy the in-memory version of the bmap to the on-disk version */
 276        dbmp_le = (struct dbmap_disk *) mp->data;
 277        dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
 278        dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
 279        dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
 280        dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
 281        dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
 282        dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
 283        dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
 284        dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
 285        dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
 286        dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
 287        dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
 288        dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
 289        for (i = 0; i < MAXAG; i++)
 290                dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
 291        dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
 292        dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
 293
 294        /* write the buffer */
 295        write_metapage(mp);
 296
 297        /*
 298         * write out dirty pages of bmap
 299         */
 300        filemap_write_and_wait(ipbmap->i_mapping);
 301
 302        diWriteSpecial(ipbmap, 0);
 303
 304        return (0);
 305}
 306
 307/*
 308 * NAME:        dbFree()
 309 *
 310 * FUNCTION:    free the specified block range from the working block
 311 *              allocation map.
 312 *
 313 *              the blocks will be free from the working map one dmap
 314 *              at a time.
 315 *
 316 * PARAMETERS:
 317 *      ip      - pointer to in-core inode;
 318 *      blkno   - starting block number to be freed.
 319 *      nblocks - number of blocks to be freed.
 320 *
 321 * RETURN VALUES:
 322 *      0       - success
 323 *      -EIO    - i/o error
 324 */
 325int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
 326{
 327        struct metapage *mp;
 328        struct dmap *dp;
 329        int nb, rc;
 330        s64 lblkno, rem;
 331        struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 332        struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
 333        struct super_block *sb = ipbmap->i_sb;
 334
 335        IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 336
 337        /* block to be freed better be within the mapsize. */
 338        if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
 339                IREAD_UNLOCK(ipbmap);
 340                printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
 341                       (unsigned long long) blkno,
 342                       (unsigned long long) nblocks);
 343                jfs_error(ip->i_sb, "block to be freed is outside the map\n");
 344                return -EIO;
 345        }
 346
 347        /**
 348         * TRIM the blocks, when mounted with discard option
 349         */
 350        if (JFS_SBI(sb)->flag & JFS_DISCARD)
 351                if (JFS_SBI(sb)->minblks_trim <= nblocks)
 352                        jfs_issue_discard(ipbmap, blkno, nblocks);
 353
 354        /*
 355         * free the blocks a dmap at a time.
 356         */
 357        mp = NULL;
 358        for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
 359                /* release previous dmap if any */
 360                if (mp) {
 361                        write_metapage(mp);
 362                }
 363
 364                /* get the buffer for the current dmap. */
 365                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 366                mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 367                if (mp == NULL) {
 368                        IREAD_UNLOCK(ipbmap);
 369                        return -EIO;
 370                }
 371                dp = (struct dmap *) mp->data;
 372
 373                /* determine the number of blocks to be freed from
 374                 * this dmap.
 375                 */
 376                nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
 377
 378                /* free the blocks. */
 379                if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
 380                        jfs_error(ip->i_sb, "error in block map\n");
 381                        release_metapage(mp);
 382                        IREAD_UNLOCK(ipbmap);
 383                        return (rc);
 384                }
 385        }
 386
 387        /* write the last buffer. */
 388        if (mp)
 389                write_metapage(mp);
 390
 391        IREAD_UNLOCK(ipbmap);
 392
 393        return (0);
 394}
 395
 396
 397/*
 398 * NAME:        dbUpdatePMap()
 399 *
 400 * FUNCTION:    update the allocation state (free or allocate) of the
 401 *              specified block range in the persistent block allocation map.
 402 *
 403 *              the blocks will be updated in the persistent map one
 404 *              dmap at a time.
 405 *
 406 * PARAMETERS:
 407 *      ipbmap  - pointer to in-core inode for the block map.
 408 *      free    - 'true' if block range is to be freed from the persistent
 409 *                map; 'false' if it is to be allocated.
 410 *      blkno   - starting block number of the range.
 411 *      nblocks - number of contiguous blocks in the range.
 412 *      tblk    - transaction block;
 413 *
 414 * RETURN VALUES:
 415 *      0       - success
 416 *      -EIO    - i/o error
 417 */
 418int
 419dbUpdatePMap(struct inode *ipbmap,
 420             int free, s64 blkno, s64 nblocks, struct tblock * tblk)
 421{
 422        int nblks, dbitno, wbitno, rbits;
 423        int word, nbits, nwords;
 424        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 425        s64 lblkno, rem, lastlblkno;
 426        u32 mask;
 427        struct dmap *dp;
 428        struct metapage *mp;
 429        struct jfs_log *log;
 430        int lsn, difft, diffp;
 431        unsigned long flags;
 432
 433        /* the blocks better be within the mapsize. */
 434        if (blkno + nblocks > bmp->db_mapsize) {
 435                printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
 436                       (unsigned long long) blkno,
 437                       (unsigned long long) nblocks);
 438                jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
 439                return -EIO;
 440        }
 441
 442        /* compute delta of transaction lsn from log syncpt */
 443        lsn = tblk->lsn;
 444        log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
 445        logdiff(difft, lsn, log);
 446
 447        /*
 448         * update the block state a dmap at a time.
 449         */
 450        mp = NULL;
 451        lastlblkno = 0;
 452        for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
 453                /* get the buffer for the current dmap. */
 454                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 455                if (lblkno != lastlblkno) {
 456                        if (mp) {
 457                                write_metapage(mp);
 458                        }
 459
 460                        mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
 461                                           0);
 462                        if (mp == NULL)
 463                                return -EIO;
 464                        metapage_wait_for_io(mp);
 465                }
 466                dp = (struct dmap *) mp->data;
 467
 468                /* determine the bit number and word within the dmap of
 469                 * the starting block.  also determine how many blocks
 470                 * are to be updated within this dmap.
 471                 */
 472                dbitno = blkno & (BPERDMAP - 1);
 473                word = dbitno >> L2DBWORD;
 474                nblks = min(rem, (s64)BPERDMAP - dbitno);
 475
 476                /* update the bits of the dmap words. the first and last
 477                 * words may only have a subset of their bits updated. if
 478                 * this is the case, we'll work against that word (i.e.
 479                 * partial first and/or last) only in a single pass.  a
 480                 * single pass will also be used to update all words that
 481                 * are to have all their bits updated.
 482                 */
 483                for (rbits = nblks; rbits > 0;
 484                     rbits -= nbits, dbitno += nbits) {
 485                        /* determine the bit number within the word and
 486                         * the number of bits within the word.
 487                         */
 488                        wbitno = dbitno & (DBWORD - 1);
 489                        nbits = min(rbits, DBWORD - wbitno);
 490
 491                        /* check if only part of the word is to be updated. */
 492                        if (nbits < DBWORD) {
 493                                /* update (free or allocate) the bits
 494                                 * in this word.
 495                                 */
 496                                mask =
 497                                    (ONES << (DBWORD - nbits) >> wbitno);
 498                                if (free)
 499                                        dp->pmap[word] &=
 500                                            cpu_to_le32(~mask);
 501                                else
 502                                        dp->pmap[word] |=
 503                                            cpu_to_le32(mask);
 504
 505                                word += 1;
 506                        } else {
 507                                /* one or more words are to have all
 508                                 * their bits updated.  determine how
 509                                 * many words and how many bits.
 510                                 */
 511                                nwords = rbits >> L2DBWORD;
 512                                nbits = nwords << L2DBWORD;
 513
 514                                /* update (free or allocate) the bits
 515                                 * in these words.
 516                                 */
 517                                if (free)
 518                                        memset(&dp->pmap[word], 0,
 519                                               nwords * 4);
 520                                else
 521                                        memset(&dp->pmap[word], (int) ONES,
 522                                               nwords * 4);
 523
 524                                word += nwords;
 525                        }
 526                }
 527
 528                /*
 529                 * update dmap lsn
 530                 */
 531                if (lblkno == lastlblkno)
 532                        continue;
 533
 534                lastlblkno = lblkno;
 535
 536                LOGSYNC_LOCK(log, flags);
 537                if (mp->lsn != 0) {
 538                        /* inherit older/smaller lsn */
 539                        logdiff(diffp, mp->lsn, log);
 540                        if (difft < diffp) {
 541                                mp->lsn = lsn;
 542
 543                                /* move bp after tblock in logsync list */
 544                                list_move(&mp->synclist, &tblk->synclist);
 545                        }
 546
 547                        /* inherit younger/larger clsn */
 548                        logdiff(difft, tblk->clsn, log);
 549                        logdiff(diffp, mp->clsn, log);
 550                        if (difft > diffp)
 551                                mp->clsn = tblk->clsn;
 552                } else {
 553                        mp->log = log;
 554                        mp->lsn = lsn;
 555
 556                        /* insert bp after tblock in logsync list */
 557                        log->count++;
 558                        list_add(&mp->synclist, &tblk->synclist);
 559
 560                        mp->clsn = tblk->clsn;
 561                }
 562                LOGSYNC_UNLOCK(log, flags);
 563        }
 564
 565        /* write the last buffer. */
 566        if (mp) {
 567                write_metapage(mp);
 568        }
 569
 570        return (0);
 571}
 572
 573
 574/*
 575 * NAME:        dbNextAG()
 576 *
 577 * FUNCTION:    find the preferred allocation group for new allocations.
 578 *
 579 *              Within the allocation groups, we maintain a preferred
 580 *              allocation group which consists of a group with at least
 581 *              average free space.  It is the preferred group that we target
 582 *              new inode allocation towards.  The tie-in between inode
 583 *              allocation and block allocation occurs as we allocate the
 584 *              first (data) block of an inode and specify the inode (block)
 585 *              as the allocation hint for this block.
 586 *
 587 *              We try to avoid having more than one open file growing in
 588 *              an allocation group, as this will lead to fragmentation.
 589 *              This differs from the old OS/2 method of trying to keep
 590 *              empty ags around for large allocations.
 591 *
 592 * PARAMETERS:
 593 *      ipbmap  - pointer to in-core inode for the block map.
 594 *
 595 * RETURN VALUES:
 596 *      the preferred allocation group number.
 597 */
 598int dbNextAG(struct inode *ipbmap)
 599{
 600        s64 avgfree;
 601        int agpref;
 602        s64 hwm = 0;
 603        int i;
 604        int next_best = -1;
 605        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 606
 607        BMAP_LOCK(bmp);
 608
 609        /* determine the average number of free blocks within the ags. */
 610        avgfree = (u32)bmp->db_nfree / bmp->db_numag;
 611
 612        /*
 613         * if the current preferred ag does not have an active allocator
 614         * and has at least average freespace, return it
 615         */
 616        agpref = bmp->db_agpref;
 617        if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
 618            (bmp->db_agfree[agpref] >= avgfree))
 619                goto unlock;
 620
 621        /* From the last preferred ag, find the next one with at least
 622         * average free space.
 623         */
 624        for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
 625                if (agpref == bmp->db_numag)
 626                        agpref = 0;
 627
 628                if (atomic_read(&bmp->db_active[agpref]))
 629                        /* open file is currently growing in this ag */
 630                        continue;
 631                if (bmp->db_agfree[agpref] >= avgfree) {
 632                        /* Return this one */
 633                        bmp->db_agpref = agpref;
 634                        goto unlock;
 635                } else if (bmp->db_agfree[agpref] > hwm) {
 636                        /* Less than avg. freespace, but best so far */
 637                        hwm = bmp->db_agfree[agpref];
 638                        next_best = agpref;
 639                }
 640        }
 641
 642        /*
 643         * If no inactive ag was found with average freespace, use the
 644         * next best
 645         */
 646        if (next_best != -1)
 647                bmp->db_agpref = next_best;
 648        /* else leave db_agpref unchanged */
 649unlock:
 650        BMAP_UNLOCK(bmp);
 651
 652        /* return the preferred group.
 653         */
 654        return (bmp->db_agpref);
 655}
 656
 657/*
 658 * NAME:        dbAlloc()
 659 *
 660 * FUNCTION:    attempt to allocate a specified number of contiguous free
 661 *              blocks from the working allocation block map.
 662 *
 663 *              the block allocation policy uses hints and a multi-step
 664 *              approach.
 665 *
 666 *              for allocation requests smaller than the number of blocks
 667 *              per dmap, we first try to allocate the new blocks
 668 *              immediately following the hint.  if these blocks are not
 669 *              available, we try to allocate blocks near the hint.  if
 670 *              no blocks near the hint are available, we next try to
 671 *              allocate within the same dmap as contains the hint.
 672 *
 673 *              if no blocks are available in the dmap or the allocation
 674 *              request is larger than the dmap size, we try to allocate
 675 *              within the same allocation group as contains the hint. if
 676 *              this does not succeed, we finally try to allocate anywhere
 677 *              within the aggregate.
 678 *
 679 *              we also try to allocate anywhere within the aggregate
 680 *              for allocation requests larger than the allocation group
 681 *              size or requests that specify no hint value.
 682 *
 683 * PARAMETERS:
 684 *      ip      - pointer to in-core inode;
 685 *      hint    - allocation hint.
 686 *      nblocks - number of contiguous blocks in the range.
 687 *      results - on successful return, set to the starting block number
 688 *                of the newly allocated contiguous range.
 689 *
 690 * RETURN VALUES:
 691 *      0       - success
 692 *      -ENOSPC - insufficient disk resources
 693 *      -EIO    - i/o error
 694 */
 695int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
 696{
 697        int rc, agno;
 698        struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 699        struct bmap *bmp;
 700        struct metapage *mp;
 701        s64 lblkno, blkno;
 702        struct dmap *dp;
 703        int l2nb;
 704        s64 mapSize;
 705        int writers;
 706
 707        /* assert that nblocks is valid */
 708        assert(nblocks > 0);
 709
 710        /* get the log2 number of blocks to be allocated.
 711         * if the number of blocks is not a log2 multiple,
 712         * it will be rounded up to the next log2 multiple.
 713         */
 714        l2nb = BLKSTOL2(nblocks);
 715
 716        bmp = JFS_SBI(ip->i_sb)->bmap;
 717
 718        mapSize = bmp->db_mapsize;
 719
 720        /* the hint should be within the map */
 721        if (hint >= mapSize) {
 722                jfs_error(ip->i_sb, "the hint is outside the map\n");
 723                return -EIO;
 724        }
 725
 726        /* if the number of blocks to be allocated is greater than the
 727         * allocation group size, try to allocate anywhere.
 728         */
 729        if (l2nb > bmp->db_agl2size) {
 730                IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 731
 732                rc = dbAllocAny(bmp, nblocks, l2nb, results);
 733
 734                goto write_unlock;
 735        }
 736
 737        /*
 738         * If no hint, let dbNextAG recommend an allocation group
 739         */
 740        if (hint == 0)
 741                goto pref_ag;
 742
 743        /* we would like to allocate close to the hint.  adjust the
 744         * hint to the block following the hint since the allocators
 745         * will start looking for free space starting at this point.
 746         */
 747        blkno = hint + 1;
 748
 749        if (blkno >= bmp->db_mapsize)
 750                goto pref_ag;
 751
 752        agno = blkno >> bmp->db_agl2size;
 753
 754        /* check if blkno crosses over into a new allocation group.
