linux/fs/kernfs/file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/kernfs/file.c - kernfs file implementation
   4 *
   5 * Copyright (c) 2001-3 Patrick Mochel
   6 * Copyright (c) 2007 SUSE Linux Products GmbH
   7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   8 */
   9
  10#include <linux/fs.h>
  11#include <linux/seq_file.h>
  12#include <linux/slab.h>
  13#include <linux/poll.h>
  14#include <linux/pagemap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/fsnotify.h>
  17#include <linux/uio.h>
  18
  19#include "kernfs-internal.h"
  20
  21/*
  22 * There's one kernfs_open_file for each open file and one kernfs_open_node
  23 * for each kernfs_node with one or more open files.
  24 *
  25 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
  26 * protected by kernfs_open_node_lock.
  27 *
  28 * filp->private_data points to seq_file whose ->private points to
  29 * kernfs_open_file.  kernfs_open_files are chained at
  30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
  31 */
  32static DEFINE_SPINLOCK(kernfs_open_node_lock);
  33static DEFINE_MUTEX(kernfs_open_file_mutex);
  34
  35struct kernfs_open_node {
  36        atomic_t                event;
  37        wait_queue_head_t       poll;
  38        struct list_head        files; /* goes through kernfs_open_file.list */
  39};
  40
  41/*
  42 * kernfs_notify() may be called from any context and bounces notifications
  43 * through a work item.  To minimize space overhead in kernfs_node, the
  44 * pending queue is implemented as a singly linked list of kernfs_nodes.
  45 * The list is terminated with the self pointer so that whether a
  46 * kernfs_node is on the list or not can be determined by testing the next
  47 * pointer for NULL.
  48 */
  49#define KERNFS_NOTIFY_EOL                       ((void *)&kernfs_notify_list)
  50
  51static DEFINE_SPINLOCK(kernfs_notify_lock);
  52static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
  53
  54static struct kernfs_open_file *kernfs_of(struct file *file)
  55{
  56        return ((struct seq_file *)file->private_data)->private;
  57}
  58
  59/*
  60 * Determine the kernfs_ops for the given kernfs_node.  This function must
  61 * be called while holding an active reference.
  62 */
  63static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
  64{
  65        if (kn->flags & KERNFS_LOCKDEP)
  66                lockdep_assert_held(kn);
  67        return kn->attr.ops;
  68}
  69
  70/*
  71 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
  72 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
  73 * a seq_file iteration which is fully initialized with an active reference
  74 * or an aborted kernfs_seq_start() due to get_active failure.  The
  75 * position pointer is the only context for each seq_file iteration and
  76 * thus the stop condition should be encoded in it.  As the return value is
  77 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
  78 * choice to indicate get_active failure.
  79 *
  80 * Unfortunately, this is complicated due to the optional custom seq_file
  81 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
  82 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
  83 * custom seq_file operations and thus can't decide whether put_active
  84 * should be performed or not only on ERR_PTR(-ENODEV).
  85 *
  86 * This is worked around by factoring out the custom seq_stop() and
  87 * put_active part into kernfs_seq_stop_active(), skipping it from
  88 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
  89 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
  90 * that kernfs_seq_stop_active() is skipped only after get_active failure.
  91 */
  92static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
  93{
  94        struct kernfs_open_file *of = sf->private;
  95        const struct kernfs_ops *ops = kernfs_ops(of->kn);
  96
  97        if (ops->seq_stop)
  98                ops->seq_stop(sf, v);
  99        kernfs_put_active(of->kn);
 100}
 101
 102static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 103{
 104        struct kernfs_open_file *of = sf->private;
 105        const struct kernfs_ops *ops;
 106
 107        /*
 108         * @of->mutex nests outside active ref and is primarily to ensure that
 109         * the ops aren't called concurrently for the same open file.
