linux/include/linux/mmzone.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <linux/mm_types.h>
  22#include <linux/page-flags.h>
  23#include <linux/local_lock.h>
  24#include <asm/page.h>
  25
  26/* Free memory management - zoned buddy allocator.  */
  27#ifndef CONFIG_FORCE_MAX_ZONEORDER
  28#define MAX_ORDER 11
  29#else
  30#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  31#endif
  32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  33
  34/*
  35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  36 * costly to service.  That is between allocation orders which should
  37 * coalesce naturally under reasonable reclaim pressure and those which
  38 * will not.
  39 */
  40#define PAGE_ALLOC_COSTLY_ORDER 3
  41
  42enum migratetype {
  43        MIGRATE_UNMOVABLE,
  44        MIGRATE_MOVABLE,
  45        MIGRATE_RECLAIMABLE,
  46        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  47        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  48#ifdef CONFIG_CMA
  49        /*
  50         * MIGRATE_CMA migration type is designed to mimic the way
  51         * ZONE_MOVABLE works.  Only movable pages can be allocated
  52         * from MIGRATE_CMA pageblocks and page allocator never
  53         * implicitly change migration type of MIGRATE_CMA pageblock.
  54         *
  55         * The way to use it is to change migratetype of a range of
  56         * pageblocks to MIGRATE_CMA which can be done by
  57         * __free_pageblock_cma() function.
  58         */
  59        MIGRATE_CMA,
  60#endif
  61#ifdef CONFIG_MEMORY_ISOLATION
  62        MIGRATE_ISOLATE,        /* can't allocate from here */
  63#endif
  64        MIGRATE_TYPES
  65};
  66
  67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  68extern const char * const migratetype_names[MIGRATE_TYPES];
  69
  70#ifdef CONFIG_CMA
  71#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  72#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  73#else
  74#  define is_migrate_cma(migratetype) false
  75#  define is_migrate_cma_page(_page) false
  76#endif
  77
  78static inline bool is_migrate_movable(int mt)
  79{
  80        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  81}
  82
  83/*
  84 * Check whether a migratetype can be merged with another migratetype.
  85 *
  86 * It is only mergeable when it can fall back to other migratetypes for
  87 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
  88 */
  89static inline bool migratetype_is_mergeable(int mt)
  90{
  91        return mt < MIGRATE_PCPTYPES;
  92}
  93
  94#define for_each_migratetype_order(order, type) \
  95        for (order = 0; order < MAX_ORDER; order++) \
  96                for (type = 0; type < MIGRATE_TYPES; type++)
  97
  98extern int page_group_by_mobility_disabled;
  99
 100#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
 101
 102#define get_pageblock_migratetype(page)                                 \
 103        get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
 104
 105struct free_area {
 106        struct list_head        free_list[MIGRATE_TYPES];
 107        unsigned long           nr_free;
 108};
 109
 110static inline struct page *get_page_from_free_area(struct free_area *area,
 111                                            int migratetype)
 112{
 113        return list_first_entry_or_null(&area->free_list[migratetype],
 114                                        struct page, lru);
 115}
 116
 117static inline bool free_area_empty(struct free_area *area, int migratetype)
 118{
 119        return list_empty(&area->free_list[migratetype]);
 120}
 121
 122struct pglist_data;
 123
 124/*
 125 * Add a wild amount of padding here to ensure data fall into separate
 126 * cachelines.  There are very few zone structures in the machine, so space
 127 * consumption is not a concern here.
 128 */
 129#if defined(CONFIG_SMP)
 130struct zone_padding {
 131        char x[0];
 132} ____cacheline_internodealigned_in_smp;
 133#define ZONE_PADDING(name)      struct zone_padding name;
 134#else
 135#define ZONE_PADDING(name)
 136#endif
 137
 138#ifdef CONFIG_NUMA
 139enum numa_stat_item {
 140        NUMA_HIT,               /* allocated in intended node */
 141        NUMA_MISS,              /* allocated in non intended node */
 142        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 143        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 144        NUMA_LOCAL,             /* allocation from local node */
 145        NUMA_OTHER,             /* allocation from other node */
 146        NR_VM_NUMA_EVENT_ITEMS
 147};
 148#else
 149#define NR_VM_NUMA_EVENT_ITEMS 0
 150#endif
 151
 152enum zone_stat_item {
 153        /* First 128 byte cacheline (assuming 64 bit words) */
 154        NR_FREE_PAGES,
 155        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 156        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 157        NR_ZONE_ACTIVE_ANON,
 158        NR_ZONE_INACTIVE_FILE,
 159        NR_ZONE_ACTIVE_FILE,
 160        NR_ZONE_UNEVICTABLE,
 161        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 162        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 163        /* Second 128 byte cacheline */
 164        NR_BOUNCE,
 165#if IS_ENABLED(CONFIG_ZSMALLOC)
 166        NR_ZSPAGES,             /* allocated in zsmalloc */
 167#endif
 168        NR_FREE_CMA_PAGES,
 169        NR_VM_ZONE_STAT_ITEMS };
 170
 171enum node_stat_item {
 172        NR_LRU_BASE,
 173        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 174        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 175        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 176        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 177        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 178        NR_SLAB_RECLAIMABLE_B,
 179        NR_SLAB_UNRECLAIMABLE_B,
 180        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 181        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 182        WORKINGSET_NODES,
 183        WORKINGSET_REFAULT_BASE,
 184        WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
 185        WORKINGSET_REFAULT_FILE,
 186        WORKINGSET_ACTIVATE_BASE,
 187        WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
 188        WORKINGSET_ACTIVATE_FILE,
 189        WORKINGSET_RESTORE_BASE,
 190        WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
 191        WORKINGSET_RESTORE_FILE,
 192        WORKINGSET_NODERECLAIM,
 193        NR_ANON_MAPPED, /* Mapped anonymous pages */
 194        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 195                           only modified from process context */
 196        NR_FILE_PAGES,
 197        NR_FILE_DIRTY,
 198        NR_WRITEBACK,
 199        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 200        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 201        NR_SHMEM_THPS,
 202        NR_SHMEM_PMDMAPPED,
 203        NR_FILE_THPS,
 204        NR_FILE_PMDMAPPED,
 205        NR_ANON_THPS,
 206        NR_VMSCAN_WRITE,
 207        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 208        NR_DIRTIED,             /* page dirtyings since bootup */
 209        NR_WRITTEN,             /* page writings since bootup */
 210        NR_THROTTLED_WRITTEN,   /* NR_WRITTEN while reclaim throttled */
 211        NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
 212        NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
 213        NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
 214        NR_KERNEL_STACK_KB,     /* measured in KiB */
 215#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
 216        NR_KERNEL_SCS_KB,       /* measured in KiB */
 217#endif
 218        NR_PAGETABLE,           /* used for pagetables */
 219#ifdef CONFIG_SWAP
 220        NR_SWAPCACHE,
 221#endif
 222#ifdef CONFIG_NUMA_BALANCING
 223        PGPROMOTE_SUCCESS,      /* promote successfully */
 224#endif
 225        NR_VM_NODE_STAT_ITEMS
 226};
 227
 228/*
 229 * Returns true if the item should be printed in THPs (/proc/vmstat
 230 * currently prints number of anon, file and shmem THPs. But the item
 231 * is charged in pages).
