linux/fs/namespace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>         /* init_rootfs */
  21#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  22#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
  28#include <linux/proc_fs.h>
  29#include <linux/task_work.h>
  30#include <linux/sched/task.h>
  31#include <uapi/linux/mount.h>
  32#include <linux/fs_context.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/mnt_idmapping.h>
  35
  36#include "pnode.h"
  37#include "internal.h"
  38
  39/* Maximum number of mounts in a mount namespace */
  40static unsigned int sysctl_mount_max __read_mostly = 100000;
  41
  42static unsigned int m_hash_mask __read_mostly;
  43static unsigned int m_hash_shift __read_mostly;
  44static unsigned int mp_hash_mask __read_mostly;
  45static unsigned int mp_hash_shift __read_mostly;
  46
  47static __initdata unsigned long mhash_entries;
  48static int __init set_mhash_entries(char *str)
  49{
  50        if (!str)
  51                return 0;
  52        mhash_entries = simple_strtoul(str, &str, 0);
  53        return 1;
  54}
  55__setup("mhash_entries=", set_mhash_entries);
  56
  57static __initdata unsigned long mphash_entries;
  58static int __init set_mphash_entries(char *str)
  59{
  60        if (!str)
  61                return 0;
  62        mphash_entries = simple_strtoul(str, &str, 0);
  63        return 1;
  64}
  65__setup("mphash_entries=", set_mphash_entries);
  66
  67static u64 event;
  68static DEFINE_IDA(mnt_id_ida);
  69static DEFINE_IDA(mnt_group_ida);
  70
  71static struct hlist_head *mount_hashtable __read_mostly;
  72static struct hlist_head *mountpoint_hashtable __read_mostly;
  73static struct kmem_cache *mnt_cache __read_mostly;
  74static DECLARE_RWSEM(namespace_sem);
  75static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
  76static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
  77
  78struct mount_kattr {
  79        unsigned int attr_set;
  80        unsigned int attr_clr;
  81        unsigned int propagation;
  82        unsigned int lookup_flags;
  83        bool recurse;
  84        struct user_namespace *mnt_userns;
  85};
  86
  87/* /sys/fs */
  88struct kobject *fs_kobj;
  89EXPORT_SYMBOL_GPL(fs_kobj);
  90
  91/*
  92 * vfsmount lock may be taken for read to prevent changes to the
  93 * vfsmount hash, ie. during mountpoint lookups or walking back
  94 * up the tree.
  95 *
  96 * It should be taken for write in all cases where the vfsmount
  97 * tree or hash is modified or when a vfsmount structure is modified.
  98 */
  99__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
 100
 101static inline void lock_mount_hash(void)
 102{
 103        write_seqlock(&mount_lock);
 104}
 105
 106static inline void unlock_mount_hash(void)
 107{
 108        write_sequnlock(&mount_lock);
 109}
 110
 111static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
 112{
 113        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
 114        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
 115        tmp = tmp + (tmp >> m_hash_shift);
 116        return &mount_hashtable[tmp & m_hash_mask];
 117}
 118
 119static inline struct hlist_head *mp_hash(struct dentry *dentry)
 120{
 121        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 122        tmp = tmp + (tmp >> mp_hash_shift);
 123        return &mountpoint_hashtable[tmp & mp_hash_mask];
 124}
 125
 126static int mnt_alloc_id(struct mount *mnt)
 127{
 128        int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 129
 130        if (res < 0)
 131                return res;
 132        mnt->mnt_id = res;
 133        return 0;
 134}
 135
 136static void mnt_free_id(struct mount *mnt)
 137{
 138        ida_free(&mnt_id_ida, mnt->mnt_id);
 139}
 140
 141/*
 142 * Allocate a new peer group ID
 143 */
 144static int mnt_alloc_group_id(struct mount *mnt)
 145{
 146        int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 147
 148        if (res < 0)
 149                return res;
 150        mnt->mnt_group_id = res;
 151        return 0;
 152}
 153
 154/*
 155 * Release a peer group ID
 156 */
 157void mnt_release_group_id(struct mount *mnt)
 158{
 159        ida_free(&mnt_group_ida, mnt->mnt_group_id);
 160        mnt->mnt_group_id = 0;
 161}
 162
 163/*
 164 * vfsmount lock must be held for read
 165 */
 166static inline void mnt_add_count(struct mount *mnt, int n)
 167{
 168#ifdef CONFIG_SMP
 169        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 170#else
 171        preempt_disable();
 172        mnt->mnt_count += n;
 173        preempt_enable();
 174#endif
 175}
 176
 177/*
 178 * vfsmount lock must be held for write
 179 */
 180int mnt_get_count(struct mount *mnt)
 181{
 182#ifdef CONFIG_SMP
 183        int count = 0;
 184        int cpu;
 185
 186        for_each_possible_cpu(cpu) {
 187                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 188        }
 189
 190        return count;
 191#else
 192        return mnt->mnt_count;
 193#endif
 194}
 195
 196static struct mount *alloc_vfsmnt(const char *name)
 197{
 198        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 199        if (mnt) {
 200                int err;
 201
 202                err = mnt_alloc_id(mnt);
 203                if (err)
 204                        goto out_free_cache;
 205
 206                if (name) {
 207                        mnt->mnt_devname = kstrdup_const(name,
 208                                                         GFP_KERNEL_ACCOUNT);
 209                        if (!mnt->mnt_devname)
 210                                goto out_free_id;
 211                }
 212
 213#ifdef CONFIG_SMP
 214                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 215                if (!mnt->mnt_pcp)
 216                        goto out_free_devname;
 217
 218                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 219#else
 220                mnt->mnt_count = 1;
 221                mnt->mnt_writers = 0;
 222#endif
 223
 224                INIT_HLIST_NODE(&mnt->mnt_hash);
 225                INIT_LIST_HEAD(&mnt->mnt_child);
 226                INIT_LIST_HEAD(&mnt->mnt_mounts);
 227                INIT_LIST_HEAD(&mnt->mnt_list);
 228                INIT_LIST_HEAD(&mnt->mnt_expire);
 229                INIT_LIST_HEAD(&mnt->mnt_share);
 230                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 231                INIT_LIST_HEAD(&mnt->mnt_slave);
 232                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 233                INIT_LIST_HEAD(&mnt->mnt_umounting);
 234                INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 235                mnt->mnt.mnt_userns = &init_user_ns;
 236        }
 237        return mnt;
 238
 239#ifdef CONFIG_SMP
 240out_free_devname:
 241        kfree_const(mnt->mnt_devname);
 242#endif
 243out_free_id:
 244        mnt_free_id(mnt);
 245out_free_cache:
 246        kmem_cache_free(mnt_cache, mnt);
 247        return NULL;
 248}
 249
 250/*
 251 * Most r/o checks on a fs are for operations that take
 252 * discrete amounts of time, like a write() or unlink().
 253 * We must keep track of when those operations start
 254 * (for permission checks) and when they end, so that
 255 * we can determine when writes are able to occur to
 256 * a filesystem.
 257 */
 258/*
 259 * __mnt_is_readonly: check whether a mount is read-only
 260 * @mnt: the mount to check for its write status
 261 *
 262 * This shouldn't be used directly ouside of the VFS.
 263 * It does not guarantee that the filesystem will stay
 264 * r/w, just that it is right *now*.  This can not and
 265 * should not be used in place of IS_RDONLY(inode).
 266 * mnt_want/drop_write() will _keep_ the filesystem
 267 * r/w.
 268 */
 269bool __mnt_is_readonly(struct vfsmount *mnt)
 270{
 271        return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 272}
 273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 274
 275static inline void mnt_inc_writers(struct mount *mnt)
 276{
 277#ifdef CONFIG_SMP
 278        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 279#else
 280        mnt->mnt_writers++;
 281#endif
 282}
 283
 284static inline void mnt_dec_writers(struct mount *mnt)
 285{
 286#ifdef CONFIG_SMP
 287        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 288#else
 289        mnt->mnt_writers--;
 290#endif
 291}
 292
 293static unsigned int mnt_get_writers(struct mount *mnt)
 294{
 295#ifdef CONFIG_SMP
 296        unsigned int count = 0;
 297        int cpu;
 298
 299        for_each_possible_cpu(cpu) {
 300                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 301        }
 302
 303        return count;
 304#else
 305        return mnt->mnt_writers;
 306#endif
 307}
 308
 309static int mnt_is_readonly(struct vfsmount *mnt)
 310{
 311        if (mnt->mnt_sb->s_readonly_remount)
 312                return 1;
 313        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 314        smp_rmb();
 315        return __mnt_is_readonly(mnt);
 316}
 317
 318/*
 319 * Most r/o & frozen checks on a fs are for operations that take discrete
 320 * amounts of time, like a write() or unlink().  We must keep track of when
 321 * those operations start (for permission checks) and when they end, so that we
 322 * can determine when writes are able to occur to a filesystem.
 323 */
 324/**
 325 * __mnt_want_write - get write access to a mount without freeze protection
 326 * @m: the mount on which to take a write
 327 *
 328 * This tells the low-level filesystem that a write is about to be performed to
 329 * it, and makes sure that writes are allowed (mnt it read-write) before
 330 * returning success. This operation does not protect against filesystem being
 331 * frozen. When the write operation is finished, __mnt_drop_write() must be
 332 * called. This is effectively a refcount.
 333 */
 334int __mnt_want_write(struct vfsmount *m)
 335{
 336        struct mount *mnt = real_mount(m);
 337        int ret = 0;
 338
 339        preempt_disable();
 340        mnt_inc_writers(mnt);
 341        /*
 342         * The store to mnt_inc_writers must be visible before we pass
 343         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 344         * incremented count after it has set MNT_WRITE_HOLD.
 345         */
 346        smp_mb();
 347        might_lock(&mount_lock.lock);
 348        while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
 349                if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
 350                        cpu_relax();
 351                } else {
 352                        /*
 353                         * This prevents priority inversion, if the task
 354                         * setting MNT_WRITE_HOLD got preempted on a remote
 355                         * CPU, and it prevents life lock if the task setting
 356                         * MNT_WRITE_HOLD has a lower priority and is bound to
 357                         * the same CPU as the task that is spinning here.
 358                         */
 359                        preempt_enable();
 360                        lock_mount_hash();
 361                        unlock_mount_hash();
 362                        preempt_disable();
 363                }
 364        }
 365        /*
 366         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 367         * be set to match its requirements. So we must not load that until
 368         * MNT_WRITE_HOLD is cleared.
 369         */
 370        smp_rmb();
 371        if (mnt_is_readonly(m)) {
 372                mnt_dec_writers(mnt);
 373                ret = -EROFS;
 374        }
 375        preempt_enable();
 376
 377        return ret;
 378}
 379
 380/**
 381 * mnt_want_write - get write access to a mount
 382 * @m: the mount on which to take a write
 383 *
 384 * This tells the low-level filesystem that a write is about to be performed to
 385 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 386 * is not frozen) before returning success.  When the write operation is
 387 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 388 */
 389int mnt_want_write(struct vfsmount *m)
 390{
 391        int ret;
 392
 393        sb_start_write(m->mnt_sb);
 394        ret = __mnt_want_write(m);
 395        if (ret)
 396                sb_end_write(m->mnt_sb);
 397        return ret;
 398}
 399EXPORT_SYMBOL_GPL(mnt_want_write);
 400
 401/**
 402 * __mnt_want_write_file - get write access to a file's mount
 403 * @file: the file who's mount on which to take a write
 404 *
 405 * This is like __mnt_want_write, but if the file is already open for writing it
 406 * skips incrementing mnt_writers (since the open file already has a reference)
 407 * and instead only does the check for emergency r/o remounts.  This must be
 408 * paired with __mnt_drop_write_file.
 409 */
 410int __mnt_want_write_file(struct file *file)
 411{
 412        if (file->f_mode & FMODE_WRITER) {
 413                /*
 414                 * Superblock may have become readonly while there are still
 415                 * writable fd's, e.g. due to a fs error with errors=remount-ro
 416                 */
 417                if (__mnt_is_readonly(file->f_path.mnt))
 418                        return -EROFS;
 419                return 0;
 420        }
 421        return __mnt_want_write(file->f_path.mnt);
 422}
 423
 424/**
 425 * mnt_want_write_file - get write access to a file's mount
 426 * @file: the file who's mount on which to take a write
 427 *
 428 * This is like mnt_want_write, but if the file is already open for writing it
 429 * skips incrementing mnt_writers (since the open file already has a reference)
 430 * and instead only does the freeze protection and the check for emergency r/o
 431 * remounts.  This must be paired with mnt_drop_write_file.
 432 */
 433int mnt_want_write_file(struct file *file)
 434{
 435        int ret;
 436
 437        sb_start_write(file_inode(file)->i_sb);
 438        ret = __mnt_want_write_file(file);
 439        if (ret)
 440                sb_end_write(file_inode(file)->i_sb);
 441        return ret;
 442}
 443EXPORT_SYMBOL_GPL(mnt_want_write_file);
 444
 445/**
 446 * __mnt_drop_write - give up write access to a mount
 447 * @mnt: the mount on which to give up write access
 448 *
 449 * Tells the low-level filesystem that we are done
 450 * performing writes to it.  Must be matched with
 451 * __mnt_want_write() call above.
 452 */
 453void __mnt_drop_write(struct vfsmount *mnt)
 454{
 455        preempt_disable();
 456        mnt_dec_writers(real_mount(mnt));
 457        preempt_enable();
 458}
 459
 460/**
 461 * mnt_drop_write - give up write access to a mount
 462 * @mnt: the mount on which to give up write access
 463 *
 464 * Tells the low-level filesystem that we are done performing writes to it and
 465 * also allows filesystem to be frozen again.  Must be matched with
 466 * mnt_want_write() call above.
 467 */
 468void mnt_drop_write(struct vfsmount *mnt)
 469{
 470        __mnt_drop_write(mnt);
 471        sb_end_write(mnt->mnt_sb);
 472}
 473EXPORT_SYMBOL_GPL(mnt_drop_write);
 474
 475void __mnt_drop_write_file(struct file *file)
 476{
 477        if (!(file->f_mode & FMODE_WRITER))
 478                __mnt_drop_write(file->f_path.mnt);
 479}
 480
 481void mnt_drop_write_file(struct file *file)
 482{
 483        __mnt_drop_write_file(file);
 484        sb_end_write(file_inode(file)->i_sb);
 485}
 486EXPORT_SYMBOL(mnt_drop_write_file);
 487
 488/**
 489 * mnt_hold_writers - prevent write access to the given mount
 490 * @mnt: mnt to prevent write access to
 491 *
 492 * Prevents write access to @mnt if there are no active writers for @mnt.
 493 * This function needs to be called and return successfully before changing
 494 * properties of @mnt that need to remain stable for callers with write access
 495 * to @mnt.
 496 *
 497 * After this functions has been called successfully callers must pair it with
 498 * a call to mnt_unhold_writers() in order to stop preventing write access to
 499 * @mnt.
 500 *
 501 * Context: This function expects lock_mount_hash() to be held serializing
 502 *          setting MNT_WRITE_HOLD.
 503 * Return: On success 0 is returned.
 504 *         On error, -EBUSY is returned.
 505 */
 506static inline int mnt_hold_writers(struct mount *mnt)
 507{
 508        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 509        /*
 510         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 511         * should be visible before we do.
 512         */
 513        smp_mb();
 514
 515        /*
 516         * With writers on hold, if this value is zero, then there are
 517         * definitely no active writers (although held writers may subsequently
 518         * increment the count, they'll have to wait, and decrement it after
 519         * seeing MNT_READONLY).
 520         *
 521         * It is OK to have counter incremented on one CPU and decremented on
 522         * another: the sum will add up correctly. The danger would be when we
 523         * sum up each counter, if we read a counter before it is incremented,
 524         * but then read another CPU's count which it has been subsequently
 525         * decremented from -- we would see more decrements than we should.
 526         * MNT_WRITE_HOLD protects against this scenario, because
 527         * mnt_want_write first increments count, then smp_mb, then spins on
 528         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 529         * we're counting up here.
 530         */
 531        if (mnt_get_writers(mnt) > 0)
 532                return -EBUSY;
 533
 534        return 0;
 535}
 536
 537/**
 538 * mnt_unhold_writers - stop preventing write access to the given mount
 539 * @mnt: mnt to stop preventing write access to
 540 *
 541 * Stop preventing write access to @mnt allowing callers to gain write access
 542 * to @mnt again.
 543 *
 544 * This function can only be called after a successful call to
 545 * mnt_hold_writers().
 546 *
 547 * Context: This function expects lock_mount_hash() to be held.
 548 */
 549static inline void mnt_unhold_writers(struct mount *mnt)
 550{
 551        /*
 552         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 553         * that become unheld will see MNT_READONLY.