 110         */
 111        mutex_lock(&of->mutex);
 112        if (!kernfs_get_active(of->kn))
 113                return ERR_PTR(-ENODEV);
 114
 115        ops = kernfs_ops(of->kn);
 116        if (ops->seq_start) {
 117                void *next = ops->seq_start(sf, ppos);
 118                /* see the comment above kernfs_seq_stop_active() */
 119                if (next == ERR_PTR(-ENODEV))
 120                        kernfs_seq_stop_active(sf, next);
 121                return next;
 122        }
 123        return single_start(sf, ppos);
 124}
 125
 126static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
 127{
 128        struct kernfs_open_file *of = sf->private;
 129        const struct kernfs_ops *ops = kernfs_ops(of->kn);
 130
 131        if (ops->seq_next) {
 132                void *next = ops->seq_next(sf, v, ppos);
 133                /* see the comment above kernfs_seq_stop_active() */
 134                if (next == ERR_PTR(-ENODEV))
 135                        kernfs_seq_stop_active(sf, next);
 136                return next;
 137        } else {
 138                /*
 139                 * The same behavior and code as single_open(), always
 140                 * terminate after the initial read.
 141                 */
 142                ++*ppos;
 143                return NULL;
 144        }
 145}
 146
 147static void kernfs_seq_stop(struct seq_file *sf, void *v)
 148{
 149        struct kernfs_open_file *of = sf->private;
 150
 151        if (v != ERR_PTR(-ENODEV))
 152                kernfs_seq_stop_active(sf, v);
 153        mutex_unlock(&of->mutex);
 154}
 155
 156static int kernfs_seq_show(struct seq_file *sf, void *v)
 157{
 158        struct kernfs_open_file *of = sf->private;
 159
 160        of->event = atomic_read(&of->kn->attr.open->event);
 161
 162        return of->kn->attr.ops->seq_show(sf, v);
 163}
 164
 165static const struct seq_operations kernfs_seq_ops = {
 166        .start = kernfs_seq_start,
 167        .next = kernfs_seq_next,
 168        .stop = kernfs_seq_stop,
 169        .show = kernfs_seq_show,
 170};
 171
 172/*
 173 * As reading a bin file can have side-effects, the exact offset and bytes
 174 * specified in read(2) call should be passed to the read callback making
 175 * it difficult to use seq_file.  Implement simplistic custom buffering for
 176 * bin files.
 177 */
 178static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 179{
 180        struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
 181        ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
 182        const struct kernfs_ops *ops;
 183        char *buf;
 184
 185        buf = of->prealloc_buf;
 186        if (buf)
 187                mutex_lock(&of->prealloc_mutex);
 188        else
 189                buf = kmalloc(len, GFP_KERNEL);
 190        if (!buf)
 191                return -ENOMEM;
 192
 193        /*
 194         * @of->mutex nests outside active ref and is used both to ensure that
 195         * the ops aren't called concurrently for the same open file.
 196         */
 197        mutex_lock(&of->mutex);
 198        if (!kernfs_get_active(of->kn)) {
 199                len = -ENODEV;
 200                mutex_unlock(&of->mutex);
 201                goto out_free;
 202        }
 203
 204        of->event = atomic_read(&of->kn->attr.open->event);
 205        ops = kernfs_ops(of->kn);
 206        if (ops->read)
 207                len = ops->read(of, buf, len, iocb->ki_pos);
 208        else
 209                len = -EINVAL;
 210
 211        kernfs_put_active(of->kn);
 212        mutex_unlock(&of->mutex);
 213
 214        if (len < 0)
 215                goto out_free;
 216
 217        if (copy_to_iter(buf, len, iter) != len) {
 218                len = -EFAULT;
 219                goto out_free;
 220        }
 221
 222        iocb->ki_pos += len;
 223
 224 out_free:
 225        if (buf == of->prealloc_buf)
 226                mutex_unlock(&of->prealloc_mutex);
 227        else
 228                kfree(buf);
 229        return len;
 230}
 231
 232static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 233{
 234        if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
 235                return seq_read_iter(iocb, iter);
 236        return kernfs_file_read_iter(iocb, iter);
 237}
 238
 239/*
 240 * Copy data in from userland and pass it to the matching kernfs write
 241 * operation.
 242 *
 243 * There is no easy way for us to know if userspace is only doing a partial
 244 * write, so we don't support them. We expect the entire buffer to come on
 245 * the first write.  Hint: if you're writing a value, first read the file,
 246 * modify only the the value you're changing, then write entire buffer
 247 * back.
