linux/include/linux/bio.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
   4 */
   5#ifndef __LINUX_BIO_H
   6#define __LINUX_BIO_H
   7
   8#include <linux/mempool.h>
   9/* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
  10#include <linux/blk_types.h>
  11#include <linux/uio.h>
  12
  13#define BIO_MAX_VECS            256U
  14
  15static inline unsigned int bio_max_segs(unsigned int nr_segs)
  16{
  17        return min(nr_segs, BIO_MAX_VECS);
  18}
  19
  20#define bio_prio(bio)                   (bio)->bi_ioprio
  21#define bio_set_prio(bio, prio)         ((bio)->bi_ioprio = prio)
  22
  23#define bio_iter_iovec(bio, iter)                               \
  24        bvec_iter_bvec((bio)->bi_io_vec, (iter))
  25
  26#define bio_iter_page(bio, iter)                                \
  27        bvec_iter_page((bio)->bi_io_vec, (iter))
  28#define bio_iter_len(bio, iter)                                 \
  29        bvec_iter_len((bio)->bi_io_vec, (iter))
  30#define bio_iter_offset(bio, iter)                              \
  31        bvec_iter_offset((bio)->bi_io_vec, (iter))
  32
  33#define bio_page(bio)           bio_iter_page((bio), (bio)->bi_iter)
  34#define bio_offset(bio)         bio_iter_offset((bio), (bio)->bi_iter)
  35#define bio_iovec(bio)          bio_iter_iovec((bio), (bio)->bi_iter)
  36
  37#define bvec_iter_sectors(iter) ((iter).bi_size >> 9)
  38#define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
  39
  40#define bio_sectors(bio)        bvec_iter_sectors((bio)->bi_iter)
  41#define bio_end_sector(bio)     bvec_iter_end_sector((bio)->bi_iter)
  42
  43/*
  44 * Return the data direction, READ or WRITE.
  45 */
  46#define bio_data_dir(bio) \
  47        (op_is_write(bio_op(bio)) ? WRITE : READ)
  48
  49/*
  50 * Check whether this bio carries any data or not. A NULL bio is allowed.
  51 */
  52static inline bool bio_has_data(struct bio *bio)
  53{
  54        if (bio &&
  55            bio->bi_iter.bi_size &&
  56            bio_op(bio) != REQ_OP_DISCARD &&
  57            bio_op(bio) != REQ_OP_SECURE_ERASE &&
  58            bio_op(bio) != REQ_OP_WRITE_ZEROES)
  59                return true;
  60
  61        return false;
  62}
  63
  64static inline bool bio_no_advance_iter(const struct bio *bio)
  65{
  66        return bio_op(bio) == REQ_OP_DISCARD ||
  67               bio_op(bio) == REQ_OP_SECURE_ERASE ||
  68               bio_op(bio) == REQ_OP_WRITE_ZEROES;
  69}
  70
  71static inline void *bio_data(struct bio *bio)
  72{
  73        if (bio_has_data(bio))
  74                return page_address(bio_page(bio)) + bio_offset(bio);
  75
  76        return NULL;
  77}
  78
  79static inline bool bio_next_segment(const struct bio *bio,
  80                                    struct bvec_iter_all *iter)
  81{
  82        if (iter->idx >= bio->bi_vcnt)
  83                return false;
  84
  85        bvec_advance(&bio->bi_io_vec[iter->idx], iter);
  86        return true;
  87}
  88
  89/*
  90 * drivers should _never_ use the all version - the bio may have been split
  91 * before it got to the driver and the driver won't own all of it
  92 */
  93#define bio_for_each_segment_all(bvl, bio, iter) \
  94        for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
  95
  96static inline void bio_advance_iter(const struct bio *bio,
  97                                    struct bvec_iter *iter, unsigned int bytes)
  98{
  99        iter->bi_sector += bytes >> 9;
 100
 101        if (bio_no_advance_iter(bio))
 102                iter->bi_size -= bytes;
 103        else
 104                bvec_iter_advance(bio->bi_io_vec, iter, bytes);
 105                /* TODO: It is reasonable to complete bio with error here. */
 106}
 107
 108/* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
 109static inline void bio_advance_iter_single(const struct bio *bio,
 110                                           struct bvec_iter *iter,
 111                                           unsigned int bytes)
 112{
 113        iter->bi_sector += bytes >> 9;
 114
 115        if (bio_no_advance_iter(bio))
 116                iter->bi_size -= bytes;
 117        else
 118                bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
 119}
 120
 121void __bio_advance(struct bio *, unsigned bytes);
 122
 123/**
 124 * bio_advance - increment/complete a bio by some number of bytes
 125 * @bio:        bio to advance
 126 * @nbytes:     number of bytes to complete
 127 *
 128 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 129 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 130 * be updated on the last bvec as well.
