linux/fs/ocfs2/blockcheck.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * blockcheck.c
   4 *
   5 * Checksum and ECC codes for the OCFS2 userspace library.
   6 *
   7 * Copyright (C) 2006, 2008 Oracle.  All rights reserved.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/types.h>
  12#include <linux/crc32.h>
  13#include <linux/buffer_head.h>
  14#include <linux/bitops.h>
  15#include <linux/debugfs.h>
  16#include <linux/module.h>
  17#include <linux/fs.h>
  18#include <asm/byteorder.h>
  19
  20#include <cluster/masklog.h>
  21
  22#include "ocfs2.h"
  23
  24#include "blockcheck.h"
  25
  26
  27/*
  28 * We use the following conventions:
  29 *
  30 * d = # data bits
  31 * p = # parity bits
  32 * c = # total code bits (d + p)
  33 */
  34
  35
  36/*
  37 * Calculate the bit offset in the hamming code buffer based on the bit's
  38 * offset in the data buffer.  Since the hamming code reserves all
  39 * power-of-two bits for parity, the data bit number and the code bit
  40 * number are offset by all the parity bits beforehand.
  41 *
  42 * Recall that bit numbers in hamming code are 1-based.  This function
  43 * takes the 0-based data bit from the caller.
  44 *
  45 * An example.  Take bit 1 of the data buffer.  1 is a power of two (2^0),
  46 * so it's a parity bit.  2 is a power of two (2^1), so it's a parity bit.
  47 * 3 is not a power of two.  So bit 1 of the data buffer ends up as bit 3
  48 * in the code buffer.
  49 *
  50 * The caller can pass in *p if it wants to keep track of the most recent
  51 * number of parity bits added.  This allows the function to start the
  52 * calculation at the last place.
  53 */
  54static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
  55{
  56        unsigned int b, p = 0;
  57
  58        /*
  59         * Data bits are 0-based, but we're talking code bits, which
  60         * are 1-based.
  61         */
  62        b = i + 1;
  63
  64        /* Use the cache if it is there */
  65        if (p_cache)
  66                p = *p_cache;
  67        b += p;
  68
  69        /*
  70         * For every power of two below our bit number, bump our bit.
  71         *
  72         * We compare with (b + 1) because we have to compare with what b
  73         * would be _if_ it were bumped up by the parity bit.  Capice?
  74         *
  75         * p is set above.
  76         */
  77        for (; (1 << p) < (b + 1); p++)
  78                b++;
  79
  80        if (p_cache)
  81                *p_cache = p;
  82
  83        return b;
  84}
  85
  86/*
  87 * This is the low level encoder function.  It can be called across
  88 * multiple hunks just like the crc32 code.  'd' is the number of bits
  89 * _in_this_hunk_.  nr is the bit offset of this hunk.  So, if you had
  90 * two 512B buffers, you would do it like so:
  91 *
  92 * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
  93 * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
  94 *
  95 * If you just have one buffer, use ocfs2_hamming_encode_block().
  96 */
  97u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
  98{
  99        unsigned int i, b, p = 0;
 100
 101        BUG_ON(!d);
 102
 103        /*
 104         * b is the hamming code bit number.  Hamming code specifies a
 105         * 1-based array, but C uses 0-based.  So 'i' is for C, and 'b' is
 106         * for the algorithm.
 107         *
 108         * The i++ in the for loop is so that the start offset passed
 109         * to ocfs2_find_next_bit_set() is one greater than the previously
 110         * found bit.
 111         */
 112        for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
 113        {
 114                /*
 115                 * i is the offset in this hunk, nr + i is the total bit
 116                 * offset.
 117                 */
 118                b = calc_code_bit(nr + i, &p);
 119
 120                /*
 121                 * Data bits in the resultant code are checked by
 122                 * parity bits that are part of the bit number
 123                 * representation.  Huh?
 124                 *
 125                 * <wikipedia href="https://en.wikipedia.org/wiki/Hamming_code">
 126                 * In other words, the parity bit at position 2^k
 127                 * checks bits in positions having bit k set in
 128                 * their binary representation.  Conversely, for
 129                 * instance, bit 13, i.e. 1101(2), is checked by
 130                 * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
 131                 * </wikipedia>
 132                 *
 133                 * Note that 'k' is the _code_ bit number.  'b' in
 134                 * our loop.
 135                 */
 136                parity ^= b;
 137        }
 138
 139        /* While the data buffer was treated as little endian, the
 140         * return value is in host endian. */
 141        return parity;
 142}
 143
 144u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
 145{
 146        return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
 147}
 148
 149/*
 150 * Like ocfs2_hamming_encode(), this can handle hunks.  nr is the bit
 151 * offset of the current hunk.  If bit to be fixed is not part of the
 152 * current hunk, this does nothing.