 248 */
 249static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
 250{
 251        struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
 252        ssize_t len = iov_iter_count(iter);
 253        const struct kernfs_ops *ops;
 254        char *buf;
 255
 256        if (of->atomic_write_len) {
 257                if (len > of->atomic_write_len)
 258                        return -E2BIG;
 259        } else {
 260                len = min_t(size_t, len, PAGE_SIZE);
 261        }
 262
 263        buf = of->prealloc_buf;
 264        if (buf)
 265                mutex_lock(&of->prealloc_mutex);
 266        else
 267                buf = kmalloc(len + 1, GFP_KERNEL);
 268        if (!buf)
 269                return -ENOMEM;
 270
 271        if (copy_from_iter(buf, len, iter) != len) {
 272                len = -EFAULT;
 273                goto out_free;
 274        }
 275        buf[len] = '\0';        /* guarantee string termination */
 276
 277        /*
 278         * @of->mutex nests outside active ref and is used both to ensure that
 279         * the ops aren't called concurrently for the same open file.
 280         */
 281        mutex_lock(&of->mutex);
 282        if (!kernfs_get_active(of->kn)) {
 283                mutex_unlock(&of->mutex);
 284                len = -ENODEV;
 285                goto out_free;
 286        }
 287
 288        ops = kernfs_ops(of->kn);
 289        if (ops->write)
 290                len = ops->write(of, buf, len, iocb->ki_pos);
 291        else
 292                len = -EINVAL;
 293
 294        kernfs_put_active(of->kn);
 295        mutex_unlock(&of->mutex);
 296
 297        if (len > 0)
 298                iocb->ki_pos += len;
 299
 300out_free:
 301        if (buf == of->prealloc_buf)
 302                mutex_unlock(&of->prealloc_mutex);
 303        else
 304                kfree(buf);
 305        return len;
 306}
 307
 308static void kernfs_vma_open(struct vm_area_struct *vma)
 309{
 310        struct file *file = vma->vm_file;
 311        struct kernfs_open_file *of = kernfs_of(file);
 312
 313        if (!of->vm_ops)
 314                return;
 315
 316        if (!kernfs_get_active(of->kn))
 317                return;
 318
 319        if (of->vm_ops->open)
 320                of->vm_ops->open(vma);
 321
 322        kernfs_put_active(of->kn);
 323}
 324
 325static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
 326{
 327        struct file *file = vmf->vma->vm_file;
 328        struct kernfs_open_file *of = kernfs_of(file);
 329        vm_fault_t ret;
 330
 331        if (!of->vm_ops)
 332                return VM_FAULT_SIGBUS;
 333
 334        if (!kernfs_get_active(of->kn))
 335                return VM_FAULT_SIGBUS;
 336
 337        ret = VM_FAULT_SIGBUS;
 338        if (of->vm_ops->fault)
 339                ret = of->vm_ops->fault(vmf);
 340
 341        kernfs_put_active(of->kn);
 342        return ret;
 343}
 344
 345static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
 346{
 347        struct file *file = vmf->vma->vm_file;
 348        struct kernfs_open_file *of = kernfs_of(file);
 349        vm_fault_t ret;
 350
 351        if (!of->vm_ops)
 352                return VM_FAULT_SIGBUS;
 353
 354        if (!kernfs_get_active(of->kn))
 355                return VM_FAULT_SIGBUS;
 356
 357        ret = 0;
 358        if (of->vm_ops->page_mkwrite)
 359                ret = of->vm_ops->page_mkwrite(vmf);
 360        else
 361                file_update_time(file);
 362
 363        kernfs_put_active(of->kn);
 364        return ret;
 365}
 366
 367static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
 368                             void *buf, int len, int write)
 369{
 370        struct file *file = vma->vm_file;
 371        struct kernfs_open_file *of = kernfs_of(file);
 372        int ret;
 373
 374        if (!of->vm_ops)
 375                return -EINVAL;
 376
 377        if (!kernfs_get_active(of->kn))
 378                return -EINVAL;
 379
 380        ret = -EINVAL;
 381        if (of->vm_ops->access)
 382                ret = of->vm_ops->access(vma, addr, buf, len, write);
 383
 384        kernfs_put_active(of->kn);