 554         */
 555        smp_wmb();
 556        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 557}
 558
 559static int mnt_make_readonly(struct mount *mnt)
 560{
 561        int ret;
 562
 563        ret = mnt_hold_writers(mnt);
 564        if (!ret)
 565                mnt->mnt.mnt_flags |= MNT_READONLY;
 566        mnt_unhold_writers(mnt);
 567        return ret;
 568}
 569
 570int sb_prepare_remount_readonly(struct super_block *sb)
 571{
 572        struct mount *mnt;
 573        int err = 0;
 574
 575        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 576        if (atomic_long_read(&sb->s_remove_count))
 577                return -EBUSY;
 578
 579        lock_mount_hash();
 580        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 581                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 582                        err = mnt_hold_writers(mnt);
 583                        if (err)
 584                                break;
 585                }
 586        }
 587        if (!err && atomic_long_read(&sb->s_remove_count))
 588                err = -EBUSY;
 589
 590        if (!err) {
 591                sb->s_readonly_remount = 1;
 592                smp_wmb();
 593        }
 594        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 595                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 596                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 597        }
 598        unlock_mount_hash();
 599
 600        return err;
 601}
 602
 603static void free_vfsmnt(struct mount *mnt)
 604{
 605        struct user_namespace *mnt_userns;
 606
 607        mnt_userns = mnt_user_ns(&mnt->mnt);
 608        if (!initial_idmapping(mnt_userns))
 609                put_user_ns(mnt_userns);
 610        kfree_const(mnt->mnt_devname);
 611#ifdef CONFIG_SMP
 612        free_percpu(mnt->mnt_pcp);
 613#endif
 614        kmem_cache_free(mnt_cache, mnt);
 615}
 616
 617static void delayed_free_vfsmnt(struct rcu_head *head)
 618{
 619        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 620}
 621
 622/* call under rcu_read_lock */
 623int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 624{
 625        struct mount *mnt;
 626        if (read_seqretry(&mount_lock, seq))
 627                return 1;
 628        if (bastard == NULL)
 629                return 0;
 630        mnt = real_mount(bastard);
 631        mnt_add_count(mnt, 1);
 632        smp_mb();                       // see mntput_no_expire()
 633        if (likely(!read_seqretry(&mount_lock, seq)))
 634                return 0;
 635        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 636                mnt_add_count(mnt, -1);
 637                return 1;
 638        }
 639        lock_mount_hash();
 640        if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 641                mnt_add_count(mnt, -1);
 642                unlock_mount_hash();
 643                return 1;
 644        }
 645        unlock_mount_hash();
 646        /* caller will mntput() */
 647        return -1;
 648}
 649
 650/* call under rcu_read_lock */
 651bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 652{
 653        int res = __legitimize_mnt(bastard, seq);
 654        if (likely(!res))
 655                return true;
 656        if (unlikely(res < 0)) {
 657                rcu_read_unlock();
 658                mntput(bastard);
 659                rcu_read_lock();
 660        }
 661        return false;
 662}
 663
 664/*
 665 * find the first mount at @dentry on vfsmount @mnt.
 666 * call under rcu_read_lock()
 667 */
 668struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 669{
 670        struct hlist_head *head = m_hash(mnt, dentry);
 671        struct mount *p;
 672
 673        hlist_for_each_entry_rcu(p, head, mnt_hash)
 674                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 675                        return p;
 676        return NULL;
 677}
 678
 679/*
 680 * lookup_mnt - Return the first child mount mounted at path
 681 *
 682 * "First" means first mounted chronologically.  If you create the
 683 * following mounts:
 684 *
 685 * mount /dev/sda1 /mnt
 686 * mount /dev/sda2 /mnt
 687 * mount /dev/sda3 /mnt
 688 *
 689 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 690 * return successively the root dentry and vfsmount of /dev/sda1, then
 691 * /dev/sda2, then /dev/sda3, then NULL.
 692 *
 693 * lookup_mnt takes a reference to the found vfsmount.
 694 */
 695struct vfsmount *lookup_mnt(const struct path *path)
 696{
 697        struct mount *child_mnt;
 698        struct vfsmount *m;
 699        unsigned seq;
 700
 701        rcu_read_lock();
 702        do {
 703                seq = read_seqbegin(&mount_lock);
 704                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 705                m = child_mnt ? &child_mnt->mnt : NULL;
 706        } while (!legitimize_mnt(m, seq));
 707        rcu_read_unlock();
 708        return m;
 709}
 710
 711static inline void lock_ns_list(struct mnt_namespace *ns)
 712{
 713        spin_lock(&ns->ns_lock);
 714}
 715
 716static inline void unlock_ns_list(struct mnt_namespace *ns)
 717{
 718        spin_unlock(&ns->ns_lock);
 719}
 720
 721static inline bool mnt_is_cursor(struct mount *mnt)
 722{
 723        return mnt->mnt.mnt_flags & MNT_CURSOR;
 724}
 725
 726/*
 727 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 728 *                         current mount namespace.
 729 *
 730 * The common case is dentries are not mountpoints at all and that
 731 * test is handled inline.  For the slow case when we are actually
 732 * dealing with a mountpoint of some kind, walk through all of the
 733 * mounts in the current mount namespace and test to see if the dentry
 734 * is a mountpoint.
 735 *
 736 * The mount_hashtable is not usable in the context because we
 737 * need to identify all mounts that may be in the current mount
 738 * namespace not just a mount that happens to have some specified
 739 * parent mount.
 740 */
 741bool __is_local_mountpoint(struct dentry *dentry)
 742{
 743        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 744        struct mount *mnt;
 745        bool is_covered = false;
 746
 747        down_read(&namespace_sem);
 748        lock_ns_list(ns);
 749        list_for_each_entry(mnt, &ns->list, mnt_list) {
 750                if (mnt_is_cursor(mnt))
 751                        continue;
 752                is_covered = (mnt->mnt_mountpoint == dentry);
 753                if (is_covered)
 754                        break;
 755        }
 756        unlock_ns_list(ns);
 757        up_read(&namespace_sem);
 758
 759        return is_covered;
 760}
 761
 762static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 763{
 764        struct hlist_head *chain = mp_hash(dentry);
 765        struct mountpoint *mp;
 766
 767        hlist_for_each_entry(mp, chain, m_hash) {
 768                if (mp->m_dentry == dentry) {
 769                        mp->m_count++;
 770                        return mp;
 771                }
 772        }
 773        return NULL;
 774}
 775
 776static struct mountpoint *get_mountpoint(struct dentry *dentry)
 777{
 778        struct mountpoint *mp, *new = NULL;
 779        int ret;
 780
 781        if (d_mountpoint(dentry)) {
 782                /* might be worth a WARN_ON() */
 783                if (d_unlinked(dentry))
 784                        return ERR_PTR(-ENOENT);
 785mountpoint:
 786                read_seqlock_excl(&mount_lock);
 787                mp = lookup_mountpoint(dentry);
 788                read_sequnlock_excl(&mount_lock);
 789                if (mp)
 790                        goto done;
 791        }
 792
 793        if (!new)
 794                new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 795        if (!new)
 796                return ERR_PTR(-ENOMEM);
 797
 798
 799        /* Exactly one processes may set d_mounted */
 800        ret = d_set_mounted(dentry);
 801
 802        /* Someone else set d_mounted? */
 803        if (ret == -EBUSY)
 804                goto mountpoint;
 805
 806        /* The dentry is not available as a mountpoint? */
 807        mp = ERR_PTR(ret);
 808        if (ret)
 809                goto done;
 810
 811        /* Add the new mountpoint to the hash table */
 812        read_seqlock_excl(&mount_lock);
 813        new->m_dentry = dget(dentry);
 814        new->m_count = 1;
 815        hlist_add_head(&new->m_hash, mp_hash(dentry));
 816        INIT_HLIST_HEAD(&new->m_list);
 817        read_sequnlock_excl(&mount_lock);
 818
 819        mp = new;
 820        new = NULL;
 821done:
 822        kfree(new);
 823        return mp;
 824}
 825
 826/*
 827 * vfsmount lock must be held.  Additionally, the caller is responsible
 828 * for serializing calls for given disposal list.
 829 */
 830static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 831{
 832        if (!--mp->m_count) {
 833                struct dentry *dentry = mp->m_dentry;
 834                BUG_ON(!hlist_empty(&mp->m_list));
 835                spin_lock(&dentry->d_lock);
 836                dentry->d_flags &= ~DCACHE_MOUNTED;
 837                spin_unlock(&dentry->d_lock);
 838                dput_to_list(dentry, list);
 839                hlist_del(&mp->m_hash);
 840                kfree(mp);
 841        }
 842}
 843
 844/* called with namespace_lock and vfsmount lock */
 845static void put_mountpoint(struct mountpoint *mp)
 846{
 847        __put_mountpoint(mp, &ex_mountpoints);
 848}
 849
 850static inline int check_mnt(struct mount *mnt)
 851{
 852        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 853}
 854
 855/*
 856 * vfsmount lock must be held for write
 857 */
 858static void touch_mnt_namespace(struct mnt_namespace *ns)
 859{
 860        if (ns) {
 861                ns->event = ++event;
 862                wake_up_interruptible(&ns->poll);
 863        }
 864}
 865
 866/*
 867 * vfsmount lock must be held for write
 868 */
 869static void __touch_mnt_namespace(struct mnt_namespace *ns)
 870{
 871        if (ns && ns->event != event) {
 872                ns->event = event;
 873                wake_up_interruptible(&ns->poll);
 874        }
 875}
 876
 877/*
 878 * vfsmount lock must be held for write
 879 */
 880static struct mountpoint *unhash_mnt(struct mount *mnt)
 881{
 882        struct mountpoint *mp;
 883        mnt->mnt_parent = mnt;
 884        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 885        list_del_init(&mnt->mnt_child);
 886        hlist_del_init_rcu(&mnt->mnt_hash);
 887        hlist_del_init(&mnt->mnt_mp_list);
 888        mp = mnt->mnt_mp;
 889        mnt->mnt_mp = NULL;
 890        return mp;
 891}
 892
 893/*
 894 * vfsmount lock must be held for write
 895 */
 896static void umount_mnt(struct mount *mnt)
 897{
 898        put_mountpoint(unhash_mnt(mnt));
 899}
 900
 901/*
 902 * vfsmount lock must be held for write
 903 */
 904void mnt_set_mountpoint(struct mount *mnt,
 905                        struct mountpoint *mp,
 906                        struct mount *child_mnt)
 907{
 908        mp->m_count++;
 909        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 910        child_mnt->mnt_mountpoint = mp->m_dentry;
 911        child_mnt->mnt_parent = mnt;
 912        child_mnt->mnt_mp = mp;
 913        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 914}
 915
 916static void __attach_mnt(struct mount *mnt, struct mount *parent)
 917{
 918        hlist_add_head_rcu(&mnt->mnt_hash,
 919                           m_hash(&parent->mnt, mnt->mnt_mountpoint));
 920        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 921}
 922
 923/*
 924 * vfsmount lock must be held for write
 925 */
 926static void attach_mnt(struct mount *mnt,
 927                        struct mount *parent,
 928                        struct mountpoint *mp)
 929{
 930        mnt_set_mountpoint(parent, mp, mnt);
 931        __attach_mnt(mnt, parent);
 932}
 933
 934void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 935{
 936        struct mountpoint *old_mp = mnt->mnt_mp;
 937        struct mount *old_parent = mnt->mnt_parent;
 938
 939        list_del_init(&mnt->mnt_child);
 940        hlist_del_init(&mnt->mnt_mp_list);
 941        hlist_del_init_rcu(&mnt->mnt_hash);
 942
 943        attach_mnt(mnt, parent, mp);
 944
 945        put_mountpoint(old_mp);
 946        mnt_add_count(old_parent, -1);
 947}
 948
 949/*
 950 * vfsmount lock must be held for write
 951 */
 952static void commit_tree(struct mount *mnt)
 953{
 954        struct mount *parent = mnt->mnt_parent;
 955        struct mount *m;
 956        LIST_HEAD(head);
 957        struct mnt_namespace *n = parent->mnt_ns;
 958
 959        BUG_ON(parent == mnt);
 960
 961        list_add_tail(&head, &mnt->mnt_list);
 962        list_for_each_entry(m, &head, mnt_list)
 963                m->mnt_ns = n;
 964
 965        list_splice(&head, n->list.prev);
 966
 967        n->mounts += n->pending_mounts;
 968        n->pending_mounts = 0;
 969
 970        __attach_mnt(mnt, parent);
 971        touch_mnt_namespace(n);
 972}
 973
 974static struct mount *next_mnt(struct mount *p, struct mount *root)
 975{
 976        struct list_head *next = p->mnt_mounts.next;
 977        if (next == &p->mnt_mounts) {
 978                while (1) {
 979                        if (p == root)
 980                                return NULL;
 981                        next = p->mnt_child.next;
 982                        if (next != &p->mnt_parent->mnt_mounts)
 983                                break;
 984                        p = p->mnt_parent;
 985                }
 986        }
 987        return list_entry(next, struct mount, mnt_child);
 988}
 989
 990static struct mount *skip_mnt_tree(struct mount *p)
 991{
 992        struct list_head *prev = p->mnt_mounts.prev;
 993        while (prev != &p->mnt_mounts) {
 994                p = list_entry(prev, struct mount, mnt_child);
 995                prev = p->mnt_mounts.prev;
 996        }
 997        return p;
 998}
 999
1000/**
1001 * vfs_create_mount - Create a mount for a configured superblock
1002 * @fc: The configuration context with the superblock attached
1003 *
1004 * Create a mount to an already configured superblock.  If necessary, the
1005 * caller should invoke vfs_get_tree() before calling this.
1006 *
1007 * Note that this does not attach the mount to anything.
1008 */
1009struct vfsmount *vfs_create_mount(struct fs_context *fc)
1010{
1011        struct mount *mnt;
1012        struct user_namespace *fs_userns;
1013
1014        if (!fc->root)
1015                return ERR_PTR(-EINVAL);
1016
1017        mnt = alloc_vfsmnt(fc->source ?: "none");
1018        if (!mnt)
1019                return ERR_PTR(-ENOMEM);
1020
1021        if (fc->sb_flags & SB_KERNMOUNT)
1022                mnt->mnt.mnt_flags = MNT_INTERNAL;
1023
1024        atomic_inc(&fc->root->d_sb->s_active);
1025        mnt->mnt.mnt_sb         = fc->root->d_sb;
1026        mnt->mnt.mnt_root       = dget(fc->root);
1027        mnt->mnt_mountpoint     = mnt->mnt.mnt_root;
1028        mnt->mnt_parent         = mnt;
1029
1030        fs_userns = mnt->mnt.mnt_sb->s_user_ns;
1031        if (!initial_idmapping(fs_userns))
1032                mnt->mnt.mnt_userns = get_user_ns(fs_userns);
1033
1034        lock_mount_hash();
1035        list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1036        unlock_mount_hash();
1037        return &mnt->mnt;
1038}
1039EXPORT_SYMBOL(vfs_create_mount);
1040
1041struct vfsmount *fc_mount(struct fs_context *fc)
1042{
1043        int err = vfs_get_tree(fc);
1044        if (!err) {
1045                up_write(&fc->root->d_sb->s_umount);
1046                return vfs_create_mount(fc);
1047        }
1048        return ERR_PTR(err);
1049}
1050EXPORT_SYMBOL(fc_mount);
1051
1052struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1053                                int flags, const char *name,
1054                                void *data)
1055{
1056        struct fs_context *fc;
1057        struct vfsmount *mnt;
1058        int ret = 0;
1059
1060        if (!type)
1061                return ERR_PTR(-EINVAL);
1062
1063        fc = fs_context_for_mount(type, flags);
1064        if (IS_ERR(fc))
1065                return ERR_CAST(fc);
1066
1067        if (name)
1068                ret = vfs_parse_fs_string(fc, "source",
1069                                          name, strlen(name));
1070        if (!ret)
1071                ret = parse_monolithic_mount_data(fc, data);
1072        if (!ret)
1073                mnt = fc_mount(fc);
1074        else
1075                mnt = ERR_PTR(ret);
1076
1077        put_fs_context(fc);
1078        return mnt;
1079}
1080EXPORT_SYMBOL_GPL(vfs_kern_mount);
1081
1082struct vfsmount *
1083vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1084             const char *name, void *data)
1085{
1086        /* Until it is worked out how to pass the user namespace
1087         * through from the parent mount to the submount don't support
1088         * unprivileged mounts with submounts.
1089         */
1090        if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1091                return ERR_PTR(-EPERM);
1092
1093        return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1094}
1095EXPORT_SYMBOL_GPL(vfs_submount);
1096
1097static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1098                                        int flag)
1099{
1100        struct super_block *sb = old->mnt.mnt_sb;
1101        struct mount *mnt;
1102        int err;
1103
1104        mnt = alloc_vfsmnt(old->mnt_devname);
1105        if (!mnt)
1106                return ERR_PTR(-ENOMEM);
1107
1108        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1109                mnt->mnt_group_id = 0; /* not a peer of original */
1110        else
1111                mnt->mnt_group_id = old->mnt_group_id;
1112
1113        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1114                err = mnt_alloc_group_id(mnt);
1115                if (err)
1116                        goto out_free;
1117        }
1118
1119        mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1120        mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1121
1122        atomic_inc(&sb->s_active);
1123        mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1124        if (!initial_idmapping(mnt->mnt.mnt_userns))
1125                mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1126        mnt->mnt.mnt_sb = sb;
1127        mnt->mnt.mnt_root = dget(root);
1128        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1129        mnt->mnt_parent = mnt;
1130        lock_mount_hash();
1131        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1132        unlock_mount_hash();
1133
1134        if ((flag & CL_SLAVE) ||
1135            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1136                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1137                mnt->mnt_master = old;
1138                CLEAR_MNT_SHARED(mnt);
1139        } else if (!(flag & CL_PRIVATE)) {
1140                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1141                        list_add(&mnt->mnt_share, &old->mnt_share);
1142                if (IS_MNT_SLAVE(old))
1143                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1144                mnt->mnt_master = old->mnt_master;
1145        } else {
1146                CLEAR_MNT_SHARED(mnt);
1147        }
1148        if (flag & CL_MAKE_SHARED)
1149                set_mnt_shared(mnt);
1150
1151        /* stick the duplicate mount on the same expiry list
1152         * as the original if that was on one */
1153        if (flag & CL_EXPIRE) {
1154                if (!list_empty(&old->mnt_expire))
1155                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1156        }
1157
1158        return mnt;
1159
1160 out_free:
1161        mnt_free_id(mnt);
1162        free_vfsmnt(mnt);
1163        return ERR_PTR(err);
1164}
1165
1166static void cleanup_mnt(struct mount *mnt)
1167{
1168        struct hlist_node *p;
1169        struct mount *m;
1170        /*
1171         * The warning here probably indicates that somebody messed
1172         * up a mnt_want/drop_write() pair.  If this happens, the
1173         * filesystem was probably unable to make r/w->r/o transitions.