 755         * if so, check if we should allow allocations within this
 756         * allocation group.
 757         */
 758        if ((blkno & (bmp->db_agsize - 1)) == 0)
 759                /* check if the AG is currently being written to.
 760                 * if so, call dbNextAG() to find a non-busy
 761                 * AG with sufficient free space.
 762                 */
 763                if (atomic_read(&bmp->db_active[agno]))
 764                        goto pref_ag;
 765
 766        /* check if the allocation request size can be satisfied from a
 767         * single dmap.  if so, try to allocate from the dmap containing
 768         * the hint using a tiered strategy.
 769         */
 770        if (nblocks <= BPERDMAP) {
 771                IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 772
 773                /* get the buffer for the dmap containing the hint.
 774                 */
 775                rc = -EIO;
 776                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 777                mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 778                if (mp == NULL)
 779                        goto read_unlock;
 780
 781                dp = (struct dmap *) mp->data;
 782
 783                /* first, try to satisfy the allocation request with the
 784                 * blocks beginning at the hint.
 785                 */
 786                if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
 787                    != -ENOSPC) {
 788                        if (rc == 0) {
 789                                *results = blkno;
 790                                mark_metapage_dirty(mp);
 791                        }
 792
 793                        release_metapage(mp);
 794                        goto read_unlock;
 795                }
 796
 797                writers = atomic_read(&bmp->db_active[agno]);
 798                if ((writers > 1) ||
 799                    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
 800                        /*
 801                         * Someone else is writing in this allocation
 802                         * group.  To avoid fragmenting, try another ag
 803                         */
 804                        release_metapage(mp);
 805                        IREAD_UNLOCK(ipbmap);
 806                        goto pref_ag;
 807                }
 808
 809                /* next, try to satisfy the allocation request with blocks
 810                 * near the hint.
 811                 */
 812                if ((rc =
 813                     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
 814                    != -ENOSPC) {
 815                        if (rc == 0)
 816                                mark_metapage_dirty(mp);
 817
 818                        release_metapage(mp);
 819                        goto read_unlock;
 820                }
 821
 822                /* try to satisfy the allocation request with blocks within
 823                 * the same dmap as the hint.
 824                 */
 825                if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
 826                    != -ENOSPC) {
 827                        if (rc == 0)
 828                                mark_metapage_dirty(mp);
 829
 830                        release_metapage(mp);
 831                        goto read_unlock;
 832                }
 833
 834                release_metapage(mp);
 835                IREAD_UNLOCK(ipbmap);
 836        }
 837
 838        /* try to satisfy the allocation request with blocks within
 839         * the same allocation group as the hint.
 840         */
 841        IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 842        if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
 843                goto write_unlock;
 844
 845        IWRITE_UNLOCK(ipbmap);
 846
 847
 848      pref_ag:
 849        /*
 850         * Let dbNextAG recommend a preferred allocation group
 851         */
 852        agno = dbNextAG(ipbmap);
 853        IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 854
 855        /* Try to allocate within this allocation group.  if that fails, try to
 856         * allocate anywhere in the map.
 857         */
 858        if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
 859                rc = dbAllocAny(bmp, nblocks, l2nb, results);
 860
 861      write_unlock:
 862        IWRITE_UNLOCK(ipbmap);
 863
 864        return (rc);
 865
 866      read_unlock:
 867        IREAD_UNLOCK(ipbmap);
 868
 869        return (rc);
 870}
 871
 872/*
 873 * NAME:        dbReAlloc()
 874 *
 875 * FUNCTION:    attempt to extend a current allocation by a specified
 876 *              number of blocks.
 877 *
 878 *              this routine attempts to satisfy the allocation request
 879 *              by first trying to extend the existing allocation in
 880 *              place by allocating the additional blocks as the blocks
 881 *              immediately following the current allocation.  if these
 882 *              blocks are not available, this routine will attempt to
 883 *              allocate a new set of contiguous blocks large enough
 884 *              to cover the existing allocation plus the additional
 885 *              number of blocks required.
 886 *
 887 * PARAMETERS:
 888 *      ip          -  pointer to in-core inode requiring allocation.
 889 *      blkno       -  starting block of the current allocation.
 890 *      nblocks     -  number of contiguous blocks within the current
 891 *                     allocation.
 892 *      addnblocks  -  number of blocks to add to the allocation.
 893 *      results -      on successful return, set to the starting block number
 894 *                     of the existing allocation if the existing allocation
 895 *                     was extended in place or to a newly allocated contiguous
 896 *                     range if the existing allocation could not be extended
 897 *                     in place.
 898 *
 899 * RETURN VALUES:
 900 *      0       - success
 901 *      -ENOSPC - insufficient disk resources
 902 *      -EIO    - i/o error
 903 */
 904int
 905dbReAlloc(struct inode *ip,
 906          s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
 907{
 908        int rc;
 909
 910        /* try to extend the allocation in place.
 911         */
 912        if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
 913                *results = blkno;
 914                return (0);
 915        } else {
 916                if (rc != -ENOSPC)
 917                        return (rc);
 918        }
 919
 920        /* could not extend the allocation in place, so allocate a
 921         * new set of blocks for the entire request (i.e. try to get
 922         * a range of contiguous blocks large enough to cover the
 923         * existing allocation plus the additional blocks.)
 924         */
 925        return (dbAlloc
 926                (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
 927}
 928
 929
 930/*
 931 * NAME:        dbExtend()
 932 *
 933 * FUNCTION:    attempt to extend a current allocation by a specified
 934 *              number of blocks.
 935 *
 936 *              this routine attempts to satisfy the allocation request
 937 *              by first trying to extend the existing allocation in
 938 *              place by allocating the additional blocks as the blocks
 939 *              immediately following the current allocation.
 940 *
 941 * PARAMETERS:
 942 *      ip          -  pointer to in-core inode requiring allocation.
 943 *      blkno       -  starting block of the current allocation.
 944 *      nblocks     -  number of contiguous blocks within the current
 945 *                     allocation.
 946 *      addnblocks  -  number of blocks to add to the allocation.
 947 *
 948 * RETURN VALUES:
 949 *      0       - success
 950 *      -ENOSPC - insufficient disk resources
 951 *      -EIO    - i/o error
 952 */
 953static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
 954{
 955        struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
 956        s64 lblkno, lastblkno, extblkno;
 957        uint rel_block;
 958        struct metapage *mp;
 959        struct dmap *dp;
 960        int rc;
 961        struct inode *ipbmap = sbi->ipbmap;
 962        struct bmap *bmp;
 963
 964        /*
 965         * We don't want a non-aligned extent to cross a page boundary
 966         */
 967        if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
 968            (rel_block + nblocks + addnblocks > sbi->nbperpage))
 969                return -ENOSPC;
 970
 971        /* get the last block of the current allocation */
 972        lastblkno = blkno + nblocks - 1;
 973
 974        /* determine the block number of the block following
 975         * the existing allocation.
 976         */
 977        extblkno = lastblkno + 1;
 978
 979        IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 980
 981        /* better be within the file system */
 982        bmp = sbi->bmap;
 983        if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
 984                IREAD_UNLOCK(ipbmap);
 985                jfs_error(ip->i_sb, "the block is outside the filesystem\n");
 986                return -EIO;
 987        }
 988
 989        /* we'll attempt to extend the current allocation in place by
 990         * allocating the additional blocks as the blocks immediately
 991         * following the current allocation.  we only try to extend the
 992         * current allocation in place if the number of additional blocks
 993         * can fit into a dmap, the last block of the current allocation
 994         * is not the last block of the file system, and the start of the
 995         * inplace extension is not on an allocation group boundary.
 996         */
 997        if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
 998            (extblkno & (bmp->db_agsize - 1)) == 0) {
 999                IREAD_UNLOCK(ipbmap);
1000                return -ENOSPC;
1001        }
1002
1003        /* get the buffer for the dmap containing the first block
1004         * of the extension.
1005         */
1006        lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1007        mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1008        if (mp == NULL) {
1009                IREAD_UNLOCK(ipbmap);
1010                return -EIO;
1011        }
1012
1013        dp = (struct dmap *) mp->data;
1014
1015        /* try to allocate the blocks immediately following the
1016         * current allocation.
1017         */
1018        rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1019
1020        IREAD_UNLOCK(ipbmap);
1021
1022        /* were we successful ? */
1023        if (rc == 0)
1024                write_metapage(mp);
1025        else
1026                /* we were not successful */
1027                release_metapage(mp);
1028
1029        return (rc);
1030}
1031
1032
1033/*
1034 * NAME:        dbAllocNext()
1035 *
1036 * FUNCTION:    attempt to allocate the blocks of the specified block
1037 *              range within a dmap.
1038 *
1039 * PARAMETERS:
1040 *      bmp     -  pointer to bmap descriptor
1041 *      dp      -  pointer to dmap.
1042 *      blkno   -  starting block number of the range.
1043 *      nblocks -  number of contiguous free blocks of the range.
1044 *
1045 * RETURN VALUES:
1046 *      0       - success
1047 *      -ENOSPC - insufficient disk resources
1048 *      -EIO    - i/o error
1049 *
1050 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1051 */
1052static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1053                       int nblocks)
1054{
1055        int dbitno, word, rembits, nb, nwords, wbitno, nw;
1056        int l2size;
1057        s8 *leaf;
1058        u32 mask;
1059
1060        if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1061                jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1062                return -EIO;
1063        }
1064
1065        /* pick up a pointer to the leaves of the dmap tree.
1066         */
1067        leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1068
1069        /* determine the bit number and word within the dmap of the
1070         * starting block.
1071         */
1072        dbitno = blkno & (BPERDMAP - 1);
1073        word = dbitno >> L2DBWORD;
1074
1075        /* check if the specified block range is contained within
1076         * this dmap.
1077         */
1078        if (dbitno + nblocks > BPERDMAP)
1079                return -ENOSPC;
1080
1081        /* check if the starting leaf indicates that anything
1082         * is free.
1083         */
1084        if (leaf[word] == NOFREE)
1085                return -ENOSPC;
1086
1087        /* check the dmaps words corresponding to block range to see
1088         * if the block range is free.  not all bits of the first and
1089         * last words may be contained within the block range.  if this
1090         * is the case, we'll work against those words (i.e. partial first
1091         * and/or last) on an individual basis (a single pass) and examine
1092         * the actual bits to determine if they are free.  a single pass
1093         * will be used for all dmap words fully contained within the
1094         * specified range.  within this pass, the leaves of the dmap
1095         * tree will be examined to determine if the blocks are free. a
1096         * single leaf may describe the free space of multiple dmap
1097         * words, so we may visit only a subset of the actual leaves
1098         * corresponding to the dmap words of the block range.
1099         */
1100        for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1101                /* determine the bit number within the word and
1102                 * the number of bits within the word.
1103                 */
1104                wbitno = dbitno & (DBWORD - 1);
1105                nb = min(rembits, DBWORD - wbitno);
1106
1107                /* check if only part of the word is to be examined.
1108                 */
1109                if (nb < DBWORD) {
1110                        /* check if the bits are free.
1111                         */
1112                        mask = (ONES << (DBWORD - nb) >> wbitno);
1113                        if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1114                                return -ENOSPC;
1115
1116                        word += 1;
1117                } else {
1118                        /* one or more dmap words are fully contained
1119                         * within the block range.  determine how many
1120                         * words and how many bits.
1121                         */
1122                        nwords = rembits >> L2DBWORD;
1123                        nb = nwords << L2DBWORD;
1124
1125                        /* now examine the appropriate leaves to determine
1126                         * if the blocks are free.
1127                         */
1128                        while (nwords > 0) {
1129                                /* does the leaf describe any free space ?
1130                                 */
1131                                if (leaf[word] < BUDMIN)
1132                                        return -ENOSPC;
1133
1134                                /* determine the l2 number of bits provided
1135                                 * by this leaf.
1136                                 */
1137                                l2size =
1138                                    min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1139
1140                                /* determine how many words were handled.
1141                                 */
1142                                nw = BUDSIZE(l2size, BUDMIN);
1143
1144                                nwords -= nw;
1145                                word += nw;
1146                        }
1147                }
1148        }
1149
1150        /* allocate the blocks.
1151         */
1152        return (dbAllocDmap(bmp, dp, blkno, nblocks));
1153}
1154
1155
1156/*
1157 * NAME:        dbAllocNear()
1158 *
1159 * FUNCTION:    attempt to allocate a number of contiguous free blocks near
1160 *              a specified block (hint) within a dmap.
1161 *
1162 *              starting with the dmap leaf that covers the hint, we'll
1163 *              check the next four contiguous leaves for sufficient free
1164 *              space.  if sufficient free space is found, we'll allocate
1165 *              the desired free space.
1166 *
1167 * PARAMETERS:
1168 *      bmp     -  pointer to bmap descriptor
1169 *      dp      -  pointer to dmap.
1170 *      blkno   -  block number to allocate near.
1171 *      nblocks -  actual number of contiguous free blocks desired.
1172 *      l2nb    -  log2 number of contiguous free blocks desired.
1173 *      results -  on successful return, set to the starting block number
1174 *                 of the newly allocated range.
1175 *
1176 * RETURN VALUES:
1177 *      0       - success
1178 *      -ENOSPC - insufficient disk resources
1179 *      -EIO    - i/o error
1180 *
1181 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1182 */
1183static int
1184dbAllocNear(struct bmap * bmp,
1185            struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1186{
1187        int word, lword, rc;
1188        s8 *leaf;
1189
1190        if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1191                jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1192                return -EIO;
1193        }
1194
1195        leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1196
1197        /* determine the word within the dmap that holds the hint
1198         * (i.e. blkno).  also, determine the last word in the dmap
1199         * that we'll include in our examination.
1200         */
1201        word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1202        lword = min(word + 4, LPERDMAP);
1203
1204        /* examine the leaves for sufficient free space.
1205         */
1206        for (; word < lword; word++) {
1207                /* does the leaf describe sufficient free space ?
1208                 */
1209                if (leaf[word] < l2nb)
1210                        continue;
1211
1212                /* determine the block number within the file system
1213                 * of the first block described by this dmap word.
1214                 */
1215                blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1216
1217                /* if not all bits of the dmap word are free, get the
1218                 * starting bit number within the dmap word of the required
1219                 * string of free bits and adjust the block number with the
1220                 * value.
1221                 */
1222                if (leaf[word] < BUDMIN)
1223                        blkno +=
1224                            dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1225
1226                /* allocate the blocks.
1227                 */
1228                if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1229                        *results = blkno;
1230
1231                return (rc);
1232        }
1233
1234        return -ENOSPC;
1235}
1236
1237
1238/*
1239 * NAME:        dbAllocAG()
1240 *
1241 * FUNCTION:    attempt to allocate the specified number of contiguous
1242 *              free blocks within the specified allocation group.
1243 *
1244 *              unless the allocation group size is equal to the number
1245 *              of blocks per dmap, the dmap control pages will be used to
1246 *              find the required free space, if available.  we start the
1247 *              search at the highest dmap control page level which
1248 *              distinctly describes the allocation group's free space
1249 *              (i.e. the highest level at which the allocation group's
1250 *              free space is not mixed in with that of any other group).