 153 *
 154 * If you only have one hunk, use ocfs2_hamming_fix_block().
 155 */
 156void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
 157                       unsigned int fix)
 158{
 159        unsigned int i, b;
 160
 161        BUG_ON(!d);
 162
 163        /*
 164         * If the bit to fix has an hweight of 1, it's a parity bit.  One
 165         * busted parity bit is its own error.  Nothing to do here.
 166         */
 167        if (hweight32(fix) == 1)
 168                return;
 169
 170        /*
 171         * nr + d is the bit right past the data hunk we're looking at.
 172         * If fix after that, nothing to do
 173         */
 174        if (fix >= calc_code_bit(nr + d, NULL))
 175                return;
 176
 177        /*
 178         * nr is the offset in the data hunk we're starting at.  Let's
 179         * start b at the offset in the code buffer.  See hamming_encode()
 180         * for a more detailed description of 'b'.
 181         */
 182        b = calc_code_bit(nr, NULL);
 183        /* If the fix is before this hunk, nothing to do */
 184        if (fix < b)
 185                return;
 186
 187        for (i = 0; i < d; i++, b++)
 188        {
 189                /* Skip past parity bits */
 190                while (hweight32(b) == 1)
 191                        b++;
 192
 193                /*
 194                 * i is the offset in this data hunk.
 195                 * nr + i is the offset in the total data buffer.
 196                 * b is the offset in the total code buffer.
 197                 *
 198                 * Thus, when b == fix, bit i in the current hunk needs
 199                 * fixing.
 200                 */
 201                if (b == fix)
 202                {
 203                        if (ocfs2_test_bit(i, data))
 204                                ocfs2_clear_bit(i, data);
 205                        else
 206                                ocfs2_set_bit(i, data);
 207                        break;
 208                }
 209        }
 210}
 211
 212void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
 213                             unsigned int fix)
 214{
 215        ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
 216}
 217
 218
 219/*
 220 * Debugfs handling.
 221 */
 222
 223#ifdef CONFIG_DEBUG_FS
 224
 225static int blockcheck_u64_get(void *data, u64 *val)
 226{
 227        *val = *(u64 *)data;
 228        return 0;
 229}
 230DEFINE_DEBUGFS_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
 231
 232static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
 233{
 234        if (stats) {
 235                debugfs_remove_recursive(stats->b_debug_dir);
 236                stats->b_debug_dir = NULL;
 237        }
 238}
 239
 240static void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
 241                                           struct dentry *parent)
 242{
 243        struct dentry *dir;
 244
 245        dir = debugfs_create_dir("blockcheck", parent);
 246        stats->b_debug_dir = dir;
 247
 248        debugfs_create_file("blocks_checked", S_IFREG | S_IRUSR, dir,
 249                            &stats->b_check_count, &blockcheck_fops);
 250
 251        debugfs_create_file("checksums_failed", S_IFREG | S_IRUSR, dir,
 252                            &stats->b_failure_count, &blockcheck_fops);
 253
 254        debugfs_create_file("ecc_recoveries", S_IFREG | S_IRUSR, dir,
 255                            &stats->b_recover_count, &blockcheck_fops);
 256
 257}
 258#else
 259static inline void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
 260                                                  struct dentry *parent)
 261{
 262}
 263
 264static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
 265{
 266}
 267#endif  /* CONFIG_DEBUG_FS */
 268
 269/* Always-called wrappers for starting and stopping the debugfs files */
 270void ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats,
 271                                            struct dentry *parent)
 272{
 273        ocfs2_blockcheck_debug_install(stats, parent);
 274}
 275
 276void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats)
 277{
 278        ocfs2_blockcheck_debug_remove(stats);
 279}
 280
 281static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
 282{
 283        u64 new_count;
 284
 285        if (!stats)
 286                return;
 287
 288        spin_lock(&stats->b_lock);
 289        stats->b_check_count++;
 290        new_count = stats->b_check_count;
 291        spin_unlock(&stats->b_lock);
 292
 293        if (!new_count)
 294                mlog(ML_NOTICE, "Block check count has wrapped\n");
 295}
 296
 297static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
 298{
 299        u64 new_count;
 300
 301        if (!stats)
 302                return;
 303
 304        spin_lock(&stats->b_lock);
 305        stats->b_failure_count++;
 306        new_count = stats->b_failure_count;
 307        spin_unlock(&stats->b_lock);
 308
 309        if (!new_count)
 310                mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
 311}
 312
 313static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
 314{
 315        u64 new_count;
 316
 317        if (!stats)
 318                return;
 319
 320        spin_lock(&stats->b_lock);
 321        stats->b_recover_count++;
 322        new_count = stats->b_recover_count;
 323        spin_unlock(&stats->b_lock);
 324
 325        if (!new_count)
 326                mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
 327}
 328
 329
 330
 331/*
 332 * These are the low-level APIs for using the ocfs2_block_check structure.