1174         * The locking used to deal with mnt_count decrement provides barriers,
1175         * so mnt_get_writers() below is safe.
1176         */
1177        WARN_ON(mnt_get_writers(mnt));
1178        if (unlikely(mnt->mnt_pins.first))
1179                mnt_pin_kill(mnt);
1180        hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1181                hlist_del(&m->mnt_umount);
1182                mntput(&m->mnt);
1183        }
1184        fsnotify_vfsmount_delete(&mnt->mnt);
1185        dput(mnt->mnt.mnt_root);
1186        deactivate_super(mnt->mnt.mnt_sb);
1187        mnt_free_id(mnt);
1188        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1189}
1190
1191static void __cleanup_mnt(struct rcu_head *head)
1192{
1193        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1194}
1195
1196static LLIST_HEAD(delayed_mntput_list);
1197static void delayed_mntput(struct work_struct *unused)
1198{
1199        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1200        struct mount *m, *t;
1201
1202        llist_for_each_entry_safe(m, t, node, mnt_llist)
1203                cleanup_mnt(m);
1204}
1205static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1206
1207static void mntput_no_expire(struct mount *mnt)
1208{
1209        LIST_HEAD(list);
1210        int count;
1211
1212        rcu_read_lock();
1213        if (likely(READ_ONCE(mnt->mnt_ns))) {
1214                /*
1215                 * Since we don't do lock_mount_hash() here,
1216                 * ->mnt_ns can change under us.  However, if it's
1217                 * non-NULL, then there's a reference that won't
1218                 * be dropped until after an RCU delay done after
1219                 * turning ->mnt_ns NULL.  So if we observe it
1220                 * non-NULL under rcu_read_lock(), the reference
1221                 * we are dropping is not the final one.
1222                 */
1223                mnt_add_count(mnt, -1);
1224                rcu_read_unlock();
1225                return;
1226        }
1227        lock_mount_hash();
1228        /*
1229         * make sure that if __legitimize_mnt() has not seen us grab
1230         * mount_lock, we'll see their refcount increment here.
1231         */
1232        smp_mb();
1233        mnt_add_count(mnt, -1);
1234        count = mnt_get_count(mnt);
1235        if (count != 0) {
1236                WARN_ON(count < 0);
1237                rcu_read_unlock();
1238                unlock_mount_hash();
1239                return;
1240        }
1241        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1242                rcu_read_unlock();
1243                unlock_mount_hash();
1244                return;
1245        }
1246        mnt->mnt.mnt_flags |= MNT_DOOMED;
1247        rcu_read_unlock();
1248
1249        list_del(&mnt->mnt_instance);
1250
1251        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1252                struct mount *p, *tmp;
1253                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1254                        __put_mountpoint(unhash_mnt(p), &list);
1255                        hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1256                }
1257        }
1258        unlock_mount_hash();
1259        shrink_dentry_list(&list);
1260
1261        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1262                struct task_struct *task = current;
1263                if (likely(!(task->flags & PF_KTHREAD))) {
1264                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1265                        if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1266                                return;
1267                }
1268                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1269                        schedule_delayed_work(&delayed_mntput_work, 1);
1270                return;
1271        }
1272        cleanup_mnt(mnt);
1273}
1274
1275void mntput(struct vfsmount *mnt)
1276{
1277        if (mnt) {
1278                struct mount *m = real_mount(mnt);
1279                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1280                if (unlikely(m->mnt_expiry_mark))
1281                        m->mnt_expiry_mark = 0;
1282                mntput_no_expire(m);
1283        }
1284}
1285EXPORT_SYMBOL(mntput);
1286
1287struct vfsmount *mntget(struct vfsmount *mnt)
1288{
1289        if (mnt)
1290                mnt_add_count(real_mount(mnt), 1);
1291        return mnt;
1292}
1293EXPORT_SYMBOL(mntget);
1294
1295/**
1296 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1297 * @path: path to check
1298 *
1299 *  d_mountpoint() can only be used reliably to establish if a dentry is
1300 *  not mounted in any namespace and that common case is handled inline.
1301 *  d_mountpoint() isn't aware of the possibility there may be multiple
1302 *  mounts using a given dentry in a different namespace. This function
1303 *  checks if the passed in path is a mountpoint rather than the dentry
1304 *  alone.
1305 */
1306bool path_is_mountpoint(const struct path *path)
1307{
1308        unsigned seq;
1309        bool res;
1310
1311        if (!d_mountpoint(path->dentry))
1312                return false;
1313
1314        rcu_read_lock();
1315        do {
1316                seq = read_seqbegin(&mount_lock);
1317                res = __path_is_mountpoint(path);
1318        } while (read_seqretry(&mount_lock, seq));
1319        rcu_read_unlock();
1320
1321        return res;
1322}
1323EXPORT_SYMBOL(path_is_mountpoint);
1324
1325struct vfsmount *mnt_clone_internal(const struct path *path)
1326{
1327        struct mount *p;
1328        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1329        if (IS_ERR(p))
1330                return ERR_CAST(p);
1331        p->mnt.mnt_flags |= MNT_INTERNAL;
1332        return &p->mnt;
1333}
1334
1335#ifdef CONFIG_PROC_FS
1336static struct mount *mnt_list_next(struct mnt_namespace *ns,
1337                                   struct list_head *p)
1338{
1339        struct mount *mnt, *ret = NULL;
1340
1341        lock_ns_list(ns);
1342        list_for_each_continue(p, &ns->list) {
1343                mnt = list_entry(p, typeof(*mnt), mnt_list);
1344                if (!mnt_is_cursor(mnt)) {
1345                        ret = mnt;
1346                        break;
1347                }
1348        }
1349        unlock_ns_list(ns);
1350
1351        return ret;
1352}
1353
1354/* iterator; we want it to have access to namespace_sem, thus here... */
1355static void *m_start(struct seq_file *m, loff_t *pos)
1356{
1357        struct proc_mounts *p = m->private;
1358        struct list_head *prev;
1359
1360        down_read(&namespace_sem);
1361        if (!*pos) {
1362                prev = &p->ns->list;
1363        } else {
1364                prev = &p->cursor.mnt_list;
1365
1366                /* Read after we'd reached the end? */
1367                if (list_empty(prev))
1368                        return NULL;
1369        }
1370
1371        return mnt_list_next(p->ns, prev);
1372}
1373
1374static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1375{
1376        struct proc_mounts *p = m->private;
1377        struct mount *mnt = v;
1378
1379        ++*pos;
1380        return mnt_list_next(p->ns, &mnt->mnt_list);
1381}
1382
1383static void m_stop(struct seq_file *m, void *v)
1384{
1385        struct proc_mounts *p = m->private;
1386        struct mount *mnt = v;
1387
1388        lock_ns_list(p->ns);
1389        if (mnt)
1390                list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1391        else
1392                list_del_init(&p->cursor.mnt_list);
1393        unlock_ns_list(p->ns);
1394        up_read(&namespace_sem);
1395}
1396
1397static int m_show(struct seq_file *m, void *v)
1398{
1399        struct proc_mounts *p = m->private;
1400        struct mount *r = v;
1401        return p->show(m, &r->mnt);
1402}
1403
1404const struct seq_operations mounts_op = {
1405        .start  = m_start,
1406        .next   = m_next,
1407        .stop   = m_stop,
1408        .show   = m_show,
1409};
1410
1411void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1412{
1413        down_read(&namespace_sem);
1414        lock_ns_list(ns);
1415        list_del(&cursor->mnt_list);
1416        unlock_ns_list(ns);
1417        up_read(&namespace_sem);
1418}
1419#endif  /* CONFIG_PROC_FS */
1420
1421/**
1422 * may_umount_tree - check if a mount tree is busy
1423 * @m: root of mount tree
1424 *
1425 * This is called to check if a tree of mounts has any
1426 * open files, pwds, chroots or sub mounts that are
1427 * busy.
1428 */
1429int may_umount_tree(struct vfsmount *m)
1430{
1431        struct mount *mnt = real_mount(m);
1432        int actual_refs = 0;
1433        int minimum_refs = 0;
1434        struct mount *p;
1435        BUG_ON(!m);
1436
1437        /* write lock needed for mnt_get_count */
1438        lock_mount_hash();
1439        for (p = mnt; p; p = next_mnt(p, mnt)) {
1440                actual_refs += mnt_get_count(p);
1441                minimum_refs += 2;
1442        }
1443        unlock_mount_hash();
1444
1445        if (actual_refs > minimum_refs)
1446                return 0;
1447
1448        return 1;
1449}
1450
1451EXPORT_SYMBOL(may_umount_tree);
1452
1453/**
1454 * may_umount - check if a mount point is busy
1455 * @mnt: root of mount
1456 *
1457 * This is called to check if a mount point has any
1458 * open files, pwds, chroots or sub mounts. If the
1459 * mount has sub mounts this will return busy
1460 * regardless of whether the sub mounts are busy.
1461 *
1462 * Doesn't take quota and stuff into account. IOW, in some cases it will
1463 * give false negatives. The main reason why it's here is that we need
1464 * a non-destructive way to look for easily umountable filesystems.
1465 */
1466int may_umount(struct vfsmount *mnt)
1467{
1468        int ret = 1;
1469        down_read(&namespace_sem);
1470        lock_mount_hash();
1471        if (propagate_mount_busy(real_mount(mnt), 2))
1472                ret = 0;
1473        unlock_mount_hash();
1474        up_read(&namespace_sem);
1475        return ret;
1476}
1477
1478EXPORT_SYMBOL(may_umount);
1479
1480static void namespace_unlock(void)
1481{
1482        struct hlist_head head;
1483        struct hlist_node *p;
1484        struct mount *m;
1485        LIST_HEAD(list);
1486
1487        hlist_move_list(&unmounted, &head);
1488        list_splice_init(&ex_mountpoints, &list);
1489
1490        up_write(&namespace_sem);
1491
1492        shrink_dentry_list(&list);
1493
1494        if (likely(hlist_empty(&head)))
1495                return;
1496
1497        synchronize_rcu_expedited();
1498
1499        hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1500                hlist_del(&m->mnt_umount);
1501                mntput(&m->mnt);
1502        }
1503}
1504
1505static inline void namespace_lock(void)
1506{
1507        down_write(&namespace_sem);
1508}
1509
1510enum umount_tree_flags {
1511        UMOUNT_SYNC = 1,
1512        UMOUNT_PROPAGATE = 2,
1513        UMOUNT_CONNECTED = 4,
1514};
1515
1516static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1517{
1518        /* Leaving mounts connected is only valid for lazy umounts */
1519        if (how & UMOUNT_SYNC)
1520                return true;
1521
1522        /* A mount without a parent has nothing to be connected to */
1523        if (!mnt_has_parent(mnt))
1524                return true;
1525
1526        /* Because the reference counting rules change when mounts are
1527         * unmounted and connected, umounted mounts may not be
1528         * connected to mounted mounts.
1529         */
1530        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1531                return true;
1532
1533        /* Has it been requested that the mount remain connected? */
1534        if (how & UMOUNT_CONNECTED)
1535                return false;
1536
1537        /* Is the mount locked such that it needs to remain connected? */
1538        if (IS_MNT_LOCKED(mnt))
1539                return false;
1540
1541        /* By default disconnect the mount */
1542        return true;
1543}
1544
1545/*
1546 * mount_lock must be held
1547 * namespace_sem must be held for write
1548 */
1549static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1550{
1551        LIST_HEAD(tmp_list);
1552        struct mount *p;
1553
1554        if (how & UMOUNT_PROPAGATE)
1555                propagate_mount_unlock(mnt);
1556
1557        /* Gather the mounts to umount */
1558        for (p = mnt; p; p = next_mnt(p, mnt)) {
1559                p->mnt.mnt_flags |= MNT_UMOUNT;
1560                list_move(&p->mnt_list, &tmp_list);
1561        }
1562
1563        /* Hide the mounts from mnt_mounts */
1564        list_for_each_entry(p, &tmp_list, mnt_list) {
1565                list_del_init(&p->mnt_child);
1566        }
1567
1568        /* Add propogated mounts to the tmp_list */
1569        if (how & UMOUNT_PROPAGATE)
1570                propagate_umount(&tmp_list);
1571
1572        while (!list_empty(&tmp_list)) {
1573                struct mnt_namespace *ns;
1574                bool disconnect;
1575                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1576                list_del_init(&p->mnt_expire);
1577                list_del_init(&p->mnt_list);
1578                ns = p->mnt_ns;
1579                if (ns) {
1580                        ns->mounts--;
1581                        __touch_mnt_namespace(ns);
1582                }
1583                p->mnt_ns = NULL;
1584                if (how & UMOUNT_SYNC)
1585                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1586
1587                disconnect = disconnect_mount(p, how);
1588                if (mnt_has_parent(p)) {
1589                        mnt_add_count(p->mnt_parent, -1);
1590                        if (!disconnect) {
1591                                /* Don't forget about p */
1592                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1593                        } else {
1594                                umount_mnt(p);
1595                        }
1596                }
1597                change_mnt_propagation(p, MS_PRIVATE);
1598                if (disconnect)
1599                        hlist_add_head(&p->mnt_umount, &unmounted);
1600        }
1601}
1602
1603static void shrink_submounts(struct mount *mnt);
1604
1605static int do_umount_root(struct super_block *sb)
1606{
1607        int ret = 0;
1608
1609        down_write(&sb->s_umount);
1610        if (!sb_rdonly(sb)) {
1611                struct fs_context *fc;
1612
1613                fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1614                                                SB_RDONLY);
1615                if (IS_ERR(fc)) {
1616                        ret = PTR_ERR(fc);
1617                } else {
1618                        ret = parse_monolithic_mount_data(fc, NULL);
1619                        if (!ret)
1620                                ret = reconfigure_super(fc);
1621                        put_fs_context(fc);
1622                }
1623        }
1624        up_write(&sb->s_umount);
1625        return ret;
1626}
1627
1628static int do_umount(struct mount *mnt, int flags)
1629{
1630        struct super_block *sb = mnt->mnt.mnt_sb;
1631        int retval;
1632
1633        retval = security_sb_umount(&mnt->mnt, flags);
1634        if (retval)
1635                return retval;
1636
1637        /*
1638         * Allow userspace to request a mountpoint be expired rather than
1639         * unmounting unconditionally. Unmount only happens if:
1640         *  (1) the mark is already set (the mark is cleared by mntput())
1641         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1642         */
1643        if (flags & MNT_EXPIRE) {
1644                if (&mnt->mnt == current->fs->root.mnt ||
1645                    flags & (MNT_FORCE | MNT_DETACH))
1646                        return -EINVAL;
1647
1648                /*
1649                 * probably don't strictly need the lock here if we examined
1650                 * all race cases, but it's a slowpath.
1651                 */
1652                lock_mount_hash();
1653                if (mnt_get_count(mnt) != 2) {
1654                        unlock_mount_hash();
1655                        return -EBUSY;
1656                }
1657                unlock_mount_hash();
1658
1659                if (!xchg(&mnt->mnt_expiry_mark, 1))
1660                        return -EAGAIN;
1661        }
1662
1663        /*
1664         * If we may have to abort operations to get out of this
1665         * mount, and they will themselves hold resources we must
1666         * allow the fs to do things. In the Unix tradition of
1667         * 'Gee thats tricky lets do it in userspace' the umount_begin
1668         * might fail to complete on the first run through as other tasks
1669         * must return, and the like. Thats for the mount program to worry
1670         * about for the moment.
1671         */
1672
1673        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1674                sb->s_op->umount_begin(sb);
1675        }
1676
1677        /*
1678         * No sense to grab the lock for this test, but test itself looks
1679         * somewhat bogus. Suggestions for better replacement?
1680         * Ho-hum... In principle, we might treat that as umount + switch
1681         * to rootfs. GC would eventually take care of the old vfsmount.
1682         * Actually it makes sense, especially if rootfs would contain a
1683         * /reboot - static binary that would close all descriptors and
1684         * call reboot(9). Then init(8) could umount root and exec /reboot.
1685         */
1686        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1687                /*
1688                 * Special case for "unmounting" root ...
1689                 * we just try to remount it readonly.
1690                 */
1691                if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1692                        return -EPERM;
1693                return do_umount_root(sb);
1694        }
1695
1696        namespace_lock();
1697        lock_mount_hash();
1698
1699        /* Recheck MNT_LOCKED with the locks held */
1700        retval = -EINVAL;
1701        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1702                goto out;
1703
1704        event++;
1705        if (flags & MNT_DETACH) {
1706                if (!list_empty(&mnt->mnt_list))
1707                        umount_tree(mnt, UMOUNT_PROPAGATE);
1708                retval = 0;
1709        } else {
1710                shrink_submounts(mnt);
1711                retval = -EBUSY;
1712                if (!propagate_mount_busy(mnt, 2)) {
1713                        if (!list_empty(&mnt->mnt_list))
1714                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1715                        retval = 0;
1716                }
1717        }
1718out:
1719        unlock_mount_hash();
1720        namespace_unlock();
1721        return retval;
1722}
1723
1724/*
1725 * __detach_mounts - lazily unmount all mounts on the specified dentry
1726 *
1727 * During unlink, rmdir, and d_drop it is possible to loose the path
1728 * to an existing mountpoint, and wind up leaking the mount.
1729 * detach_mounts allows lazily unmounting those mounts instead of
1730 * leaking them.
1731 *
1732 * The caller may hold dentry->d_inode->i_mutex.