1251 *              in addition, we start the search within this level at a
1252 *              height of the dmapctl dmtree at which the nodes distinctly
1253 *              describe the allocation group's free space.  at this height,
1254 *              the allocation group's free space may be represented by 1
1255 *              or two sub-trees, depending on the allocation group size.
1256 *              we search the top nodes of these subtrees left to right for
1257 *              sufficient free space.  if sufficient free space is found,
1258 *              the subtree is searched to find the leftmost leaf that
1259 *              has free space.  once we have made it to the leaf, we
1260 *              move the search to the next lower level dmap control page
1261 *              corresponding to this leaf.  we continue down the dmap control
1262 *              pages until we find the dmap that contains or starts the
1263 *              sufficient free space and we allocate at this dmap.
1264 *
1265 *              if the allocation group size is equal to the dmap size,
1266 *              we'll start at the dmap corresponding to the allocation
1267 *              group and attempt the allocation at this level.
1268 *
1269 *              the dmap control page search is also not performed if the
1270 *              allocation group is completely free and we go to the first
1271 *              dmap of the allocation group to do the allocation.  this is
1272 *              done because the allocation group may be part (not the first
1273 *              part) of a larger binary buddy system, causing the dmap
1274 *              control pages to indicate no free space (NOFREE) within
1275 *              the allocation group.
1276 *
1277 * PARAMETERS:
1278 *      bmp     -  pointer to bmap descriptor
1279 *      agno    - allocation group number.
1280 *      nblocks -  actual number of contiguous free blocks desired.
1281 *      l2nb    -  log2 number of contiguous free blocks desired.
1282 *      results -  on successful return, set to the starting block number
1283 *                 of the newly allocated range.
1284 *
1285 * RETURN VALUES:
1286 *      0       - success
1287 *      -ENOSPC - insufficient disk resources
1288 *      -EIO    - i/o error
1289 *
1290 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1291 */
1292static int
1293dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1294{
1295        struct metapage *mp;
1296        struct dmapctl *dcp;
1297        int rc, ti, i, k, m, n, agperlev;
1298        s64 blkno, lblkno;
1299        int budmin;
1300
1301        /* allocation request should not be for more than the
1302         * allocation group size.
1303         */
1304        if (l2nb > bmp->db_agl2size) {
1305                jfs_error(bmp->db_ipbmap->i_sb,
1306                          "allocation request is larger than the allocation group size\n");
1307                return -EIO;
1308        }
1309
1310        /* determine the starting block number of the allocation
1311         * group.
1312         */
1313        blkno = (s64) agno << bmp->db_agl2size;
1314
1315        /* check if the allocation group size is the minimum allocation
1316         * group size or if the allocation group is completely free. if
1317         * the allocation group size is the minimum size of BPERDMAP (i.e.
1318         * 1 dmap), there is no need to search the dmap control page (below)
1319         * that fully describes the allocation group since the allocation
1320         * group is already fully described by a dmap.  in this case, we
1321         * just call dbAllocCtl() to search the dmap tree and allocate the
1322         * required space if available.
1323         *
1324         * if the allocation group is completely free, dbAllocCtl() is
1325         * also called to allocate the required space.  this is done for
1326         * two reasons.  first, it makes no sense searching the dmap control
1327         * pages for free space when we know that free space exists.  second,
1328         * the dmap control pages may indicate that the allocation group
1329         * has no free space if the allocation group is part (not the first
1330         * part) of a larger binary buddy system.
1331         */
1332        if (bmp->db_agsize == BPERDMAP
1333            || bmp->db_agfree[agno] == bmp->db_agsize) {
1334                rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1335                if ((rc == -ENOSPC) &&
1336                    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1337                        printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1338                               (unsigned long long) blkno,
1339                               (unsigned long long) nblocks);
1340                        jfs_error(bmp->db_ipbmap->i_sb,
1341                                  "dbAllocCtl failed in free AG\n");
1342                }
1343                return (rc);
1344        }
1345
1346        /* the buffer for the dmap control page that fully describes the
1347         * allocation group.
1348         */
1349        lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1350        mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1351        if (mp == NULL)
1352                return -EIO;
1353        dcp = (struct dmapctl *) mp->data;
1354        budmin = dcp->budmin;
1355
1356        if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1357                jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1358                release_metapage(mp);
1359                return -EIO;
1360        }
1361
1362        /* search the subtree(s) of the dmap control page that describes
1363         * the allocation group, looking for sufficient free space.  to begin,
1364         * determine how many allocation groups are represented in a dmap
1365         * control page at the control page level (i.e. L0, L1, L2) that
1366         * fully describes an allocation group. next, determine the starting
1367         * tree index of this allocation group within the control page.
1368         */
1369        agperlev =
1370            (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1371        ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1372
1373        /* dmap control page trees fan-out by 4 and a single allocation
1374         * group may be described by 1 or 2 subtrees within the ag level
1375         * dmap control page, depending upon the ag size. examine the ag's
1376         * subtrees for sufficient free space, starting with the leftmost
1377         * subtree.
1378         */
1379        for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1380                /* is there sufficient free space ?
1381                 */
1382                if (l2nb > dcp->stree[ti])
1383                        continue;
1384
1385                /* sufficient free space found in a subtree. now search down
1386                 * the subtree to find the leftmost leaf that describes this
1387                 * free space.
1388                 */
1389                for (k = bmp->db_agheight; k > 0; k--) {
1390                        for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1391                                if (l2nb <= dcp->stree[m + n]) {
1392                                        ti = m + n;
1393                                        break;
1394                                }
1395                        }
1396                        if (n == 4) {
1397                                jfs_error(bmp->db_ipbmap->i_sb,
1398                                          "failed descending stree\n");
1399                                release_metapage(mp);
1400                                return -EIO;
1401                        }
1402                }
1403
1404                /* determine the block number within the file system
1405                 * that corresponds to this leaf.
1406                 */
1407                if (bmp->db_aglevel == 2)
1408                        blkno = 0;
1409                else if (bmp->db_aglevel == 1)
1410                        blkno &= ~(MAXL1SIZE - 1);
1411                else            /* bmp->db_aglevel == 0 */
1412                        blkno &= ~(MAXL0SIZE - 1);
1413
1414                blkno +=
1415                    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1416
1417                /* release the buffer in preparation for going down
1418                 * the next level of dmap control pages.
1419                 */
1420                release_metapage(mp);
1421
1422                /* check if we need to continue to search down the lower
1423                 * level dmap control pages.  we need to if the number of
1424                 * blocks required is less than maximum number of blocks
1425                 * described at the next lower level.
1426                 */
1427                if (l2nb < budmin) {
1428
1429                        /* search the lower level dmap control pages to get
1430                         * the starting block number of the dmap that
1431                         * contains or starts off the free space.
1432                         */
1433                        if ((rc =
1434                             dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1435                                       &blkno))) {
1436                                if (rc == -ENOSPC) {
1437                                        jfs_error(bmp->db_ipbmap->i_sb,
1438                                                  "control page inconsistent\n");
1439                                        return -EIO;
1440                                }
1441                                return (rc);
1442                        }
1443                }
1444
1445                /* allocate the blocks.
1446                 */
1447                rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1448                if (rc == -ENOSPC) {
1449                        jfs_error(bmp->db_ipbmap->i_sb,
1450                                  "unable to allocate blocks\n");
1451                        rc = -EIO;
1452                }
1453                return (rc);
1454        }
1455
1456        /* no space in the allocation group.  release the buffer and
1457         * return -ENOSPC.
1458         */
1459        release_metapage(mp);
1460
1461        return -ENOSPC;
1462}
1463
1464
1465/*
1466 * NAME:        dbAllocAny()
1467 *
1468 * FUNCTION:    attempt to allocate the specified number of contiguous
1469 *              free blocks anywhere in the file system.
1470 *
1471 *              dbAllocAny() attempts to find the sufficient free space by
1472 *              searching down the dmap control pages, starting with the
1473 *              highest level (i.e. L0, L1, L2) control page.  if free space
1474 *              large enough to satisfy the desired free space is found, the
1475 *              desired free space is allocated.
1476 *
1477 * PARAMETERS:
1478 *      bmp     -  pointer to bmap descriptor
1479 *      nblocks  -  actual number of contiguous free blocks desired.
1480 *      l2nb     -  log2 number of contiguous free blocks desired.
1481 *      results -  on successful return, set to the starting block number
1482 *                 of the newly allocated range.
1483 *
1484 * RETURN VALUES:
1485 *      0       - success
1486 *      -ENOSPC - insufficient disk resources
1487 *      -EIO    - i/o error
1488 *
1489 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1490 */
1491static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1492{
1493        int rc;
1494        s64 blkno = 0;
1495
1496        /* starting with the top level dmap control page, search
1497         * down the dmap control levels for sufficient free space.
1498         * if free space is found, dbFindCtl() returns the starting
1499         * block number of the dmap that contains or starts off the
1500         * range of free space.
1501         */
1502        if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1503                return (rc);
1504
1505        /* allocate the blocks.
1506         */
1507        rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1508        if (rc == -ENOSPC) {
1509                jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1510                return -EIO;
1511        }
1512        return (rc);
1513}
1514
1515
1516/*
1517 * NAME:        dbDiscardAG()
1518 *
1519 * FUNCTION:    attempt to discard (TRIM) all free blocks of specific AG
1520 *
1521 *              algorithm:
1522 *              1) allocate blocks, as large as possible and save them
1523 *                 while holding IWRITE_LOCK on ipbmap
1524 *              2) trim all these saved block/length values
1525 *              3) mark the blocks free again
1526 *
1527 *              benefit:
1528 *              - we work only on one ag at some time, minimizing how long we
1529 *                need to lock ipbmap
1530 *              - reading / writing the fs is possible most time, even on
1531 *                trimming
1532 *
1533 *              downside:
1534 *              - we write two times to the dmapctl and dmap pages
1535 *              - but for me, this seems the best way, better ideas?
1536 *              /TR 2012
1537 *
1538 * PARAMETERS:
1539 *      ip      - pointer to in-core inode
1540 *      agno    - ag to trim
1541 *      minlen  - minimum value of contiguous blocks
1542 *
1543 * RETURN VALUES:
1544 *      s64     - actual number of blocks trimmed
1545 */
1546s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1547{
1548        struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1549        struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1550        s64 nblocks, blkno;
1551        u64 trimmed = 0;
1552        int rc, l2nb;
1553        struct super_block *sb = ipbmap->i_sb;
1554
1555        struct range2trim {
1556                u64 blkno;
1557                u64 nblocks;
1558        } *totrim, *tt;
1559
1560        /* max blkno / nblocks pairs to trim */
1561        int count = 0, range_cnt;
1562        u64 max_ranges;
1563
1564        /* prevent others from writing new stuff here, while trimming */
1565        IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1566
1567        nblocks = bmp->db_agfree[agno];
1568        max_ranges = nblocks;
1569        do_div(max_ranges, minlen);
1570        range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1571        totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1572        if (totrim == NULL) {
1573                jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1574                IWRITE_UNLOCK(ipbmap);
1575                return 0;
1576        }
1577
1578        tt = totrim;
1579        while (nblocks >= minlen) {
1580                l2nb = BLKSTOL2(nblocks);
1581
1582                /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1583                rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1584                if (rc == 0) {
1585                        tt->blkno = blkno;
1586                        tt->nblocks = nblocks;
1587                        tt++; count++;
1588
1589                        /* the whole ag is free, trim now */
1590                        if (bmp->db_agfree[agno] == 0)
1591                                break;
1592
1593                        /* give a hint for the next while */
1594                        nblocks = bmp->db_agfree[agno];
1595                        continue;
1596                } else if (rc == -ENOSPC) {
1597                        /* search for next smaller log2 block */
1598                        l2nb = BLKSTOL2(nblocks) - 1;
1599                        nblocks = 1LL << l2nb;
1600                } else {
1601                        /* Trim any already allocated blocks */
1602                        jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1603                        break;
1604                }
1605
1606                /* check, if our trim array is full */
1607                if (unlikely(count >= range_cnt - 1))
1608                        break;
1609        }
1610        IWRITE_UNLOCK(ipbmap);
1611
1612        tt->nblocks = 0; /* mark the current end */
1613        for (tt = totrim; tt->nblocks != 0; tt++) {
1614                /* when mounted with online discard, dbFree() will
1615                 * call jfs_issue_discard() itself */
1616                if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1617                        jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1618                dbFree(ip, tt->blkno, tt->nblocks);
1619                trimmed += tt->nblocks;
1620        }
1621        kfree(totrim);
1622
1623        return trimmed;
1624}
1625
1626/*
1627 * NAME:        dbFindCtl()
1628 *
1629 * FUNCTION:    starting at a specified dmap control page level and block
1630 *              number, search down the dmap control levels for a range of
1631 *              contiguous free blocks large enough to satisfy an allocation
1632 *              request for the specified number of free blocks.
1633 *
1634 *              if sufficient contiguous free blocks are found, this routine
1635 *              returns the starting block number within a dmap page that
1636 *              contains or starts a range of contiqious free blocks that
1637 *              is sufficient in size.
1638 *
1639 * PARAMETERS:
1640 *      bmp     -  pointer to bmap descriptor
1641 *      level   -  starting dmap control page level.
1642 *      l2nb    -  log2 number of contiguous free blocks desired.
1643 *      *blkno  -  on entry, starting block number for conducting the search.
1644 *                 on successful return, the first block within a dmap page
1645 *                 that contains or starts a range of contiguous free blocks.
1646 *
1647 * RETURN VALUES:
1648 *      0       - success
1649 *      -ENOSPC - insufficient disk resources
1650 *      -EIO    - i/o error
1651 *
1652 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1653 */
1654static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1655{
1656        int rc, leafidx, lev;
1657        s64 b, lblkno;
1658        struct dmapctl *dcp;
1659        int budmin;
1660        struct metapage *mp;
1661
1662        /* starting at the specified dmap control page level and block
1663         * number, search down the dmap control levels for the starting
1664         * block number of a dmap page that contains or starts off
1665         * sufficient free blocks.
1666         */
1667        for (lev = level, b = *blkno; lev >= 0; lev--) {
1668                /* get the buffer of the dmap control page for the block
1669                 * number and level (i.e. L0, L1, L2).
1670                 */
1671                lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1672                mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1673                if (mp == NULL)
1674                        return -EIO;
1675                dcp = (struct dmapctl *) mp->data;
1676                budmin = dcp->budmin;
1677
1678                if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1679                        jfs_error(bmp->db_ipbmap->i_sb,
1680                                  "Corrupt dmapctl page\n");
1681                        release_metapage(mp);
1682                        return -EIO;
1683                }
1684
1685                /* search the tree within the dmap control page for
1686                 * sufficient free space.  if sufficient free space is found,
1687                 * dbFindLeaf() returns the index of the leaf at which
1688                 * free space was found.
1689                 */
1690                rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1691
1692                /* release the buffer.