 385        return ret;
 386}
 387
 388#ifdef CONFIG_NUMA
 389static int kernfs_vma_set_policy(struct vm_area_struct *vma,
 390                                 struct mempolicy *new)
 391{
 392        struct file *file = vma->vm_file;
 393        struct kernfs_open_file *of = kernfs_of(file);
 394        int ret;
 395
 396        if (!of->vm_ops)
 397                return 0;
 398
 399        if (!kernfs_get_active(of->kn))
 400                return -EINVAL;
 401
 402        ret = 0;
 403        if (of->vm_ops->set_policy)
 404                ret = of->vm_ops->set_policy(vma, new);
 405
 406        kernfs_put_active(of->kn);
 407        return ret;
 408}
 409
 410static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
 411                                               unsigned long addr)
 412{
 413        struct file *file = vma->vm_file;
 414        struct kernfs_open_file *of = kernfs_of(file);
 415        struct mempolicy *pol;
 416
 417        if (!of->vm_ops)
 418                return vma->vm_policy;
 419
 420        if (!kernfs_get_active(of->kn))
 421                return vma->vm_policy;
 422
 423        pol = vma->vm_policy;
 424        if (of->vm_ops->get_policy)
 425                pol = of->vm_ops->get_policy(vma, addr);
 426
 427        kernfs_put_active(of->kn);
 428        return pol;
 429}
 430
 431#endif
 432
 433static const struct vm_operations_struct kernfs_vm_ops = {
 434        .open           = kernfs_vma_open,
 435        .fault          = kernfs_vma_fault,
 436        .page_mkwrite   = kernfs_vma_page_mkwrite,
 437        .access         = kernfs_vma_access,
 438#ifdef CONFIG_NUMA
 439        .set_policy     = kernfs_vma_set_policy,
 440        .get_policy     = kernfs_vma_get_policy,
 441#endif
 442};
 443
 444static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
 445{
 446        struct kernfs_open_file *of = kernfs_of(file);
 447        const struct kernfs_ops *ops;
 448        int rc;
 449
 450        /*
 451         * mmap path and of->mutex are prone to triggering spurious lockdep
 452         * warnings and we don't want to add spurious locking dependency
 453         * between the two.  Check whether mmap is actually implemented
 454         * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
 455         * comment in kernfs_file_open() for more details.
 456         */
 457        if (!(of->kn->flags & KERNFS_HAS_MMAP))
 458                return -ENODEV;
 459
 460        mutex_lock(&of->mutex);
 461
 462        rc = -ENODEV;
 463        if (!kernfs_get_active(of->kn))
 464                goto out_unlock;
 465
 466        ops = kernfs_ops(of->kn);
 467        rc = ops->mmap(of, vma);
 468        if (rc)
 469                goto out_put;
 470
 471        /*
 472         * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
 473         * to satisfy versions of X which crash if the mmap fails: that
 474         * substitutes a new vm_file, and we don't then want bin_vm_ops.
 475         */
 476        if (vma->vm_file != file)
 477                goto out_put;
 478
 479        rc = -EINVAL;
 480        if (of->mmapped && of->vm_ops != vma->vm_ops)
 481                goto out_put;
 482
 483        /*
 484         * It is not possible to successfully wrap close.
 485         * So error if someone is trying to use close.
 486         */
 487        rc = -EINVAL;
 488        if (vma->vm_ops && vma->vm_ops->close)
 489                goto out_put;
 490
 491        rc = 0;
 492        of->mmapped = true;
 493        of->vm_ops = vma->vm_ops;
 494        vma->vm_ops = &kernfs_vm_ops;
 495out_put:
 496        kernfs_put_active(of->kn);
 497out_unlock:
 498        mutex_unlock(&of->mutex);
 499
 500        return rc;
 501}
 502
 503/**
 504 *      kernfs_get_open_node - get or create kernfs_open_node
 505 *      @kn: target kernfs_node
 506 *      @of: kernfs_open_file for this instance of open
 507 *
 508 *      If @kn->attr.open exists, increment its reference count; otherwise,
 509 *      create one.  @of is chained to the files list.
 510 *
 511 *      LOCKING:
 512 *      Kernel thread context (may sleep).
 513 *
 514 *      RETURNS:
 515 *      0 on success, -errno on failure.