 232 */
 233static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
 234{
 235        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
 236                return false;
 237
 238        return item == NR_ANON_THPS ||
 239               item == NR_FILE_THPS ||
 240               item == NR_SHMEM_THPS ||
 241               item == NR_SHMEM_PMDMAPPED ||
 242               item == NR_FILE_PMDMAPPED;
 243}
 244
 245/*
 246 * Returns true if the value is measured in bytes (most vmstat values are
 247 * measured in pages). This defines the API part, the internal representation
 248 * might be different.
 249 */
 250static __always_inline bool vmstat_item_in_bytes(int idx)
 251{
 252        /*
 253         * Global and per-node slab counters track slab pages.
 254         * It's expected that changes are multiples of PAGE_SIZE.
 255         * Internally values are stored in pages.
 256         *
 257         * Per-memcg and per-lruvec counters track memory, consumed
 258         * by individual slab objects. These counters are actually
 259         * byte-precise.
 260         */
 261        return (idx == NR_SLAB_RECLAIMABLE_B ||
 262                idx == NR_SLAB_UNRECLAIMABLE_B);
 263}
 264
 265/*
 266 * We do arithmetic on the LRU lists in various places in the code,
 267 * so it is important to keep the active lists LRU_ACTIVE higher in
 268 * the array than the corresponding inactive lists, and to keep
 269 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 270 *
 271 * This has to be kept in sync with the statistics in zone_stat_item
 272 * above and the descriptions in vmstat_text in mm/vmstat.c
 273 */
 274#define LRU_BASE 0
 275#define LRU_ACTIVE 1
 276#define LRU_FILE 2
 277
 278enum lru_list {
 279        LRU_INACTIVE_ANON = LRU_BASE,
 280        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 281        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 282        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 283        LRU_UNEVICTABLE,
 284        NR_LRU_LISTS
 285};
 286
 287enum vmscan_throttle_state {
 288        VMSCAN_THROTTLE_WRITEBACK,
 289        VMSCAN_THROTTLE_ISOLATED,
 290        VMSCAN_THROTTLE_NOPROGRESS,
 291        VMSCAN_THROTTLE_CONGESTED,
 292        NR_VMSCAN_THROTTLE,
 293};
 294
 295#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 296
 297#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 298
 299static inline bool is_file_lru(enum lru_list lru)
 300{
 301        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 302}
 303
 304static inline bool is_active_lru(enum lru_list lru)
 305{
 306        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 307}
 308
 309#define ANON_AND_FILE 2
 310
 311enum lruvec_flags {
 312        LRUVEC_CONGESTED,               /* lruvec has many dirty pages
 313                                         * backed by a congested BDI
 314                                         */
 315};
 316
 317struct lruvec {
 318        struct list_head                lists[NR_LRU_LISTS];
 319        /* per lruvec lru_lock for memcg */
 320        spinlock_t                      lru_lock;
 321        /*
 322         * These track the cost of reclaiming one LRU - file or anon -
 323         * over the other. As the observed cost of reclaiming one LRU
 324         * increases, the reclaim scan balance tips toward the other.
 325         */
 326        unsigned long                   anon_cost;
 327        unsigned long                   file_cost;
 328        /* Non-resident age, driven by LRU movement */
 329        atomic_long_t                   nonresident_age;
 330        /* Refaults at the time of last reclaim cycle */
 331        unsigned long                   refaults[ANON_AND_FILE];
 332        /* Various lruvec state flags (enum lruvec_flags) */
 333        unsigned long                   flags;
 334#ifdef CONFIG_MEMCG
 335        struct pglist_data *pgdat;
 336#endif
 337};
 338
 339/* Isolate unmapped pages */
 340#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 341/* Isolate for asynchronous migration */
 342#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 343/* Isolate unevictable pages */
 344#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 345
 346/* LRU Isolation modes. */
 347typedef unsigned __bitwise isolate_mode_t;
 348
 349enum zone_watermarks {
 350        WMARK_MIN,
 351        WMARK_LOW,
 352        WMARK_HIGH,
 353        WMARK_PROMO,
 354        NR_WMARK
 355};
 356
 357/*
 358 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
 359 * for pageblock size for THP if configured.
 360 */
 361#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 362#define NR_PCP_THP 1
 363#else
 364#define NR_PCP_THP 0
 365#endif
 366#define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
 367
 368/*
 369 * Shift to encode migratetype and order in the same integer, with order
 370 * in the least significant bits.
 371 */
 372#define NR_PCP_ORDER_WIDTH 8
 373#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
 374
 375#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
 376#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
 377#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
 378#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
 379
 380/* Fields and list protected by pagesets local_lock in page_alloc.c */
 381struct per_cpu_pages {
 382        int count;              /* number of pages in the list */
 383        int high;               /* high watermark, emptying needed */
 384        int batch;              /* chunk size for buddy add/remove */
 385        short free_factor;      /* batch scaling factor during free */
 386#ifdef CONFIG_NUMA
 387        short expire;           /* When 0, remote pagesets are drained */
 388#endif
 389
 390        /* Lists of pages, one per migrate type stored on the pcp-lists */
 391        struct list_head lists[NR_PCP_LISTS];
 392};
 393
 394struct per_cpu_zonestat {
 395#ifdef CONFIG_SMP
 396        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 397        s8 stat_threshold;
 398#endif
 399#ifdef CONFIG_NUMA
 400        /*
 401         * Low priority inaccurate counters that are only folded
 402         * on demand. Use a large type to avoid the overhead of
 403         * folding during refresh_cpu_vm_stats.