1693                 */
1694                release_metapage(mp);
1695
1696                /* space found ?
1697                 */
1698                if (rc) {
1699                        if (lev != level) {
1700                                jfs_error(bmp->db_ipbmap->i_sb,
1701                                          "dmap inconsistent\n");
1702                                return -EIO;
1703                        }
1704                        return -ENOSPC;
1705                }
1706
1707                /* adjust the block number to reflect the location within
1708                 * the dmap control page (i.e. the leaf) at which free
1709                 * space was found.
1710                 */
1711                b += (((s64) leafidx) << budmin);
1712
1713                /* we stop the search at this dmap control page level if
1714                 * the number of blocks required is greater than or equal
1715                 * to the maximum number of blocks described at the next
1716                 * (lower) level.
1717                 */
1718                if (l2nb >= budmin)
1719                        break;
1720        }
1721
1722        *blkno = b;
1723        return (0);
1724}
1725
1726
1727/*
1728 * NAME:        dbAllocCtl()
1729 *
1730 * FUNCTION:    attempt to allocate a specified number of contiguous
1731 *              blocks starting within a specific dmap.
1732 *
1733 *              this routine is called by higher level routines that search
1734 *              the dmap control pages above the actual dmaps for contiguous
1735 *              free space.  the result of successful searches by these
1736 *              routines are the starting block numbers within dmaps, with
1737 *              the dmaps themselves containing the desired contiguous free
1738 *              space or starting a contiguous free space of desired size
1739 *              that is made up of the blocks of one or more dmaps. these
1740 *              calls should not fail due to insufficent resources.
1741 *
1742 *              this routine is called in some cases where it is not known
1743 *              whether it will fail due to insufficient resources.  more
1744 *              specifically, this occurs when allocating from an allocation
1745 *              group whose size is equal to the number of blocks per dmap.
1746 *              in this case, the dmap control pages are not examined prior
1747 *              to calling this routine (to save pathlength) and the call
1748 *              might fail.
1749 *
1750 *              for a request size that fits within a dmap, this routine relies
1751 *              upon the dmap's dmtree to find the requested contiguous free
1752 *              space.  for request sizes that are larger than a dmap, the
1753 *              requested free space will start at the first block of the
1754 *              first dmap (i.e. blkno).
1755 *
1756 * PARAMETERS:
1757 *      bmp     -  pointer to bmap descriptor
1758 *      nblocks  -  actual number of contiguous free blocks to allocate.
1759 *      l2nb     -  log2 number of contiguous free blocks to allocate.
1760 *      blkno    -  starting block number of the dmap to start the allocation
1761 *                  from.
1762 *      results -  on successful return, set to the starting block number
1763 *                 of the newly allocated range.
1764 *
1765 * RETURN VALUES:
1766 *      0       - success
1767 *      -ENOSPC - insufficient disk resources
1768 *      -EIO    - i/o error
1769 *
1770 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1771 */
1772static int
1773dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1774{
1775        int rc, nb;
1776        s64 b, lblkno, n;
1777        struct metapage *mp;
1778        struct dmap *dp;
1779
1780        /* check if the allocation request is confined to a single dmap.
1781         */
1782        if (l2nb <= L2BPERDMAP) {
1783                /* get the buffer for the dmap.
1784                 */
1785                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1786                mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1787                if (mp == NULL)
1788                        return -EIO;
1789                dp = (struct dmap *) mp->data;
1790
1791                /* try to allocate the blocks.
1792                 */
1793                rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1794                if (rc == 0)
1795                        mark_metapage_dirty(mp);
1796
1797                release_metapage(mp);
1798
1799                return (rc);
1800        }
1801
1802        /* allocation request involving multiple dmaps. it must start on
1803         * a dmap boundary.
1804         */
1805        assert((blkno & (BPERDMAP - 1)) == 0);
1806
1807        /* allocate the blocks dmap by dmap.
1808         */
1809        for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1810                /* get the buffer for the dmap.
1811                 */
1812                lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1813                mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1814                if (mp == NULL) {
1815                        rc = -EIO;
1816                        goto backout;
1817                }
1818                dp = (struct dmap *) mp->data;
1819
1820                /* the dmap better be all free.
1821                 */
1822                if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1823                        release_metapage(mp);
1824                        jfs_error(bmp->db_ipbmap->i_sb,
1825                                  "the dmap is not all free\n");
1826                        rc = -EIO;
1827                        goto backout;
1828                }
1829
1830                /* determine how many blocks to allocate from this dmap.
1831                 */
1832                nb = min_t(s64, n, BPERDMAP);
1833
1834                /* allocate the blocks from the dmap.
1835                 */
1836                if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1837                        release_metapage(mp);
1838                        goto backout;
1839                }
1840
1841                /* write the buffer.
1842                 */
1843                write_metapage(mp);
1844        }
1845
1846        /* set the results (starting block number) and return.
1847         */
1848        *results = blkno;
1849        return (0);
1850
1851        /* something failed in handling an allocation request involving
1852         * multiple dmaps.  we'll try to clean up by backing out any
1853         * allocation that has already happened for this request.  if
1854         * we fail in backing out the allocation, we'll mark the file
1855         * system to indicate that blocks have been leaked.
1856         */
1857      backout:
1858
1859        /* try to backout the allocations dmap by dmap.
1860         */
1861        for (n = nblocks - n, b = blkno; n > 0;
1862             n -= BPERDMAP, b += BPERDMAP) {
1863                /* get the buffer for this dmap.
1864                 */
1865                lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1866                mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1867                if (mp == NULL) {
1868                        /* could not back out.  mark the file system
1869                         * to indicate that we have leaked blocks.
1870                         */
1871                        jfs_error(bmp->db_ipbmap->i_sb,
1872                                  "I/O Error: Block Leakage\n");
1873                        continue;
1874                }
1875                dp = (struct dmap *) mp->data;
1876
1877                /* free the blocks is this dmap.
1878                 */
1879                if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1880                        /* could not back out.  mark the file system
1881                         * to indicate that we have leaked blocks.
1882                         */
1883                        release_metapage(mp);
1884                        jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1885                        continue;
1886                }
1887
1888                /* write the buffer.
1889                 */
1890                write_metapage(mp);
1891        }
1892
1893        return (rc);
1894}
1895
1896
1897/*
1898 * NAME:        dbAllocDmapLev()
1899 *
1900 * FUNCTION:    attempt to allocate a specified number of contiguous blocks
1901 *              from a specified dmap.
1902 *
1903 *              this routine checks if the contiguous blocks are available.
1904 *              if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1905 *              returned.
1906 *
1907 * PARAMETERS:
1908 *      mp      -  pointer to bmap descriptor
1909 *      dp      -  pointer to dmap to attempt to allocate blocks from.
1910 *      l2nb    -  log2 number of contiguous block desired.
1911 *      nblocks -  actual number of contiguous block desired.
1912 *      results -  on successful return, set to the starting block number
1913 *                 of the newly allocated range.
1914 *
1915 * RETURN VALUES:
1916 *      0       - success
1917 *      -ENOSPC - insufficient disk resources
1918 *      -EIO    - i/o error
1919 *
1920 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1921 *      IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1922 */
1923static int
1924dbAllocDmapLev(struct bmap * bmp,
1925               struct dmap * dp, int nblocks, int l2nb, s64 * results)
1926{
1927        s64 blkno;
1928        int leafidx, rc;
1929
1930        /* can't be more than a dmaps worth of blocks */
1931        assert(l2nb <= L2BPERDMAP);
1932
1933        /* search the tree within the dmap page for sufficient
1934         * free space.  if sufficient free space is found, dbFindLeaf()
1935         * returns the index of the leaf at which free space was found.
1936         */
1937        if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1938                return -ENOSPC;
1939
1940        /* determine the block number within the file system corresponding
1941         * to the leaf at which free space was found.
1942         */
1943        blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1944
1945        /* if not all bits of the dmap word are free, get the starting
1946         * bit number within the dmap word of the required string of free
1947         * bits and adjust the block number with this value.
1948         */
1949        if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1950                blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1951
1952        /* allocate the blocks */
1953        if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1954                *results = blkno;
1955
1956        return (rc);
1957}
1958
1959
1960/*
1961 * NAME:        dbAllocDmap()
1962 *
1963 * FUNCTION:    adjust the disk allocation map to reflect the allocation
1964 *              of a specified block range within a dmap.
1965 *
1966 *              this routine allocates the specified blocks from the dmap
1967 *              through a call to dbAllocBits(). if the allocation of the
1968 *              block range causes the maximum string of free blocks within
1969 *              the dmap to change (i.e. the value of the root of the dmap's
1970 *              dmtree), this routine will cause this change to be reflected
1971 *              up through the appropriate levels of the dmap control pages
1972 *              by a call to dbAdjCtl() for the L0 dmap control page that
1973 *              covers this dmap.
1974 *
1975 * PARAMETERS:
1976 *      bmp     -  pointer to bmap descriptor
1977 *      dp      -  pointer to dmap to allocate the block range from.
1978 *      blkno   -  starting block number of the block to be allocated.
1979 *      nblocks -  number of blocks to be allocated.
1980 *
1981 * RETURN VALUES:
1982 *      0       - success
1983 *      -EIO    - i/o error
1984 *
1985 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
1986 */
1987static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
1988                       int nblocks)
1989{
1990        s8 oldroot;
1991        int rc;
1992
1993        /* save the current value of the root (i.e. maximum free string)
1994         * of the dmap tree.
1995         */
1996        oldroot = dp->tree.stree[ROOT];
1997
1998        /* allocate the specified (blocks) bits */
1999        dbAllocBits(bmp, dp, blkno, nblocks);
2000
2001        /* if the root has not changed, done. */
2002        if (dp->tree.stree[ROOT] == oldroot)
2003                return (0);
2004
2005        /* root changed. bubble the change up to the dmap control pages.
2006         * if the adjustment of the upper level control pages fails,
2007         * backout the bit allocation (thus making everything consistent).
2008         */
2009        if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2010                dbFreeBits(bmp, dp, blkno, nblocks);
2011
2012        return (rc);
2013}
2014
2015
2016/*
2017 * NAME:        dbFreeDmap()
2018 *
2019 * FUNCTION:    adjust the disk allocation map to reflect the allocation
2020 *              of a specified block range within a dmap.
2021 *
2022 *              this routine frees the specified blocks from the dmap through
2023 *              a call to dbFreeBits(). if the deallocation of the block range
2024 *              causes the maximum string of free blocks within the dmap to
2025 *              change (i.e. the value of the root of the dmap's dmtree), this
2026 *              routine will cause this change to be reflected up through the
2027 *              appropriate levels of the dmap control pages by a call to
2028 *              dbAdjCtl() for the L0 dmap control page that covers this dmap.
2029 *
2030 * PARAMETERS:
2031 *      bmp     -  pointer to bmap descriptor
2032 *      dp      -  pointer to dmap to free the block range from.
2033 *      blkno   -  starting block number of the block to be freed.
2034 *      nblocks -  number of blocks to be freed.
2035 *
2036 * RETURN VALUES:
2037 *      0       - success
2038 *      -EIO    - i/o error
2039 *
2040 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2041 */
2042static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2043                      int nblocks)
2044{
2045        s8 oldroot;
2046        int rc = 0, word;
2047
2048        /* save the current value of the root (i.e. maximum free string)
2049         * of the dmap tree.
2050         */
2051        oldroot = dp->tree.stree[ROOT];
2052
2053        /* free the specified (blocks) bits */
2054        rc = dbFreeBits(bmp, dp, blkno, nblocks);
2055
2056        /* if error or the root has not changed, done. */
2057        if (rc || (dp->tree.stree[ROOT] == oldroot))
2058                return (rc);
2059
2060        /* root changed. bubble the change up to the dmap control pages.
2061         * if the adjustment of the upper level control pages fails,
2062         * backout the deallocation.
2063         */
2064        if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2065                word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2066
2067                /* as part of backing out the deallocation, we will have
2068                 * to back split the dmap tree if the deallocation caused
2069                 * the freed blocks to become part of a larger binary buddy
2070                 * system.
2071                 */
2072                if (dp->tree.stree[word] == NOFREE)
2073                        dbBackSplit((dmtree_t *) & dp->tree, word);
2074
2075                dbAllocBits(bmp, dp, blkno, nblocks);
2076        }
2077
2078        return (rc);
2079}
2080
2081
2082/*
2083 * NAME:        dbAllocBits()
2084 *
2085 * FUNCTION:    allocate a specified block range from a dmap.
2086 *
2087 *              this routine updates the dmap to reflect the working
2088 *              state allocation of the specified block range. it directly
2089 *              updates the bits of the working map and causes the adjustment
2090 *              of the binary buddy system described by the dmap's dmtree
2091 *              leaves to reflect the bits allocated.  it also causes the
2092 *              dmap's dmtree, as a whole, to reflect the allocated range.
2093 *
2094 * PARAMETERS:
2095 *      bmp     -  pointer to bmap descriptor
2096 *      dp      -  pointer to dmap to allocate bits from.
2097 *      blkno   -  starting block number of the bits to be allocated.
2098 *      nblocks -  number of bits to be allocated.
2099 *
2100 * RETURN VALUES: none
2101 *
2102 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2103 */
2104static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2105                        int nblocks)
2106{
2107        int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2108        dmtree_t *tp = (dmtree_t *) & dp->tree;
2109        int size;
2110        s8 *leaf;
2111
2112        /* pick up a pointer to the leaves of the dmap tree */
2113        leaf = dp->tree.stree + LEAFIND;
2114
2115        /* determine the bit number and word within the dmap of the
2116         * starting block.
2117         */
2118        dbitno = blkno & (BPERDMAP - 1);
2119        word = dbitno >> L2DBWORD;
2120
2121        /* block range better be within the dmap */
2122        assert(dbitno + nblocks <= BPERDMAP);
2123
2124        /* allocate the bits of the dmap's words corresponding to the block
2125         * range. not all bits of the first and last words may be contained
2126         * within the block range.  if this is the case, we'll work against
2127         * those words (i.e. partial first and/or last) on an individual basis
2128         * (a single pass), allocating the bits of interest by hand and
2129         * updating the leaf corresponding to the dmap word. a single pass
2130         * will be used for all dmap words fully contained within the
2131         * specified range.  within this pass, the bits of all fully contained
2132         * dmap words will be marked as free in a single shot and the leaves
2133         * will be updated. a single leaf may describe the free space of
2134         * multiple dmap words, so we may update only a subset of the actual
2135         * leaves corresponding to the dmap words of the block range.
2136         */
2137        for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2138                /* determine the bit number within the word and
2139                 * the number of bits within the word.
2140                 */
2141                wbitno = dbitno & (DBWORD - 1);
2142                nb = min(rembits, DBWORD - wbitno);
2143
2144                /* check if only part of a word is to be allocated.
2145                 */
2146                if (nb < DBWORD) {
2147                        /* allocate (set to 1) the appropriate bits within
2148                         * this dmap word.