 333 */
 334
 335/*
 336 * This function generates check information for a block.
 337 * data is the block to be checked.  bc is a pointer to the
 338 * ocfs2_block_check structure describing the crc32 and the ecc.
 339 *
 340 * bc should be a pointer inside data, as the function will
 341 * take care of zeroing it before calculating the check information.  If
 342 * bc does not point inside data, the caller must make sure any inline
 343 * ocfs2_block_check structures are zeroed.
 344 *
 345 * The data buffer must be in on-disk endian (little endian for ocfs2).
 346 * bc will be filled with little-endian values and will be ready to go to
 347 * disk.
 348 */
 349void ocfs2_block_check_compute(void *data, size_t blocksize,
 350                               struct ocfs2_block_check *bc)
 351{
 352        u32 crc;
 353        u32 ecc;
 354
 355        memset(bc, 0, sizeof(struct ocfs2_block_check));
 356
 357        crc = crc32_le(~0, data, blocksize);
 358        ecc = ocfs2_hamming_encode_block(data, blocksize);
 359
 360        /*
 361         * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
 362         * larger than 16 bits.
 363         */
 364        BUG_ON(ecc > USHRT_MAX);
 365
 366        bc->bc_crc32e = cpu_to_le32(crc);
 367        bc->bc_ecc = cpu_to_le16((u16)ecc);
 368}
 369
 370/*
 371 * This function validates existing check information.  Like _compute,
 372 * the function will take care of zeroing bc before calculating check codes.
 373 * If bc is not a pointer inside data, the caller must have zeroed any
 374 * inline ocfs2_block_check structures.
 375 *
 376 * Again, the data passed in should be the on-disk endian.
 377 */
 378int ocfs2_block_check_validate(void *data, size_t blocksize,
 379                               struct ocfs2_block_check *bc,
 380                               struct ocfs2_blockcheck_stats *stats)
 381{
 382        int rc = 0;
 383        u32 bc_crc32e;
 384        u16 bc_ecc;
 385        u32 crc, ecc;
 386
 387        ocfs2_blockcheck_inc_check(stats);
 388
 389        bc_crc32e = le32_to_cpu(bc->bc_crc32e);
 390        bc_ecc = le16_to_cpu(bc->bc_ecc);
 391
 392        memset(bc, 0, sizeof(struct ocfs2_block_check));
 393
 394        /* Fast path - if the crc32 validates, we're good to go */
 395        crc = crc32_le(~0, data, blocksize);
 396        if (crc == bc_crc32e)
 397                goto out;
 398
 399        ocfs2_blockcheck_inc_failure(stats);
 400        mlog(ML_ERROR,
 401             "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n",
 402             (unsigned int)bc_crc32e, (unsigned int)crc);
 403
 404        /* Ok, try ECC fixups */
 405        ecc = ocfs2_hamming_encode_block(data, blocksize);
 406        ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc);
 407
 408        /* And check the crc32 again */
 409        crc = crc32_le(~0, data, blocksize);
 410        if (crc == bc_crc32e) {
 411                ocfs2_blockcheck_inc_recover(stats);
 412                goto out;
 413        }
 414
 415        mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n",
 416             (unsigned int)bc_crc32e, (unsigned int)crc);
 417
 418        rc = -EIO;
 419
 420out:
 421        bc->bc_crc32e = cpu_to_le32(bc_crc32e);
 422        bc->bc_ecc = cpu_to_le16(bc_ecc);
 423
 424        return rc;
 425}
 426
 427/*
 428 * This function generates check information for a list of buffer_heads.
 429 * bhs is the blocks to be checked.  bc is a pointer to the
 430 * ocfs2_block_check structure describing the crc32 and the ecc.
 431 *
 432 * bc should be a pointer inside data, as the function will
 433 * take care of zeroing it before calculating the check information.  If
 434 * bc does not point inside data, the caller must make sure any inline
 435 * ocfs2_block_check structures are zeroed.
 436 *
 437 * The data buffer must be in on-disk endian (little endian for ocfs2).
 438 * bc will be filled with little-endian values and will be ready to go to
 439 * disk.
 440 */
 441void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
 442                                   struct ocfs2_block_check *bc)
 443{
 444        int i;
 445        u32 crc, ecc;
 446
 447        BUG_ON(nr < 0);
 448
 449        if (!nr)
 450                return;
 451
 452        memset(bc, 0, sizeof(struct ocfs2_block_check));
 453
 454        for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
 455                crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
 456                /*
 457                 * The number of bits in a buffer is obviously b_size*8.
 458                 * The offset of this buffer is b_size*i, so the bit offset
 459                 * of this buffer is b_size*8*i.