 404         */
 405        unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
 406#endif
 407};
 408
 409struct per_cpu_nodestat {
 410        s8 stat_threshold;
 411        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 412};
 413
 414#endif /* !__GENERATING_BOUNDS.H */
 415
 416enum zone_type {
 417        /*
 418         * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
 419         * to DMA to all of the addressable memory (ZONE_NORMAL).
 420         * On architectures where this area covers the whole 32 bit address
 421         * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
 422         * DMA addressing constraints. This distinction is important as a 32bit
 423         * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
 424         * platforms may need both zones as they support peripherals with
 425         * different DMA addressing limitations.
 426         */
 427#ifdef CONFIG_ZONE_DMA
 428        ZONE_DMA,
 429#endif
 430#ifdef CONFIG_ZONE_DMA32
 431        ZONE_DMA32,
 432#endif
 433        /*
 434         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 435         * performed on pages in ZONE_NORMAL if the DMA devices support
 436         * transfers to all addressable memory.
 437         */
 438        ZONE_NORMAL,
 439#ifdef CONFIG_HIGHMEM
 440        /*
 441         * A memory area that is only addressable by the kernel through
 442         * mapping portions into its own address space. This is for example
 443         * used by i386 to allow the kernel to address the memory beyond
 444         * 900MB. The kernel will set up special mappings (page
 445         * table entries on i386) for each page that the kernel needs to
 446         * access.
 447         */
 448        ZONE_HIGHMEM,
 449#endif
 450        /*
 451         * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
 452         * movable pages with few exceptional cases described below. Main use
 453         * cases for ZONE_MOVABLE are to make memory offlining/unplug more
 454         * likely to succeed, and to locally limit unmovable allocations - e.g.,
 455         * to increase the number of THP/huge pages. Notable special cases are:
 456         *
 457         * 1. Pinned pages: (long-term) pinning of movable pages might
 458         *    essentially turn such pages unmovable. Therefore, we do not allow
 459         *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
 460         *    faulted, they come from the right zone right away. However, it is
 461         *    still possible that address space already has pages in
 462         *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
 463         *    touches that memory before pinning). In such case we migrate them
 464         *    to a different zone. When migration fails - pinning fails.
 465         * 2. memblock allocations: kernelcore/movablecore setups might create
 466         *    situations where ZONE_MOVABLE contains unmovable allocations
 467         *    after boot. Memory offlining and allocations fail early.
 468         * 3. Memory holes: kernelcore/movablecore setups might create very rare
 469         *    situations where ZONE_MOVABLE contains memory holes after boot,
 470         *    for example, if we have sections that are only partially
 471         *    populated. Memory offlining and allocations fail early.
 472         * 4. PG_hwpoison pages: while poisoned pages can be skipped during
 473         *    memory offlining, such pages cannot be allocated.
 474         * 5. Unmovable PG_offline pages: in paravirtualized environments,
 475         *    hotplugged memory blocks might only partially be managed by the
 476         *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
 477         *    parts not manged by the buddy are unmovable PG_offline pages. In
 478         *    some cases (virtio-mem), such pages can be skipped during
 479         *    memory offlining, however, cannot be moved/allocated. These
 480         *    techniques might use alloc_contig_range() to hide previously
 481         *    exposed pages from the buddy again (e.g., to implement some sort
 482         *    of memory unplug in virtio-mem).
 483         * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
 484         *    situations where ZERO_PAGE(0) which is allocated differently
 485         *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
 486         *    cannot be migrated.
 487         * 7. Memory-hotplug: when using memmap_on_memory and onlining the
 488         *    memory to the MOVABLE zone, the vmemmap pages are also placed in
 489         *    such zone. Such pages cannot be really moved around as they are
 490         *    self-stored in the range, but they are treated as movable when
 491         *    the range they describe is about to be offlined.
 492         *
 493         * In general, no unmovable allocations that degrade memory offlining
 494         * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
 495         * have to expect that migrating pages in ZONE_MOVABLE can fail (even
 496         * if has_unmovable_pages() states that there are no unmovable pages,
 497         * there can be false negatives).
 498         */
 499        ZONE_MOVABLE,
 500#ifdef CONFIG_ZONE_DEVICE
 501        ZONE_DEVICE,
 502#endif
 503        __MAX_NR_ZONES
 504
 505};
 506
 507#ifndef __GENERATING_BOUNDS_H
 508
 509#define ASYNC_AND_SYNC 2
 510
 511struct zone {
 512        /* Read-mostly fields */
 513
 514        /* zone watermarks, access with *_wmark_pages(zone) macros */
 515        unsigned long _watermark[NR_WMARK];
 516        unsigned long watermark_boost;
 517
 518        unsigned long nr_reserved_highatomic;
 519
 520        /*
 521         * We don't know if the memory that we're going to allocate will be
 522         * freeable or/and it will be released eventually, so to avoid totally
 523         * wasting several GB of ram we must reserve some of the lower zone
 524         * memory (otherwise we risk to run OOM on the lower zones despite
 525         * there being tons of freeable ram on the higher zones).  This array is
 526         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 527         * changes.
 528         */
 529        long lowmem_reserve[MAX_NR_ZONES];
 530
 531#ifdef CONFIG_NUMA
 532        int node;
 533#endif
 534        struct pglist_data      *zone_pgdat;
 535        struct per_cpu_pages    __percpu *per_cpu_pageset;
 536        struct per_cpu_zonestat __percpu *per_cpu_zonestats;
 537        /*
 538         * the high and batch values are copied to individual pagesets for
 539         * faster access
 540         */
 541        int pageset_high;
 542        int pageset_batch;
 543
 544#ifndef CONFIG_SPARSEMEM
 545        /*
 546         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 547         * In SPARSEMEM, this map is stored in struct mem_section
 548         */
 549        unsigned long           *pageblock_flags;
 550#endif /* CONFIG_SPARSEMEM */
 551
 552        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 553        unsigned long           zone_start_pfn;
 554
 555        /*
 556         * spanned_pages is the total pages spanned by the zone, including
 557         * holes, which is calculated as:
 558         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 559         *
 560         * present_pages is physical pages existing within the zone, which
 561         * is calculated as:
 562         *      present_pages = spanned_pages - absent_pages(pages in holes);
 563         *
 564         * present_early_pages is present pages existing within the zone
 565         * located on memory available since early boot, excluding hotplugged
 566         * memory.