 131 *
 132 * @bio will then represent the remaining, uncompleted portion of the io.
 133 */
 134static inline void bio_advance(struct bio *bio, unsigned int nbytes)
 135{
 136        if (nbytes == bio->bi_iter.bi_size) {
 137                bio->bi_iter.bi_size = 0;
 138                return;
 139        }
 140        __bio_advance(bio, nbytes);
 141}
 142
 143#define __bio_for_each_segment(bvl, bio, iter, start)                   \
 144        for (iter = (start);                                            \
 145             (iter).bi_size &&                                          \
 146                ((bvl = bio_iter_iovec((bio), (iter))), 1);             \
 147             bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
 148
 149#define bio_for_each_segment(bvl, bio, iter)                            \
 150        __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
 151
 152#define __bio_for_each_bvec(bvl, bio, iter, start)              \
 153        for (iter = (start);                                            \
 154             (iter).bi_size &&                                          \
 155                ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
 156             bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
 157
 158/* iterate over multi-page bvec */
 159#define bio_for_each_bvec(bvl, bio, iter)                       \
 160        __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
 161
 162/*
 163 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
 164 * same reasons as bio_for_each_segment_all().
 165 */
 166#define bio_for_each_bvec_all(bvl, bio, i)              \
 167        for (i = 0, bvl = bio_first_bvec_all(bio);      \
 168             i < (bio)->bi_vcnt; i++, bvl++)
 169
 170#define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
 171
 172static inline unsigned bio_segments(struct bio *bio)
 173{
 174        unsigned segs = 0;
 175        struct bio_vec bv;
 176        struct bvec_iter iter;
 177
 178        /*
 179         * We special case discard/write same/write zeroes, because they
 180         * interpret bi_size differently:
 181         */
 182
 183        switch (bio_op(bio)) {
 184        case REQ_OP_DISCARD:
 185        case REQ_OP_SECURE_ERASE:
 186        case REQ_OP_WRITE_ZEROES:
 187                return 0;
 188        default:
 189                break;
 190        }
 191
 192        bio_for_each_segment(bv, bio, iter)
 193                segs++;
 194
 195        return segs;
 196}
 197
 198/*
 199 * get a reference to a bio, so it won't disappear. the intended use is
 200 * something like:
 201 *
 202 * bio_get(bio);
 203 * submit_bio(rw, bio);
 204 * if (bio->bi_flags ...)
 205 *      do_something
 206 * bio_put(bio);
 207 *
 208 * without the bio_get(), it could potentially complete I/O before submit_bio
 209 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
 210 * runs
 211 */
 212static inline void bio_get(struct bio *bio)
 213{
 214        bio->bi_flags |= (1 << BIO_REFFED);
 215        smp_mb__before_atomic();
 216        atomic_inc(&bio->__bi_cnt);
 217}
 218
 219static inline void bio_cnt_set(struct bio *bio, unsigned int count)
 220{
 221        if (count != 1) {
 222                bio->bi_flags |= (1 << BIO_REFFED);
 223                smp_mb();
 224        }
 225        atomic_set(&bio->__bi_cnt, count);
 226}
 227
 228static inline bool bio_flagged(struct bio *bio, unsigned int bit)
 229{
 230        return (bio->bi_flags & (1U << bit)) != 0;
 231}
 232
 233static inline void bio_set_flag(struct bio *bio, unsigned int bit)
 234{
 235        bio->bi_flags |= (1U << bit);
 236}
 237
 238static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
 239{
 240        bio->bi_flags &= ~(1U << bit);
 241}
 242
 243static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
 244{
 245        WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
 246        return bio->bi_io_vec;
 247}
 248
 249static inline struct page *bio_first_page_all(struct bio *bio)
 250{
 251        return bio_first_bvec_all(bio)->bv_page;
 252}
 253
 254static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
 255{
 256        WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
 257        return &bio->bi_io_vec[bio->bi_vcnt - 1];
 258}
 259
 260/**
 261 * struct folio_iter - State for iterating all folios in a bio.