 460                 */
 461                ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
 462                                                bhs[i]->b_size * 8,
 463                                                bhs[i]->b_size * 8 * i);
 464        }
 465
 466        /*
 467         * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
 468         * larger than 16 bits.
 469         */
 470        BUG_ON(ecc > USHRT_MAX);
 471
 472        bc->bc_crc32e = cpu_to_le32(crc);
 473        bc->bc_ecc = cpu_to_le16((u16)ecc);
 474}
 475
 476/*
 477 * This function validates existing check information on a list of
 478 * buffer_heads.  Like _compute_bhs, the function will take care of
 479 * zeroing bc before calculating check codes.  If bc is not a pointer
 480 * inside data, the caller must have zeroed any inline
 481 * ocfs2_block_check structures.
 482 *
 483 * Again, the data passed in should be the on-disk endian.
 484 */
 485int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
 486                                   struct ocfs2_block_check *bc,
 487                                   struct ocfs2_blockcheck_stats *stats)
 488{
 489        int i, rc = 0;
 490        u32 bc_crc32e;
 491        u16 bc_ecc;
 492        u32 crc, ecc, fix;
 493
 494        BUG_ON(nr < 0);
 495
 496        if (!nr)
 497                return 0;
 498
 499        ocfs2_blockcheck_inc_check(stats);
 500
 501        bc_crc32e = le32_to_cpu(bc->bc_crc32e);
 502        bc_ecc = le16_to_cpu(bc->bc_ecc);
 503
 504        memset(bc, 0, sizeof(struct ocfs2_block_check));
 505
 506        /* Fast path - if the crc32 validates, we're good to go */
 507        for (i = 0, crc = ~0; i < nr; i++)
 508                crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
 509        if (crc == bc_crc32e)
 510                goto out;
 511
 512        ocfs2_blockcheck_inc_failure(stats);
 513        mlog(ML_ERROR,
 514             "CRC32 failed: stored: %u, computed %u.  Applying ECC.\n",
 515             (unsigned int)bc_crc32e, (unsigned int)crc);
 516
 517        /* Ok, try ECC fixups */
 518        for (i = 0, ecc = 0; i < nr; i++) {
 519                /*
 520                 * The number of bits in a buffer is obviously b_size*8.
 521                 * The offset of this buffer is b_size*i, so the bit offset
 522                 * of this buffer is b_size*8*i.
 523                 */
 524                ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
 525                                                bhs[i]->b_size * 8,
 526                                                bhs[i]->b_size * 8 * i);
 527        }
 528        fix = ecc ^ bc_ecc;
 529        for (i = 0; i < nr; i++) {
 530                /*
 531                 * Try the fix against each buffer.  It will only affect
 532                 * one of them.
 533                 */
 534                ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
 535                                  bhs[i]->b_size * 8 * i, fix);
 536        }
 537
 538        /* And check the crc32 again */
 539        for (i = 0, crc = ~0; i < nr; i++)
 540                crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
 541        if (crc == bc_crc32e) {
 542                ocfs2_blockcheck_inc_recover(stats);
 543                goto out;
 544        }
 545
 546        mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
 547             (unsigned int)bc_crc32e, (unsigned int)crc);
 548
 549        rc = -EIO;
 550
 551out:
 552        bc->bc_crc32e = cpu_to_le32(bc_crc32e);
 553        bc->bc_ecc = cpu_to_le16(bc_ecc);
 554
 555        return rc;
 556}
 557
 558/*
 559 * These are the main API.  They check the superblock flag before
 560 * calling the underlying operations.
 561 *
 562 * They expect the buffer(s) to be in disk format.
 563 */
 564void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
 565                            struct ocfs2_block_check *bc)
 566{
 567        if (ocfs2_meta_ecc(OCFS2_SB(sb)))
 568                ocfs2_block_check_compute(data, sb->s_blocksize, bc);
 569}
 570
 571int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
 572                            struct ocfs2_block_check *bc)
 573{
 574        int rc = 0;
 575        struct ocfs2_super *osb = OCFS2_SB(sb);
 576
 577        if (ocfs2_meta_ecc(osb))
 578                rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
 579                                                &osb->osb_ecc_stats);
 580
 581        return rc;
 582}
 583
 584void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
 585                                struct buffer_head **bhs, int nr,
 586                                struct ocfs2_block_check *bc)
 587{
 588        if (ocfs2_meta_ecc(OCFS2_SB(sb)))
 589                ocfs2_block_check_compute_bhs(bhs, nr, bc);
 590}
 591
 592int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
 593                                struct buffer_head **bhs, int nr,
 594                                struct ocfs2_block_check *bc)
 595{
 596        int rc = 0;
 597        struct ocfs2_super *osb = OCFS2_SB(sb);
 598
 599        if (ocfs2_meta_ecc(osb))
 600                rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
 601                                                    &osb->osb_ecc_stats);
 602
 603        return rc;
 604}
 605
 606