 567         *
 568         * managed_pages is present pages managed by the buddy system, which
 569         * is calculated as (reserved_pages includes pages allocated by the
 570         * bootmem allocator):
 571         *      managed_pages = present_pages - reserved_pages;
 572         *
 573         * cma pages is present pages that are assigned for CMA use
 574         * (MIGRATE_CMA).
 575         *
 576         * So present_pages may be used by memory hotplug or memory power
 577         * management logic to figure out unmanaged pages by checking
 578         * (present_pages - managed_pages). And managed_pages should be used
 579         * by page allocator and vm scanner to calculate all kinds of watermarks
 580         * and thresholds.
 581         *
 582         * Locking rules:
 583         *
 584         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 585         * It is a seqlock because it has to be read outside of zone->lock,
 586         * and it is done in the main allocator path.  But, it is written
 587         * quite infrequently.
 588         *
 589         * The span_seq lock is declared along with zone->lock because it is
 590         * frequently read in proximity to zone->lock.  It's good to
 591         * give them a chance of being in the same cacheline.
 592         *
 593         * Write access to present_pages at runtime should be protected by
 594         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 595         * present_pages should get_online_mems() to get a stable value.
 596         */
 597        atomic_long_t           managed_pages;
 598        unsigned long           spanned_pages;
 599        unsigned long           present_pages;
 600#if defined(CONFIG_MEMORY_HOTPLUG)
 601        unsigned long           present_early_pages;
 602#endif
 603#ifdef CONFIG_CMA
 604        unsigned long           cma_pages;
 605#endif
 606
 607        const char              *name;
 608
 609#ifdef CONFIG_MEMORY_ISOLATION
 610        /*
 611         * Number of isolated pageblock. It is used to solve incorrect
 612         * freepage counting problem due to racy retrieving migratetype
 613         * of pageblock. Protected by zone->lock.
 614         */
 615        unsigned long           nr_isolate_pageblock;
 616#endif
 617
 618#ifdef CONFIG_MEMORY_HOTPLUG
 619        /* see spanned/present_pages for more description */
 620        seqlock_t               span_seqlock;
 621#endif
 622
 623        int initialized;
 624
 625        /* Write-intensive fields used from the page allocator */
 626        ZONE_PADDING(_pad1_)
 627
 628        /* free areas of different sizes */
 629        struct free_area        free_area[MAX_ORDER];
 630
 631        /* zone flags, see below */
 632        unsigned long           flags;
 633
 634        /* Primarily protects free_area */
 635        spinlock_t              lock;
 636
 637        /* Write-intensive fields used by compaction and vmstats. */
 638        ZONE_PADDING(_pad2_)
 639
 640        /*
 641         * When free pages are below this point, additional steps are taken
 642         * when reading the number of free pages to avoid per-cpu counter
 643         * drift allowing watermarks to be breached
 644         */
 645        unsigned long percpu_drift_mark;
 646
 647#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 648        /* pfn where compaction free scanner should start */
 649        unsigned long           compact_cached_free_pfn;
 650        /* pfn where compaction migration scanner should start */
 651        unsigned long           compact_cached_migrate_pfn[ASYNC_AND_SYNC];
 652        unsigned long           compact_init_migrate_pfn;
 653        unsigned long           compact_init_free_pfn;
 654#endif
 655
 656#ifdef CONFIG_COMPACTION
 657        /*
 658         * On compaction failure, 1<<compact_defer_shift compactions
 659         * are skipped before trying again. The number attempted since
 660         * last failure is tracked with compact_considered.
 661         * compact_order_failed is the minimum compaction failed order.
 662         */
 663        unsigned int            compact_considered;
 664        unsigned int            compact_defer_shift;
 665        int                     compact_order_failed;
 666#endif
 667
 668#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 669        /* Set to true when the PG_migrate_skip bits should be cleared */
 670        bool                    compact_blockskip_flush;
 671#endif
 672
 673        bool                    contiguous;
 674
 675        ZONE_PADDING(_pad3_)
 676        /* Zone statistics */
 677        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 678        atomic_long_t           vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
 679} ____cacheline_internodealigned_in_smp;
 680
 681enum pgdat_flags {
 682        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 683                                         * many dirty file pages at the tail
 684                                         * of the LRU.
 685                                         */
 686        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 687                                         * many pages under writeback
 688                                         */
 689        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 690};
 691
 692enum zone_flags {
 693        ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
 694                                         * Cleared when kswapd is woken.
 695                                         */
 696        ZONE_RECLAIM_ACTIVE,            /* kswapd may be scanning the zone. */
 697};
 698
 699static inline unsigned long zone_managed_pages(struct zone *zone)
 700{
 701        return (unsigned long)atomic_long_read(&zone->managed_pages);
 702}
 703
 704static inline unsigned long zone_cma_pages(struct zone *zone)
 705{
 706#ifdef CONFIG_CMA
 707        return zone->cma_pages;
 708#else
 709        return 0;
 710#endif
 711}
 712
 713static inline unsigned long zone_end_pfn(const struct zone *zone)
 714{
 715        return zone->zone_start_pfn + zone->spanned_pages;
 716}
 717
 718static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 719{
 720        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 721}
 722
 723static inline bool zone_is_initialized(struct zone *zone)
 724{
 725        return zone->initialized;
 726}
 727
 728static inline bool zone_is_empty(struct zone *zone)
 729{
 730        return zone->spanned_pages == 0;
 731}
 732
 733/*
 734 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 735 * intersection with the given zone
 736 */
 737static inline bool zone_intersects(struct zone *zone,
 738                unsigned long start_pfn, unsigned long nr_pages)
 739{
 740        if (zone_is_empty(zone))
 741                return false;
 742        if (start_pfn >= zone_end_pfn(zone) ||
 743            start_pfn + nr_pages <= zone->zone_start_pfn)
 744                return false;
 745
 746        return true;
 747}
 748
 749/*
 750 * The "priority" of VM scanning is how much of the queues we will scan in one
 751 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 752 * queues ("queue_length >> 12") during an aging round.