2149                         */
2150                        dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2151                                                      >> wbitno);
2152
2153                        /* update the leaf for this dmap word. in addition
2154                         * to setting the leaf value to the binary buddy max
2155                         * of the updated dmap word, dbSplit() will split
2156                         * the binary system of the leaves if need be.
2157                         */
2158                        dbSplit(tp, word, BUDMIN,
2159                                dbMaxBud((u8 *) & dp->wmap[word]));
2160
2161                        word += 1;
2162                } else {
2163                        /* one or more dmap words are fully contained
2164                         * within the block range.  determine how many
2165                         * words and allocate (set to 1) the bits of these
2166                         * words.
2167                         */
2168                        nwords = rembits >> L2DBWORD;
2169                        memset(&dp->wmap[word], (int) ONES, nwords * 4);
2170
2171                        /* determine how many bits.
2172                         */
2173                        nb = nwords << L2DBWORD;
2174
2175                        /* now update the appropriate leaves to reflect
2176                         * the allocated words.
2177                         */
2178                        for (; nwords > 0; nwords -= nw) {
2179                                if (leaf[word] < BUDMIN) {
2180                                        jfs_error(bmp->db_ipbmap->i_sb,
2181                                                  "leaf page corrupt\n");
2182                                        break;
2183                                }
2184
2185                                /* determine what the leaf value should be
2186                                 * updated to as the minimum of the l2 number
2187                                 * of bits being allocated and the l2 number
2188                                 * of bits currently described by this leaf.
2189                                 */
2190                                size = min_t(int, leaf[word],
2191                                             NLSTOL2BSZ(nwords));
2192
2193                                /* update the leaf to reflect the allocation.
2194                                 * in addition to setting the leaf value to
2195                                 * NOFREE, dbSplit() will split the binary
2196                                 * system of the leaves to reflect the current
2197                                 * allocation (size).
2198                                 */
2199                                dbSplit(tp, word, size, NOFREE);
2200
2201                                /* get the number of dmap words handled */
2202                                nw = BUDSIZE(size, BUDMIN);
2203                                word += nw;
2204                        }
2205                }
2206        }
2207
2208        /* update the free count for this dmap */
2209        le32_add_cpu(&dp->nfree, -nblocks);
2210
2211        BMAP_LOCK(bmp);
2212
2213        /* if this allocation group is completely free,
2214         * update the maximum allocation group number if this allocation
2215         * group is the new max.
2216         */
2217        agno = blkno >> bmp->db_agl2size;
2218        if (agno > bmp->db_maxag)
2219                bmp->db_maxag = agno;
2220
2221        /* update the free count for the allocation group and map */
2222        bmp->db_agfree[agno] -= nblocks;
2223        bmp->db_nfree -= nblocks;
2224
2225        BMAP_UNLOCK(bmp);
2226}
2227
2228
2229/*
2230 * NAME:        dbFreeBits()
2231 *
2232 * FUNCTION:    free a specified block range from a dmap.
2233 *
2234 *              this routine updates the dmap to reflect the working
2235 *              state allocation of the specified block range. it directly
2236 *              updates the bits of the working map and causes the adjustment
2237 *              of the binary buddy system described by the dmap's dmtree
2238 *              leaves to reflect the bits freed.  it also causes the dmap's
2239 *              dmtree, as a whole, to reflect the deallocated range.
2240 *
2241 * PARAMETERS:
2242 *      bmp     -  pointer to bmap descriptor
2243 *      dp      -  pointer to dmap to free bits from.
2244 *      blkno   -  starting block number of the bits to be freed.
2245 *      nblocks -  number of bits to be freed.
2246 *
2247 * RETURN VALUES: 0 for success
2248 *
2249 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2250 */
2251static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2252                       int nblocks)
2253{
2254        int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2255        dmtree_t *tp = (dmtree_t *) & dp->tree;
2256        int rc = 0;
2257        int size;
2258
2259        /* determine the bit number and word within the dmap of the
2260         * starting block.
2261         */
2262        dbitno = blkno & (BPERDMAP - 1);
2263        word = dbitno >> L2DBWORD;
2264
2265        /* block range better be within the dmap.
2266         */
2267        assert(dbitno + nblocks <= BPERDMAP);
2268
2269        /* free the bits of the dmaps words corresponding to the block range.
2270         * not all bits of the first and last words may be contained within
2271         * the block range.  if this is the case, we'll work against those
2272         * words (i.e. partial first and/or last) on an individual basis
2273         * (a single pass), freeing the bits of interest by hand and updating
2274         * the leaf corresponding to the dmap word. a single pass will be used
2275         * for all dmap words fully contained within the specified range.
2276         * within this pass, the bits of all fully contained dmap words will
2277         * be marked as free in a single shot and the leaves will be updated. a
2278         * single leaf may describe the free space of multiple dmap words,
2279         * so we may update only a subset of the actual leaves corresponding
2280         * to the dmap words of the block range.
2281         *
2282         * dbJoin() is used to update leaf values and will join the binary
2283         * buddy system of the leaves if the new leaf values indicate this
2284         * should be done.
2285         */
2286        for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2287                /* determine the bit number within the word and
2288                 * the number of bits within the word.
2289                 */
2290                wbitno = dbitno & (DBWORD - 1);
2291                nb = min(rembits, DBWORD - wbitno);
2292
2293                /* check if only part of a word is to be freed.
2294                 */
2295                if (nb < DBWORD) {
2296                        /* free (zero) the appropriate bits within this
2297                         * dmap word.
2298                         */
2299                        dp->wmap[word] &=
2300                            cpu_to_le32(~(ONES << (DBWORD - nb)
2301                                          >> wbitno));
2302
2303                        /* update the leaf for this dmap word.
2304                         */
2305                        rc = dbJoin(tp, word,
2306                                    dbMaxBud((u8 *) & dp->wmap[word]));
2307                        if (rc)
2308                                return rc;
2309
2310                        word += 1;
2311                } else {
2312                        /* one or more dmap words are fully contained
2313                         * within the block range.  determine how many
2314                         * words and free (zero) the bits of these words.
2315                         */
2316                        nwords = rembits >> L2DBWORD;
2317                        memset(&dp->wmap[word], 0, nwords * 4);
2318
2319                        /* determine how many bits.
2320                         */
2321                        nb = nwords << L2DBWORD;
2322
2323                        /* now update the appropriate leaves to reflect
2324                         * the freed words.
2325                         */
2326                        for (; nwords > 0; nwords -= nw) {
2327                                /* determine what the leaf value should be
2328                                 * updated to as the minimum of the l2 number
2329                                 * of bits being freed and the l2 (max) number
2330                                 * of bits that can be described by this leaf.
2331                                 */
2332                                size =
2333                                    min(LITOL2BSZ
2334                                        (word, L2LPERDMAP, BUDMIN),
2335                                        NLSTOL2BSZ(nwords));
2336
2337                                /* update the leaf.
2338                                 */
2339                                rc = dbJoin(tp, word, size);
2340                                if (rc)
2341                                        return rc;
2342
2343                                /* get the number of dmap words handled.
2344                                 */
2345                                nw = BUDSIZE(size, BUDMIN);
2346                                word += nw;
2347                        }
2348                }
2349        }
2350
2351        /* update the free count for this dmap.
2352         */
2353        le32_add_cpu(&dp->nfree, nblocks);
2354
2355        BMAP_LOCK(bmp);
2356
2357        /* update the free count for the allocation group and
2358         * map.
2359         */
2360        agno = blkno >> bmp->db_agl2size;
2361        bmp->db_nfree += nblocks;
2362        bmp->db_agfree[agno] += nblocks;
2363
2364        /* check if this allocation group is not completely free and
2365         * if it is currently the maximum (rightmost) allocation group.
2366         * if so, establish the new maximum allocation group number by
2367         * searching left for the first allocation group with allocation.
2368         */
2369        if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2370            (agno == bmp->db_numag - 1 &&
2371             bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2372                while (bmp->db_maxag > 0) {
2373                        bmp->db_maxag -= 1;
2374                        if (bmp->db_agfree[bmp->db_maxag] !=
2375                            bmp->db_agsize)
2376                                break;
2377                }
2378
2379                /* re-establish the allocation group preference if the
2380                 * current preference is right of the maximum allocation
2381                 * group.
2382                 */
2383                if (bmp->db_agpref > bmp->db_maxag)
2384                        bmp->db_agpref = bmp->db_maxag;
2385        }
2386
2387        BMAP_UNLOCK(bmp);
2388
2389        return 0;
2390}
2391
2392
2393/*
2394 * NAME:        dbAdjCtl()
2395 *
2396 * FUNCTION:    adjust a dmap control page at a specified level to reflect
2397 *              the change in a lower level dmap or dmap control page's
2398 *              maximum string of free blocks (i.e. a change in the root
2399 *              of the lower level object's dmtree) due to the allocation
2400 *              or deallocation of a range of blocks with a single dmap.
2401 *
2402 *              on entry, this routine is provided with the new value of
2403 *              the lower level dmap or dmap control page root and the
2404 *              starting block number of the block range whose allocation
2405 *              or deallocation resulted in the root change.  this range
2406 *              is respresented by a single leaf of the current dmapctl
2407 *              and the leaf will be updated with this value, possibly
2408 *              causing a binary buddy system within the leaves to be
2409 *              split or joined.  the update may also cause the dmapctl's
2410 *              dmtree to be updated.
2411 *
2412 *              if the adjustment of the dmap control page, itself, causes its
2413 *              root to change, this change will be bubbled up to the next dmap
2414 *              control level by a recursive call to this routine, specifying
2415 *              the new root value and the next dmap control page level to
2416 *              be adjusted.
2417 * PARAMETERS:
2418 *      bmp     -  pointer to bmap descriptor
2419 *      blkno   -  the first block of a block range within a dmap.  it is
2420 *                 the allocation or deallocation of this block range that
2421 *                 requires the dmap control page to be adjusted.
2422 *      newval  -  the new value of the lower level dmap or dmap control
2423 *                 page root.
2424 *      alloc   -  'true' if adjustment is due to an allocation.
2425 *      level   -  current level of dmap control page (i.e. L0, L1, L2) to
2426 *                 be adjusted.
2427 *
2428 * RETURN VALUES:
2429 *      0       - success
2430 *      -EIO    - i/o error
2431 *
2432 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2433 */
2434static int
2435dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2436{
2437        struct metapage *mp;
2438        s8 oldroot;
2439        int oldval;
2440        s64 lblkno;
2441        struct dmapctl *dcp;
2442        int rc, leafno, ti;
2443
2444        /* get the buffer for the dmap control page for the specified
2445         * block number and control page level.
2446         */
2447        lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2448        mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2449        if (mp == NULL)
2450                return -EIO;
2451        dcp = (struct dmapctl *) mp->data;
2452
2453        if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2454                jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2455                release_metapage(mp);
2456                return -EIO;
2457        }
2458
2459        /* determine the leaf number corresponding to the block and
2460         * the index within the dmap control tree.
2461         */
2462        leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2463        ti = leafno + le32_to_cpu(dcp->leafidx);
2464
2465        /* save the current leaf value and the current root level (i.e.
2466         * maximum l2 free string described by this dmapctl).
2467         */
2468        oldval = dcp->stree[ti];
2469        oldroot = dcp->stree[ROOT];
2470
2471        /* check if this is a control page update for an allocation.
2472         * if so, update the leaf to reflect the new leaf value using
2473         * dbSplit(); otherwise (deallocation), use dbJoin() to update
2474         * the leaf with the new value.  in addition to updating the
2475         * leaf, dbSplit() will also split the binary buddy system of
2476         * the leaves, if required, and bubble new values within the
2477         * dmapctl tree, if required.  similarly, dbJoin() will join
2478         * the binary buddy system of leaves and bubble new values up
2479         * the dmapctl tree as required by the new leaf value.
2480         */
2481        if (alloc) {
2482                /* check if we are in the middle of a binary buddy
2483                 * system.  this happens when we are performing the
2484                 * first allocation out of an allocation group that
2485                 * is part (not the first part) of a larger binary
2486                 * buddy system.  if we are in the middle, back split
2487                 * the system prior to calling dbSplit() which assumes
2488                 * that it is at the front of a binary buddy system.
2489                 */
2490                if (oldval == NOFREE) {
2491                        rc = dbBackSplit((dmtree_t *) dcp, leafno);
2492                        if (rc) {
2493                                release_metapage(mp);
2494                                return rc;
2495                        }
2496                        oldval = dcp->stree[ti];
2497                }
2498                dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2499        } else {
2500                rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2501                if (rc) {
2502                        release_metapage(mp);
2503                        return rc;
2504                }
2505        }
2506
2507        /* check if the root of the current dmap control page changed due
2508         * to the update and if the current dmap control page is not at
2509         * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2510         * root changed and this is not the top level), call this routine
2511         * again (recursion) for the next higher level of the mapping to
2512         * reflect the change in root for the current dmap control page.
2513         */
2514        if (dcp->stree[ROOT] != oldroot) {
2515                /* are we below the top level of the map.  if so,
2516                 * bubble the root up to the next higher level.
2517                 */
2518                if (level < bmp->db_maxlevel) {
2519                        /* bubble up the new root of this dmap control page to
2520                         * the next level.
2521                         */
2522                        if ((rc =
2523                             dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2524                                      level + 1))) {
2525                                /* something went wrong in bubbling up the new
2526                                 * root value, so backout the changes to the
2527                                 * current dmap control page.
2528                                 */
2529                                if (alloc) {
2530                                        dbJoin((dmtree_t *) dcp, leafno,
2531                                               oldval);
2532                                } else {
2533                                        /* the dbJoin() above might have
2534                                         * caused a larger binary buddy system
2535                                         * to form and we may now be in the
2536                                         * middle of it.  if this is the case,
2537                                         * back split the buddies.
2538                                         */
2539                                        if (dcp->stree[ti] == NOFREE)
2540                                                dbBackSplit((dmtree_t *)
2541                                                            dcp, leafno);
2542                                        dbSplit((dmtree_t *) dcp, leafno,
2543                                                dcp->budmin, oldval);
2544                                }
2545
2546                                /* release the buffer and return the error.
2547                                 */
2548                                release_metapage(mp);
2549                                return (rc);
2550                        }
2551                } else {
2552                        /* we're at the top level of the map. update
2553                         * the bmap control page to reflect the size
2554                         * of the maximum free buddy system.
2555                         */
2556                        assert(level == bmp->db_maxlevel);
2557                        if (bmp->db_maxfreebud != oldroot) {
2558                                jfs_error(bmp->db_ipbmap->i_sb,
2559                                          "the maximum free buddy is not the old root\n");
2560                        }
2561                        bmp->db_maxfreebud = dcp->stree[ROOT];
2562                }
2563        }
2564
2565        /* write the buffer.
2566         */
2567        write_metapage(mp);
2568
2569        return (0);
2570}
2571
2572
2573/*
2574 * NAME:        dbSplit()
2575 *
2576 * FUNCTION:    update the leaf of a dmtree with a new value, splitting
2577 *              the leaf from the binary buddy system of the dmtree's
2578 *              leaves, as required.
2579 *
2580 * PARAMETERS:
2581 *      tp      - pointer to the tree containing the leaf.