 262 * @folio: The current folio we're iterating.  NULL after the last folio.
 263 * @offset: The byte offset within the current folio.
 264 * @length: The number of bytes in this iteration (will not cross folio
 265 *      boundary).
 266 */
 267struct folio_iter {
 268        struct folio *folio;
 269        size_t offset;
 270        size_t length;
 271        /* private: for use by the iterator */
 272        struct folio *_next;
 273        size_t _seg_count;
 274        int _i;
 275};
 276
 277static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
 278                                   int i)
 279{
 280        struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
 281
 282        fi->folio = page_folio(bvec->bv_page);
 283        fi->offset = bvec->bv_offset +
 284                        PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
 285        fi->_seg_count = bvec->bv_len;
 286        fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
 287        fi->_next = folio_next(fi->folio);
 288        fi->_i = i;
 289}
 290
 291static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
 292{
 293        fi->_seg_count -= fi->length;
 294        if (fi->_seg_count) {
 295                fi->folio = fi->_next;
 296                fi->offset = 0;
 297                fi->length = min(folio_size(fi->folio), fi->_seg_count);
 298                fi->_next = folio_next(fi->folio);
 299        } else if (fi->_i + 1 < bio->bi_vcnt) {
 300                bio_first_folio(fi, bio, fi->_i + 1);
 301        } else {
 302                fi->folio = NULL;
 303        }
 304}
 305
 306/**
 307 * bio_for_each_folio_all - Iterate over each folio in a bio.
 308 * @fi: struct folio_iter which is updated for each folio.
 309 * @bio: struct bio to iterate over.
 310 */
 311#define bio_for_each_folio_all(fi, bio)                         \
 312        for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
 313
 314enum bip_flags {
 315        BIP_BLOCK_INTEGRITY     = 1 << 0, /* block layer owns integrity data */
 316        BIP_MAPPED_INTEGRITY    = 1 << 1, /* ref tag has been remapped */
 317        BIP_CTRL_NOCHECK        = 1 << 2, /* disable HBA integrity checking */
 318        BIP_DISK_NOCHECK        = 1 << 3, /* disable disk integrity checking */
 319        BIP_IP_CHECKSUM         = 1 << 4, /* IP checksum */
 320};
 321
 322/*
 323 * bio integrity payload
 324 */
 325struct bio_integrity_payload {
 326        struct bio              *bip_bio;       /* parent bio */
 327
 328        struct bvec_iter        bip_iter;
 329
 330        unsigned short          bip_vcnt;       /* # of integrity bio_vecs */
 331        unsigned short          bip_max_vcnt;   /* integrity bio_vec slots */
 332        unsigned short          bip_flags;      /* control flags */
 333
 334        struct bvec_iter        bio_iter;       /* for rewinding parent bio */
 335
 336        struct work_struct      bip_work;       /* I/O completion */
 337
 338        struct bio_vec          *bip_vec;
 339        struct bio_vec          bip_inline_vecs[];/* embedded bvec array */
 340};
 341
 342#if defined(CONFIG_BLK_DEV_INTEGRITY)
 343
 344static inline struct bio_integrity_payload *bio_integrity(struct bio *bio)
 345{
 346        if (bio->bi_opf & REQ_INTEGRITY)
 347                return bio->bi_integrity;
 348
 349        return NULL;
 350}
 351
 352static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
 353{
 354        struct bio_integrity_payload *bip = bio_integrity(bio);
 355
 356        if (bip)
 357                return bip->bip_flags & flag;
 358
 359        return false;
 360}
 361
 362static inline sector_t bip_get_seed(struct bio_integrity_payload *bip)
 363{
 364        return bip->bip_iter.bi_sector;
 365}
 366
 367static inline void bip_set_seed(struct bio_integrity_payload *bip,
 368                                sector_t seed)
 369{
 370        bip->bip_iter.bi_sector = seed;
 371}
 372
 373#endif /* CONFIG_BLK_DEV_INTEGRITY */
 374
 375void bio_trim(struct bio *bio, sector_t offset, sector_t size);
 376extern struct bio *bio_split(struct bio *bio, int sectors,
 377                             gfp_t gfp, struct bio_set *bs);
 378
 379/**
 380 * bio_next_split - get next @sectors from a bio, splitting if necessary
 381 * @bio:        bio to split
 382 * @sectors:    number of sectors to split from the front of @bio
 383 * @gfp:        gfp mask
 384 * @bs:         bio set to allocate from
 385 *
 386 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
 387 * than @sectors, returns the original bio unchanged.