 753 */
 754#define DEF_PRIORITY 12
 755
 756/* Maximum number of zones on a zonelist */
 757#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 758
 759enum {
 760        ZONELIST_FALLBACK,      /* zonelist with fallback */
 761#ifdef CONFIG_NUMA
 762        /*
 763         * The NUMA zonelists are doubled because we need zonelists that
 764         * restrict the allocations to a single node for __GFP_THISNODE.
 765         */
 766        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 767#endif
 768        MAX_ZONELISTS
 769};
 770
 771/*
 772 * This struct contains information about a zone in a zonelist. It is stored
 773 * here to avoid dereferences into large structures and lookups of tables
 774 */
 775struct zoneref {
 776        struct zone *zone;      /* Pointer to actual zone */
 777        int zone_idx;           /* zone_idx(zoneref->zone) */
 778};
 779
 780/*
 781 * One allocation request operates on a zonelist. A zonelist
 782 * is a list of zones, the first one is the 'goal' of the
 783 * allocation, the other zones are fallback zones, in decreasing
 784 * priority.
 785 *
 786 * To speed the reading of the zonelist, the zonerefs contain the zone index
 787 * of the entry being read. Helper functions to access information given
 788 * a struct zoneref are
 789 *
 790 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 791 * zonelist_zone_idx()  - Return the index of the zone for an entry
 792 * zonelist_node_idx()  - Return the index of the node for an entry
 793 */
 794struct zonelist {
 795        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 796};
 797
 798/*
 799 * The array of struct pages for flatmem.
 800 * It must be declared for SPARSEMEM as well because there are configurations
 801 * that rely on that.
 802 */
 803extern struct page *mem_map;
 804
 805#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 806struct deferred_split {
 807        spinlock_t split_queue_lock;
 808        struct list_head split_queue;
 809        unsigned long split_queue_len;
 810};
 811#endif
 812
 813/*
 814 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 815 * it's memory layout. On UMA machines there is a single pglist_data which
 816 * describes the whole memory.
 817 *
 818 * Memory statistics and page replacement data structures are maintained on a
 819 * per-zone basis.
 820 */
 821typedef struct pglist_data {
 822        /*
 823         * node_zones contains just the zones for THIS node. Not all of the
 824         * zones may be populated, but it is the full list. It is referenced by
 825         * this node's node_zonelists as well as other node's node_zonelists.
 826         */
 827        struct zone node_zones[MAX_NR_ZONES];
 828
 829        /*
 830         * node_zonelists contains references to all zones in all nodes.
 831         * Generally the first zones will be references to this node's
 832         * node_zones.
 833         */
 834        struct zonelist node_zonelists[MAX_ZONELISTS];
 835
 836        int nr_zones; /* number of populated zones in this node */
 837#ifdef CONFIG_FLATMEM   /* means !SPARSEMEM */
 838        struct page *node_mem_map;
 839#ifdef CONFIG_PAGE_EXTENSION
 840        struct page_ext *node_page_ext;
 841#endif
 842#endif
 843#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
 844        /*
 845         * Must be held any time you expect node_start_pfn,
 846         * node_present_pages, node_spanned_pages or nr_zones to stay constant.
 847         * Also synchronizes pgdat->first_deferred_pfn during deferred page
 848         * init.
 849         *
 850         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 851         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
 852         * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
 853         *
 854         * Nests above zone->lock and zone->span_seqlock
 855         */
 856        spinlock_t node_size_lock;
 857#endif
 858        unsigned long node_start_pfn;
 859        unsigned long node_present_pages; /* total number of physical pages */
 860        unsigned long node_spanned_pages; /* total size of physical page
 861                                             range, including holes */
 862        int node_id;
 863        wait_queue_head_t kswapd_wait;
 864        wait_queue_head_t pfmemalloc_wait;
 865
 866        /* workqueues for throttling reclaim for different reasons. */
 867        wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
 868
 869        atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
 870        unsigned long nr_reclaim_start; /* nr pages written while throttled
 871                                         * when throttling started. */
 872        struct task_struct *kswapd;     /* Protected by
 873                                           mem_hotplug_begin/end() */
 874        int kswapd_order;
 875        enum zone_type kswapd_highest_zoneidx;
 876
 877        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 878
 879#ifdef CONFIG_COMPACTION
 880        int kcompactd_max_order;
 881        enum zone_type kcompactd_highest_zoneidx;
 882        wait_queue_head_t kcompactd_wait;
 883        struct task_struct *kcompactd;
 884        bool proactive_compact_trigger;
 885#endif
 886        /*
 887         * This is a per-node reserve of pages that are not available
 888         * to userspace allocations.
 889         */
 890        unsigned long           totalreserve_pages;
 891
 892#ifdef CONFIG_NUMA
 893        /*
 894         * node reclaim becomes active if more unmapped pages exist.
 895         */
 896        unsigned long           min_unmapped_pages;
 897        unsigned long           min_slab_pages;
 898#endif /* CONFIG_NUMA */
 899
 900        /* Write-intensive fields used by page reclaim */
 901        ZONE_PADDING(_pad1_)
 902
 903#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 904        /*
 905         * If memory initialisation on large machines is deferred then this
 906         * is the first PFN that needs to be initialised.
 907         */
 908        unsigned long first_deferred_pfn;
 909#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 910
 911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 912        struct deferred_split deferred_split_queue;
 913#endif
 914
 915        /* Fields commonly accessed by the page reclaim scanner */
 916
 917        /*
 918         * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
 919         *
 920         * Use mem_cgroup_lruvec() to look up lruvecs.
 921         */
 922        struct lruvec           __lruvec;
 923
 924        unsigned long           flags;
 925
 926        ZONE_PADDING(_pad2_)
 927
 928        /* Per-node vmstats */
 929        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 930        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 931} pg_data_t;
 932
 933#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 934#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 935
 936#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 937#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 938
 939static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 940{
 941        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 942}
 943
 944static inline bool pgdat_is_empty(pg_data_t *pgdat)
 945{
 946        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 947}
 948
 949#include <linux/memory_hotplug.h>
 950
 951void build_all_zonelists(pg_data_t *pgdat);
 952void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
 953                   enum zone_type highest_zoneidx);
 954bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 955                         int highest_zoneidx, unsigned int alloc_flags,
 956                         long free_pages);
 957bool zone_watermark_ok(struct zone *z, unsigned int order,
 958                unsigned long mark, int highest_zoneidx,
 959                unsigned int alloc_flags);
 960bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 961                unsigned long mark, int highest_zoneidx);
 962/*
 963 * Memory initialization context, use to differentiate memory added by
 964 * the platform statically or via memory hotplug interface.