 516 */
 517static int kernfs_get_open_node(struct kernfs_node *kn,
 518                                struct kernfs_open_file *of)
 519{
 520        struct kernfs_open_node *on, *new_on = NULL;
 521
 522 retry:
 523        mutex_lock(&kernfs_open_file_mutex);
 524        spin_lock_irq(&kernfs_open_node_lock);
 525
 526        if (!kn->attr.open && new_on) {
 527                kn->attr.open = new_on;
 528                new_on = NULL;
 529        }
 530
 531        on = kn->attr.open;
 532        if (on)
 533                list_add_tail(&of->list, &on->files);
 534
 535        spin_unlock_irq(&kernfs_open_node_lock);
 536        mutex_unlock(&kernfs_open_file_mutex);
 537
 538        if (on) {
 539                kfree(new_on);
 540                return 0;
 541        }
 542
 543        /* not there, initialize a new one and retry */
 544        new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
 545        if (!new_on)
 546                return -ENOMEM;
 547
 548        atomic_set(&new_on->event, 1);
 549        init_waitqueue_head(&new_on->poll);
 550        INIT_LIST_HEAD(&new_on->files);
 551        goto retry;
 552}
 553
 554/**
 555 *      kernfs_unlink_open_file - Unlink @of from @kn.
 556 *
 557 *      @kn: target kernfs_node
 558 *      @of: associated kernfs_open_file
 559 *
 560 *      Unlink @of from list of @kn's associated open files. If list of
 561 *      associated open files becomes empty, disassociate and free
 562 *      kernfs_open_node.
 563 *
 564 *      LOCKING:
 565 *      None.
 566 */
 567static void kernfs_unlink_open_file(struct kernfs_node *kn,
 568                                 struct kernfs_open_file *of)
 569{
 570        struct kernfs_open_node *on = kn->attr.open;
 571        unsigned long flags;
 572
 573        mutex_lock(&kernfs_open_file_mutex);
 574        spin_lock_irqsave(&kernfs_open_node_lock, flags);
 575
 576        if (of)
 577                list_del(&of->list);
 578
 579        if (list_empty(&on->files))
 580                kn->attr.open = NULL;
 581        else
 582                on = NULL;
 583
 584        spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 585        mutex_unlock(&kernfs_open_file_mutex);
 586
 587        kfree(on);
 588}
 589
 590static int kernfs_fop_open(struct inode *inode, struct file *file)
 591{
 592        struct kernfs_node *kn = inode->i_private;
 593        struct kernfs_root *root = kernfs_root(kn);
 594        const struct kernfs_ops *ops;
 595        struct kernfs_open_file *of;
 596        bool has_read, has_write, has_mmap;
 597        int error = -EACCES;
 598
 599        if (!kernfs_get_active(kn))
 600                return -ENODEV;
 601
 602        ops = kernfs_ops(kn);
 603
 604        has_read = ops->seq_show || ops->read || ops->mmap;
 605        has_write = ops->write || ops->mmap;
 606        has_mmap = ops->mmap;
 607
 608        /* see the flag definition for details */
 609        if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
 610                if ((file->f_mode & FMODE_WRITE) &&
 611                    (!(inode->i_mode & S_IWUGO) || !has_write))
 612                        goto err_out;
 613
 614                if ((file->f_mode & FMODE_READ) &&
 615                    (!(inode->i_mode & S_IRUGO) || !has_read))
 616                        goto err_out;
 617        }
 618
 619        /* allocate a kernfs_open_file for the file */
 620        error = -ENOMEM;
 621        of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
 622        if (!of)
 623                goto err_out;
 624
 625        /*
 626         * The following is done to give a different lockdep key to
 627         * @of->mutex for files which implement mmap.  This is a rather
 628         * crude way to avoid false positive lockdep warning around
 629         * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
 630         * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
 631         * which mm->mmap_lock nests, while holding @of->mutex.  As each
 632         * open file has a separate mutex, it's okay as long as those don't
 633         * happen on the same file.  At this point, we can't easily give
 634         * each file a separate locking class.  Let's differentiate on
 635         * whether the file has mmap or not for now.
 636         *
 637         * Both paths of the branch look the same.  They're supposed to
 638         * look that way and give @of->mutex different static lockdep keys.
 639         */
 640        if (has_mmap)
 641                mutex_init(&of->mutex);
 642        else
 643                mutex_init(&of->mutex);
 644
 645        of->kn = kn;
 646        of->file = file;
 647
 648        /*
 649         * Write path needs to atomic_write_len outside active reference.