 388 */
 389static inline struct bio *bio_next_split(struct bio *bio, int sectors,
 390                                         gfp_t gfp, struct bio_set *bs)
 391{
 392        if (sectors >= bio_sectors(bio))
 393                return bio;
 394
 395        return bio_split(bio, sectors, gfp, bs);
 396}
 397
 398enum {
 399        BIOSET_NEED_BVECS = BIT(0),
 400        BIOSET_NEED_RESCUER = BIT(1),
 401        BIOSET_PERCPU_CACHE = BIT(2),
 402};
 403extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
 404extern void bioset_exit(struct bio_set *);
 405extern int biovec_init_pool(mempool_t *pool, int pool_entries);
 406
 407struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
 408                             unsigned int opf, gfp_t gfp_mask,
 409                             struct bio_set *bs);
 410struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
 411extern void bio_put(struct bio *);
 412
 413struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
 414                gfp_t gfp, struct bio_set *bs);
 415int bio_init_clone(struct block_device *bdev, struct bio *bio,
 416                struct bio *bio_src, gfp_t gfp);
 417
 418extern struct bio_set fs_bio_set;
 419
 420static inline struct bio *bio_alloc(struct block_device *bdev,
 421                unsigned short nr_vecs, unsigned int opf, gfp_t gfp_mask)
 422{
 423        return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
 424}
 425
 426void submit_bio(struct bio *bio);
 427
 428extern void bio_endio(struct bio *);
 429
 430static inline void bio_io_error(struct bio *bio)
 431{
 432        bio->bi_status = BLK_STS_IOERR;
 433        bio_endio(bio);
 434}
 435
 436static inline void bio_wouldblock_error(struct bio *bio)
 437{
 438        bio_set_flag(bio, BIO_QUIET);
 439        bio->bi_status = BLK_STS_AGAIN;
 440        bio_endio(bio);
 441}
 442
 443/*
 444 * Calculate number of bvec segments that should be allocated to fit data
 445 * pointed by @iter. If @iter is backed by bvec it's going to be reused
 446 * instead of allocating a new one.
 447 */
 448static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
 449{
 450        if (iov_iter_is_bvec(iter))
 451                return 0;
 452        return iov_iter_npages(iter, max_segs);
 453}
 454
 455struct request_queue;
 456
 457extern int submit_bio_wait(struct bio *bio);
 458void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
 459              unsigned short max_vecs, unsigned int opf);
 460extern void bio_uninit(struct bio *);
 461void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf);
 462void bio_chain(struct bio *, struct bio *);
 463
 464int bio_add_page(struct bio *, struct page *, unsigned len, unsigned off);
 465bool bio_add_folio(struct bio *, struct folio *, size_t len, size_t off);
 466extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
 467                           unsigned int, unsigned int);
 468int bio_add_zone_append_page(struct bio *bio, struct page *page,
 469                             unsigned int len, unsigned int offset);
 470void __bio_add_page(struct bio *bio, struct page *page,
 471                unsigned int len, unsigned int off);
 472int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
 473void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
 474void __bio_release_pages(struct bio *bio, bool mark_dirty);
 475extern void bio_set_pages_dirty(struct bio *bio);
 476extern void bio_check_pages_dirty(struct bio *bio);
 477
 478extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
 479                               struct bio *src, struct bvec_iter *src_iter);
 480extern void bio_copy_data(struct bio *dst, struct bio *src);
 481extern void bio_free_pages(struct bio *bio);
 482void guard_bio_eod(struct bio *bio);
 483void zero_fill_bio(struct bio *bio);
 484
 485static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
 486{
 487        if (!bio_flagged(bio, BIO_NO_PAGE_REF))
 488                __bio_release_pages(bio, mark_dirty);
 489}
 490
 491#define bio_dev(bio) \
 492        disk_devt((bio)->bi_bdev->bd_disk)
 493
 494#ifdef CONFIG_BLK_CGROUP
 495void bio_associate_blkg(struct bio *bio);
 496void bio_associate_blkg_from_css(struct bio *bio,
 497                                 struct cgroup_subsys_state *css);
 498void bio_clone_blkg_association(struct bio *dst, struct bio *src);
 499#else   /* CONFIG_BLK_CGROUP */
 500static inline void bio_associate_blkg(struct bio *bio) { }
 501static inline void bio_associate_blkg_from_css(struct bio *bio,
 502                                               struct cgroup_subsys_state *css)
 503{ }
 504static inline void bio_clone_blkg_association(struct bio *dst,
 505                                              struct bio *src) { }
 506#endif  /* CONFIG_BLK_CGROUP */
 507
 508static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
 509{
 510        bio_clear_flag(bio, BIO_REMAPPED);
 511        if (bio->bi_bdev != bdev)
 512                bio_clear_flag(bio, BIO_THROTTLED);
 513        bio->bi_bdev = bdev;
 514        bio_associate_blkg(bio);
 515}
 516
 517/*
 518 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
 519 *
 520 * A bio_list anchors a singly-linked list of bios chained through the bi_next
 521 * member of the bio.  The bio_list also caches the last list member to allow
 522 * fast access to the tail.
