linux/include/linux/math.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MATH_H
   3#define _LINUX_MATH_H
   4
   5#include <linux/types.h>
   6#include <asm/div64.h>
   7#include <uapi/linux/kernel.h>
   8
   9/*
  10 * This looks more complex than it should be. But we need to
  11 * get the type for the ~ right in round_down (it needs to be
  12 * as wide as the result!), and we want to evaluate the macro
  13 * arguments just once each.
  14 */
  15#define __round_mask(x, y) ((__typeof__(x))((y)-1))
  16
  17/**
  18 * round_up - round up to next specified power of 2
  19 * @x: the value to round
  20 * @y: multiple to round up to (must be a power of 2)
  21 *
  22 * Rounds @x up to next multiple of @y (which must be a power of 2).
  23 * To perform arbitrary rounding up, use roundup() below.
  24 */
  25#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
  26
  27/**
  28 * round_down - round down to next specified power of 2
  29 * @x: the value to round
  30 * @y: multiple to round down to (must be a power of 2)
  31 *
  32 * Rounds @x down to next multiple of @y (which must be a power of 2).
  33 * To perform arbitrary rounding down, use rounddown() below.
  34 */
  35#define round_down(x, y) ((x) & ~__round_mask(x, y))
  36
  37#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
  38
  39#define DIV_ROUND_DOWN_ULL(ll, d) \
  40        ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
  41
  42#define DIV_ROUND_UP_ULL(ll, d) \
  43        DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
  44
  45#if BITS_PER_LONG == 32
  46# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
  47#else
  48# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
  49#endif
  50
  51/**
  52 * roundup - round up to the next specified multiple
  53 * @x: the value to up
  54 * @y: multiple to round up to
  55 *
  56 * Rounds @x up to next multiple of @y. If @y will always be a power
  57 * of 2, consider using the faster round_up().
  58 */
  59#define roundup(x, y) (                                 \
  60{                                                       \
  61        typeof(y) __y = y;                              \
  62        (((x) + (__y - 1)) / __y) * __y;                \
  63}                                                       \
  64)
  65/**
  66 * rounddown - round down to next specified multiple
  67 * @x: the value to round
  68 * @y: multiple to round down to
  69 *
  70 * Rounds @x down to next multiple of @y. If @y will always be a power
  71 * of 2, consider using the faster round_down().
  72 */
  73#define rounddown(x, y) (                               \
  74{                                                       \
  75        typeof(x) __x = (x);                            \
  76        __x - (__x % (y));                              \
  77}                                                       \
  78)
  79
  80/*
  81 * Divide positive or negative dividend by positive or negative divisor
  82 * and round to closest integer. Result is undefined for negative
  83 * divisors if the dividend variable type is unsigned and for negative
  84 * dividends if the divisor variable type is unsigned.
  85 */
  86#define DIV_ROUND_CLOSEST(x, divisor)(                  \
  87{                                                       \
  88        typeof(x) __x = x;                              \
  89        typeof(divisor) __d = divisor;                  \
  90        (((typeof(x))-1) > 0 ||                         \
  91         ((typeof(divisor))-1) > 0 ||                   \
  92         (((__x) > 0) == ((__d) > 0))) ?                \
  93                (((__x) + ((__d) / 2)) / (__d)) :       \
  94                (((__x) - ((__d) / 2)) / (__d));        \
  95}                                                       \
  96)
  97/*
  98 * Same as above but for u64 dividends. divisor must be a 32-bit
  99 * number.
 100 */
 101#define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
 102{                                                       \
 103        typeof(divisor) __d = divisor;                  \
 104        unsigned long long _tmp = (x) + (__d) / 2;      \
 105        do_div(_tmp, __d);                              \
 106        _tmp;                                           \
 107}                                                       \
 108)
 109
 110#define __STRUCT_FRACT(type)                            \
 111struct type##_fract {                                   \
 112        __##type numerator;                             \
 113        __##type denominator;                           \
 114};
 115__STRUCT_FRACT(s16)
 116__STRUCT_FRACT(u16)
 117__STRUCT_FRACT(s32)
 118__STRUCT_FRACT(u32)
 119#undef __STRUCT_FRACT
 120
 121/*
 122 * Multiplies an integer by a fraction, while avoiding unnecessary
 123 * overflow or loss of precision.
 124 */
 125#define mult_frac(x, numer, denom)(                     \
 126{                                                       \
 127        typeof(x) quot = (x) / (denom);                 \
 128        typeof(x) rem  = (x) % (denom);                 \
 129        (quot * (numer)) + ((rem * (numer)) / (denom)); \
 130}                                                       \
 131)
 132
 133#define sector_div(a, b) do_div(a, b)
 134
 135/**
 136 * abs - return absolute value of an argument
 137 * @x: the value.  If it is unsigned type, it is converted to signed type first.
 138 *     char is treated as if it was signed (regardless of whether it really is)
 139 *     but the macro's return type is preserved as char.
 140 *
 141 * Return: an absolute value of x.
 142 */
 143#define abs(x)  __abs_choose_expr(x, long long,                         \
 144                __abs_choose_expr(x, long,                              \
 145                __abs_choose_expr(x, int,                               \
 146                __abs_choose_expr(x, short,                             \
 147                __abs_choose_expr(x, char,                              \
 148                __builtin_choose_expr(                                  \
 149                        __builtin_types_compatible_p(typeof(x), char),  \
 150                        (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
 151                        ((void)0)))))))
 152
 153#define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
 154        __builtin_types_compatible_p(typeof(x),   signed type) ||       \
 155        __builtin_types_compatible_p(typeof(x), unsigned type),         \
 156        ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
 157
 158/**
 159 * reciprocal_scale - "scale" a value into range [0, ep_ro)
 160 * @val: value
 161 * @ep_ro: right open interval endpoint
 162 *
 163 * Perform a "reciprocal multiplication" in order to "scale" a value into
 164 * range [0, @ep_ro), where the upper interval endpoint is right-open.
 165 * This is useful, e.g. for accessing a index of an array containing
 166 * @ep_ro elements, for example. Think of it as sort of modulus, only that
 167 * the result isn't that of modulo. ;) Note that if initial input is a
 168 * small value, then result will return 0.
 169 *
 170 * Return: a result based on @val in interval [0, @ep_ro).
 171 */
 172static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
 173{
 174        return (u32)(((u64) val * ep_ro) >> 32);
 175}
 176
 177u64 int_pow(u64 base, unsigned int exp);
 178unsigned long int_sqrt(unsigned long);
 179
 180#if BITS_PER_LONG < 64
 181u32 int_sqrt64(u64 x);
 182#else
 183static inline u32 int_sqrt64(u64 x)
 184{
 185        return (u32)int_sqrt(x);
 186}
 187#endif
 188
 189#endif  /* _LINUX_MATH_H */
 190