 650         * Cache it in open_file.  See kernfs_fop_write_iter() for details.
 651         */
 652        of->atomic_write_len = ops->atomic_write_len;
 653
 654        error = -EINVAL;
 655        /*
 656         * ->seq_show is incompatible with ->prealloc,
 657         * as seq_read does its own allocation.
 658         * ->read must be used instead.
 659         */
 660        if (ops->prealloc && ops->seq_show)
 661                goto err_free;
 662        if (ops->prealloc) {
 663                int len = of->atomic_write_len ?: PAGE_SIZE;
 664                of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
 665                error = -ENOMEM;
 666                if (!of->prealloc_buf)
 667                        goto err_free;
 668                mutex_init(&of->prealloc_mutex);
 669        }
 670
 671        /*
 672         * Always instantiate seq_file even if read access doesn't use
 673         * seq_file or is not requested.  This unifies private data access
 674         * and readable regular files are the vast majority anyway.
 675         */
 676        if (ops->seq_show)
 677                error = seq_open(file, &kernfs_seq_ops);
 678        else
 679                error = seq_open(file, NULL);
 680        if (error)
 681                goto err_free;
 682
 683        of->seq_file = file->private_data;
 684        of->seq_file->private = of;
 685
 686        /* seq_file clears PWRITE unconditionally, restore it if WRITE */
 687        if (file->f_mode & FMODE_WRITE)
 688                file->f_mode |= FMODE_PWRITE;
 689
 690        /* make sure we have open node struct */
 691        error = kernfs_get_open_node(kn, of);
 692        if (error)
 693                goto err_seq_release;
 694
 695        if (ops->open) {
 696                /* nobody has access to @of yet, skip @of->mutex */
 697                error = ops->open(of);
 698                if (error)
 699                        goto err_put_node;
 700        }
 701
 702        /* open succeeded, put active references */
 703        kernfs_put_active(kn);
 704        return 0;
 705
 706err_put_node:
 707        kernfs_unlink_open_file(kn, of);
 708err_seq_release:
 709        seq_release(inode, file);
 710err_free:
 711        kfree(of->prealloc_buf);
 712        kfree(of);
 713err_out:
 714        kernfs_put_active(kn);
 715        return error;
 716}
 717
 718/* used from release/drain to ensure that ->release() is called exactly once */
 719static void kernfs_release_file(struct kernfs_node *kn,
 720                                struct kernfs_open_file *of)
 721{
 722        /*
 723         * @of is guaranteed to have no other file operations in flight and
 724         * we just want to synchronize release and drain paths.
 725         * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
 726         * here because drain path may be called from places which can
 727         * cause circular dependency.
 728         */
 729        lockdep_assert_held(&kernfs_open_file_mutex);
 730
 731        if (!of->released) {
 732                /*
 733                 * A file is never detached without being released and we
 734                 * need to be able to release files which are deactivated
 735                 * and being drained.  Don't use kernfs_ops().
 736                 */
 737                kn->attr.ops->release(of);
 738                of->released = true;
 739        }
 740}
 741
 742static int kernfs_fop_release(struct inode *inode, struct file *filp)
 743{
 744        struct kernfs_node *kn = inode->i_private;
 745        struct kernfs_open_file *of = kernfs_of(filp);
 746
 747        if (kn->flags & KERNFS_HAS_RELEASE) {
 748                mutex_lock(&kernfs_open_file_mutex);
 749                kernfs_release_file(kn, of);
 750                mutex_unlock(&kernfs_open_file_mutex);
 751        }
 752
 753        kernfs_unlink_open_file(kn, of);
 754        seq_release(inode, filp);
 755        kfree(of->prealloc_buf);
 756        kfree(of);
 757
 758        return 0;
 759}
 760
 761void kernfs_drain_open_files(struct kernfs_node *kn)
 762{
 763        struct kernfs_open_node *on;
 764        struct kernfs_open_file *of;
 765
 766        if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
 767                return;
 768
 769        /*
 770         * lockless opportunistic check is safe below because no one is adding to
 771         * ->attr.open at this point of time. This check allows early bail out
 772         * if ->attr.open is already NULL. kernfs_unlink_open_file makes
 773         * ->attr.open NULL only while holding kernfs_open_file_mutex so below
 774         * check under kernfs_open_file_mutex will ensure bailing out if
 775         * ->attr.open became NULL while waiting for the mutex.