1733 */
1734void __detach_mounts(struct dentry *dentry)
1735{
1736        struct mountpoint *mp;
1737        struct mount *mnt;
1738
1739        namespace_lock();
1740        lock_mount_hash();
1741        mp = lookup_mountpoint(dentry);
1742        if (!mp)
1743                goto out_unlock;
1744
1745        event++;
1746        while (!hlist_empty(&mp->m_list)) {
1747                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1748                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1749                        umount_mnt(mnt);
1750                        hlist_add_head(&mnt->mnt_umount, &unmounted);
1751                }
1752                else umount_tree(mnt, UMOUNT_CONNECTED);
1753        }
1754        put_mountpoint(mp);
1755out_unlock:
1756        unlock_mount_hash();
1757        namespace_unlock();
1758}
1759
1760/*
1761 * Is the caller allowed to modify his namespace?
1762 */
1763bool may_mount(void)
1764{
1765        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1766}
1767
1768static void warn_mandlock(void)
1769{
1770        pr_warn_once("=======================================================\n"
1771                     "WARNING: The mand mount option has been deprecated and\n"
1772                     "         and is ignored by this kernel. Remove the mand\n"
1773                     "         option from the mount to silence this warning.\n"
1774                     "=======================================================\n");
1775}
1776
1777static int can_umount(const struct path *path, int flags)
1778{
1779        struct mount *mnt = real_mount(path->mnt);
1780
1781        if (!may_mount())
1782                return -EPERM;
1783        if (path->dentry != path->mnt->mnt_root)
1784                return -EINVAL;
1785        if (!check_mnt(mnt))
1786                return -EINVAL;
1787        if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1788                return -EINVAL;
1789        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1790                return -EPERM;
1791        return 0;
1792}
1793
1794// caller is responsible for flags being sane
1795int path_umount(struct path *path, int flags)
1796{
1797        struct mount *mnt = real_mount(path->mnt);
1798        int ret;
1799
1800        ret = can_umount(path, flags);
1801        if (!ret)
1802                ret = do_umount(mnt, flags);
1803
1804        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1805        dput(path->dentry);
1806        mntput_no_expire(mnt);
1807        return ret;
1808}
1809
1810static int ksys_umount(char __user *name, int flags)
1811{
1812        int lookup_flags = LOOKUP_MOUNTPOINT;
1813        struct path path;
1814        int ret;
1815
1816        // basic validity checks done first
1817        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1818                return -EINVAL;
1819
1820        if (!(flags & UMOUNT_NOFOLLOW))
1821                lookup_flags |= LOOKUP_FOLLOW;
1822        ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1823        if (ret)
1824                return ret;
1825        return path_umount(&path, flags);
1826}
1827
1828SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1829{
1830        return ksys_umount(name, flags);
1831}
1832
1833#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1834
1835/*
1836 *      The 2.0 compatible umount. No flags.
1837 */
1838SYSCALL_DEFINE1(oldumount, char __user *, name)
1839{
1840        return ksys_umount(name, 0);
1841}
1842
1843#endif
1844
1845static bool is_mnt_ns_file(struct dentry *dentry)
1846{
1847        /* Is this a proxy for a mount namespace? */
1848        return dentry->d_op == &ns_dentry_operations &&
1849               dentry->d_fsdata == &mntns_operations;
1850}
1851
1852static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1853{
1854        return container_of(ns, struct mnt_namespace, ns);
1855}
1856
1857struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1858{
1859        return &mnt->ns;
1860}
1861
1862static bool mnt_ns_loop(struct dentry *dentry)
1863{
1864        /* Could bind mounting the mount namespace inode cause a
1865         * mount namespace loop?
1866         */
1867        struct mnt_namespace *mnt_ns;
1868        if (!is_mnt_ns_file(dentry))
1869                return false;
1870
1871        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1872        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1873}
1874
1875struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1876                                        int flag)
1877{
1878        struct mount *res, *p, *q, *r, *parent;
1879
1880        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1881                return ERR_PTR(-EINVAL);
1882
1883        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1884                return ERR_PTR(-EINVAL);
1885
1886        res = q = clone_mnt(mnt, dentry, flag);
1887        if (IS_ERR(q))
1888                return q;
1889
1890        q->mnt_mountpoint = mnt->mnt_mountpoint;
1891
1892        p = mnt;
1893        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1894                struct mount *s;
1895                if (!is_subdir(r->mnt_mountpoint, dentry))
1896                        continue;
1897
1898                for (s = r; s; s = next_mnt(s, r)) {
1899                        if (!(flag & CL_COPY_UNBINDABLE) &&
1900                            IS_MNT_UNBINDABLE(s)) {
1901                                if (s->mnt.mnt_flags & MNT_LOCKED) {
1902                                        /* Both unbindable and locked. */
1903                                        q = ERR_PTR(-EPERM);
1904                                        goto out;
1905                                } else {
1906                                        s = skip_mnt_tree(s);
1907                                        continue;
1908                                }
1909                        }
1910                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1911                            is_mnt_ns_file(s->mnt.mnt_root)) {
1912                                s = skip_mnt_tree(s);
1913                                continue;
1914                        }
1915                        while (p != s->mnt_parent) {
1916                                p = p->mnt_parent;
1917                                q = q->mnt_parent;
1918                        }
1919                        p = s;
1920                        parent = q;
1921                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1922                        if (IS_ERR(q))
1923                                goto out;
1924                        lock_mount_hash();
1925                        list_add_tail(&q->mnt_list, &res->mnt_list);
1926                        attach_mnt(q, parent, p->mnt_mp);
1927                        unlock_mount_hash();
1928                }
1929        }
1930        return res;
1931out:
1932        if (res) {
1933                lock_mount_hash();
1934                umount_tree(res, UMOUNT_SYNC);
1935                unlock_mount_hash();
1936        }
1937        return q;
1938}
1939
1940/* Caller should check returned pointer for errors */
1941
1942struct vfsmount *collect_mounts(const struct path *path)
1943{
1944        struct mount *tree;
1945        namespace_lock();
1946        if (!check_mnt(real_mount(path->mnt)))
1947                tree = ERR_PTR(-EINVAL);
1948        else
1949                tree = copy_tree(real_mount(path->mnt), path->dentry,
1950                                 CL_COPY_ALL | CL_PRIVATE);
1951        namespace_unlock();
1952        if (IS_ERR(tree))
1953                return ERR_CAST(tree);
1954        return &tree->mnt;
1955}
1956
1957static void free_mnt_ns(struct mnt_namespace *);
1958static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1959
1960void dissolve_on_fput(struct vfsmount *mnt)
1961{
1962        struct mnt_namespace *ns;
1963        namespace_lock();
1964        lock_mount_hash();
1965        ns = real_mount(mnt)->mnt_ns;
1966        if (ns) {
1967                if (is_anon_ns(ns))
1968                        umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1969                else
1970                        ns = NULL;
1971        }
1972        unlock_mount_hash();
1973        namespace_unlock();
1974        if (ns)
1975                free_mnt_ns(ns);
1976}
1977
1978void drop_collected_mounts(struct vfsmount *mnt)
1979{
1980        namespace_lock();
1981        lock_mount_hash();
1982        umount_tree(real_mount(mnt), 0);
1983        unlock_mount_hash();
1984        namespace_unlock();
1985}
1986
1987static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1988{
1989        struct mount *child;
1990
1991        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1992                if (!is_subdir(child->mnt_mountpoint, dentry))
1993                        continue;
1994
1995                if (child->mnt.mnt_flags & MNT_LOCKED)
1996                        return true;
1997        }
1998        return false;
1999}
2000
2001/**
2002 * clone_private_mount - create a private clone of a path
2003 * @path: path to clone
2004 *
2005 * This creates a new vfsmount, which will be the clone of @path.  The new mount
2006 * will not be attached anywhere in the namespace and will be private (i.e.
2007 * changes to the originating mount won't be propagated into this).
2008 *
2009 * Release with mntput().
2010 */
2011struct vfsmount *clone_private_mount(const struct path *path)
2012{
2013        struct mount *old_mnt = real_mount(path->mnt);
2014        struct mount *new_mnt;
2015
2016        down_read(&namespace_sem);
2017        if (IS_MNT_UNBINDABLE(old_mnt))
2018                goto invalid;
2019
2020        if (!check_mnt(old_mnt))
2021                goto invalid;
2022
2023        if (has_locked_children(old_mnt, path->dentry))
2024                goto invalid;
2025
2026        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2027        up_read(&namespace_sem);
2028
2029        if (IS_ERR(new_mnt))
2030                return ERR_CAST(new_mnt);
2031
2032        /* Longterm mount to be removed by kern_unmount*() */
2033        new_mnt->mnt_ns = MNT_NS_INTERNAL;
2034
2035        return &new_mnt->mnt;
2036
2037invalid:
2038        up_read(&namespace_sem);
2039        return ERR_PTR(-EINVAL);
2040}
2041EXPORT_SYMBOL_GPL(clone_private_mount);
2042
2043int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2044                   struct vfsmount *root)
2045{
2046        struct mount *mnt;
2047        int res = f(root, arg);
2048        if (res)
2049                return res;
2050        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2051                res = f(&mnt->mnt, arg);
2052                if (res)
2053                        return res;
2054        }
2055        return 0;
2056}
2057
2058static void lock_mnt_tree(struct mount *mnt)
2059{
2060        struct mount *p;
2061
2062        for (p = mnt; p; p = next_mnt(p, mnt)) {
2063                int flags = p->mnt.mnt_flags;
2064                /* Don't allow unprivileged users to change mount flags */
2065                flags |= MNT_LOCK_ATIME;
2066
2067                if (flags & MNT_READONLY)
2068                        flags |= MNT_LOCK_READONLY;
2069
2070                if (flags & MNT_NODEV)
2071                        flags |= MNT_LOCK_NODEV;
2072
2073                if (flags & MNT_NOSUID)
2074                        flags |= MNT_LOCK_NOSUID;
2075
2076                if (flags & MNT_NOEXEC)
2077                        flags |= MNT_LOCK_NOEXEC;
2078                /* Don't allow unprivileged users to reveal what is under a mount */
2079                if (list_empty(&p->mnt_expire))
2080                        flags |= MNT_LOCKED;
2081                p->mnt.mnt_flags = flags;
2082        }
2083}
2084
2085static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2086{
2087        struct mount *p;
2088
2089        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2090                if (p->mnt_group_id && !IS_MNT_SHARED(p))
2091                        mnt_release_group_id(p);
2092        }
2093}
2094
2095static int invent_group_ids(struct mount *mnt, bool recurse)
2096{
2097        struct mount *p;
2098
2099        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2100                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2101                        int err = mnt_alloc_group_id(p);
2102                        if (err) {
2103                                cleanup_group_ids(mnt, p);
2104                                return err;
2105                        }
2106                }
2107        }
2108
2109        return 0;
2110}
2111
2112int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2113{
2114        unsigned int max = READ_ONCE(sysctl_mount_max);
2115        unsigned int mounts = 0;
2116        struct mount *p;
2117
2118        if (ns->mounts >= max)
2119                return -ENOSPC;
2120        max -= ns->mounts;
2121        if (ns->pending_mounts >= max)
2122                return -ENOSPC;
2123        max -= ns->pending_mounts;
2124
2125        for (p = mnt; p; p = next_mnt(p, mnt))
2126                mounts++;
2127
2128        if (mounts > max)
2129                return -ENOSPC;
2130
2131        ns->pending_mounts += mounts;
2132        return 0;
2133}
2134
2135/*
2136 *  @source_mnt : mount tree to be attached
2137 *  @nd         : place the mount tree @source_mnt is attached
2138 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2139 *                 store the parent mount and mountpoint dentry.
2140 *                 (done when source_mnt is moved)
2141 *
2142 *  NOTE: in the table below explains the semantics when a source mount
2143 *  of a given type is attached to a destination mount of a given type.
2144 * ---------------------------------------------------------------------------
2145 * |         BIND MOUNT OPERATION                                            |
2146 * |**************************************************************************
2147 * | source-->| shared        |       private  |       slave    | unbindable |
2148 * | dest     |               |                |                |            |
2149 * |   |      |               |                |                |            |
2150 * |   v      |               |                |                |            |
2151 * |**************************************************************************
2152 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2153 * |          |               |                |                |            |
2154 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2155 * ***************************************************************************
2156 * A bind operation clones the source mount and mounts the clone on the
2157 * destination mount.
2158 *
2159 * (++)  the cloned mount is propagated to all the mounts in the propagation
2160 *       tree of the destination mount and the cloned mount is added to
2161 *       the peer group of the source mount.
2162 * (+)   the cloned mount is created under the destination mount and is marked
2163 *       as shared. The cloned mount is added to the peer group of the source
2164 *       mount.
2165 * (+++) the mount is propagated to all the mounts in the propagation tree
2166 *       of the destination mount and the cloned mount is made slave
2167 *       of the same master as that of the source mount. The cloned mount
2168 *       is marked as 'shared and slave'.
2169 * (*)   the cloned mount is made a slave of the same master as that of the
2170 *       source mount.
2171 *
2172 * ---------------------------------------------------------------------------
2173 * |                    MOVE MOUNT OPERATION                                 |
2174 * |**************************************************************************
2175 * | source-->| shared        |       private  |       slave    | unbindable |
2176 * | dest     |               |                |                |            |
2177 * |   |      |               |                |                |            |
2178 * |   v      |               |                |                |            |
2179 * |**************************************************************************
2180 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2181 * |          |               |                |                |            |
2182 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2183 * ***************************************************************************
2184 *
2185 * (+)  the mount is moved to the destination. And is then propagated to
2186 *      all the mounts in the propagation tree of the destination mount.
2187 * (+*)  the mount is moved to the destination.
2188 * (+++)  the mount is moved to the destination and is then propagated to
2189 *      all the mounts belonging to the destination mount's propagation tree.
2190 *      the mount is marked as 'shared and slave'.
2191 * (*)  the mount continues to be a slave at the new location.
2192 *
2193 * if the source mount is a tree, the operations explained above is
2194 * applied to each mount in the tree.
2195 * Must be called without spinlocks held, since this function can sleep
2196 * in allocations.
2197 */
2198static int attach_recursive_mnt(struct mount *source_mnt,
2199                        struct mount *dest_mnt,
2200                        struct mountpoint *dest_mp,
2201                        bool moving)
2202{
2203        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2204        HLIST_HEAD(tree_list);
2205        struct mnt_namespace *ns = dest_mnt->mnt_ns;
2206        struct mountpoint *smp;
2207        struct mount *child, *p;
2208        struct hlist_node *n;
2209        int err;
2210
2211        /* Preallocate a mountpoint in case the new mounts need
2212         * to be tucked under other mounts.
2213         */
2214        smp = get_mountpoint(source_mnt->mnt.mnt_root);
2215        if (IS_ERR(smp))
2216                return PTR_ERR(smp);
2217
2218        /* Is there space to add these mounts to the mount namespace? */
2219        if (!moving) {
2220                err = count_mounts(ns, source_mnt);
2221                if (err)
2222                        goto out;
2223        }
2224
2225        if (IS_MNT_SHARED(dest_mnt)) {
2226                err = invent_group_ids(source_mnt, true);
2227                if (err)
2228                        goto out;
2229                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2230                lock_mount_hash();
2231                if (err)
2232                        goto out_cleanup_ids;
2233                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2234                        set_mnt_shared(p);
2235        } else {
2236                lock_mount_hash();
2237        }
2238        if (moving) {
2239                unhash_mnt(source_mnt);
2240                attach_mnt(source_mnt, dest_mnt, dest_mp);
2241                touch_mnt_namespace(source_mnt->mnt_ns);
2242        } else {
2243                if (source_mnt->mnt_ns) {
2244                        /* move from anon - the caller will destroy */
2245                        list_del_init(&source_mnt->mnt_ns->list);
2246                }
2247                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2248                commit_tree(source_mnt);
2249        }
2250
2251        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2252                struct mount *q;
2253                hlist_del_init(&child->mnt_hash);
2254                q = __lookup_mnt(&child->mnt_parent->mnt,
2255                                 child->mnt_mountpoint);
2256                if (q)
2257                        mnt_change_mountpoint(child, smp, q);
2258                /* Notice when we are propagating across user namespaces */
2259                if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2260                        lock_mnt_tree(child);
2261                child->mnt.mnt_flags &= ~MNT_LOCKED;
2262                commit_tree(child);
2263        }
2264        put_mountpoint(smp);
2265        unlock_mount_hash();
2266
2267        return 0;
2268
2269 out_cleanup_ids:
2270        while (!hlist_empty(&tree_list)) {
2271                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2272                child->mnt_parent->mnt_ns->pending_mounts = 0;
2273                umount_tree(child, UMOUNT_SYNC);
2274        }
2275        unlock_mount_hash();
2276        cleanup_group_ids(source_mnt, NULL);
2277 out:
2278        ns->pending_mounts = 0;
2279
2280        read_seqlock_excl(&mount_lock);
2281        put_mountpoint(smp);
2282        read_sequnlock_excl(&mount_lock);
2283
2284        return err;
2285}
2286
2287static struct mountpoint *lock_mount(struct path *path)
2288{
2289        struct vfsmount *mnt;
2290        struct dentry *dentry = path->dentry;
2291retry:
2292        inode_lock(dentry->d_inode);
2293        if (unlikely(cant_mount(dentry))) {
2294                inode_unlock(dentry->d_inode);
2295                return ERR_PTR(-ENOENT);
2296        }
2297        namespace_lock();
2298        mnt = lookup_mnt(path);
2299        if (likely(!mnt)) {
2300                struct mountpoint *mp = get_mountpoint(dentry);
2301                if (IS_ERR(mp)) {
2302                        namespace_unlock();
2303                        inode_unlock(dentry->d_inode);
2304                        return mp;
2305                }
2306                return mp;
2307        }
2308        namespace_unlock();
2309        inode_unlock(path->dentry->d_inode);
2310        path_put(path);
2311        path->mnt = mnt;
2312        dentry = path->dentry = dget(mnt->mnt_root);
2313        goto retry;
2314}
2315
2316static void unlock_mount(struct mountpoint *where)
2317{
2318        struct dentry *dentry = where->m_dentry;
2319
2320        read_seqlock_excl(&mount_lock);
2321        put_mountpoint(where);
2322        read_sequnlock_excl(&mount_lock);
2323
2324        namespace_unlock();
2325        inode_unlock(dentry->d_inode);
2326}
2327
2328static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2329{
2330        if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2331                return -EINVAL;
2332
2333        if (d_is_dir(mp->m_dentry) !=
2334              d_is_dir(mnt->mnt.mnt_root))
2335                return -ENOTDIR;
2336
2337        return attach_recursive_mnt(mnt, p, mp, false);
2338}
2339
2340/*
2341 * Sanity check the flags to change_mnt_propagation.