 523 */
 524struct bio_list {
 525        struct bio *head;
 526        struct bio *tail;
 527};
 528
 529static inline int bio_list_empty(const struct bio_list *bl)
 530{
 531        return bl->head == NULL;
 532}
 533
 534static inline void bio_list_init(struct bio_list *bl)
 535{
 536        bl->head = bl->tail = NULL;
 537}
 538
 539#define BIO_EMPTY_LIST  { NULL, NULL }
 540
 541#define bio_list_for_each(bio, bl) \
 542        for (bio = (bl)->head; bio; bio = bio->bi_next)
 543
 544static inline unsigned bio_list_size(const struct bio_list *bl)
 545{
 546        unsigned sz = 0;
 547        struct bio *bio;
 548
 549        bio_list_for_each(bio, bl)
 550                sz++;
 551
 552        return sz;
 553}
 554
 555static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
 556{
 557        bio->bi_next = NULL;
 558
 559        if (bl->tail)
 560                bl->tail->bi_next = bio;
 561        else
 562                bl->head = bio;
 563
 564        bl->tail = bio;
 565}
 566
 567static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
 568{
 569        bio->bi_next = bl->head;
 570
 571        bl->head = bio;
 572
 573        if (!bl->tail)
 574                bl->tail = bio;
 575}
 576
 577static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
 578{
 579        if (!bl2->head)
 580                return;
 581
 582        if (bl->tail)
 583                bl->tail->bi_next = bl2->head;
 584        else
 585                bl->head = bl2->head;
 586
 587        bl->tail = bl2->tail;
 588}
 589
 590static inline void bio_list_merge_head(struct bio_list *bl,
 591                                       struct bio_list *bl2)
 592{
 593        if (!bl2->head)
 594                return;
 595
 596        if (bl->head)
 597                bl2->tail->bi_next = bl->head;
 598        else
 599                bl->tail = bl2->tail;
 600
 601        bl->head = bl2->head;
 602}
 603
 604static inline struct bio *bio_list_peek(struct bio_list *bl)
 605{
 606        return bl->head;
 607}
 608
 609static inline struct bio *bio_list_pop(struct bio_list *bl)
 610{
 611        struct bio *bio = bl->head;
 612
 613        if (bio) {
 614                bl->head = bl->head->bi_next;
 615                if (!bl->head)
 616                        bl->tail = NULL;
 617
 618                bio->bi_next = NULL;
 619        }
 620
 621        return bio;
 622}
 623
 624static inline struct bio *bio_list_get(struct bio_list *bl)
 625{
 626        struct bio *bio = bl->head;
 627
 628        bl->head = bl->tail = NULL;
 629
 630        return bio;
 631}
 632
 633/*
 634 * Increment chain count for the bio. Make sure the CHAIN flag update
 635 * is visible before the raised count.
 636 */
 637static inline void bio_inc_remaining(struct bio *bio)
 638{
 639        bio_set_flag(bio, BIO_CHAIN);
 640        smp_mb__before_atomic();
 641        atomic_inc(&bio->__bi_remaining);
 642}
 643
 644/*
 645 * bio_set is used to allow other portions of the IO system to
 646 * allocate their own private memory pools for bio and iovec structures.
 647 * These memory pools in turn all allocate from the bio_slab
 648 * and the bvec_slabs[].