2582 *      leafno  - the number of the leaf to be updated.
2583 *      splitsz - the size the binary buddy system starting at the leaf
2584 *                must be split to, specified as the log2 number of blocks.
2585 *      newval  - the new value for the leaf.
2586 *
2587 * RETURN VALUES: none
2588 *
2589 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2590 */
2591static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2592{
2593        int budsz;
2594        int cursz;
2595        s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2596
2597        /* check if the leaf needs to be split.
2598         */
2599        if (leaf[leafno] > tp->dmt_budmin) {
2600                /* the split occurs by cutting the buddy system in half
2601                 * at the specified leaf until we reach the specified
2602                 * size.  pick up the starting split size (current size
2603                 * - 1 in l2) and the corresponding buddy size.
2604                 */
2605                cursz = leaf[leafno] - 1;
2606                budsz = BUDSIZE(cursz, tp->dmt_budmin);
2607
2608                /* split until we reach the specified size.
2609                 */
2610                while (cursz >= splitsz) {
2611                        /* update the buddy's leaf with its new value.
2612                         */
2613                        dbAdjTree(tp, leafno ^ budsz, cursz);
2614
2615                        /* on to the next size and buddy.
2616                         */
2617                        cursz -= 1;
2618                        budsz >>= 1;
2619                }
2620        }
2621
2622        /* adjust the dmap tree to reflect the specified leaf's new
2623         * value.
2624         */
2625        dbAdjTree(tp, leafno, newval);
2626}
2627
2628
2629/*
2630 * NAME:        dbBackSplit()
2631 *
2632 * FUNCTION:    back split the binary buddy system of dmtree leaves
2633 *              that hold a specified leaf until the specified leaf
2634 *              starts its own binary buddy system.
2635 *
2636 *              the allocators typically perform allocations at the start
2637 *              of binary buddy systems and dbSplit() is used to accomplish
2638 *              any required splits.  in some cases, however, allocation
2639 *              may occur in the middle of a binary system and requires a
2640 *              back split, with the split proceeding out from the middle of
2641 *              the system (less efficient) rather than the start of the
2642 *              system (more efficient).  the cases in which a back split
2643 *              is required are rare and are limited to the first allocation
2644 *              within an allocation group which is a part (not first part)
2645 *              of a larger binary buddy system and a few exception cases
2646 *              in which a previous join operation must be backed out.
2647 *
2648 * PARAMETERS:
2649 *      tp      - pointer to the tree containing the leaf.
2650 *      leafno  - the number of the leaf to be updated.
2651 *
2652 * RETURN VALUES: none
2653 *
2654 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2655 */
2656static int dbBackSplit(dmtree_t * tp, int leafno)
2657{
2658        int budsz, bud, w, bsz, size;
2659        int cursz;
2660        s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2661
2662        /* leaf should be part (not first part) of a binary
2663         * buddy system.
2664         */
2665        assert(leaf[leafno] == NOFREE);
2666
2667        /* the back split is accomplished by iteratively finding the leaf
2668         * that starts the buddy system that contains the specified leaf and
2669         * splitting that system in two.  this iteration continues until
2670         * the specified leaf becomes the start of a buddy system.
2671         *
2672         * determine maximum possible l2 size for the specified leaf.
2673         */
2674        size =
2675            LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2676                      tp->dmt_budmin);
2677
2678        /* determine the number of leaves covered by this size.  this
2679         * is the buddy size that we will start with as we search for
2680         * the buddy system that contains the specified leaf.
2681         */
2682        budsz = BUDSIZE(size, tp->dmt_budmin);
2683
2684        /* back split.
2685         */
2686        while (leaf[leafno] == NOFREE) {
2687                /* find the leftmost buddy leaf.
2688                 */
2689                for (w = leafno, bsz = budsz;; bsz <<= 1,
2690                     w = (w < bud) ? w : bud) {
2691                        if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2692                                jfs_err("JFS: block map error in dbBackSplit");
2693                                return -EIO;
2694                        }
2695
2696                        /* determine the buddy.
2697                         */
2698                        bud = w ^ bsz;
2699
2700                        /* check if this buddy is the start of the system.
2701                         */
2702                        if (leaf[bud] != NOFREE) {
2703                                /* split the leaf at the start of the
2704                                 * system in two.
2705                                 */
2706                                cursz = leaf[bud] - 1;
2707                                dbSplit(tp, bud, cursz, cursz);
2708                                break;
2709                        }
2710                }
2711        }
2712
2713        if (leaf[leafno] != size) {
2714                jfs_err("JFS: wrong leaf value in dbBackSplit");
2715                return -EIO;
2716        }
2717        return 0;
2718}
2719
2720
2721/*
2722 * NAME:        dbJoin()
2723 *
2724 * FUNCTION:    update the leaf of a dmtree with a new value, joining
2725 *              the leaf with other leaves of the dmtree into a multi-leaf
2726 *              binary buddy system, as required.
2727 *
2728 * PARAMETERS:
2729 *      tp      - pointer to the tree containing the leaf.
2730 *      leafno  - the number of the leaf to be updated.
2731 *      newval  - the new value for the leaf.
2732 *
2733 * RETURN VALUES: none
2734 */
2735static int dbJoin(dmtree_t * tp, int leafno, int newval)
2736{
2737        int budsz, buddy;
2738        s8 *leaf;
2739
2740        /* can the new leaf value require a join with other leaves ?
2741         */
2742        if (newval >= tp->dmt_budmin) {
2743                /* pickup a pointer to the leaves of the tree.
2744                 */
2745                leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2746
2747                /* try to join the specified leaf into a large binary
2748                 * buddy system.  the join proceeds by attempting to join
2749                 * the specified leafno with its buddy (leaf) at new value.
2750                 * if the join occurs, we attempt to join the left leaf
2751                 * of the joined buddies with its buddy at new value + 1.
2752                 * we continue to join until we find a buddy that cannot be
2753                 * joined (does not have a value equal to the size of the
2754                 * last join) or until all leaves have been joined into a
2755                 * single system.
2756                 *
2757                 * get the buddy size (number of words covered) of
2758                 * the new value.
2759                 */
2760                budsz = BUDSIZE(newval, tp->dmt_budmin);
2761
2762                /* try to join.
2763                 */
2764                while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2765                        /* get the buddy leaf.
2766                         */
2767                        buddy = leafno ^ budsz;
2768
2769                        /* if the leaf's new value is greater than its
2770                         * buddy's value, we join no more.
2771                         */
2772                        if (newval > leaf[buddy])
2773                                break;
2774
2775                        /* It shouldn't be less */
2776                        if (newval < leaf[buddy])
2777                                return -EIO;
2778
2779                        /* check which (leafno or buddy) is the left buddy.
2780                         * the left buddy gets to claim the blocks resulting
2781                         * from the join while the right gets to claim none.
2782                         * the left buddy is also eligible to participate in
2783                         * a join at the next higher level while the right
2784                         * is not.
2785                         *
2786                         */
2787                        if (leafno < buddy) {
2788                                /* leafno is the left buddy.
2789                                 */
2790                                dbAdjTree(tp, buddy, NOFREE);
2791                        } else {
2792                                /* buddy is the left buddy and becomes
2793                                 * leafno.
2794                                 */
2795                                dbAdjTree(tp, leafno, NOFREE);
2796                                leafno = buddy;
2797                        }
2798
2799                        /* on to try the next join.
2800                         */
2801                        newval += 1;
2802                        budsz <<= 1;
2803                }
2804        }
2805
2806        /* update the leaf value.
2807         */
2808        dbAdjTree(tp, leafno, newval);
2809
2810        return 0;
2811}
2812
2813
2814/*
2815 * NAME:        dbAdjTree()
2816 *
2817 * FUNCTION:    update a leaf of a dmtree with a new value, adjusting
2818 *              the dmtree, as required, to reflect the new leaf value.
2819 *              the combination of any buddies must already be done before
2820 *              this is called.
2821 *
2822 * PARAMETERS:
2823 *      tp      - pointer to the tree to be adjusted.
2824 *      leafno  - the number of the leaf to be updated.
2825 *      newval  - the new value for the leaf.
2826 *
2827 * RETURN VALUES: none
2828 */
2829static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2830{
2831        int lp, pp, k;
2832        int max;
2833
2834        /* pick up the index of the leaf for this leafno.
2835         */
2836        lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2837
2838        /* is the current value the same as the old value ?  if so,
2839         * there is nothing to do.
2840         */
2841        if (tp->dmt_stree[lp] == newval)
2842                return;
2843
2844        /* set the new value.
2845         */
2846        tp->dmt_stree[lp] = newval;
2847
2848        /* bubble the new value up the tree as required.
2849         */
2850        for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2851                /* get the index of the first leaf of the 4 leaf
2852                 * group containing the specified leaf (leafno).
2853                 */
2854                lp = ((lp - 1) & ~0x03) + 1;
2855
2856                /* get the index of the parent of this 4 leaf group.
2857                 */
2858                pp = (lp - 1) >> 2;
2859
2860                /* determine the maximum of the 4 leaves.
2861                 */
2862                max = TREEMAX(&tp->dmt_stree[lp]);
2863
2864                /* if the maximum of the 4 is the same as the
2865                 * parent's value, we're done.
2866                 */
2867                if (tp->dmt_stree[pp] == max)
2868                        break;
2869
2870                /* parent gets new value.
2871                 */
2872                tp->dmt_stree[pp] = max;
2873
2874                /* parent becomes leaf for next go-round.
2875                 */
2876                lp = pp;
2877        }
2878}
2879
2880
2881/*
2882 * NAME:        dbFindLeaf()
2883 *
2884 * FUNCTION:    search a dmtree_t for sufficient free blocks, returning
2885 *              the index of a leaf describing the free blocks if
2886 *              sufficient free blocks are found.
2887 *
2888 *              the search starts at the top of the dmtree_t tree and
2889 *              proceeds down the tree to the leftmost leaf with sufficient
2890 *              free space.
2891 *
2892 * PARAMETERS:
2893 *      tp      - pointer to the tree to be searched.
2894 *      l2nb    - log2 number of free blocks to search for.
2895 *      leafidx - return pointer to be set to the index of the leaf
2896 *                describing at least l2nb free blocks if sufficient
2897 *                free blocks are found.
2898 *
2899 * RETURN VALUES:
2900 *      0       - success
2901 *      -ENOSPC - insufficient free blocks.
2902 */
2903static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2904{
2905        int ti, n = 0, k, x = 0;
2906
2907        /* first check the root of the tree to see if there is
2908         * sufficient free space.
2909         */
2910        if (l2nb > tp->dmt_stree[ROOT])
2911                return -ENOSPC;
2912
2913        /* sufficient free space available. now search down the tree
2914         * starting at the next level for the leftmost leaf that
2915         * describes sufficient free space.
2916         */
2917        for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2918             k > 0; k--, ti = ((ti + n) << 2) + 1) {
2919                /* search the four nodes at this level, starting from
2920                 * the left.
2921                 */
2922                for (x = ti, n = 0; n < 4; n++) {
2923                        /* sufficient free space found.  move to the next
2924                         * level (or quit if this is the last level).
2925                         */
2926                        if (l2nb <= tp->dmt_stree[x + n])
2927                                break;
2928                }
2929
2930                /* better have found something since the higher
2931                 * levels of the tree said it was here.
2932                 */
2933                assert(n < 4);
2934        }
2935
2936        /* set the return to the leftmost leaf describing sufficient
2937         * free space.
2938         */
2939        *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2940
2941        return (0);
2942}
2943
2944
2945/*
2946 * NAME:        dbFindBits()
2947 *
2948 * FUNCTION:    find a specified number of binary buddy free bits within a
2949 *              dmap bitmap word value.
2950 *
2951 *              this routine searches the bitmap value for (1 << l2nb) free
2952 *              bits at (1 << l2nb) alignments within the value.
2953 *
2954 * PARAMETERS:
2955 *      word    -  dmap bitmap word value.
2956 *      l2nb    -  number of free bits specified as a log2 number.
2957 *
2958 * RETURN VALUES:
2959 *      starting bit number of free bits.
2960 */
2961static int dbFindBits(u32 word, int l2nb)
2962{
2963        int bitno, nb;
2964        u32 mask;
2965
2966        /* get the number of bits.
2967         */
2968        nb = 1 << l2nb;
2969        assert(nb <= DBWORD);
2970
2971        /* complement the word so we can use a mask (i.e. 0s represent
2972         * free bits) and compute the mask.
2973         */
2974        word = ~word;
2975        mask = ONES << (DBWORD - nb);
2976
2977        /* scan the word for nb free bits at nb alignments.
2978         */
2979        for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
2980                if ((mask & word) == mask)
2981                        break;
2982        }
2983
2984        ASSERT(bitno < 32);
2985
2986        /* return the bit number.
2987         */
2988        return (bitno);
2989}
2990
2991
2992/*
2993 * NAME:        dbMaxBud(u8 *cp)
2994 *
2995 * FUNCTION:    determine the largest binary buddy string of free
2996 *              bits within 32-bits of the map.
2997 *
2998 * PARAMETERS:
2999 *      cp      -  pointer to the 32-bit value.
3000 *
3001 * RETURN VALUES:
3002 *      largest binary buddy of free bits within a dmap word.
3003 */
3004static int dbMaxBud(u8 * cp)
3005{
3006        signed char tmp1, tmp2;
3007
3008        /* check if the wmap word is all free. if so, the
3009         * free buddy size is BUDMIN.
3010         */
3011        if (*((uint *) cp) == 0)
3012                return (BUDMIN);
3013
3014        /* check if the wmap word is half free. if so, the
3015         * free buddy size is BUDMIN-1.
3016         */
3017        if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3018                return (BUDMIN - 1);
3019
3020        /* not all free or half free. determine the free buddy
3021         * size thru table lookup using quarters of the wmap word.
3022         */
3023        tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3024        tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3025        return (max(tmp1, tmp2));
3026}
3027
3028
3029/*
3030 * NAME:        cnttz(uint word)
3031 *
3032 * FUNCTION:    determine the number of trailing zeros within a 32-bit
3033 *              value.
3034 *
3035 * PARAMETERS:
3036 *      value   -  32-bit value to be examined.
3037 *
3038 * RETURN VALUES:
3039 *      count of trailing zeros
3040 */
3041static int cnttz(u32 word)
3042{
3043        int n;
3044
3045        for (n = 0; n < 32; n++, word >>= 1) {
3046                if (word & 0x01)
3047                        break;
3048        }
3049
3050        return (n);
3051}
3052
3053
3054/*
3055 * NAME:        cntlz(u32 value)
3056 *
3057 * FUNCTION:    determine the number of leading zeros within a 32-bit
3058 *              value.
3059 *
3060 * PARAMETERS:
3061 *      value   -  32-bit value to be examined.