2342 */
2343
2344static int flags_to_propagation_type(int ms_flags)
2345{
2346        int type = ms_flags & ~(MS_REC | MS_SILENT);
2347
2348        /* Fail if any non-propagation flags are set */
2349        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2350                return 0;
2351        /* Only one propagation flag should be set */
2352        if (!is_power_of_2(type))
2353                return 0;
2354        return type;
2355}
2356
2357/*
2358 * recursively change the type of the mountpoint.
2359 */
2360static int do_change_type(struct path *path, int ms_flags)
2361{
2362        struct mount *m;
2363        struct mount *mnt = real_mount(path->mnt);
2364        int recurse = ms_flags & MS_REC;
2365        int type;
2366        int err = 0;
2367
2368        if (path->dentry != path->mnt->mnt_root)
2369                return -EINVAL;
2370
2371        type = flags_to_propagation_type(ms_flags);
2372        if (!type)
2373                return -EINVAL;
2374
2375        namespace_lock();
2376        if (type == MS_SHARED) {
2377                err = invent_group_ids(mnt, recurse);
2378                if (err)
2379                        goto out_unlock;
2380        }
2381
2382        lock_mount_hash();
2383        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2384                change_mnt_propagation(m, type);
2385        unlock_mount_hash();
2386
2387 out_unlock:
2388        namespace_unlock();
2389        return err;
2390}
2391
2392static struct mount *__do_loopback(struct path *old_path, int recurse)
2393{
2394        struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2395
2396        if (IS_MNT_UNBINDABLE(old))
2397                return mnt;
2398
2399        if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2400                return mnt;
2401
2402        if (!recurse && has_locked_children(old, old_path->dentry))
2403                return mnt;
2404
2405        if (recurse)
2406                mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2407        else
2408                mnt = clone_mnt(old, old_path->dentry, 0);
2409
2410        if (!IS_ERR(mnt))
2411                mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2412
2413        return mnt;
2414}
2415
2416/*
2417 * do loopback mount.
2418 */
2419static int do_loopback(struct path *path, const char *old_name,
2420                                int recurse)
2421{
2422        struct path old_path;
2423        struct mount *mnt = NULL, *parent;
2424        struct mountpoint *mp;
2425        int err;
2426        if (!old_name || !*old_name)
2427                return -EINVAL;
2428        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2429        if (err)
2430                return err;
2431
2432        err = -EINVAL;
2433        if (mnt_ns_loop(old_path.dentry))
2434                goto out;
2435
2436        mp = lock_mount(path);
2437        if (IS_ERR(mp)) {
2438                err = PTR_ERR(mp);
2439                goto out;
2440        }
2441
2442        parent = real_mount(path->mnt);
2443        if (!check_mnt(parent))
2444                goto out2;
2445
2446        mnt = __do_loopback(&old_path, recurse);
2447        if (IS_ERR(mnt)) {
2448                err = PTR_ERR(mnt);
2449                goto out2;
2450        }
2451
2452        err = graft_tree(mnt, parent, mp);
2453        if (err) {
2454                lock_mount_hash();
2455                umount_tree(mnt, UMOUNT_SYNC);
2456                unlock_mount_hash();
2457        }
2458out2:
2459        unlock_mount(mp);
2460out:
2461        path_put(&old_path);
2462        return err;
2463}
2464
2465static struct file *open_detached_copy(struct path *path, bool recursive)
2466{
2467        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2468        struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2469        struct mount *mnt, *p;
2470        struct file *file;
2471
2472        if (IS_ERR(ns))
2473                return ERR_CAST(ns);
2474
2475        namespace_lock();
2476        mnt = __do_loopback(path, recursive);
2477        if (IS_ERR(mnt)) {
2478                namespace_unlock();
2479                free_mnt_ns(ns);
2480                return ERR_CAST(mnt);
2481        }
2482
2483        lock_mount_hash();
2484        for (p = mnt; p; p = next_mnt(p, mnt)) {
2485                p->mnt_ns = ns;
2486                ns->mounts++;
2487        }
2488        ns->root = mnt;
2489        list_add_tail(&ns->list, &mnt->mnt_list);
2490        mntget(&mnt->mnt);
2491        unlock_mount_hash();
2492        namespace_unlock();
2493
2494        mntput(path->mnt);
2495        path->mnt = &mnt->mnt;
2496        file = dentry_open(path, O_PATH, current_cred());
2497        if (IS_ERR(file))
2498                dissolve_on_fput(path->mnt);
2499        else
2500                file->f_mode |= FMODE_NEED_UNMOUNT;
2501        return file;
2502}
2503
2504SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2505{
2506        struct file *file;
2507        struct path path;
2508        int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2509        bool detached = flags & OPEN_TREE_CLONE;
2510        int error;
2511        int fd;
2512
2513        BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2514
2515        if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2516                      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2517                      OPEN_TREE_CLOEXEC))
2518                return -EINVAL;
2519
2520        if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2521                return -EINVAL;
2522
2523        if (flags & AT_NO_AUTOMOUNT)
2524                lookup_flags &= ~LOOKUP_AUTOMOUNT;
2525        if (flags & AT_SYMLINK_NOFOLLOW)
2526                lookup_flags &= ~LOOKUP_FOLLOW;
2527        if (flags & AT_EMPTY_PATH)
2528                lookup_flags |= LOOKUP_EMPTY;
2529
2530        if (detached && !may_mount())
2531                return -EPERM;
2532
2533        fd = get_unused_fd_flags(flags & O_CLOEXEC);
2534        if (fd < 0)
2535                return fd;
2536
2537        error = user_path_at(dfd, filename, lookup_flags, &path);
2538        if (unlikely(error)) {
2539                file = ERR_PTR(error);
2540        } else {
2541                if (detached)
2542                        file = open_detached_copy(&path, flags & AT_RECURSIVE);
2543                else
2544                        file = dentry_open(&path, O_PATH, current_cred());
2545                path_put(&path);
2546        }
2547        if (IS_ERR(file)) {
2548                put_unused_fd(fd);
2549                return PTR_ERR(file);
2550        }
2551        fd_install(fd, file);
2552        return fd;
2553}
2554
2555/*
2556 * Don't allow locked mount flags to be cleared.
2557 *
2558 * No locks need to be held here while testing the various MNT_LOCK
2559 * flags because those flags can never be cleared once they are set.
2560 */
2561static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2562{
2563        unsigned int fl = mnt->mnt.mnt_flags;
2564
2565        if ((fl & MNT_LOCK_READONLY) &&
2566            !(mnt_flags & MNT_READONLY))
2567                return false;
2568
2569        if ((fl & MNT_LOCK_NODEV) &&
2570            !(mnt_flags & MNT_NODEV))
2571                return false;
2572
2573        if ((fl & MNT_LOCK_NOSUID) &&
2574            !(mnt_flags & MNT_NOSUID))
2575                return false;
2576
2577        if ((fl & MNT_LOCK_NOEXEC) &&
2578            !(mnt_flags & MNT_NOEXEC))
2579                return false;
2580
2581        if ((fl & MNT_LOCK_ATIME) &&
2582            ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2583                return false;
2584
2585        return true;
2586}
2587
2588static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2589{
2590        bool readonly_request = (mnt_flags & MNT_READONLY);
2591
2592        if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2593                return 0;
2594
2595        if (readonly_request)
2596                return mnt_make_readonly(mnt);
2597
2598        mnt->mnt.mnt_flags &= ~MNT_READONLY;
2599        return 0;
2600}
2601
2602static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2603{
2604        mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2605        mnt->mnt.mnt_flags = mnt_flags;
2606        touch_mnt_namespace(mnt->mnt_ns);
2607}
2608
2609static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2610{
2611        struct super_block *sb = mnt->mnt_sb;
2612
2613        if (!__mnt_is_readonly(mnt) &&
2614           (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2615           (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2616                char *buf = (char *)__get_free_page(GFP_KERNEL);
2617                char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2618                struct tm tm;
2619
2620                time64_to_tm(sb->s_time_max, 0, &tm);
2621
2622                pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2623                        sb->s_type->name,
2624                        is_mounted(mnt) ? "remounted" : "mounted",
2625                        mntpath,
2626                        tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2627
2628                free_page((unsigned long)buf);
2629                sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2630        }
2631}
2632
2633/*
2634 * Handle reconfiguration of the mountpoint only without alteration of the
2635 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2636 * to mount(2).
2637 */
2638static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2639{
2640        struct super_block *sb = path->mnt->mnt_sb;
2641        struct mount *mnt = real_mount(path->mnt);
2642        int ret;
2643
2644        if (!check_mnt(mnt))
2645                return -EINVAL;
2646
2647        if (path->dentry != mnt->mnt.mnt_root)
2648                return -EINVAL;
2649
2650        if (!can_change_locked_flags(mnt, mnt_flags))
2651                return -EPERM;
2652
2653        /*
2654         * We're only checking whether the superblock is read-only not
2655         * changing it, so only take down_read(&sb->s_umount).
2656         */
2657        down_read(&sb->s_umount);
2658        lock_mount_hash();
2659        ret = change_mount_ro_state(mnt, mnt_flags);
2660        if (ret == 0)
2661                set_mount_attributes(mnt, mnt_flags);
2662        unlock_mount_hash();
2663        up_read(&sb->s_umount);
2664
2665        mnt_warn_timestamp_expiry(path, &mnt->mnt);
2666
2667        return ret;
2668}
2669
2670/*
2671 * change filesystem flags. dir should be a physical root of filesystem.
2672 * If you've mounted a non-root directory somewhere and want to do remount
2673 * on it - tough luck.
2674 */
2675static int do_remount(struct path *path, int ms_flags, int sb_flags,
2676                      int mnt_flags, void *data)
2677{
2678        int err;
2679        struct super_block *sb = path->mnt->mnt_sb;
2680        struct mount *mnt = real_mount(path->mnt);
2681        struct fs_context *fc;
2682
2683        if (!check_mnt(mnt))
2684                return -EINVAL;
2685
2686        if (path->dentry != path->mnt->mnt_root)
2687                return -EINVAL;
2688
2689        if (!can_change_locked_flags(mnt, mnt_flags))
2690                return -EPERM;
2691
2692        fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2693        if (IS_ERR(fc))
2694                return PTR_ERR(fc);
2695
2696        fc->oldapi = true;
2697        err = parse_monolithic_mount_data(fc, data);
2698        if (!err) {
2699                down_write(&sb->s_umount);
2700                err = -EPERM;
2701                if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2702                        err = reconfigure_super(fc);
2703                        if (!err) {
2704                                lock_mount_hash();
2705                                set_mount_attributes(mnt, mnt_flags);
2706                                unlock_mount_hash();
2707                        }
2708                }
2709                up_write(&sb->s_umount);
2710        }
2711
2712        mnt_warn_timestamp_expiry(path, &mnt->mnt);
2713
2714        put_fs_context(fc);
2715        return err;
2716}
2717
2718static inline int tree_contains_unbindable(struct mount *mnt)
2719{
2720        struct mount *p;
2721        for (p = mnt; p; p = next_mnt(p, mnt)) {
2722                if (IS_MNT_UNBINDABLE(p))
2723                        return 1;
2724        }
2725        return 0;
2726}
2727
2728/*
2729 * Check that there aren't references to earlier/same mount namespaces in the
2730 * specified subtree.  Such references can act as pins for mount namespaces
2731 * that aren't checked by the mount-cycle checking code, thereby allowing
2732 * cycles to be made.
2733 */
2734static bool check_for_nsfs_mounts(struct mount *subtree)
2735{
2736        struct mount *p;
2737        bool ret = false;
2738
2739        lock_mount_hash();
2740        for (p = subtree; p; p = next_mnt(p, subtree))
2741                if (mnt_ns_loop(p->mnt.mnt_root))
2742                        goto out;
2743
2744        ret = true;
2745out:
2746        unlock_mount_hash();
2747        return ret;
2748}
2749
2750static int do_set_group(struct path *from_path, struct path *to_path)
2751{
2752        struct mount *from, *to;
2753        int err;
2754
2755        from = real_mount(from_path->mnt);
2756        to = real_mount(to_path->mnt);
2757
2758        namespace_lock();
2759
2760        err = -EINVAL;
2761        /* To and From must be mounted */
2762        if (!is_mounted(&from->mnt))
2763                goto out;
2764        if (!is_mounted(&to->mnt))
2765                goto out;
2766
2767        err = -EPERM;
2768        /* We should be allowed to modify mount namespaces of both mounts */
2769        if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2770                goto out;
2771        if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2772                goto out;
2773
2774        err = -EINVAL;
2775        /* To and From paths should be mount roots */
2776        if (from_path->dentry != from_path->mnt->mnt_root)
2777                goto out;
2778        if (to_path->dentry != to_path->mnt->mnt_root)
2779                goto out;
2780
2781        /* Setting sharing groups is only allowed across same superblock */
2782        if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2783                goto out;
2784
2785        /* From mount root should be wider than To mount root */
2786        if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2787                goto out;
2788
2789        /* From mount should not have locked children in place of To's root */
2790        if (has_locked_children(from, to->mnt.mnt_root))
2791                goto out;
2792
2793        /* Setting sharing groups is only allowed on private mounts */
2794        if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2795                goto out;
2796
2797        /* From should not be private */
2798        if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2799                goto out;
2800
2801        if (IS_MNT_SLAVE(from)) {
2802                struct mount *m = from->mnt_master;
2803
2804                list_add(&to->mnt_slave, &m->mnt_slave_list);
2805                to->mnt_master = m;
2806        }
2807
2808        if (IS_MNT_SHARED(from)) {
2809                to->mnt_group_id = from->mnt_group_id;
2810                list_add(&to->mnt_share, &from->mnt_share);
2811                lock_mount_hash();
2812                set_mnt_shared(to);
2813                unlock_mount_hash();
2814        }
2815
2816        err = 0;
2817out:
2818        namespace_unlock();
2819        return err;
2820}
2821
2822static int do_move_mount(struct path *old_path, struct path *new_path)
2823{
2824        struct mnt_namespace *ns;
2825        struct mount *p;
2826        struct mount *old;
2827        struct mount *parent;
2828        struct mountpoint *mp, *old_mp;
2829        int err;
2830        bool attached;
2831
2832        mp = lock_mount(new_path);
2833        if (IS_ERR(mp))
2834                return PTR_ERR(mp);
2835
2836        old = real_mount(old_path->mnt);
2837        p = real_mount(new_path->mnt);
2838        parent = old->mnt_parent;
2839        attached = mnt_has_parent(old);
2840        old_mp = old->mnt_mp;
2841        ns = old->mnt_ns;
2842
2843        err = -EINVAL;
2844        /* The mountpoint must be in our namespace. */
2845        if (!check_mnt(p))
2846                goto out;
2847
2848        /* The thing moved must be mounted... */
2849        if (!is_mounted(&old->mnt))
2850                goto out;
2851
2852        /* ... and either ours or the root of anon namespace */
2853        if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2854                goto out;
2855
2856        if (old->mnt.mnt_flags & MNT_LOCKED)
2857                goto out;
2858
2859        if (old_path->dentry != old_path->mnt->mnt_root)
2860                goto out;
2861
2862        if (d_is_dir(new_path->dentry) !=
2863            d_is_dir(old_path->dentry))
2864                goto out;
2865        /*
2866         * Don't move a mount residing in a shared parent.
2867         */
2868        if (attached && IS_MNT_SHARED(parent))
2869                goto out;
2870        /*
2871         * Don't move a mount tree containing unbindable mounts to a destination
2872         * mount which is shared.
2873         */
2874        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2875                goto out;
2876        err = -ELOOP;
2877        if (!check_for_nsfs_mounts(old))
2878                goto out;
2879        for (; mnt_has_parent(p); p = p->mnt_parent)
2880                if (p == old)
2881                        goto out;
2882
2883        err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2884                                   attached);
2885        if (err)
2886                goto out;
2887
2888        /* if the mount is moved, it should no longer be expire
2889         * automatically */
2890        list_del_init(&old->mnt_expire);
2891        if (attached)
2892                put_mountpoint(old_mp);
2893out:
2894        unlock_mount(mp);
2895        if (!err) {
2896                if (attached)
2897                        mntput_no_expire(parent);
2898                else
2899                        free_mnt_ns(ns);
2900        }
2901        return err;
2902}
2903
2904static int do_move_mount_old(struct path *path, const char *old_name)
2905{
2906        struct path old_path;
2907        int err;
2908
2909        if (!old_name || !*old_name)
2910                return -EINVAL;
2911
2912        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2913        if (err)
2914                return err;
2915
2916        err = do_move_mount(&old_path, path);
2917        path_put(&old_path);
2918        return err;
2919}
2920
2921/*
2922 * add a mount into a namespace's mount tree
2923 */
2924static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2925                        const struct path *path, int mnt_flags)
2926{
2927        struct mount *parent = real_mount(path->mnt);
2928
2929        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2930
2931        if (unlikely(!check_mnt(parent))) {
2932                /* that's acceptable only for automounts done in private ns */
2933                if (!(mnt_flags & MNT_SHRINKABLE))
2934                        return -EINVAL;
2935                /* ... and for those we'd better have mountpoint still alive */
2936                if (!parent->mnt_ns)
2937                        return -EINVAL;
2938        }
2939
2940        /* Refuse the same filesystem on the same mount point */
2941        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2942            path->mnt->mnt_root == path->dentry)
2943                return -EBUSY;
2944
2945        if (d_is_symlink(newmnt->mnt.mnt_root))
2946                return -EINVAL;
2947
2948        newmnt->mnt.mnt_flags = mnt_flags;
2949        return graft_tree(newmnt, parent, mp);
2950}
2951
2952static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2953
2954/*
2955 * Create a new mount using a superblock configuration and request it
2956 * be added to the namespace tree.
