linux/include/linux/percpu-defs.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * linux/percpu-defs.h - basic definitions for percpu areas
   4 *
   5 * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
   6 *
   7 * This file is separate from linux/percpu.h to avoid cyclic inclusion
   8 * dependency from arch header files.  Only to be included from
   9 * asm/percpu.h.
  10 *
  11 * This file includes macros necessary to declare percpu sections and
  12 * variables, and definitions of percpu accessors and operations.  It
  13 * should provide enough percpu features to arch header files even when
  14 * they can only include asm/percpu.h to avoid cyclic inclusion dependency.
  15 */
  16
  17#ifndef _LINUX_PERCPU_DEFS_H
  18#define _LINUX_PERCPU_DEFS_H
  19
  20#ifdef CONFIG_SMP
  21
  22#ifdef MODULE
  23#define PER_CPU_SHARED_ALIGNED_SECTION ""
  24#define PER_CPU_ALIGNED_SECTION ""
  25#else
  26#define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
  27#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
  28#endif
  29#define PER_CPU_FIRST_SECTION "..first"
  30
  31#else
  32
  33#define PER_CPU_SHARED_ALIGNED_SECTION ""
  34#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
  35#define PER_CPU_FIRST_SECTION ""
  36
  37#endif
  38
  39/*
  40 * Base implementations of per-CPU variable declarations and definitions, where
  41 * the section in which the variable is to be placed is provided by the
  42 * 'sec' argument.  This may be used to affect the parameters governing the
  43 * variable's storage.
  44 *
  45 * NOTE!  The sections for the DECLARE and for the DEFINE must match, lest
  46 * linkage errors occur due the compiler generating the wrong code to access
  47 * that section.
  48 */
  49#define __PCPU_ATTRS(sec)                                               \
  50        __percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))     \
  51        PER_CPU_ATTRIBUTES
  52
  53#define __PCPU_DUMMY_ATTRS                                              \
  54        __section(".discard") __attribute__((unused))
  55
  56/*
  57 * s390 and alpha modules require percpu variables to be defined as
  58 * weak to force the compiler to generate GOT based external
  59 * references for them.  This is necessary because percpu sections
  60 * will be located outside of the usually addressable area.
  61 *
  62 * This definition puts the following two extra restrictions when
  63 * defining percpu variables.
  64 *
  65 * 1. The symbol must be globally unique, even the static ones.
  66 * 2. Static percpu variables cannot be defined inside a function.
  67 *
  68 * Archs which need weak percpu definitions should define
  69 * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
  70 *
  71 * To ensure that the generic code observes the above two
  72 * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
  73 * definition is used for all cases.
  74 */
  75#if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
  76/*
  77 * __pcpu_scope_* dummy variable is used to enforce scope.  It
  78 * receives the static modifier when it's used in front of
  79 * DEFINE_PER_CPU() and will trigger build failure if
  80 * DECLARE_PER_CPU() is used for the same variable.
  81 *
  82 * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
  83 * such that hidden weak symbol collision, which will cause unrelated
  84 * variables to share the same address, can be detected during build.
  85 */
  86#define DECLARE_PER_CPU_SECTION(type, name, sec)                        \
  87        extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name;             \
  88        extern __PCPU_ATTRS(sec) __typeof__(type) name
  89
  90#define DEFINE_PER_CPU_SECTION(type, name, sec)                         \
  91        __PCPU_DUMMY_ATTRS char __pcpu_scope_##name;                    \
  92        extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name;            \
  93        __PCPU_DUMMY_ATTRS char __pcpu_unique_##name;                   \
  94        extern __PCPU_ATTRS(sec) __typeof__(type) name;                 \
  95        __PCPU_ATTRS(sec) __weak __typeof__(type) name
  96#else
  97/*
  98 * Normal declaration and definition macros.
  99 */
 100#define DECLARE_PER_CPU_SECTION(type, name, sec)                        \
 101        extern __PCPU_ATTRS(sec) __typeof__(type) name
 102
 103#define DEFINE_PER_CPU_SECTION(type, name, sec)                         \
 104        __PCPU_ATTRS(sec) __typeof__(type) name
 105#endif
 106
 107/*
 108 * Variant on the per-CPU variable declaration/definition theme used for
 109 * ordinary per-CPU variables.