 965 */
 966enum meminit_context {
 967        MEMINIT_EARLY,
 968        MEMINIT_HOTPLUG,
 969};
 970
 971extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 972                                     unsigned long size);
 973
 974extern void lruvec_init(struct lruvec *lruvec);
 975
 976static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 977{
 978#ifdef CONFIG_MEMCG
 979        return lruvec->pgdat;
 980#else
 981        return container_of(lruvec, struct pglist_data, __lruvec);
 982#endif
 983}
 984
 985#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 986int local_memory_node(int node_id);
 987#else
 988static inline int local_memory_node(int node_id) { return node_id; };
 989#endif
 990
 991/*
 992 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 993 */
 994#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 995
 996#ifdef CONFIG_ZONE_DEVICE
 997static inline bool zone_is_zone_device(struct zone *zone)
 998{
 999        return zone_idx(zone) == ZONE_DEVICE;
1000}
1001#else
1002static inline bool zone_is_zone_device(struct zone *zone)
1003{
1004        return false;
1005}
1006#endif
1007
1008/*
1009 * Returns true if a zone has pages managed by the buddy allocator.
1010 * All the reclaim decisions have to use this function rather than
1011 * populated_zone(). If the whole zone is reserved then we can easily
1012 * end up with populated_zone() && !managed_zone().
1013 */
1014static inline bool managed_zone(struct zone *zone)
1015{
1016        return zone_managed_pages(zone);
1017}
1018
1019/* Returns true if a zone has memory */
1020static inline bool populated_zone(struct zone *zone)
1021{
1022        return zone->present_pages;
1023}
1024
1025#ifdef CONFIG_NUMA
1026static inline int zone_to_nid(struct zone *zone)
1027{
1028        return zone->node;
1029}
1030
1031static inline void zone_set_nid(struct zone *zone, int nid)
1032{
1033        zone->node = nid;
1034}
1035#else
1036static inline int zone_to_nid(struct zone *zone)
1037{
1038        return 0;
1039}
1040
1041static inline void zone_set_nid(struct zone *zone, int nid) {}
1042#endif
1043
1044extern int movable_zone;
1045
1046static inline int is_highmem_idx(enum zone_type idx)
1047{
1048#ifdef CONFIG_HIGHMEM
1049        return (idx == ZONE_HIGHMEM ||
1050                (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1051#else
1052        return 0;
1053#endif
1054}
1055
1056#ifdef CONFIG_ZONE_DMA
1057bool has_managed_dma(void);
1058#else
1059static inline bool has_managed_dma(void)
1060{
1061        return false;
1062}
1063#endif
1064
1065/**
1066 * is_highmem - helper function to quickly check if a struct zone is a
1067 *              highmem zone or not.  This is an attempt to keep references
1068 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1069 * @zone: pointer to struct zone variable
1070 * Return: 1 for a highmem zone, 0 otherwise
1071 */
1072static inline int is_highmem(struct zone *zone)
1073{
1074#ifdef CONFIG_HIGHMEM
1075        return is_highmem_idx(zone_idx(zone));
1076#else
1077        return 0;
1078#endif
1079}
1080
1081/* These two functions are used to setup the per zone pages min values */
1082struct ctl_table;
1083
1084int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1085                loff_t *);
1086int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1087                size_t *, loff_t *);
1088extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1089int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1090                size_t *, loff_t *);
1091int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1092                void *, size_t *, loff_t *);
1093int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1094                void *, size_t *, loff_t *);
1095int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1096                void *, size_t *, loff_t *);
1097int numa_zonelist_order_handler(struct ctl_table *, int,
1098                void *, size_t *, loff_t *);
1099extern int percpu_pagelist_high_fraction;
1100extern char numa_zonelist_order[];
1101#define NUMA_ZONELIST_ORDER_LEN 16
1102
1103#ifndef CONFIG_NUMA
1104
1105extern struct pglist_data contig_page_data;
1106static inline struct pglist_data *NODE_DATA(int nid)
1107{
1108        return &contig_page_data;
1109}
1110
1111#else /* CONFIG_NUMA */
1112
1113#include <asm/mmzone.h>
1114
1115#endif /* !CONFIG_NUMA */
1116
1117extern struct pglist_data *first_online_pgdat(void);
1118extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1119extern struct zone *next_zone(struct zone *zone);
1120
1121/**
1122 * for_each_online_pgdat - helper macro to iterate over all online nodes
1123 * @pgdat: pointer to a pg_data_t variable
1124 */
1125#define for_each_online_pgdat(pgdat)                    \
1126        for (pgdat = first_online_pgdat();              \
1127             pgdat;                                     \
1128             pgdat = next_online_pgdat(pgdat))
1129/**
1130 * for_each_zone - helper macro to iterate over all memory zones
1131 * @zone: pointer to struct zone variable
1132 *
1133 * The user only needs to declare the zone variable, for_each_zone
1134 * fills it in.
1135 */
1136#define for_each_zone(zone)                             \
1137        for (zone = (first_online_pgdat())->node_zones; \
1138             zone;                                      \
1139             zone = next_zone(zone))
1140
1141#define for_each_populated_zone(zone)                   \
1142        for (zone = (first_online_pgdat())->node_zones; \
1143             zone;                                      \
1144             zone = next_zone(zone))                    \
1145                if (!populated_zone(zone))              \
1146                        ; /* do nothing */              \
1147                else
1148
1149static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1150{
1151        return zoneref->zone;
1152}
1153
1154static inline int zonelist_zone_idx(struct zoneref *zoneref)
1155{
1156        return zoneref->zone_idx;
1157}
1158
1159static inline int zonelist_node_idx(struct zoneref *zoneref)
1160{
1161        return zone_to_nid(zoneref->zone);
1162}
1163
1164struct zoneref *__next_zones_zonelist(struct zoneref *z,
1165                                        enum zone_type highest_zoneidx,
1166                                        nodemask_t *nodes);
1167
1168/**
1169 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1170 * @z: The cursor used as a starting point for the search
1171 * @highest_zoneidx: The zone index of the highest zone to return
1172 * @nodes: An optional nodemask to filter the zonelist with
1173 *
1174 * This function returns the next zone at or below a given zone index that is
1175 * within the allowed nodemask using a cursor as the starting point for the
1176 * search. The zoneref returned is a cursor that represents the current zone
1177 * being examined. It should be advanced by one before calling
1178 * next_zones_zonelist again.