 776         */
 777        if (!kn->attr.open)
 778                return;
 779
 780        mutex_lock(&kernfs_open_file_mutex);
 781        if (!kn->attr.open) {
 782                mutex_unlock(&kernfs_open_file_mutex);
 783                return;
 784        }
 785
 786        on = kn->attr.open;
 787
 788        list_for_each_entry(of, &on->files, list) {
 789                struct inode *inode = file_inode(of->file);
 790
 791                if (kn->flags & KERNFS_HAS_MMAP)
 792                        unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 793
 794                if (kn->flags & KERNFS_HAS_RELEASE)
 795                        kernfs_release_file(kn, of);
 796        }
 797
 798        mutex_unlock(&kernfs_open_file_mutex);
 799}
 800
 801/*
 802 * Kernfs attribute files are pollable.  The idea is that you read
 803 * the content and then you use 'poll' or 'select' to wait for
 804 * the content to change.  When the content changes (assuming the
 805 * manager for the kobject supports notification), poll will
 806 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
 807 * it is waiting for read, write, or exceptions.
 808 * Once poll/select indicates that the value has changed, you
 809 * need to close and re-open the file, or seek to 0 and read again.
 810 * Reminder: this only works for attributes which actively support
 811 * it, and it is not possible to test an attribute from userspace
 812 * to see if it supports poll (Neither 'poll' nor 'select' return
 813 * an appropriate error code).  When in doubt, set a suitable timeout value.
 814 */
 815__poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
 816{
 817        struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
 818        struct kernfs_open_node *on = kn->attr.open;
 819
 820        poll_wait(of->file, &on->poll, wait);
 821
 822        if (of->event != atomic_read(&on->event))
 823                return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 824
 825        return DEFAULT_POLLMASK;
 826}
 827
 828static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
 829{
 830        struct kernfs_open_file *of = kernfs_of(filp);
 831        struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
 832        __poll_t ret;
 833
 834        if (!kernfs_get_active(kn))
 835                return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 836
 837        if (kn->attr.ops->poll)
 838                ret = kn->attr.ops->poll(of, wait);
 839        else
 840                ret = kernfs_generic_poll(of, wait);
 841
 842        kernfs_put_active(kn);
 843        return ret;
 844}
 845
 846static void kernfs_notify_workfn(struct work_struct *work)
 847{
 848        struct kernfs_node *kn;
 849        struct kernfs_super_info *info;
 850        struct kernfs_root *root;
 851repeat:
 852        /* pop one off the notify_list */
 853        spin_lock_irq(&kernfs_notify_lock);
 854        kn = kernfs_notify_list;
 855        if (kn == KERNFS_NOTIFY_EOL) {
 856                spin_unlock_irq(&kernfs_notify_lock);
 857                return;
 858        }
 859        kernfs_notify_list = kn->attr.notify_next;
 860        kn->attr.notify_next = NULL;
 861        spin_unlock_irq(&kernfs_notify_lock);
 862
 863        root = kernfs_root(kn);
 864        /* kick fsnotify */
 865        down_write(&root->kernfs_rwsem);
 866
 867        list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
 868                struct kernfs_node *parent;
 869                struct inode *p_inode = NULL;
 870                struct inode *inode;
 871                struct qstr name;
 872
 873                /*
 874                 * We want fsnotify_modify() on @kn but as the
 875                 * modifications aren't originating from userland don't
 876                 * have the matching @file available.  Look up the inodes
 877                 * and generate the events manually.
 878                 */
 879                inode = ilookup(info->sb, kernfs_ino(kn));
 880                if (!inode)
 881                        continue;
 882
 883                name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
 884                parent = kernfs_get_parent(kn);
 885                if (parent) {
 886                        p_inode = ilookup(info->sb, kernfs_ino(parent));
 887                        if (p_inode) {
 888                                fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
 889                                         inode, FSNOTIFY_EVENT_INODE,
 890                                         p_inode, &name, inode, 0);
 891                                iput(p_inode);
 892                        }
 893
 894                        kernfs_put(parent);
 895                }
 896
 897                if (!p_inode)
 898                        fsnotify_inode(inode, FS_MODIFY);
 899
 900                iput(inode);
 901        }
 902
 903        up_write(&root->kernfs_rwsem);
 904        kernfs_put(kn);
 905        goto repeat;
 906}
 907
 908/**
 909 * kernfs_notify - notify a kernfs file
 910 * @kn: file to notify
 911 *
 912 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
 913 * context.