2957 */
2958static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2959                           unsigned int mnt_flags)
2960{
2961        struct vfsmount *mnt;
2962        struct mountpoint *mp;
2963        struct super_block *sb = fc->root->d_sb;
2964        int error;
2965
2966        error = security_sb_kern_mount(sb);
2967        if (!error && mount_too_revealing(sb, &mnt_flags))
2968                error = -EPERM;
2969
2970        if (unlikely(error)) {
2971                fc_drop_locked(fc);
2972                return error;
2973        }
2974
2975        up_write(&sb->s_umount);
2976
2977        mnt = vfs_create_mount(fc);
2978        if (IS_ERR(mnt))
2979                return PTR_ERR(mnt);
2980
2981        mnt_warn_timestamp_expiry(mountpoint, mnt);
2982
2983        mp = lock_mount(mountpoint);
2984        if (IS_ERR(mp)) {
2985                mntput(mnt);
2986                return PTR_ERR(mp);
2987        }
2988        error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2989        unlock_mount(mp);
2990        if (error < 0)
2991                mntput(mnt);
2992        return error;
2993}
2994
2995/*
2996 * create a new mount for userspace and request it to be added into the
2997 * namespace's tree
2998 */
2999static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3000                        int mnt_flags, const char *name, void *data)
3001{
3002        struct file_system_type *type;
3003        struct fs_context *fc;
3004        const char *subtype = NULL;
3005        int err = 0;
3006
3007        if (!fstype)
3008                return -EINVAL;
3009
3010        type = get_fs_type(fstype);
3011        if (!type)
3012                return -ENODEV;
3013
3014        if (type->fs_flags & FS_HAS_SUBTYPE) {
3015                subtype = strchr(fstype, '.');
3016                if (subtype) {
3017                        subtype++;
3018                        if (!*subtype) {
3019                                put_filesystem(type);
3020                                return -EINVAL;
3021                        }
3022                }
3023        }
3024
3025        fc = fs_context_for_mount(type, sb_flags);
3026        put_filesystem(type);
3027        if (IS_ERR(fc))
3028                return PTR_ERR(fc);
3029
3030        if (subtype)
3031                err = vfs_parse_fs_string(fc, "subtype",
3032                                          subtype, strlen(subtype));
3033        if (!err && name)
3034                err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3035        if (!err)
3036                err = parse_monolithic_mount_data(fc, data);
3037        if (!err && !mount_capable(fc))
3038                err = -EPERM;
3039        if (!err)
3040                err = vfs_get_tree(fc);
3041        if (!err)
3042                err = do_new_mount_fc(fc, path, mnt_flags);
3043
3044        put_fs_context(fc);
3045        return err;
3046}
3047
3048int finish_automount(struct vfsmount *m, const struct path *path)
3049{
3050        struct dentry *dentry = path->dentry;
3051        struct mountpoint *mp;
3052        struct mount *mnt;
3053        int err;
3054
3055        if (!m)
3056                return 0;
3057        if (IS_ERR(m))
3058                return PTR_ERR(m);
3059
3060        mnt = real_mount(m);
3061        /* The new mount record should have at least 2 refs to prevent it being
3062         * expired before we get a chance to add it
3063         */
3064        BUG_ON(mnt_get_count(mnt) < 2);
3065
3066        if (m->mnt_sb == path->mnt->mnt_sb &&
3067            m->mnt_root == dentry) {
3068                err = -ELOOP;
3069                goto discard;
3070        }
3071
3072        /*
3073         * we don't want to use lock_mount() - in this case finding something
3074         * that overmounts our mountpoint to be means "quitely drop what we've
3075         * got", not "try to mount it on top".
3076         */
3077        inode_lock(dentry->d_inode);
3078        namespace_lock();
3079        if (unlikely(cant_mount(dentry))) {
3080                err = -ENOENT;
3081                goto discard_locked;
3082        }
3083        rcu_read_lock();
3084        if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3085                rcu_read_unlock();
3086                err = 0;
3087                goto discard_locked;
3088        }
3089        rcu_read_unlock();
3090        mp = get_mountpoint(dentry);
3091        if (IS_ERR(mp)) {
3092                err = PTR_ERR(mp);
3093                goto discard_locked;
3094        }
3095
3096        err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3097        unlock_mount(mp);
3098        if (unlikely(err))
3099                goto discard;
3100        mntput(m);
3101        return 0;
3102
3103discard_locked:
3104        namespace_unlock();
3105        inode_unlock(dentry->d_inode);
3106discard:
3107        /* remove m from any expiration list it may be on */
3108        if (!list_empty(&mnt->mnt_expire)) {
3109                namespace_lock();
3110                list_del_init(&mnt->mnt_expire);
3111                namespace_unlock();
3112        }
3113        mntput(m);
3114        mntput(m);
3115        return err;
3116}
3117
3118/**
3119 * mnt_set_expiry - Put a mount on an expiration list
3120 * @mnt: The mount to list.
3121 * @expiry_list: The list to add the mount to.
3122 */
3123void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3124{
3125        namespace_lock();
3126
3127        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3128
3129        namespace_unlock();
3130}
3131EXPORT_SYMBOL(mnt_set_expiry);
3132
3133/*
3134 * process a list of expirable mountpoints with the intent of discarding any
3135 * mountpoints that aren't in use and haven't been touched since last we came
3136 * here
3137 */
3138void mark_mounts_for_expiry(struct list_head *mounts)
3139{
3140        struct mount *mnt, *next;
3141        LIST_HEAD(graveyard);
3142
3143        if (list_empty(mounts))
3144                return;
3145
3146        namespace_lock();
3147        lock_mount_hash();
3148
3149        /* extract from the expiration list every vfsmount that matches the
3150         * following criteria:
3151         * - only referenced by its parent vfsmount
3152         * - still marked for expiry (marked on the last call here; marks are
3153         *   cleared by mntput())
3154         */
3155        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3156                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3157                        propagate_mount_busy(mnt, 1))
3158                        continue;
3159                list_move(&mnt->mnt_expire, &graveyard);
3160        }
3161        while (!list_empty(&graveyard)) {
3162                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3163                touch_mnt_namespace(mnt->mnt_ns);
3164                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3165        }
3166        unlock_mount_hash();
3167        namespace_unlock();
3168}
3169
3170EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3171
3172/*
3173 * Ripoff of 'select_parent()'
3174 *
3175 * search the list of submounts for a given mountpoint, and move any
3176 * shrinkable submounts to the 'graveyard' list.
3177 */
3178static int select_submounts(struct mount *parent, struct list_head *graveyard)
3179{
3180        struct mount *this_parent = parent;
3181        struct list_head *next;
3182        int found = 0;
3183
3184repeat:
3185        next = this_parent->mnt_mounts.next;
3186resume:
3187        while (next != &this_parent->mnt_mounts) {
3188                struct list_head *tmp = next;
3189                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3190
3191                next = tmp->next;
3192                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3193                        continue;
3194                /*
3195                 * Descend a level if the d_mounts list is non-empty.
3196                 */
3197                if (!list_empty(&mnt->mnt_mounts)) {
3198                        this_parent = mnt;
3199                        goto repeat;
3200                }
3201
3202                if (!propagate_mount_busy(mnt, 1)) {
3203                        list_move_tail(&mnt->mnt_expire, graveyard);
3204                        found++;
3205                }
3206        }
3207        /*
3208         * All done at this level ... ascend and resume the search
3209         */
3210        if (this_parent != parent) {
3211                next = this_parent->mnt_child.next;
3212                this_parent = this_parent->mnt_parent;
3213                goto resume;
3214        }
3215        return found;
3216}
3217
3218/*
3219 * process a list of expirable mountpoints with the intent of discarding any
3220 * submounts of a specific parent mountpoint
3221 *
3222 * mount_lock must be held for write
3223 */
3224static void shrink_submounts(struct mount *mnt)
3225{
3226        LIST_HEAD(graveyard);
3227        struct mount *m;
3228
3229        /* extract submounts of 'mountpoint' from the expiration list */
3230        while (select_submounts(mnt, &graveyard)) {
3231                while (!list_empty(&graveyard)) {
3232                        m = list_first_entry(&graveyard, struct mount,
3233                                                mnt_expire);
3234                        touch_mnt_namespace(m->mnt_ns);
3235                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3236                }
3237        }
3238}
3239
3240static void *copy_mount_options(const void __user * data)
3241{
3242        char *copy;
3243        unsigned left, offset;
3244
3245        if (!data)
3246                return NULL;
3247
3248        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3249        if (!copy)
3250                return ERR_PTR(-ENOMEM);
3251
3252        left = copy_from_user(copy, data, PAGE_SIZE);
3253
3254        /*
3255         * Not all architectures have an exact copy_from_user(). Resort to
3256         * byte at a time.
3257         */
3258        offset = PAGE_SIZE - left;
3259        while (left) {
3260                char c;
3261                if (get_user(c, (const char __user *)data + offset))
3262                        break;
3263                copy[offset] = c;
3264                left--;
3265                offset++;
3266        }
3267
3268        if (left == PAGE_SIZE) {
3269                kfree(copy);
3270                return ERR_PTR(-EFAULT);
3271        }
3272
3273        return copy;
3274}
3275
3276static char *copy_mount_string(const void __user *data)
3277{
3278        return data ? strndup_user(data, PATH_MAX) : NULL;
3279}
3280
3281/*
3282 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3283 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3284 *
3285 * data is a (void *) that can point to any structure up to
3286 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3287 * information (or be NULL).
3288 *
3289 * Pre-0.97 versions of mount() didn't have a flags word.
3290 * When the flags word was introduced its top half was required
3291 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3292 * Therefore, if this magic number is present, it carries no information
3293 * and must be discarded.
3294 */
3295int path_mount(const char *dev_name, struct path *path,
3296                const char *type_page, unsigned long flags, void *data_page)
3297{
3298        unsigned int mnt_flags = 0, sb_flags;
3299        int ret;
3300
3301        /* Discard magic */
3302        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3303                flags &= ~MS_MGC_MSK;
3304
3305        /* Basic sanity checks */
3306        if (data_page)
3307                ((char *)data_page)[PAGE_SIZE - 1] = 0;
3308
3309        if (flags & MS_NOUSER)
3310                return -EINVAL;
3311
3312        ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3313        if (ret)
3314                return ret;
3315        if (!may_mount())
3316                return -EPERM;
3317        if (flags & SB_MANDLOCK)
3318                warn_mandlock();
3319
3320        /* Default to relatime unless overriden */
3321        if (!(flags & MS_NOATIME))
3322                mnt_flags |= MNT_RELATIME;
3323
3324        /* Separate the per-mountpoint flags */
3325        if (flags & MS_NOSUID)
3326                mnt_flags |= MNT_NOSUID;
3327        if (flags & MS_NODEV)
3328                mnt_flags |= MNT_NODEV;
3329        if (flags & MS_NOEXEC)
3330                mnt_flags |= MNT_NOEXEC;
3331        if (flags & MS_NOATIME)
3332                mnt_flags |= MNT_NOATIME;
3333        if (flags & MS_NODIRATIME)
3334                mnt_flags |= MNT_NODIRATIME;
3335        if (flags & MS_STRICTATIME)
3336                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3337        if (flags & MS_RDONLY)
3338                mnt_flags |= MNT_READONLY;
3339        if (flags & MS_NOSYMFOLLOW)
3340                mnt_flags |= MNT_NOSYMFOLLOW;
3341
3342        /* The default atime for remount is preservation */
3343        if ((flags & MS_REMOUNT) &&
3344            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3345                       MS_STRICTATIME)) == 0)) {
3346                mnt_flags &= ~MNT_ATIME_MASK;
3347                mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3348        }
3349
3350        sb_flags = flags & (SB_RDONLY |
3351                            SB_SYNCHRONOUS |
3352                            SB_MANDLOCK |
3353                            SB_DIRSYNC |
3354                            SB_SILENT |
3355                            SB_POSIXACL |
3356                            SB_LAZYTIME |
3357                            SB_I_VERSION);
3358
3359        if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3360                return do_reconfigure_mnt(path, mnt_flags);
3361        if (flags & MS_REMOUNT)
3362                return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3363        if (flags & MS_BIND)
3364                return do_loopback(path, dev_name, flags & MS_REC);
3365        if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3366                return do_change_type(path, flags);
3367        if (flags & MS_MOVE)
3368                return do_move_mount_old(path, dev_name);
3369
3370        return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3371                            data_page);
3372}
3373
3374long do_mount(const char *dev_name, const char __user *dir_name,
3375                const char *type_page, unsigned long flags, void *data_page)
3376{
3377        struct path path;
3378        int ret;
3379
3380        ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3381        if (ret)
3382                return ret;
3383        ret = path_mount(dev_name, &path, type_page, flags, data_page);
3384        path_put(&path);
3385        return ret;
3386}
3387
3388static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3389{
3390        return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3391}
3392
3393static void dec_mnt_namespaces(struct ucounts *ucounts)
3394{
3395        dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3396}
3397
3398static void free_mnt_ns(struct mnt_namespace *ns)
3399{
3400        if (!is_anon_ns(ns))
3401                ns_free_inum(&ns->ns);
3402        dec_mnt_namespaces(ns->ucounts);
3403        put_user_ns(ns->user_ns);
3404        kfree(ns);
3405}
3406
3407/*
3408 * Assign a sequence number so we can detect when we attempt to bind
3409 * mount a reference to an older mount namespace into the current
3410 * mount namespace, preventing reference counting loops.  A 64bit
3411 * number incrementing at 10Ghz will take 12,427 years to wrap which
3412 * is effectively never, so we can ignore the possibility.
3413 */
3414static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3415
3416static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3417{
3418        struct mnt_namespace *new_ns;
3419        struct ucounts *ucounts;
3420        int ret;
3421
3422        ucounts = inc_mnt_namespaces(user_ns);
3423        if (!ucounts)
3424                return ERR_PTR(-ENOSPC);
3425
3426        new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3427        if (!new_ns) {
3428                dec_mnt_namespaces(ucounts);
3429                return ERR_PTR(-ENOMEM);
3430        }
3431        if (!anon) {
3432                ret = ns_alloc_inum(&new_ns->ns);
3433                if (ret) {
3434                        kfree(new_ns);
3435                        dec_mnt_namespaces(ucounts);
3436                        return ERR_PTR(ret);
3437                }
3438        }
3439        new_ns->ns.ops = &mntns_operations;
3440        if (!anon)
3441                new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3442        refcount_set(&new_ns->ns.count, 1);
3443        INIT_LIST_HEAD(&new_ns->list);
3444        init_waitqueue_head(&new_ns->poll);
3445        spin_lock_init(&new_ns->ns_lock);
3446        new_ns->user_ns = get_user_ns(user_ns);
3447        new_ns->ucounts = ucounts;
3448        return new_ns;
3449}
3450
3451__latent_entropy
3452struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3453                struct user_namespace *user_ns, struct fs_struct *new_fs)
3454{
3455        struct mnt_namespace *new_ns;
3456        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3457        struct mount *p, *q;
3458        struct mount *old;
3459        struct mount *new;
3460        int copy_flags;
3461
3462        BUG_ON(!ns);
3463
3464        if (likely(!(flags & CLONE_NEWNS))) {
3465                get_mnt_ns(ns);
3466                return ns;
3467        }
3468
3469        old = ns->root;
3470
3471        new_ns = alloc_mnt_ns(user_ns, false);
3472        if (IS_ERR(new_ns))
3473                return new_ns;
3474
3475        namespace_lock();
3476        /* First pass: copy the tree topology */
3477        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3478        if (user_ns != ns->user_ns)
3479                copy_flags |= CL_SHARED_TO_SLAVE;
3480        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3481        if (IS_ERR(new)) {
3482                namespace_unlock();
3483                free_mnt_ns(new_ns);
3484                return ERR_CAST(new);
3485        }
3486        if (user_ns != ns->user_ns) {
3487                lock_mount_hash();
3488                lock_mnt_tree(new);
3489                unlock_mount_hash();
3490        }
3491        new_ns->root = new;
3492        list_add_tail(&new_ns->list, &new->mnt_list);
3493
3494        /*
3495         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3496         * as belonging to new namespace.  We have already acquired a private
3497         * fs_struct, so tsk->fs->lock is not needed.