1179 *
1180 * Return: the next zone at or below highest_zoneidx within the allowed
1181 * nodemask using a cursor within a zonelist as a starting point
1182 */
1183static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1184                                        enum zone_type highest_zoneidx,
1185                                        nodemask_t *nodes)
1186{
1187        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1188                return z;
1189        return __next_zones_zonelist(z, highest_zoneidx, nodes);
1190}
1191
1192/**
1193 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1194 * @zonelist: The zonelist to search for a suitable zone
1195 * @highest_zoneidx: The zone index of the highest zone to return
1196 * @nodes: An optional nodemask to filter the zonelist with
1197 *
1198 * This function returns the first zone at or below a given zone index that is
1199 * within the allowed nodemask. The zoneref returned is a cursor that can be
1200 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1201 * one before calling.
1202 *
1203 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1204 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1205 * update due to cpuset modification.
1206 *
1207 * Return: Zoneref pointer for the first suitable zone found
1208 */
1209static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1210                                        enum zone_type highest_zoneidx,
1211                                        nodemask_t *nodes)
1212{
1213        return next_zones_zonelist(zonelist->_zonerefs,
1214                                                        highest_zoneidx, nodes);
1215}
1216
1217/**
1218 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1219 * @zone: The current zone in the iterator
1220 * @z: The current pointer within zonelist->_zonerefs being iterated
1221 * @zlist: The zonelist being iterated
1222 * @highidx: The zone index of the highest zone to return
1223 * @nodemask: Nodemask allowed by the allocator
1224 *
1225 * This iterator iterates though all zones at or below a given zone index and
1226 * within a given nodemask
1227 */
1228#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1229        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1230                zone;                                                   \
1231                z = next_zones_zonelist(++z, highidx, nodemask),        \
1232                        zone = zonelist_zone(z))
1233
1234#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1235        for (zone = z->zone;    \
1236                zone;                                                   \
1237                z = next_zones_zonelist(++z, highidx, nodemask),        \
1238                        zone = zonelist_zone(z))
1239
1240
1241/**
1242 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1243 * @zone: The current zone in the iterator
1244 * @z: The current pointer within zonelist->zones being iterated
1245 * @zlist: The zonelist being iterated
1246 * @highidx: The zone index of the highest zone to return
1247 *
1248 * This iterator iterates though all zones at or below a given zone index.
1249 */
1250#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1251        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1252
1253/* Whether the 'nodes' are all movable nodes */
1254static inline bool movable_only_nodes(nodemask_t *nodes)
1255{
1256        struct zonelist *zonelist;
1257        struct zoneref *z;
1258        int nid;
1259
1260        if (nodes_empty(*nodes))
1261                return false;
1262
1263        /*
1264         * We can chose arbitrary node from the nodemask to get a
1265         * zonelist as they are interlinked. We just need to find
1266         * at least one zone that can satisfy kernel allocations.
1267         */
1268        nid = first_node(*nodes);
1269        zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1270        z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1271        return (!z->zone) ? true : false;
1272}
1273
1274
1275#ifdef CONFIG_SPARSEMEM
1276#include <asm/sparsemem.h>
1277#endif
1278
1279#ifdef CONFIG_FLATMEM
1280#define pfn_to_nid(pfn)         (0)
1281#endif
1282
1283#ifdef CONFIG_SPARSEMEM
1284
1285/*
1286 * PA_SECTION_SHIFT             physical address to/from section number
1287 * PFN_SECTION_SHIFT            pfn to/from section number
1288 */
1289#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1290#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1291
1292#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1293
1294#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1295#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1296
1297#define SECTION_BLOCKFLAGS_BITS \
1298        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1299
1300#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1301#error Allocator MAX_ORDER exceeds SECTION_SIZE
1302#endif
1303
1304static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1305{
1306        return pfn >> PFN_SECTION_SHIFT;
1307}
1308static inline unsigned long section_nr_to_pfn(unsigned long sec)
1309{
1310        return sec << PFN_SECTION_SHIFT;
1311}
1312
1313#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1314#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1315
1316#define SUBSECTION_SHIFT 21
1317#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1318
1319#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1320#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1321#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1322
1323#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1324#error Subsection size exceeds section size
1325#else
1326#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1327#endif
1328
1329#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1330#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1331
1332struct mem_section_usage {
1333#ifdef CONFIG_SPARSEMEM_VMEMMAP
1334        DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1335#endif
1336        /* See declaration of similar field in struct zone */
1337        unsigned long pageblock_flags[0];
1338};
1339
1340void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1341
1342struct page;
1343struct page_ext;
1344struct mem_section {
1345        /*
1346         * This is, logically, a pointer to an array of struct
1347         * pages.  However, it is stored with some other magic.
1348         * (see sparse.c::sparse_init_one_section())
1349         *
1350         * Additionally during early boot we encode node id of
1351         * the location of the section here to guide allocation.
1352         * (see sparse.c::memory_present())
1353         *
1354         * Making it a UL at least makes someone do a cast
1355         * before using it wrong.
1356         */
1357        unsigned long section_mem_map;
1358
1359        struct mem_section_usage *usage;
1360#ifdef CONFIG_PAGE_EXTENSION
1361        /*
1362         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1363         * section. (see page_ext.h about this.)
1364         */
1365        struct page_ext *page_ext;
1366        unsigned long pad;
1367#endif
1368        /*
1369         * WARNING: mem_section must be a power-of-2 in size for the
1370         * calculation and use of SECTION_ROOT_MASK to make sense.