 914 */
 915void kernfs_notify(struct kernfs_node *kn)
 916{
 917        static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
 918        unsigned long flags;
 919        struct kernfs_open_node *on;
 920
 921        if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
 922                return;
 923
 924        /* kick poll immediately */
 925        spin_lock_irqsave(&kernfs_open_node_lock, flags);
 926        on = kn->attr.open;
 927        if (on) {
 928                atomic_inc(&on->event);
 929                wake_up_interruptible(&on->poll);
 930        }
 931        spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 932
 933        /* schedule work to kick fsnotify */
 934        spin_lock_irqsave(&kernfs_notify_lock, flags);
 935        if (!kn->attr.notify_next) {
 936                kernfs_get(kn);
 937                kn->attr.notify_next = kernfs_notify_list;
 938                kernfs_notify_list = kn;
 939                schedule_work(&kernfs_notify_work);
 940        }
 941        spin_unlock_irqrestore(&kernfs_notify_lock, flags);
 942}
 943EXPORT_SYMBOL_GPL(kernfs_notify);
 944
 945const struct file_operations kernfs_file_fops = {
 946        .read_iter      = kernfs_fop_read_iter,
 947        .write_iter     = kernfs_fop_write_iter,
 948        .llseek         = generic_file_llseek,
 949        .mmap           = kernfs_fop_mmap,
 950        .open           = kernfs_fop_open,
 951        .release        = kernfs_fop_release,
 952        .poll           = kernfs_fop_poll,
 953        .fsync          = noop_fsync,
 954        .splice_read    = generic_file_splice_read,
 955        .splice_write   = iter_file_splice_write,
 956};
 957
 958/**
 959 * __kernfs_create_file - kernfs internal function to create a file
 960 * @parent: directory to create the file in
 961 * @name: name of the file
 962 * @mode: mode of the file
 963 * @uid: uid of the file
 964 * @gid: gid of the file
 965 * @size: size of the file
 966 * @ops: kernfs operations for the file
 967 * @priv: private data for the file
 968 * @ns: optional namespace tag of the file
 969 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
 970 *
 971 * Returns the created node on success, ERR_PTR() value on error.
 972 */
 973struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
 974                                         const char *name,
 975                                         umode_t mode, kuid_t uid, kgid_t gid,
 976                                         loff_t size,
 977                                         const struct kernfs_ops *ops,
 978                                         void *priv, const void *ns,
 979                                         struct lock_class_key *key)
 980{
 981        struct kernfs_node *kn;
 982        unsigned flags;
 983        int rc;
 984
 985        flags = KERNFS_FILE;
 986
 987        kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
 988                             uid, gid, flags);
 989        if (!kn)
 990                return ERR_PTR(-ENOMEM);
 991
 992        kn->attr.ops = ops;
 993        kn->attr.size = size;
 994        kn->ns = ns;
 995        kn->priv = priv;
 996
 997#ifdef CONFIG_DEBUG_LOCK_ALLOC
 998        if (key) {
 999                lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1000                kn->flags |= KERNFS_LOCKDEP;
1001        }
1002#endif
1003
1004        /*
1005         * kn->attr.ops is accessible only while holding active ref.  We
1006         * need to know whether some ops are implemented outside active
1007         * ref.  Cache their existence in flags.
1008         */
1009        if (ops->seq_show)
1010                kn->flags |= KERNFS_HAS_SEQ_SHOW;
1011        if (ops->mmap)
1012                kn->flags |= KERNFS_HAS_MMAP;
1013        if (ops->release)
1014                kn->flags |= KERNFS_HAS_RELEASE;
1015
1016        rc = kernfs_add_one(kn);
1017        if (rc) {
1018                kernfs_put(kn);
1019                return ERR_PTR(rc);
1020        }
1021        return kn;
1022}
1023