3062 *
3063 * RETURN VALUES:
3064 *      count of leading zeros
3065 */
3066static int cntlz(u32 value)
3067{
3068        int n;
3069
3070        for (n = 0; n < 32; n++, value <<= 1) {
3071                if (value & HIGHORDER)
3072                        break;
3073        }
3074        return (n);
3075}
3076
3077
3078/*
3079 * NAME:        blkstol2(s64 nb)
3080 *
3081 * FUNCTION:    convert a block count to its log2 value. if the block
3082 *              count is not a l2 multiple, it is rounded up to the next
3083 *              larger l2 multiple.
3084 *
3085 * PARAMETERS:
3086 *      nb      -  number of blocks
3087 *
3088 * RETURN VALUES:
3089 *      log2 number of blocks
3090 */
3091static int blkstol2(s64 nb)
3092{
3093        int l2nb;
3094        s64 mask;               /* meant to be signed */
3095
3096        mask = (s64) 1 << (64 - 1);
3097
3098        /* count the leading bits.
3099         */
3100        for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3101                /* leading bit found.
3102                 */
3103                if (nb & mask) {
3104                        /* determine the l2 value.
3105                         */
3106                        l2nb = (64 - 1) - l2nb;
3107
3108                        /* check if we need to round up.
3109                         */
3110                        if (~mask & nb)
3111                                l2nb++;
3112
3113                        return (l2nb);
3114                }
3115        }
3116        assert(0);
3117        return 0;               /* fix compiler warning */
3118}
3119
3120
3121/*
3122 * NAME:        dbAllocBottomUp()
3123 *
3124 * FUNCTION:    alloc the specified block range from the working block
3125 *              allocation map.
3126 *
3127 *              the blocks will be alloc from the working map one dmap
3128 *              at a time.
3129 *
3130 * PARAMETERS:
3131 *      ip      -  pointer to in-core inode;
3132 *      blkno   -  starting block number to be freed.
3133 *      nblocks -  number of blocks to be freed.
3134 *
3135 * RETURN VALUES:
3136 *      0       - success
3137 *      -EIO    - i/o error
3138 */
3139int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3140{
3141        struct metapage *mp;
3142        struct dmap *dp;
3143        int nb, rc;
3144        s64 lblkno, rem;
3145        struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3146        struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3147
3148        IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3149
3150        /* block to be allocated better be within the mapsize. */
3151        ASSERT(nblocks <= bmp->db_mapsize - blkno);
3152
3153        /*
3154         * allocate the blocks a dmap at a time.
3155         */
3156        mp = NULL;
3157        for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3158                /* release previous dmap if any */
3159                if (mp) {
3160                        write_metapage(mp);
3161                }
3162
3163                /* get the buffer for the current dmap. */
3164                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3165                mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3166                if (mp == NULL) {
3167                        IREAD_UNLOCK(ipbmap);
3168                        return -EIO;
3169                }
3170                dp = (struct dmap *) mp->data;
3171
3172                /* determine the number of blocks to be allocated from
3173                 * this dmap.
3174                 */
3175                nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3176
3177                /* allocate the blocks. */
3178                if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3179                        release_metapage(mp);
3180                        IREAD_UNLOCK(ipbmap);
3181                        return (rc);
3182                }
3183        }
3184
3185        /* write the last buffer. */
3186        write_metapage(mp);
3187
3188        IREAD_UNLOCK(ipbmap);
3189
3190        return (0);
3191}
3192
3193
3194static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3195                         int nblocks)
3196{
3197        int rc;
3198        int dbitno, word, rembits, nb, nwords, wbitno, agno;
3199        s8 oldroot;
3200        struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3201
3202        /* save the current value of the root (i.e. maximum free string)
3203         * of the dmap tree.
3204         */
3205        oldroot = tp->stree[ROOT];
3206
3207        /* determine the bit number and word within the dmap of the
3208         * starting block.
3209         */
3210        dbitno = blkno & (BPERDMAP - 1);
3211        word = dbitno >> L2DBWORD;
3212
3213        /* block range better be within the dmap */
3214        assert(dbitno + nblocks <= BPERDMAP);
3215
3216        /* allocate the bits of the dmap's words corresponding to the block
3217         * range. not all bits of the first and last words may be contained
3218         * within the block range.  if this is the case, we'll work against
3219         * those words (i.e. partial first and/or last) on an individual basis
3220         * (a single pass), allocating the bits of interest by hand and
3221         * updating the leaf corresponding to the dmap word. a single pass
3222         * will be used for all dmap words fully contained within the
3223         * specified range.  within this pass, the bits of all fully contained
3224         * dmap words will be marked as free in a single shot and the leaves
3225         * will be updated. a single leaf may describe the free space of
3226         * multiple dmap words, so we may update only a subset of the actual
3227         * leaves corresponding to the dmap words of the block range.
3228         */
3229        for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3230                /* determine the bit number within the word and
3231                 * the number of bits within the word.
3232                 */
3233                wbitno = dbitno & (DBWORD - 1);
3234                nb = min(rembits, DBWORD - wbitno);
3235
3236                /* check if only part of a word is to be allocated.
3237                 */
3238                if (nb < DBWORD) {
3239                        /* allocate (set to 1) the appropriate bits within
3240                         * this dmap word.
3241                         */
3242                        dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3243                                                      >> wbitno);
3244
3245                        word++;
3246                } else {
3247                        /* one or more dmap words are fully contained
3248                         * within the block range.  determine how many
3249                         * words and allocate (set to 1) the bits of these
3250                         * words.
3251                         */
3252                        nwords = rembits >> L2DBWORD;
3253                        memset(&dp->wmap[word], (int) ONES, nwords * 4);
3254
3255                        /* determine how many bits */
3256                        nb = nwords << L2DBWORD;
3257                        word += nwords;
3258                }
3259        }
3260
3261        /* update the free count for this dmap */
3262        le32_add_cpu(&dp->nfree, -nblocks);
3263
3264        /* reconstruct summary tree */
3265        dbInitDmapTree(dp);
3266
3267        BMAP_LOCK(bmp);
3268
3269        /* if this allocation group is completely free,
3270         * update the highest active allocation group number
3271         * if this allocation group is the new max.
3272         */
3273        agno = blkno >> bmp->db_agl2size;
3274        if (agno > bmp->db_maxag)
3275                bmp->db_maxag = agno;
3276
3277        /* update the free count for the allocation group and map */
3278        bmp->db_agfree[agno] -= nblocks;
3279        bmp->db_nfree -= nblocks;
3280
3281        BMAP_UNLOCK(bmp);
3282
3283        /* if the root has not changed, done. */
3284        if (tp->stree[ROOT] == oldroot)
3285                return (0);
3286
3287        /* root changed. bubble the change up to the dmap control pages.
3288         * if the adjustment of the upper level control pages fails,
3289         * backout the bit allocation (thus making everything consistent).
3290         */
3291        if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3292                dbFreeBits(bmp, dp, blkno, nblocks);
3293
3294        return (rc);
3295}
3296
3297
3298/*
3299 * NAME:        dbExtendFS()
3300 *
3301 * FUNCTION:    extend bmap from blkno for nblocks;
3302 *              dbExtendFS() updates bmap ready for dbAllocBottomUp();
3303 *
3304 * L2
3305 *  |
3306 *   L1---------------------------------L1
3307 *    |                                  |
3308 *     L0---------L0---------L0           L0---------L0---------L0
3309 *      |          |          |            |          |          |
3310 *       d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3311 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3312 *
3313 * <---old---><----------------------------extend----------------------->
3314 */
3315int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3316{
3317        struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3318        int nbperpage = sbi->nbperpage;
3319        int i, i0 = true, j, j0 = true, k, n;
3320        s64 newsize;
3321        s64 p;
3322        struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3323        struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3324        struct dmap *dp;
3325        s8 *l0leaf, *l1leaf, *l2leaf;
3326        struct bmap *bmp = sbi->bmap;
3327        int agno, l2agsize, oldl2agsize;
3328        s64 ag_rem;
3329
3330        newsize = blkno + nblocks;
3331
3332        jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3333                 (long long) blkno, (long long) nblocks, (long long) newsize);
3334
3335        /*
3336         *      initialize bmap control page.
3337         *
3338         * all the data in bmap control page should exclude
3339         * the mkfs hidden dmap page.
3340         */
3341
3342        /* update mapsize */
3343        bmp->db_mapsize = newsize;
3344        bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3345
3346        /* compute new AG size */
3347        l2agsize = dbGetL2AGSize(newsize);
3348        oldl2agsize = bmp->db_agl2size;
3349
3350        bmp->db_agl2size = l2agsize;
3351        bmp->db_agsize = 1 << l2agsize;
3352
3353        /* compute new number of AG */
3354        agno = bmp->db_numag;
3355        bmp->db_numag = newsize >> l2agsize;
3356        bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3357
3358        /*
3359         *      reconfigure db_agfree[]
3360         * from old AG configuration to new AG configuration;
3361         *
3362         * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3363         * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3364         * note: new AG size = old AG size * (2**x).
3365         */
3366        if (l2agsize == oldl2agsize)
3367                goto extend;
3368        k = 1 << (l2agsize - oldl2agsize);
3369        ag_rem = bmp->db_agfree[0];     /* save agfree[0] */
3370        for (i = 0, n = 0; i < agno; n++) {
3371                bmp->db_agfree[n] = 0;  /* init collection point */
3372
3373                /* coalesce contiguous k AGs; */
3374                for (j = 0; j < k && i < agno; j++, i++) {
3375                        /* merge AGi to AGn */
3376                        bmp->db_agfree[n] += bmp->db_agfree[i];
3377                }
3378        }
3379        bmp->db_agfree[0] += ag_rem;    /* restore agfree[0] */
3380
3381        for (; n < MAXAG; n++)
3382                bmp->db_agfree[n] = 0;
3383
3384        /*
3385         * update highest active ag number
3386         */
3387
3388        bmp->db_maxag = bmp->db_maxag / k;
3389
3390        /*
3391         *      extend bmap
3392         *
3393         * update bit maps and corresponding level control pages;
3394         * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3395         */
3396      extend:
3397        /* get L2 page */
3398        p = BMAPBLKNO + nbperpage;      /* L2 page */
3399        l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3400        if (!l2mp) {
3401                jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3402                return -EIO;
3403        }
3404        l2dcp = (struct dmapctl *) l2mp->data;
3405
3406        /* compute start L1 */
3407        k = blkno >> L2MAXL1SIZE;
3408        l2leaf = l2dcp->stree + CTLLEAFIND + k;
3409        p = BLKTOL1(blkno, sbi->l2nbperpage);   /* L1 page */
3410
3411        /*
3412         * extend each L1 in L2
3413         */
3414        for (; k < LPERCTL; k++, p += nbperpage) {
3415                /* get L1 page */
3416                if (j0) {
3417                        /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3418                        l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3419                        if (l1mp == NULL)
3420                                goto errout;
3421                        l1dcp = (struct dmapctl *) l1mp->data;
3422
3423                        /* compute start L0 */
3424                        j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3425                        l1leaf = l1dcp->stree + CTLLEAFIND + j;
3426                        p = BLKTOL0(blkno, sbi->l2nbperpage);
3427                        j0 = false;
3428                } else {
3429                        /* assign/init L1 page */
3430                        l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3431                        if (l1mp == NULL)
3432                                goto errout;
3433
3434                        l1dcp = (struct dmapctl *) l1mp->data;
3435
3436                        /* compute start L0 */
3437                        j = 0;
3438                        l1leaf = l1dcp->stree + CTLLEAFIND;
3439                        p += nbperpage; /* 1st L0 of L1.k */
3440                }
3441
3442                /*
3443                 * extend each L0 in L1
3444                 */
3445                for (; j < LPERCTL; j++) {
3446                        /* get L0 page */
3447                        if (i0) {
3448                                /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3449
3450                                l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3451                                if (l0mp == NULL)
3452                                        goto errout;
3453                                l0dcp = (struct dmapctl *) l0mp->data;
3454
3455                                /* compute start dmap */
3456                                i = (blkno & (MAXL0SIZE - 1)) >>
3457                                    L2BPERDMAP;
3458                                l0leaf = l0dcp->stree + CTLLEAFIND + i;
3459                                p = BLKTODMAP(blkno,
3460                                              sbi->l2nbperpage);
3461                                i0 = false;
3462                        } else {
3463                                /* assign/init L0 page */
3464                                l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3465                                if (l0mp == NULL)
3466                                        goto errout;
3467
3468                                l0dcp = (struct dmapctl *) l0mp->data;
3469
3470                                /* compute start dmap */
3471                                i = 0;
3472                                l0leaf = l0dcp->stree + CTLLEAFIND;
3473                                p += nbperpage; /* 1st dmap of L0.j */
3474                        }
3475
3476                        /*
3477                         * extend each dmap in L0
3478                         */
3479                        for (; i < LPERCTL; i++) {
3480                                /*
3481                                 * reconstruct the dmap page, and
3482                                 * initialize corresponding parent L0 leaf
3483                                 */
3484                                if ((n = blkno & (BPERDMAP - 1))) {
3485                                        /* read in dmap page: */
3486                                        mp = read_metapage(ipbmap, p,
3487                                                           PSIZE, 0);
3488                                        if (mp == NULL)
3489                                                goto errout;
3490                                        n = min(nblocks, (s64)BPERDMAP - n);
3491                                } else {
3492                                        /* assign/init dmap page */
3493                                        mp = read_metapage(ipbmap, p,
3494                                                           PSIZE, 0);
3495                                        if (mp == NULL)
3496                                                goto errout;
3497
3498                                        n = min_t(s64, nblocks, BPERDMAP);
3499                                }
3500
3501                                dp = (struct dmap *) mp->data;
3502                                *l0leaf = dbInitDmap(dp, blkno, n);
3503
3504                                bmp->db_nfree += n;
3505                                agno = le64_to_cpu(dp->start) >> l2agsize;
3506                                bmp->db_agfree[agno] += n;
3507
3508                                write_metapage(mp);
3509
3510                                l0leaf++;
3511                                p += nbperpage;
3512
3513                                blkno += n;
3514                                nblocks -= n;
3515                                if (nblocks == 0)
3516                                        break;
3517                        }       /* for each dmap in a L0 */
3518
3519                        /*
3520                         * build current L0 page from its leaves, and
3521                         * initialize corresponding parent L1 leaf
3522                         */
3523                        *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3524                        write_metapage(l0mp);
3525                        l0mp = NULL;
3526
3527                        if (nblocks)
3528                                l1leaf++;       /* continue for next L0 */
3529                        else {
3530                                /* more than 1 L0 ? */
3531                                if (j > 0)
3532                                        break;  /* build L1 page */
3533                                else {
3534                                        /* summarize in global bmap page */
3535                                        bmp->db_maxfreebud = *l1leaf;
3536                                        release_metapage(l1mp);
3537                                        release_metapage(l2mp);
3538                                        goto finalize;
3539                                }
3540                        }
3541                }               /* for each L0 in a L1 */
3542
3543                /*
3544                 * build current L1 page from its leaves, and
3545                 * initialize corresponding parent L2 leaf
3546                 */
3547                *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3548                write_metapage(l1mp);
3549                l1mp = NULL;
3550
3551                if (nblocks)
3552                        l2leaf++;       /* continue for next L1 */
3553                else {
3554                        /* more than 1 L1 ? */
3555                        if (k > 0)
3556                                break;  /* build L2 page */
3557                        else {
3558                                /* summarize in global bmap page */
3559                                bmp->db_maxfreebud = *l2leaf;
3560                                release_metapage(l2mp);
3561                                goto finalize;
3562                        }
3563                }
3564        }                       /* for each L1 in a L2 */
3565
3566        jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3567errout:
3568        if (l0mp)
3569                release_metapage(l0mp);
3570        if (l1mp)
3571                release_metapage(l1mp);
3572        release_metapage(l2mp);
3573        return -EIO;
3574
3575        /*
3576         *      finalize bmap control page
3577         */
3578finalize:
3579
3580        return 0;
3581}
3582
3583
3584/*
3585 *      dbFinalizeBmap()
3586 */
3587void dbFinalizeBmap(struct inode *ipbmap)
3588{
3589        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3590        int actags, inactags, l2nl;
3591        s64 ag_rem, actfree, inactfree, avgfree;
3592        int i, n;
3593
3594        /*
3595         *      finalize bmap control page
3596         */
3597//finalize:
3598        /*
3599         * compute db_agpref: preferred ag to allocate from
3600         * (the leftmost ag with average free space in it);
3601         */
3602//agpref:
3603        /* get the number of active ags and inactive ags */
3604        actags = bmp->db_maxag + 1;
3605        inactags = bmp->db_numag - actags;
3606        ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);        /* ??? */
3607
3608        /* determine how many blocks are in the inactive allocation
3609         * groups. in doing this, we must account for the fact that
3610         * the rightmost group might be a partial group (i.e. file
3611         * system size is not a multiple of the group size).