 110 */
 111#define DECLARE_PER_CPU(type, name)                                     \
 112        DECLARE_PER_CPU_SECTION(type, name, "")
 113
 114#define DEFINE_PER_CPU(type, name)                                      \
 115        DEFINE_PER_CPU_SECTION(type, name, "")
 116
 117/*
 118 * Declaration/definition used for per-CPU variables that must come first in
 119 * the set of variables.
 120 */
 121#define DECLARE_PER_CPU_FIRST(type, name)                               \
 122        DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
 123
 124#define DEFINE_PER_CPU_FIRST(type, name)                                \
 125        DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
 126
 127/*
 128 * Declaration/definition used for per-CPU variables that must be cacheline
 129 * aligned under SMP conditions so that, whilst a particular instance of the
 130 * data corresponds to a particular CPU, inefficiencies due to direct access by
 131 * other CPUs are reduced by preventing the data from unnecessarily spanning
 132 * cachelines.
 133 *
 134 * An example of this would be statistical data, where each CPU's set of data
 135 * is updated by that CPU alone, but the data from across all CPUs is collated
 136 * by a CPU processing a read from a proc file.
 137 */
 138#define DECLARE_PER_CPU_SHARED_ALIGNED(type, name)                      \
 139        DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
 140        ____cacheline_aligned_in_smp
 141
 142#define DEFINE_PER_CPU_SHARED_ALIGNED(type, name)                       \
 143        DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
 144        ____cacheline_aligned_in_smp
 145
 146#define DECLARE_PER_CPU_ALIGNED(type, name)                             \
 147        DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)    \
 148        ____cacheline_aligned
 149
 150#define DEFINE_PER_CPU_ALIGNED(type, name)                              \
 151        DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)     \
 152        ____cacheline_aligned
 153
 154/*
 155 * Declaration/definition used for per-CPU variables that must be page aligned.
 156 */
 157#define DECLARE_PER_CPU_PAGE_ALIGNED(type, name)                        \
 158        DECLARE_PER_CPU_SECTION(type, name, "..page_aligned")           \
 159        __aligned(PAGE_SIZE)
 160
 161#define DEFINE_PER_CPU_PAGE_ALIGNED(type, name)                         \
 162        DEFINE_PER_CPU_SECTION(type, name, "..page_aligned")            \
 163        __aligned(PAGE_SIZE)
 164
 165/*
 166 * Declaration/definition used for per-CPU variables that must be read mostly.
 167 */
 168#define DECLARE_PER_CPU_READ_MOSTLY(type, name)                 \
 169        DECLARE_PER_CPU_SECTION(type, name, "..read_mostly")
 170
 171#define DEFINE_PER_CPU_READ_MOSTLY(type, name)                          \
 172        DEFINE_PER_CPU_SECTION(type, name, "..read_mostly")
 173
 174/*
 175 * Declaration/definition used for per-CPU variables that should be accessed
 176 * as decrypted when memory encryption is enabled in the guest.
 177 */
 178#ifdef CONFIG_AMD_MEM_ENCRYPT
 179#define DECLARE_PER_CPU_DECRYPTED(type, name)                           \
 180        DECLARE_PER_CPU_SECTION(type, name, "..decrypted")
 181
 182#define DEFINE_PER_CPU_DECRYPTED(type, name)                            \
 183        DEFINE_PER_CPU_SECTION(type, name, "..decrypted")
 184#else
 185#define DEFINE_PER_CPU_DECRYPTED(type, name)    DEFINE_PER_CPU(type, name)
 186#endif
 187
 188/*
 189 * Intermodule exports for per-CPU variables.  sparse forgets about
 190 * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
 191 * noop if __CHECKER__.
 192 */
 193#ifndef __CHECKER__
 194#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
 195#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
 196#else
 197#define EXPORT_PER_CPU_SYMBOL(var)
 198#define EXPORT_PER_CPU_SYMBOL_GPL(var)
 199#endif
 200
 201/*
 202 * Accessors and operations.