 649 */
 650#define BIO_POOL_SIZE 2
 651
 652struct bio_set {
 653        struct kmem_cache *bio_slab;
 654        unsigned int front_pad;
 655
 656        /*
 657         * per-cpu bio alloc cache
 658         */
 659        struct bio_alloc_cache __percpu *cache;
 660
 661        mempool_t bio_pool;
 662        mempool_t bvec_pool;
 663#if defined(CONFIG_BLK_DEV_INTEGRITY)
 664        mempool_t bio_integrity_pool;
 665        mempool_t bvec_integrity_pool;
 666#endif
 667
 668        unsigned int back_pad;
 669        /*
 670         * Deadlock avoidance for stacking block drivers: see comments in
 671         * bio_alloc_bioset() for details
 672         */
 673        spinlock_t              rescue_lock;
 674        struct bio_list         rescue_list;
 675        struct work_struct      rescue_work;
 676        struct workqueue_struct *rescue_workqueue;
 677
 678        /*
 679         * Hot un-plug notifier for the per-cpu cache, if used
 680         */
 681        struct hlist_node cpuhp_dead;
 682};
 683
 684static inline bool bioset_initialized(struct bio_set *bs)
 685{
 686        return bs->bio_slab != NULL;
 687}
 688
 689#if defined(CONFIG_BLK_DEV_INTEGRITY)
 690
 691#define bip_for_each_vec(bvl, bip, iter)                                \
 692        for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter)
 693
 694#define bio_for_each_integrity_vec(_bvl, _bio, _iter)                   \
 695        for_each_bio(_bio)                                              \
 696                bip_for_each_vec(_bvl, _bio->bi_integrity, _iter)
 697
 698extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int);
 699extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int);
 700extern bool bio_integrity_prep(struct bio *);
 701extern void bio_integrity_advance(struct bio *, unsigned int);
 702extern void bio_integrity_trim(struct bio *);
 703extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t);
 704extern int bioset_integrity_create(struct bio_set *, int);
 705extern void bioset_integrity_free(struct bio_set *);
 706extern void bio_integrity_init(void);
 707
 708#else /* CONFIG_BLK_DEV_INTEGRITY */
 709
 710static inline void *bio_integrity(struct bio *bio)
 711{
 712        return NULL;
 713}
 714
 715static inline int bioset_integrity_create(struct bio_set *bs, int pool_size)
 716{
 717        return 0;
 718}
 719
 720static inline void bioset_integrity_free (struct bio_set *bs)
 721{
 722        return;
 723}
 724
 725static inline bool bio_integrity_prep(struct bio *bio)
 726{
 727        return true;
 728}
 729
 730static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
 731                                      gfp_t gfp_mask)
 732{
 733        return 0;
 734}
 735
 736static inline void bio_integrity_advance(struct bio *bio,
 737                                         unsigned int bytes_done)
 738{
 739        return;
 740}
 741
 742static inline void bio_integrity_trim(struct bio *bio)
 743{
 744        return;
 745}
 746
 747static inline void bio_integrity_init(void)
 748{
 749        return;
 750}
 751
 752static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
 753{
 754        return false;
 755}
 756
 757static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp,
 758                                                                unsigned int nr)
 759{
 760        return ERR_PTR(-EINVAL);
 761}
 762
 763static inline int bio_integrity_add_page(struct bio *bio, struct page *page,
 764                                        unsigned int len, unsigned int offset)
 765{
 766        return 0;
 767}
 768
 769#endif /* CONFIG_BLK_DEV_INTEGRITY */
 770
 771/*
 772 * Mark a bio as polled. Note that for async polled IO, the caller must
 773 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
 774 * We cannot block waiting for requests on polled IO, as those completions
 775 * must be found by the caller. This is different than IRQ driven IO, where
 776 * it's safe to wait for IO to complete.
 777 */
 778static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
 779{
 780        bio->bi_opf |= REQ_POLLED;
 781        if (!is_sync_kiocb(kiocb))
 782                bio->bi_opf |= REQ_NOWAIT;
 783}
 784
 785static inline void bio_clear_polled(struct bio *bio)
 786{
 787        /* can't support alloc cache if we turn off polling */
 788        bio->bi_opf &= ~(REQ_POLLED | REQ_ALLOC_CACHE);
 789}
 790
 791struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
 792                unsigned int nr_pages, unsigned int opf, gfp_t gfp);
 793
 794#endif /* __LINUX_BIO_H */
 795