3498         */
3499        p = old;
3500        q = new;
3501        while (p) {
3502                q->mnt_ns = new_ns;
3503                new_ns->mounts++;
3504                if (new_fs) {
3505                        if (&p->mnt == new_fs->root.mnt) {
3506                                new_fs->root.mnt = mntget(&q->mnt);
3507                                rootmnt = &p->mnt;
3508                        }
3509                        if (&p->mnt == new_fs->pwd.mnt) {
3510                                new_fs->pwd.mnt = mntget(&q->mnt);
3511                                pwdmnt = &p->mnt;
3512                        }
3513                }
3514                p = next_mnt(p, old);
3515                q = next_mnt(q, new);
3516                if (!q)
3517                        break;
3518                while (p->mnt.mnt_root != q->mnt.mnt_root)
3519                        p = next_mnt(p, old);
3520        }
3521        namespace_unlock();
3522
3523        if (rootmnt)
3524                mntput(rootmnt);
3525        if (pwdmnt)
3526                mntput(pwdmnt);
3527
3528        return new_ns;
3529}
3530
3531struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3532{
3533        struct mount *mnt = real_mount(m);
3534        struct mnt_namespace *ns;
3535        struct super_block *s;
3536        struct path path;
3537        int err;
3538
3539        ns = alloc_mnt_ns(&init_user_ns, true);
3540        if (IS_ERR(ns)) {
3541                mntput(m);
3542                return ERR_CAST(ns);
3543        }
3544        mnt->mnt_ns = ns;
3545        ns->root = mnt;
3546        ns->mounts++;
3547        list_add(&mnt->mnt_list, &ns->list);
3548
3549        err = vfs_path_lookup(m->mnt_root, m,
3550                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3551
3552        put_mnt_ns(ns);
3553
3554        if (err)
3555                return ERR_PTR(err);
3556
3557        /* trade a vfsmount reference for active sb one */
3558        s = path.mnt->mnt_sb;
3559        atomic_inc(&s->s_active);
3560        mntput(path.mnt);
3561        /* lock the sucker */
3562        down_write(&s->s_umount);
3563        /* ... and return the root of (sub)tree on it */
3564        return path.dentry;
3565}
3566EXPORT_SYMBOL(mount_subtree);
3567
3568SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3569                char __user *, type, unsigned long, flags, void __user *, data)
3570{
3571        int ret;
3572        char *kernel_type;
3573        char *kernel_dev;
3574        void *options;
3575
3576        kernel_type = copy_mount_string(type);
3577        ret = PTR_ERR(kernel_type);
3578        if (IS_ERR(kernel_type))
3579                goto out_type;
3580
3581        kernel_dev = copy_mount_string(dev_name);
3582        ret = PTR_ERR(kernel_dev);
3583        if (IS_ERR(kernel_dev))
3584                goto out_dev;
3585
3586        options = copy_mount_options(data);
3587        ret = PTR_ERR(options);
3588        if (IS_ERR(options))
3589                goto out_data;
3590
3591        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3592
3593        kfree(options);
3594out_data:
3595        kfree(kernel_dev);
3596out_dev:
3597        kfree(kernel_type);
3598out_type:
3599        return ret;
3600}
3601
3602#define FSMOUNT_VALID_FLAGS                                                    \
3603        (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3604         MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3605         MOUNT_ATTR_NOSYMFOLLOW)
3606
3607#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3608
3609#define MOUNT_SETATTR_PROPAGATION_FLAGS \
3610        (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3611
3612static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3613{
3614        unsigned int mnt_flags = 0;
3615
3616        if (attr_flags & MOUNT_ATTR_RDONLY)
3617                mnt_flags |= MNT_READONLY;
3618        if (attr_flags & MOUNT_ATTR_NOSUID)
3619                mnt_flags |= MNT_NOSUID;
3620        if (attr_flags & MOUNT_ATTR_NODEV)
3621                mnt_flags |= MNT_NODEV;
3622        if (attr_flags & MOUNT_ATTR_NOEXEC)
3623                mnt_flags |= MNT_NOEXEC;
3624        if (attr_flags & MOUNT_ATTR_NODIRATIME)
3625                mnt_flags |= MNT_NODIRATIME;
3626        if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3627                mnt_flags |= MNT_NOSYMFOLLOW;
3628
3629        return mnt_flags;
3630}
3631
3632/*
3633 * Create a kernel mount representation for a new, prepared superblock
3634 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3635 */
3636SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3637                unsigned int, attr_flags)
3638{
3639        struct mnt_namespace *ns;
3640        struct fs_context *fc;
3641        struct file *file;
3642        struct path newmount;
3643        struct mount *mnt;
3644        struct fd f;
3645        unsigned int mnt_flags = 0;
3646        long ret;
3647
3648        if (!may_mount())
3649                return -EPERM;
3650
3651        if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3652                return -EINVAL;
3653
3654        if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3655                return -EINVAL;
3656
3657        mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3658
3659        switch (attr_flags & MOUNT_ATTR__ATIME) {
3660        case MOUNT_ATTR_STRICTATIME:
3661                break;
3662        case MOUNT_ATTR_NOATIME:
3663                mnt_flags |= MNT_NOATIME;
3664                break;
3665        case MOUNT_ATTR_RELATIME:
3666                mnt_flags |= MNT_RELATIME;
3667                break;
3668        default:
3669                return -EINVAL;
3670        }
3671
3672        f = fdget(fs_fd);
3673        if (!f.file)
3674                return -EBADF;
3675
3676        ret = -EINVAL;
3677        if (f.file->f_op != &fscontext_fops)
3678                goto err_fsfd;
3679
3680        fc = f.file->private_data;
3681
3682        ret = mutex_lock_interruptible(&fc->uapi_mutex);
3683        if (ret < 0)
3684                goto err_fsfd;
3685
3686        /* There must be a valid superblock or we can't mount it */
3687        ret = -EINVAL;
3688        if (!fc->root)
3689                goto err_unlock;
3690
3691        ret = -EPERM;
3692        if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3693                pr_warn("VFS: Mount too revealing\n");
3694                goto err_unlock;
3695        }
3696
3697        ret = -EBUSY;
3698        if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3699                goto err_unlock;
3700
3701        if (fc->sb_flags & SB_MANDLOCK)
3702                warn_mandlock();
3703
3704        newmount.mnt = vfs_create_mount(fc);
3705        if (IS_ERR(newmount.mnt)) {
3706                ret = PTR_ERR(newmount.mnt);
3707                goto err_unlock;
3708        }
3709        newmount.dentry = dget(fc->root);
3710        newmount.mnt->mnt_flags = mnt_flags;
3711
3712        /* We've done the mount bit - now move the file context into more or
3713         * less the same state as if we'd done an fspick().  We don't want to
3714         * do any memory allocation or anything like that at this point as we
3715         * don't want to have to handle any errors incurred.
3716         */
3717        vfs_clean_context(fc);
3718
3719        ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3720        if (IS_ERR(ns)) {
3721                ret = PTR_ERR(ns);
3722                goto err_path;
3723        }
3724        mnt = real_mount(newmount.mnt);
3725        mnt->mnt_ns = ns;
3726        ns->root = mnt;
3727        ns->mounts = 1;
3728        list_add(&mnt->mnt_list, &ns->list);
3729        mntget(newmount.mnt);
3730
3731        /* Attach to an apparent O_PATH fd with a note that we need to unmount
3732         * it, not just simply put it.
3733         */
3734        file = dentry_open(&newmount, O_PATH, fc->cred);
3735        if (IS_ERR(file)) {
3736                dissolve_on_fput(newmount.mnt);
3737                ret = PTR_ERR(file);
3738                goto err_path;
3739        }
3740        file->f_mode |= FMODE_NEED_UNMOUNT;
3741
3742        ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3743        if (ret >= 0)
3744                fd_install(ret, file);
3745        else
3746                fput(file);
3747
3748err_path:
3749        path_put(&newmount);
3750err_unlock:
3751        mutex_unlock(&fc->uapi_mutex);
3752err_fsfd:
3753        fdput(f);
3754        return ret;
3755}
3756
3757/*
3758 * Move a mount from one place to another.  In combination with
3759 * fsopen()/fsmount() this is used to install a new mount and in combination
3760 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3761 * a mount subtree.
3762 *
3763 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3764 */
3765SYSCALL_DEFINE5(move_mount,
3766                int, from_dfd, const char __user *, from_pathname,
3767                int, to_dfd, const char __user *, to_pathname,
3768                unsigned int, flags)
3769{
3770        struct path from_path, to_path;
3771        unsigned int lflags;
3772        int ret = 0;
3773
3774        if (!may_mount())
3775                return -EPERM;
3776
3777        if (flags & ~MOVE_MOUNT__MASK)
3778                return -EINVAL;
3779
3780        /* If someone gives a pathname, they aren't permitted to move
3781         * from an fd that requires unmount as we can't get at the flag
3782         * to clear it afterwards.
3783         */
3784        lflags = 0;
3785        if (flags & MOVE_MOUNT_F_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3786        if (flags & MOVE_MOUNT_F_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3787        if (flags & MOVE_MOUNT_F_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3788
3789        ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3790        if (ret < 0)
3791                return ret;
3792
3793        lflags = 0;
3794        if (flags & MOVE_MOUNT_T_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3795        if (flags & MOVE_MOUNT_T_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3796        if (flags & MOVE_MOUNT_T_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3797
3798        ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3799        if (ret < 0)
3800                goto out_from;
3801
3802        ret = security_move_mount(&from_path, &to_path);
3803        if (ret < 0)
3804                goto out_to;
3805
3806        if (flags & MOVE_MOUNT_SET_GROUP)
3807                ret = do_set_group(&from_path, &to_path);
3808        else
3809                ret = do_move_mount(&from_path, &to_path);
3810
3811out_to:
3812        path_put(&to_path);
3813out_from:
3814        path_put(&from_path);
3815        return ret;
3816}
3817
3818/*
3819 * Return true if path is reachable from root
3820 *
3821 * namespace_sem or mount_lock is held
3822 */
3823bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3824                         const struct path *root)
3825{
3826        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3827                dentry = mnt->mnt_mountpoint;
3828                mnt = mnt->mnt_parent;
3829        }
3830        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3831}
3832
3833bool path_is_under(const struct path *path1, const struct path *path2)
3834{
3835        bool res;
3836        read_seqlock_excl(&mount_lock);
3837        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3838        read_sequnlock_excl(&mount_lock);
3839        return res;
3840}
3841EXPORT_SYMBOL(path_is_under);
3842
3843/*
3844 * pivot_root Semantics:
3845 * Moves the root file system of the current process to the directory put_old,
3846 * makes new_root as the new root file system of the current process, and sets
3847 * root/cwd of all processes which had them on the current root to new_root.
3848 *
3849 * Restrictions:
3850 * The new_root and put_old must be directories, and  must not be on the
3851 * same file  system as the current process root. The put_old  must  be
3852 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3853 * pointed to by put_old must yield the same directory as new_root. No other
3854 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3855 *
3856 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3857 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3858 * in this situation.
3859 *
3860 * Notes:
3861 *  - we don't move root/cwd if they are not at the root (reason: if something
3862 *    cared enough to change them, it's probably wrong to force them elsewhere)
3863 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3864 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3865 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3866 *    first.
3867 */
3868SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3869                const char __user *, put_old)
3870{
3871        struct path new, old, root;
3872        struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3873        struct mountpoint *old_mp, *root_mp;
3874        int error;
3875
3876        if (!may_mount())
3877                return -EPERM;
3878
3879        error = user_path_at(AT_FDCWD, new_root,
3880                             LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3881        if (error)
3882                goto out0;
3883
3884        error = user_path_at(AT_FDCWD, put_old,
3885                             LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3886        if (error)
3887                goto out1;
3888
3889        error = security_sb_pivotroot(&old, &new);
3890        if (error)
3891                goto out2;
3892
3893        get_fs_root(current->fs, &root);
3894        old_mp = lock_mount(&old);
3895        error = PTR_ERR(old_mp);
3896        if (IS_ERR(old_mp))
3897                goto out3;
3898
3899        error = -EINVAL;
3900        new_mnt = real_mount(new.mnt);
3901        root_mnt = real_mount(root.mnt);
3902        old_mnt = real_mount(old.mnt);
3903        ex_parent = new_mnt->mnt_parent;
3904        root_parent = root_mnt->mnt_parent;
3905        if (IS_MNT_SHARED(old_mnt) ||
3906                IS_MNT_SHARED(ex_parent) ||
3907                IS_MNT_SHARED(root_parent))
3908                goto out4;
3909        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3910                goto out4;
3911        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3912                goto out4;
3913        error = -ENOENT;
3914        if (d_unlinked(new.dentry))
3915                goto out4;
3916        error = -EBUSY;
3917        if (new_mnt == root_mnt || old_mnt == root_mnt)
3918                goto out4; /* loop, on the same file system  */
3919        error = -EINVAL;
3920        if (root.mnt->mnt_root != root.dentry)
3921                goto out4; /* not a mountpoint */
3922        if (!mnt_has_parent(root_mnt))
3923                goto out4; /* not attached */
3924        if (new.mnt->mnt_root != new.dentry)
3925                goto out4; /* not a mountpoint */
3926        if (!mnt_has_parent(new_mnt))
3927                goto out4; /* not attached */
3928        /* make sure we can reach put_old from new_root */
3929        if (!is_path_reachable(old_mnt, old.dentry, &new))
3930                goto out4;
3931        /* make certain new is below the root */
3932        if (!is_path_reachable(new_mnt, new.dentry, &root))
3933                goto out4;
3934        lock_mount_hash();
3935        umount_mnt(new_mnt);
3936        root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3937        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3938                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3939                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3940        }
3941        /* mount old root on put_old */
3942        attach_mnt(root_mnt, old_mnt, old_mp);
3943        /* mount new_root on / */
3944        attach_mnt(new_mnt, root_parent, root_mp);
3945        mnt_add_count(root_parent, -1);
3946        touch_mnt_namespace(current->nsproxy->mnt_ns);
3947        /* A moved mount should not expire automatically */
3948        list_del_init(&new_mnt->mnt_expire);
3949        put_mountpoint(root_mp);
3950        unlock_mount_hash();
3951        chroot_fs_refs(&root, &new);
3952        error = 0;
3953out4:
3954        unlock_mount(old_mp);
3955        if (!error)
3956                mntput_no_expire(ex_parent);
3957out3:
3958        path_put(&root);
3959out2:
3960        path_put(&old);
3961out1:
3962        path_put(&new);
3963out0:
3964        return error;
3965}
3966
3967static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3968{
3969        unsigned int flags = mnt->mnt.mnt_flags;
3970
3971        /*  flags to clear */
3972        flags &= ~kattr->attr_clr;
3973        /* flags to raise */
3974        flags |= kattr->attr_set;
3975
3976        return flags;
3977}
3978
3979static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3980{
3981        struct vfsmount *m = &mnt->mnt;
3982        struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3983
3984        if (!kattr->mnt_userns)
3985                return 0;
3986
3987        /*
3988         * Creating an idmapped mount with the filesystem wide idmapping
3989         * doesn't make sense so block that. We don't allow mushy semantics.
3990         */
3991        if (kattr->mnt_userns == fs_userns)
3992                return -EINVAL;
3993
3994        /*
3995         * Once a mount has been idmapped we don't allow it to change its
3996         * mapping. It makes things simpler and callers can just create
3997         * another bind-mount they can idmap if they want to.
3998         */
3999        if (is_idmapped_mnt(m))
4000                return -EPERM;
4001
4002        /* The underlying filesystem doesn't support idmapped mounts yet. */
4003        if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4004                return -EINVAL;
4005
4006        /* We're not controlling the superblock. */
4007        if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4008                return -EPERM;
4009
4010        /* Mount has already been visible in the filesystem hierarchy. */
4011        if (!is_anon_ns(mnt->mnt_ns))
4012                return -EINVAL;
4013
4014        return 0;
4015}
4016
4017/**
4018 * mnt_allow_writers() - check whether the attribute change allows writers
4019 * @kattr: the new mount attributes
4020 * @mnt: the mount to which @kattr will be applied
4021 *
4022 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4023 *
4024 * Return: true if writers need to be held, false if not
4025 */
4026static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4027                                     const struct mount *mnt)
4028{
4029        return (!(kattr->attr_set & MNT_READONLY) ||
4030                (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4031               !kattr->mnt_userns;
4032}
4033
4034static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4035{
4036        struct mount *m;
4037        int err;
4038
4039        for (m = mnt; m; m = next_mnt(m, mnt)) {
4040                if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4041                        err = -EPERM;
4042                        break;
4043                }
4044
4045                err = can_idmap_mount(kattr, m);
4046                if (err)
4047                        break;
4048
4049                if (!mnt_allow_writers(kattr, m)) {
4050                        err = mnt_hold_writers(m);
4051                        if (err)
4052                                break;
4053                }
4054
4055                if (!kattr->recurse)
4056                        return 0;
4057        }
4058
4059        if (err) {
4060                struct mount *p;
4061
4062                /*
4063                 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4064                 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4065                 * mounts and needs to take care to include the first mount.
4066                 */
4067                for (p = mnt; p; p = next_mnt(p, mnt)) {
4068                        /* If we had to hold writers unblock them. */
4069                        if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4070                                mnt_unhold_writers(p);
4071
4072                        /*
4073                         * We're done once the first mount we changed got
4074                         * MNT_WRITE_HOLD unset.
4075                         */
4076                        if (p == m)
4077                                break;
4078                }
4079        }
4080        return err;
4081}
4082
4083static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4084{
4085        struct user_namespace *mnt_userns, *old_mnt_userns;
4086
4087        if (!kattr->mnt_userns)
4088                return;
4089
4090        /*
4091         * We're the only ones able to change the mount's idmapping. So
4092         * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4093         */
4094        old_mnt_userns = mnt->mnt.mnt_userns;
4095
4096        mnt_userns = get_user_ns(kattr->mnt_userns);
4097        /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4098        smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4099
4100        /*
4101         * If this is an idmapped filesystem drop the reference we've taken
4102         * in vfs_create_mount() before.
4103         */
4104        if (!initial_idmapping(old_mnt_userns))
4105                put_user_ns(old_mnt_userns);
4106}
4107
4108static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4109{
4110        struct mount *m;
4111
4112        for (m = mnt; m; m = next_mnt(m, mnt)) {
4113                unsigned int flags;
4114
4115                do_idmap_mount(kattr, m);
4116                flags = recalc_flags(kattr, m);
4117                WRITE_ONCE(m->mnt.mnt_flags, flags);
4118
4119                /* If we had to hold writers unblock them. */
4120                if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4121                        mnt_unhold_writers(m);
4122
4123                if (kattr->propagation)
4124                        change_mnt_propagation(m, kattr->propagation);
4125                if (!kattr->recurse)
4126                        break;
4127        }
4128        touch_mnt_namespace(mnt->mnt_ns);
4129}
4130
4131static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4132{
4133        struct mount *mnt = real_mount(path->mnt);
4134        int err = 0;
4135
4136        if (path->dentry != mnt->mnt.mnt_root)
4137                return -EINVAL;
4138
4139        if (kattr->propagation) {
4140                /*
4141                 * Only take namespace_lock() if we're actually changing
4142                 * propagation.