1371         */
1372};
1373
1374#ifdef CONFIG_SPARSEMEM_EXTREME
1375#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1376#else
1377#define SECTIONS_PER_ROOT       1
1378#endif
1379
1380#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1381#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1382#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1383
1384#ifdef CONFIG_SPARSEMEM_EXTREME
1385extern struct mem_section **mem_section;
1386#else
1387extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1388#endif
1389
1390static inline unsigned long *section_to_usemap(struct mem_section *ms)
1391{
1392        return ms->usage->pageblock_flags;
1393}
1394
1395static inline struct mem_section *__nr_to_section(unsigned long nr)
1396{
1397        unsigned long root = SECTION_NR_TO_ROOT(nr);
1398
1399        if (unlikely(root >= NR_SECTION_ROOTS))
1400                return NULL;
1401
1402#ifdef CONFIG_SPARSEMEM_EXTREME
1403        if (!mem_section || !mem_section[root])
1404                return NULL;
1405#endif
1406        return &mem_section[root][nr & SECTION_ROOT_MASK];
1407}
1408extern size_t mem_section_usage_size(void);
1409
1410/*
1411 * We use the lower bits of the mem_map pointer to store
1412 * a little bit of information.  The pointer is calculated
1413 * as mem_map - section_nr_to_pfn(pnum).  The result is
1414 * aligned to the minimum alignment of the two values:
1415 *   1. All mem_map arrays are page-aligned.
1416 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1417 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1418 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1419 *      worst combination is powerpc with 256k pages,
1420 *      which results in PFN_SECTION_SHIFT equal 6.
1421 * To sum it up, at least 6 bits are available.
1422 */
1423#define SECTION_MARKED_PRESENT          (1UL<<0)
1424#define SECTION_HAS_MEM_MAP             (1UL<<1)
1425#define SECTION_IS_ONLINE               (1UL<<2)
1426#define SECTION_IS_EARLY                (1UL<<3)
1427#define SECTION_TAINT_ZONE_DEVICE       (1UL<<4)
1428#define SECTION_MAP_LAST_BIT            (1UL<<5)
1429#define SECTION_MAP_MASK                (~(SECTION_MAP_LAST_BIT-1))
1430#define SECTION_NID_SHIFT               6
1431
1432static inline struct page *__section_mem_map_addr(struct mem_section *section)
1433{
1434        unsigned long map = section->section_mem_map;
1435        map &= SECTION_MAP_MASK;
1436        return (struct page *)map;
1437}
1438
1439static inline int present_section(struct mem_section *section)
1440{
1441        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1442}
1443
1444static inline int present_section_nr(unsigned long nr)
1445{
1446        return present_section(__nr_to_section(nr));
1447}
1448
1449static inline int valid_section(struct mem_section *section)
1450{
1451        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1452}
1453
1454static inline int early_section(struct mem_section *section)
1455{
1456        return (section && (section->section_mem_map & SECTION_IS_EARLY));
1457}
1458
1459static inline int valid_section_nr(unsigned long nr)
1460{
1461        return valid_section(__nr_to_section(nr));
1462}
1463
1464static inline int online_section(struct mem_section *section)
1465{
1466        return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1467}
1468
1469static inline int online_device_section(struct mem_section *section)
1470{
1471        unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1472
1473        return section && ((section->section_mem_map & flags) == flags);
1474}
1475
1476static inline int online_section_nr(unsigned long nr)
1477{
1478        return online_section(__nr_to_section(nr));
1479}
1480
1481#ifdef CONFIG_MEMORY_HOTPLUG
1482void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1483void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1484#endif
1485
1486static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1487{
1488        return __nr_to_section(pfn_to_section_nr(pfn));
1489}
1490
1491extern unsigned long __highest_present_section_nr;
1492
1493static inline int subsection_map_index(unsigned long pfn)
1494{
1495        return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1496}
1497
1498#ifdef CONFIG_SPARSEMEM_VMEMMAP
1499static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1500{
1501        int idx = subsection_map_index(pfn);
1502
1503        return test_bit(idx, ms->usage->subsection_map);
1504}
1505#else
1506static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1507{
1508        return 1;
1509}
1510#endif
1511
1512#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1513/**
1514 * pfn_valid - check if there is a valid memory map entry for a PFN
1515 * @pfn: the page frame number to check
1516 *
1517 * Check if there is a valid memory map entry aka struct page for the @pfn.
1518 * Note, that availability of the memory map entry does not imply that
1519 * there is actual usable memory at that @pfn. The struct page may
1520 * represent a hole or an unusable page frame.
1521 *
1522 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1523 */
1524static inline int pfn_valid(unsigned long pfn)
1525{
1526        struct mem_section *ms;
1527
1528        /*
1529         * Ensure the upper PAGE_SHIFT bits are clear in the
1530         * pfn. Else it might lead to false positives when
1531         * some of the upper bits are set, but the lower bits
1532         * match a valid pfn.
1533         */
1534        if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1535                return 0;
1536
1537        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1538                return 0;
1539        ms = __pfn_to_section(pfn);
1540        if (!valid_section(ms))
1541                return 0;
1542        /*
1543         * Traditionally early sections always returned pfn_valid() for
1544         * the entire section-sized span.
1545         */
1546        return early_section(ms) || pfn_section_valid(ms, pfn);
1547}
1548#endif
1549
1550static inline int pfn_in_present_section(unsigned long pfn)
1551{
1552        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1553                return 0;
1554        return present_section(__pfn_to_section(pfn));
1555}
1556
1557static inline unsigned long next_present_section_nr(unsigned long section_nr)
1558{
1559        while (++section_nr <= __highest_present_section_nr) {
1560                if (present_section_nr(section_nr))
1561                        return section_nr;
1562        }
1563
1564        return -1;
1565}
1566
1567/*
1568 * These are _only_ used during initialisation, therefore they
1569 * can use __initdata ...  They could have names to indicate
1570 * this restriction.
1571 */
1572#ifdef CONFIG_NUMA
1573#define pfn_to_nid(pfn)                                                 \
1574({                                                                      \
1575        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1576        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1577})
1578#else
1579#define pfn_to_nid(pfn)         (0)
1580#endif
1581
1582void sparse_init(void);
1583#else
1584#define sparse_init()   do {} while (0)
1585#define sparse_index_init(_sec, _nid)  do {} while (0)
1586#define pfn_in_present_section pfn_valid
1587#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1588#endif /* CONFIG_SPARSEMEM */
1589
1590#endif /* !__GENERATING_BOUNDS.H */
1591#endif /* !__ASSEMBLY__ */
1592#endif /* _LINUX_MMZONE_H */
1593