3612         */
3613        inactfree = (inactags && ag_rem) ?
3614            ((inactags - 1) << bmp->db_agl2size) + ag_rem
3615            : inactags << bmp->db_agl2size;
3616
3617        /* determine how many free blocks are in the active
3618         * allocation groups plus the average number of free blocks
3619         * within the active ags.
3620         */
3621        actfree = bmp->db_nfree - inactfree;
3622        avgfree = (u32) actfree / (u32) actags;
3623
3624        /* if the preferred allocation group has not average free space.
3625         * re-establish the preferred group as the leftmost
3626         * group with average free space.
3627         */
3628        if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3629                for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3630                     bmp->db_agpref++) {
3631                        if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3632                                break;
3633                }
3634                if (bmp->db_agpref >= bmp->db_numag) {
3635                        jfs_error(ipbmap->i_sb,
3636                                  "cannot find ag with average freespace\n");
3637                }
3638        }
3639
3640        /*
3641         * compute db_aglevel, db_agheight, db_width, db_agstart:
3642         * an ag is covered in aglevel dmapctl summary tree,
3643         * at agheight level height (from leaf) with agwidth number of nodes
3644         * each, which starts at agstart index node of the smmary tree node
3645         * array;
3646         */
3647        bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3648        l2nl =
3649            bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3650        bmp->db_agheight = l2nl >> 1;
3651        bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3652        for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3653             i--) {
3654                bmp->db_agstart += n;
3655                n <<= 2;
3656        }
3657
3658}
3659
3660
3661/*
3662 * NAME:        dbInitDmap()/ujfs_idmap_page()
3663 *
3664 * FUNCTION:    initialize working/persistent bitmap of the dmap page
3665 *              for the specified number of blocks:
3666 *
3667 *              at entry, the bitmaps had been initialized as free (ZEROS);
3668 *              The number of blocks will only account for the actually
3669 *              existing blocks. Blocks which don't actually exist in
3670 *              the aggregate will be marked as allocated (ONES);
3671 *
3672 * PARAMETERS:
3673 *      dp      - pointer to page of map
3674 *      nblocks - number of blocks this page
3675 *
3676 * RETURNS: NONE
3677 */
3678static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3679{
3680        int blkno, w, b, r, nw, nb, i;
3681
3682        /* starting block number within the dmap */
3683        blkno = Blkno & (BPERDMAP - 1);
3684
3685        if (blkno == 0) {
3686                dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3687                dp->start = cpu_to_le64(Blkno);
3688
3689                if (nblocks == BPERDMAP) {
3690                        memset(&dp->wmap[0], 0, LPERDMAP * 4);
3691                        memset(&dp->pmap[0], 0, LPERDMAP * 4);
3692                        goto initTree;
3693                }
3694        } else {
3695                le32_add_cpu(&dp->nblocks, nblocks);
3696                le32_add_cpu(&dp->nfree, nblocks);
3697        }
3698
3699        /* word number containing start block number */
3700        w = blkno >> L2DBWORD;
3701
3702        /*
3703         * free the bits corresponding to the block range (ZEROS):
3704         * note: not all bits of the first and last words may be contained
3705         * within the block range.
3706         */
3707        for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3708                /* number of bits preceding range to be freed in the word */
3709                b = blkno & (DBWORD - 1);
3710                /* number of bits to free in the word */
3711                nb = min(r, DBWORD - b);
3712
3713                /* is partial word to be freed ? */
3714                if (nb < DBWORD) {
3715                        /* free (set to 0) from the bitmap word */
3716                        dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3717                                                     >> b));
3718                        dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3719                                                     >> b));
3720
3721                        /* skip the word freed */
3722                        w++;
3723                } else {
3724                        /* free (set to 0) contiguous bitmap words */
3725                        nw = r >> L2DBWORD;
3726                        memset(&dp->wmap[w], 0, nw * 4);
3727                        memset(&dp->pmap[w], 0, nw * 4);
3728
3729                        /* skip the words freed */
3730                        nb = nw << L2DBWORD;
3731                        w += nw;
3732                }
3733        }
3734
3735        /*
3736         * mark bits following the range to be freed (non-existing
3737         * blocks) as allocated (ONES)
3738         */
3739
3740        if (blkno == BPERDMAP)
3741                goto initTree;
3742
3743        /* the first word beyond the end of existing blocks */
3744        w = blkno >> L2DBWORD;
3745
3746        /* does nblocks fall on a 32-bit boundary ? */
3747        b = blkno & (DBWORD - 1);
3748        if (b) {
3749                /* mark a partial word allocated */
3750                dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3751                w++;
3752        }
3753
3754        /* set the rest of the words in the page to allocated (ONES) */
3755        for (i = w; i < LPERDMAP; i++)
3756                dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3757
3758        /*
3759         * init tree
3760         */
3761      initTree:
3762        return (dbInitDmapTree(dp));
3763}
3764
3765
3766/*
3767 * NAME:        dbInitDmapTree()/ujfs_complete_dmap()
3768 *
3769 * FUNCTION:    initialize summary tree of the specified dmap:
3770 *
3771 *              at entry, bitmap of the dmap has been initialized;
3772 *
3773 * PARAMETERS:
3774 *      dp      - dmap to complete
3775 *      blkno   - starting block number for this dmap
3776 *      treemax - will be filled in with max free for this dmap
3777 *
3778 * RETURNS:     max free string at the root of the tree
3779 */
3780static int dbInitDmapTree(struct dmap * dp)
3781{
3782        struct dmaptree *tp;
3783        s8 *cp;
3784        int i;
3785
3786        /* init fixed info of tree */
3787        tp = &dp->tree;
3788        tp->nleafs = cpu_to_le32(LPERDMAP);
3789        tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3790        tp->leafidx = cpu_to_le32(LEAFIND);
3791        tp->height = cpu_to_le32(4);
3792        tp->budmin = BUDMIN;
3793
3794        /* init each leaf from corresponding wmap word:
3795         * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3796         * bitmap word are allocated.
3797         */
3798        cp = tp->stree + le32_to_cpu(tp->leafidx);
3799        for (i = 0; i < LPERDMAP; i++)
3800                *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3801
3802        /* build the dmap's binary buddy summary tree */
3803        return (dbInitTree(tp));
3804}
3805
3806
3807/*
3808 * NAME:        dbInitTree()/ujfs_adjtree()
3809 *
3810 * FUNCTION:    initialize binary buddy summary tree of a dmap or dmapctl.
3811 *
3812 *              at entry, the leaves of the tree has been initialized
3813 *              from corresponding bitmap word or root of summary tree
3814 *              of the child control page;
3815 *              configure binary buddy system at the leaf level, then
3816 *              bubble up the values of the leaf nodes up the tree.
3817 *
3818 * PARAMETERS:
3819 *      cp      - Pointer to the root of the tree
3820 *      l2leaves- Number of leaf nodes as a power of 2
3821 *      l2min   - Number of blocks that can be covered by a leaf
3822 *                as a power of 2
3823 *
3824 * RETURNS: max free string at the root of the tree
3825 */
3826static int dbInitTree(struct dmaptree * dtp)
3827{
3828        int l2max, l2free, bsize, nextb, i;
3829        int child, parent, nparent;
3830        s8 *tp, *cp, *cp1;
3831
3832        tp = dtp->stree;
3833
3834        /* Determine the maximum free string possible for the leaves */
3835        l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3836
3837        /*
3838         * configure the leaf levevl into binary buddy system
3839         *
3840         * Try to combine buddies starting with a buddy size of 1
3841         * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3842         * can be combined if both buddies have a maximum free of l2min;
3843         * the combination will result in the left-most buddy leaf having
3844         * a maximum free of l2min+1.
3845         * After processing all buddies for a given size, process buddies
3846         * at the next higher buddy size (i.e. current size * 2) and
3847         * the next maximum free (current free + 1).
3848         * This continues until the maximum possible buddy combination
3849         * yields maximum free.
3850         */
3851        for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3852             l2free++, bsize = nextb) {
3853                /* get next buddy size == current buddy pair size */
3854                nextb = bsize << 1;
3855
3856                /* scan each adjacent buddy pair at current buddy size */
3857                for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3858                     i < le32_to_cpu(dtp->nleafs);
3859                     i += nextb, cp += nextb) {
3860                        /* coalesce if both adjacent buddies are max free */
3861                        if (*cp == l2free && *(cp + bsize) == l2free) {
3862                                *cp = l2free + 1;       /* left take right */
3863                                *(cp + bsize) = -1;     /* right give left */
3864                        }
3865                }
3866        }
3867
3868        /*
3869         * bubble summary information of leaves up the tree.
3870         *
3871         * Starting at the leaf node level, the four nodes described by
3872         * the higher level parent node are compared for a maximum free and
3873         * this maximum becomes the value of the parent node.
3874         * when all lower level nodes are processed in this fashion then
3875         * move up to the next level (parent becomes a lower level node) and
3876         * continue the process for that level.
3877         */
3878        for (child = le32_to_cpu(dtp->leafidx),
3879             nparent = le32_to_cpu(dtp->nleafs) >> 2;
3880             nparent > 0; nparent >>= 2, child = parent) {
3881                /* get index of 1st node of parent level */
3882                parent = (child - 1) >> 2;
3883
3884                /* set the value of the parent node as the maximum
3885                 * of the four nodes of the current level.
3886                 */
3887                for (i = 0, cp = tp + child, cp1 = tp + parent;
3888                     i < nparent; i++, cp += 4, cp1++)
3889                        *cp1 = TREEMAX(cp);
3890        }
3891
3892        return (*tp);
3893}
3894
3895
3896/*
3897 *      dbInitDmapCtl()
3898 *
3899 * function: initialize dmapctl page
3900 */
3901static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3902{                               /* start leaf index not covered by range */
3903        s8 *cp;
3904
3905        dcp->nleafs = cpu_to_le32(LPERCTL);
3906        dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3907        dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3908        dcp->height = cpu_to_le32(5);
3909        dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3910
3911        /*
3912         * initialize the leaves of current level that were not covered
3913         * by the specified input block range (i.e. the leaves have no
3914         * low level dmapctl or dmap).
3915         */
3916        cp = &dcp->stree[CTLLEAFIND + i];
3917        for (; i < LPERCTL; i++)
3918                *cp++ = NOFREE;
3919
3920        /* build the dmap's binary buddy summary tree */
3921        return (dbInitTree((struct dmaptree *) dcp));
3922}
3923
3924
3925/*
3926 * NAME:        dbGetL2AGSize()/ujfs_getagl2size()
3927 *
3928 * FUNCTION:    Determine log2(allocation group size) from aggregate size
3929 *
3930 * PARAMETERS:
3931 *      nblocks - Number of blocks in aggregate
3932 *
3933 * RETURNS: log2(allocation group size) in aggregate blocks
3934 */
3935static int dbGetL2AGSize(s64 nblocks)
3936{
3937        s64 sz;
3938        s64 m;
3939        int l2sz;
3940
3941        if (nblocks < BPERDMAP * MAXAG)
3942                return (L2BPERDMAP);
3943
3944        /* round up aggregate size to power of 2 */
3945        m = ((u64) 1 << (64 - 1));
3946        for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3947                if (m & nblocks)
3948                        break;
3949        }
3950
3951        sz = (s64) 1 << l2sz;
3952        if (sz < nblocks)
3953                l2sz += 1;
3954
3955        /* agsize = roundupSize/max_number_of_ag */
3956        return (l2sz - L2MAXAG);
3957}
3958
3959
3960/*
3961 * NAME:        dbMapFileSizeToMapSize()
3962 *
3963 * FUNCTION:    compute number of blocks the block allocation map file
3964 *              can cover from the map file size;
3965 *
3966 * RETURNS:     Number of blocks which can be covered by this block map file;
3967 */
3968
3969/*
3970 * maximum number of map pages at each level including control pages
3971 */
3972#define MAXL0PAGES      (1 + LPERCTL)
3973#define MAXL1PAGES      (1 + LPERCTL * MAXL0PAGES)
3974
3975/*
3976 * convert number of map pages to the zero origin top dmapctl level
3977 */
3978#define BMAPPGTOLEV(npages)     \
3979        (((npages) <= 3 + MAXL0PAGES) ? 0 : \
3980         ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
3981
3982s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
3983{
3984        struct super_block *sb = ipbmap->i_sb;
3985        s64 nblocks;
3986        s64 npages, ndmaps;
3987        int level, i;
3988        int complete, factor;
3989
3990        nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
3991        npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
3992        level = BMAPPGTOLEV(npages);
3993
3994        /* At each level, accumulate the number of dmap pages covered by
3995         * the number of full child levels below it;
3996         * repeat for the last incomplete child level.
3997         */
3998        ndmaps = 0;
3999        npages--;               /* skip the first global control page */
4000        /* skip higher level control pages above top level covered by map */
4001        npages -= (2 - level);
4002        npages--;               /* skip top level's control page */
4003        for (i = level; i >= 0; i--) {
4004                factor =
4005                    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4006                complete = (u32) npages / factor;
4007                ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4008                                      ((i == 1) ? LPERCTL : 1));
4009
4010                /* pages in last/incomplete child */
4011                npages = (u32) npages % factor;
4012                /* skip incomplete child's level control page */
4013                npages--;
4014        }
4015
4016        /* convert the number of dmaps into the number of blocks
4017         * which can be covered by the dmaps;
4018         */
4019        nblocks = ndmaps << L2BPERDMAP;
4020
4021        return (nblocks);
4022}
4023