4143                 */
4144                namespace_lock();
4145                if (kattr->propagation == MS_SHARED) {
4146                        err = invent_group_ids(mnt, kattr->recurse);
4147                        if (err) {
4148                                namespace_unlock();
4149                                return err;
4150                        }
4151                }
4152        }
4153
4154        err = -EINVAL;
4155        lock_mount_hash();
4156
4157        /* Ensure that this isn't anything purely vfs internal. */
4158        if (!is_mounted(&mnt->mnt))
4159                goto out;
4160
4161        /*
4162         * If this is an attached mount make sure it's located in the callers
4163         * mount namespace. If it's not don't let the caller interact with it.
4164         * If this is a detached mount make sure it has an anonymous mount
4165         * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4166         */
4167        if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4168                goto out;
4169
4170        /*
4171         * First, we get the mount tree in a shape where we can change mount
4172         * properties without failure. If we succeeded to do so we commit all
4173         * changes and if we failed we clean up.
4174         */
4175        err = mount_setattr_prepare(kattr, mnt);
4176        if (!err)
4177                mount_setattr_commit(kattr, mnt);
4178
4179out:
4180        unlock_mount_hash();
4181
4182        if (kattr->propagation) {
4183                namespace_unlock();
4184                if (err)
4185                        cleanup_group_ids(mnt, NULL);
4186        }
4187
4188        return err;
4189}
4190
4191static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4192                                struct mount_kattr *kattr, unsigned int flags)
4193{
4194        int err = 0;
4195        struct ns_common *ns;
4196        struct user_namespace *mnt_userns;
4197        struct file *file;
4198
4199        if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4200                return 0;
4201
4202        /*
4203         * We currently do not support clearing an idmapped mount. If this ever
4204         * is a use-case we can revisit this but for now let's keep it simple
4205         * and not allow it.
4206         */
4207        if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4208                return -EINVAL;
4209
4210        if (attr->userns_fd > INT_MAX)
4211                return -EINVAL;
4212
4213        file = fget(attr->userns_fd);
4214        if (!file)
4215                return -EBADF;
4216
4217        if (!proc_ns_file(file)) {
4218                err = -EINVAL;
4219                goto out_fput;
4220        }
4221
4222        ns = get_proc_ns(file_inode(file));
4223        if (ns->ops->type != CLONE_NEWUSER) {
4224                err = -EINVAL;
4225                goto out_fput;
4226        }
4227
4228        /*
4229         * The initial idmapping cannot be used to create an idmapped
4230         * mount. We use the initial idmapping as an indicator of a mount
4231         * that is not idmapped. It can simply be passed into helpers that
4232         * are aware of idmapped mounts as a convenient shortcut. A user
4233         * can just create a dedicated identity mapping to achieve the same
4234         * result.
4235         */
4236        mnt_userns = container_of(ns, struct user_namespace, ns);
4237        if (initial_idmapping(mnt_userns)) {
4238                err = -EPERM;
4239                goto out_fput;
4240        }
4241        kattr->mnt_userns = get_user_ns(mnt_userns);
4242
4243out_fput:
4244        fput(file);
4245        return err;
4246}
4247
4248static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4249                             struct mount_kattr *kattr, unsigned int flags)
4250{
4251        unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4252
4253        if (flags & AT_NO_AUTOMOUNT)
4254                lookup_flags &= ~LOOKUP_AUTOMOUNT;
4255        if (flags & AT_SYMLINK_NOFOLLOW)
4256                lookup_flags &= ~LOOKUP_FOLLOW;
4257        if (flags & AT_EMPTY_PATH)
4258                lookup_flags |= LOOKUP_EMPTY;
4259
4260        *kattr = (struct mount_kattr) {
4261                .lookup_flags   = lookup_flags,
4262                .recurse        = !!(flags & AT_RECURSIVE),
4263        };
4264
4265        if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4266                return -EINVAL;
4267        if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4268                return -EINVAL;
4269        kattr->propagation = attr->propagation;
4270
4271        if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4272                return -EINVAL;
4273
4274        kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4275        kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4276
4277        /*
4278         * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4279         * users wanting to transition to a different atime setting cannot
4280         * simply specify the atime setting in @attr_set, but must also
4281         * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4282         * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4283         * @attr_clr and that @attr_set can't have any atime bits set if
4284         * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4285         */
4286        if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4287                if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4288                        return -EINVAL;
4289
4290                /*
4291                 * Clear all previous time settings as they are mutually
4292                 * exclusive.
4293                 */
4294                kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4295                switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4296                case MOUNT_ATTR_RELATIME:
4297                        kattr->attr_set |= MNT_RELATIME;
4298                        break;
4299                case MOUNT_ATTR_NOATIME:
4300                        kattr->attr_set |= MNT_NOATIME;
4301                        break;
4302                case MOUNT_ATTR_STRICTATIME:
4303                        break;
4304                default:
4305                        return -EINVAL;
4306                }
4307        } else {
4308                if (attr->attr_set & MOUNT_ATTR__ATIME)
4309                        return -EINVAL;
4310        }
4311
4312        return build_mount_idmapped(attr, usize, kattr, flags);
4313}
4314
4315static void finish_mount_kattr(struct mount_kattr *kattr)
4316{
4317        put_user_ns(kattr->mnt_userns);
4318        kattr->mnt_userns = NULL;
4319}
4320
4321SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4322                unsigned int, flags, struct mount_attr __user *, uattr,
4323                size_t, usize)
4324{
4325        int err;
4326        struct path target;
4327        struct mount_attr attr;
4328        struct mount_kattr kattr;
4329
4330        BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4331
4332        if (flags & ~(AT_EMPTY_PATH |
4333                      AT_RECURSIVE |
4334                      AT_SYMLINK_NOFOLLOW |
4335                      AT_NO_AUTOMOUNT))
4336                return -EINVAL;
4337
4338        if (unlikely(usize > PAGE_SIZE))
4339                return -E2BIG;
4340        if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4341                return -EINVAL;
4342
4343        if (!may_mount())
4344                return -EPERM;
4345
4346        err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4347        if (err)
4348                return err;
4349
4350        /* Don't bother walking through the mounts if this is a nop. */
4351        if (attr.attr_set == 0 &&
4352            attr.attr_clr == 0 &&
4353            attr.propagation == 0)
4354                return 0;
4355
4356        err = build_mount_kattr(&attr, usize, &kattr, flags);
4357        if (err)
4358                return err;
4359
4360        err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4361        if (!err) {
4362                err = do_mount_setattr(&target, &kattr);
4363                path_put(&target);
4364        }
4365        finish_mount_kattr(&kattr);
4366        return err;
4367}
4368
4369static void __init init_mount_tree(void)
4370{
4371        struct vfsmount *mnt;
4372        struct mount *m;
4373        struct mnt_namespace *ns;
4374        struct path root;
4375
4376        mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4377        if (IS_ERR(mnt))
4378                panic("Can't create rootfs");
4379
4380        ns = alloc_mnt_ns(&init_user_ns, false);
4381        if (IS_ERR(ns))
4382                panic("Can't allocate initial namespace");
4383        m = real_mount(mnt);
4384        m->mnt_ns = ns;
4385        ns->root = m;
4386        ns->mounts = 1;
4387        list_add(&m->mnt_list, &ns->list);
4388        init_task.nsproxy->mnt_ns = ns;
4389        get_mnt_ns(ns);
4390
4391        root.mnt = mnt;
4392        root.dentry = mnt->mnt_root;
4393        mnt->mnt_flags |= MNT_LOCKED;
4394
4395        set_fs_pwd(current->fs, &root);
4396        set_fs_root(current->fs, &root);
4397}
4398
4399void __init mnt_init(void)
4400{
4401        int err;
4402
4403        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4404                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4405
4406        mount_hashtable = alloc_large_system_hash("Mount-cache",
4407                                sizeof(struct hlist_head),
4408                                mhash_entries, 19,
4409                                HASH_ZERO,
4410                                &m_hash_shift, &m_hash_mask, 0, 0);
4411        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4412                                sizeof(struct hlist_head),
4413                                mphash_entries, 19,
4414                                HASH_ZERO,
4415                                &mp_hash_shift, &mp_hash_mask, 0, 0);
4416
4417        if (!mount_hashtable || !mountpoint_hashtable)
4418                panic("Failed to allocate mount hash table\n");
4419
4420        kernfs_init();
4421
4422        err = sysfs_init();
4423        if (err)
4424                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4425                        __func__, err);
4426        fs_kobj = kobject_create_and_add("fs", NULL);
4427        if (!fs_kobj)
4428                printk(KERN_WARNING "%s: kobj create error\n", __func__);
4429        shmem_init();
4430        init_rootfs();
4431        init_mount_tree();
4432}
4433
4434void put_mnt_ns(struct mnt_namespace *ns)
4435{
4436        if (!refcount_dec_and_test(&ns->ns.count))
4437                return;
4438        drop_collected_mounts(&ns->root->mnt);
4439        free_mnt_ns(ns);
4440}
4441
4442struct vfsmount *kern_mount(struct file_system_type *type)
4443{
4444        struct vfsmount *mnt;
4445        mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4446        if (!IS_ERR(mnt)) {
4447                /*
4448                 * it is a longterm mount, don't release mnt until
4449                 * we unmount before file sys is unregistered
4450                */
4451                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4452        }
4453        return mnt;
4454}
4455EXPORT_SYMBOL_GPL(kern_mount);
4456
4457void kern_unmount(struct vfsmount *mnt)
4458{
4459        /* release long term mount so mount point can be released */
4460        if (!IS_ERR_OR_NULL(mnt)) {
4461                real_mount(mnt)->mnt_ns = NULL;
4462                synchronize_rcu();      /* yecchhh... */
4463                mntput(mnt);
4464        }
4465}
4466EXPORT_SYMBOL(kern_unmount);
4467
4468void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4469{
4470        unsigned int i;
4471
4472        for (i = 0; i < num; i++)
4473                if (mnt[i])
4474                        real_mount(mnt[i])->mnt_ns = NULL;
4475        synchronize_rcu_expedited();
4476        for (i = 0; i < num; i++)
4477                mntput(mnt[i]);
4478}
4479EXPORT_SYMBOL(kern_unmount_array);
4480
4481bool our_mnt(struct vfsmount *mnt)
4482{
4483        return check_mnt(real_mount(mnt));
4484}
4485
4486bool current_chrooted(void)
4487{
4488        /* Does the current process have a non-standard root */
4489        struct path ns_root;
4490        struct path fs_root;
4491        bool chrooted;
4492
4493        /* Find the namespace root */
4494        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4495        ns_root.dentry = ns_root.mnt->mnt_root;
4496        path_get(&ns_root);
4497        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4498                ;
4499
4500        get_fs_root(current->fs, &fs_root);
4501
4502        chrooted = !path_equal(&fs_root, &ns_root);
4503
4504        path_put(&fs_root);
4505        path_put(&ns_root);
4506
4507        return chrooted;
4508}
4509
4510static bool mnt_already_visible(struct mnt_namespace *ns,
4511                                const struct super_block *sb,
4512                                int *new_mnt_flags)
4513{
4514        int new_flags = *new_mnt_flags;
4515        struct mount *mnt;
4516        bool visible = false;
4517
4518        down_read(&namespace_sem);
4519        lock_ns_list(ns);
4520        list_for_each_entry(mnt, &ns->list, mnt_list) {
4521                struct mount *child;
4522                int mnt_flags;
4523
4524                if (mnt_is_cursor(mnt))
4525                        continue;
4526
4527                if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4528                        continue;
4529
4530                /* This mount is not fully visible if it's root directory
4531                 * is not the root directory of the filesystem.
4532                 */
4533                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4534                        continue;
4535
4536                /* A local view of the mount flags */
4537                mnt_flags = mnt->mnt.mnt_flags;
4538
4539                /* Don't miss readonly hidden in the superblock flags */
4540                if (sb_rdonly(mnt->mnt.mnt_sb))
4541                        mnt_flags |= MNT_LOCK_READONLY;
4542
4543                /* Verify the mount flags are equal to or more permissive
4544                 * than the proposed new mount.
4545                 */
4546                if ((mnt_flags & MNT_LOCK_READONLY) &&
4547                    !(new_flags & MNT_READONLY))
4548                        continue;
4549                if ((mnt_flags & MNT_LOCK_ATIME) &&
4550                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4551                        continue;
4552
4553                /* This mount is not fully visible if there are any
4554                 * locked child mounts that cover anything except for
4555                 * empty directories.
4556                 */
4557                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4558                        struct inode *inode = child->mnt_mountpoint->d_inode;
4559                        /* Only worry about locked mounts */
4560                        if (!(child->mnt.mnt_flags & MNT_LOCKED))
4561                                continue;
4562                        /* Is the directory permanetly empty? */
4563                        if (!is_empty_dir_inode(inode))
4564                                goto next;
4565                }
4566                /* Preserve the locked attributes */
4567                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4568                                               MNT_LOCK_ATIME);
4569                visible = true;
4570                goto found;
4571        next:   ;
4572        }
4573found:
4574        unlock_ns_list(ns);
4575        up_read(&namespace_sem);
4576        return visible;
4577}
4578
4579static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4580{
4581        const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4582        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4583        unsigned long s_iflags;
4584
4585        if (ns->user_ns == &init_user_ns)
4586                return false;
4587
4588        /* Can this filesystem be too revealing? */
4589        s_iflags = sb->s_iflags;
4590        if (!(s_iflags & SB_I_USERNS_VISIBLE))
4591                return false;
4592
4593        if ((s_iflags & required_iflags) != required_iflags) {
4594                WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4595                          required_iflags);
4596                return true;
4597        }
4598
4599        return !mnt_already_visible(ns, sb, new_mnt_flags);
4600}
4601
4602bool mnt_may_suid(struct vfsmount *mnt)
4603{
4604        /*
4605         * Foreign mounts (accessed via fchdir or through /proc
4606         * symlinks) are always treated as if they are nosuid.  This
4607         * prevents namespaces from trusting potentially unsafe
4608         * suid/sgid bits, file caps, or security labels that originate
4609         * in other namespaces.
4610         */
4611        return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4612               current_in_userns(mnt->mnt_sb->s_user_ns);
4613}
4614
4615static struct ns_common *mntns_get(struct task_struct *task)
4616{
4617        struct ns_common *ns = NULL;
4618        struct nsproxy *nsproxy;
4619
4620        task_lock(task);
4621        nsproxy = task->nsproxy;
4622        if (nsproxy) {
4623                ns = &nsproxy->mnt_ns->ns;
4624                get_mnt_ns(to_mnt_ns(ns));
4625        }
4626        task_unlock(task);
4627
4628        return ns;
4629}
4630
4631static void mntns_put(struct ns_common *ns)
4632{
4633        put_mnt_ns(to_mnt_ns(ns));
4634}
4635
4636static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4637{
4638        struct nsproxy *nsproxy = nsset->nsproxy;
4639        struct fs_struct *fs = nsset->fs;
4640        struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4641        struct user_namespace *user_ns = nsset->cred->user_ns;
4642        struct path root;
4643        int err;
4644
4645        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4646            !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4647            !ns_capable(user_ns, CAP_SYS_ADMIN))
4648                return -EPERM;
4649
4650        if (is_anon_ns(mnt_ns))
4651                return -EINVAL;
4652
4653        if (fs->users != 1)
4654                return -EINVAL;
4655
4656        get_mnt_ns(mnt_ns);
4657        old_mnt_ns = nsproxy->mnt_ns;
4658        nsproxy->mnt_ns = mnt_ns;
4659
4660        /* Find the root */
4661        err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4662                                "/", LOOKUP_DOWN, &root);
4663        if (err) {
4664                /* revert to old namespace */
4665                nsproxy->mnt_ns = old_mnt_ns;
4666                put_mnt_ns(mnt_ns);
4667                return err;
4668        }
4669
4670        put_mnt_ns(old_mnt_ns);
4671
4672        /* Update the pwd and root */
4673        set_fs_pwd(fs, &root);
4674        set_fs_root(fs, &root);
4675
4676        path_put(&root);
4677        return 0;
4678}
4679
4680static struct user_namespace *mntns_owner(struct ns_common *ns)
4681{
4682        return to_mnt_ns(ns)->user_ns;
4683}
4684
4685const struct proc_ns_operations mntns_operations = {
4686        .name           = "mnt",
4687        .type           = CLONE_NEWNS,
4688        .get            = mntns_get,
4689        .put            = mntns_put,
4690        .install        = mntns_install,
4691        .owner          = mntns_owner,
4692};
4693
4694#ifdef CONFIG_SYSCTL
4695static struct ctl_table fs_namespace_sysctls[] = {
4696        {
4697                .procname       = "mount-max",
4698                .data           = &sysctl_mount_max,
4699                .maxlen         = sizeof(unsigned int),
4700                .mode           = 0644,
4701                .proc_handler   = proc_dointvec_minmax,
4702                .extra1         = SYSCTL_ONE,
4703        },
4704        { }
4705};
4706
4707static int __init init_fs_namespace_sysctls(void)
4708{
4709        register_sysctl_init("fs", fs_namespace_sysctls);
4710        return 0;
4711}
4712fs_initcall(init_fs_namespace_sysctls);
4713
4714#endif /* CONFIG_SYSCTL */
4715