 203 */
 204#ifndef __ASSEMBLY__
 205
 206/*
 207 * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating
 208 * @ptr and is invoked once before a percpu area is accessed by all
 209 * accessors and operations.  This is performed in the generic part of
 210 * percpu and arch overrides don't need to worry about it; however, if an
 211 * arch wants to implement an arch-specific percpu accessor or operation,
 212 * it may use __verify_pcpu_ptr() to verify the parameters.
 213 *
 214 * + 0 is required in order to convert the pointer type from a
 215 * potential array type to a pointer to a single item of the array.
 216 */
 217#define __verify_pcpu_ptr(ptr)                                          \
 218do {                                                                    \
 219        const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;    \
 220        (void)__vpp_verify;                                             \
 221} while (0)
 222
 223#ifdef CONFIG_SMP
 224
 225/*
 226 * Add an offset to a pointer but keep the pointer as-is.  Use RELOC_HIDE()
 227 * to prevent the compiler from making incorrect assumptions about the
 228 * pointer value.  The weird cast keeps both GCC and sparse happy.
 229 */
 230#define SHIFT_PERCPU_PTR(__p, __offset)                                 \
 231        RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))
 232
 233#define per_cpu_ptr(ptr, cpu)                                           \
 234({                                                                      \
 235        __verify_pcpu_ptr(ptr);                                         \
 236        SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)));                 \
 237})
 238
 239#define raw_cpu_ptr(ptr)                                                \
 240({                                                                      \
 241        __verify_pcpu_ptr(ptr);                                         \
 242        arch_raw_cpu_ptr(ptr);                                          \
 243})
 244
 245#ifdef CONFIG_DEBUG_PREEMPT
 246#define this_cpu_ptr(ptr)                                               \
 247({                                                                      \
 248        __verify_pcpu_ptr(ptr);                                         \
 249        SHIFT_PERCPU_PTR(ptr, my_cpu_offset);                           \
 250})
 251#else
 252#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
 253#endif
 254
 255#else   /* CONFIG_SMP */
 256
 257#define VERIFY_PERCPU_PTR(__p)                                          \
 258({                                                                      \
 259        __verify_pcpu_ptr(__p);                                         \
 260        (typeof(*(__p)) __kernel __force *)(__p);                       \
 261})
 262
 263#define per_cpu_ptr(ptr, cpu)   ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
 264#define raw_cpu_ptr(ptr)        per_cpu_ptr(ptr, 0)
 265#define this_cpu_ptr(ptr)       raw_cpu_ptr(ptr)
 266
 267#endif  /* CONFIG_SMP */
 268
 269#define per_cpu(var, cpu)       (*per_cpu_ptr(&(var), cpu))
 270
 271/*
 272 * Must be an lvalue. Since @var must be a simple identifier,
 273 * we force a syntax error here if it isn't.
 274 */
 275#define get_cpu_var(var)                                                \
 276(*({                                                                    \
 277        preempt_disable();                                              \
 278        this_cpu_ptr(&var);                                             \
 279}))
 280
 281/*
 282 * The weird & is necessary because sparse considers (void)(var) to be
 283 * a direct dereference of percpu variable (var).
 284 */
 285#define put_cpu_var(var)                                                \
 286do {                                                                    \
 287        (void)&(var);                                                   \
 288        preempt_enable();                                               \
 289} while (0)
 290
 291#define get_cpu_ptr(var)                                                \
 292({                                                                      \
 293        preempt_disable();                                              \
 294        this_cpu_ptr(var);                                              \
 295})
 296
 297#define put_cpu_ptr(var)                                                \
 298do {                                                                    \
 299        (void)(var);                                                    \
 300        preempt_enable();                                               \
 301} while (0)
 302
 303/*
 304 * Branching function to split up a function into a set of functions that
 305 * are called for different scalar sizes of the objects handled.
 306 */
 307
 308extern void __bad_size_call_parameter(void);
 309
 310#ifdef CONFIG_DEBUG_PREEMPT
 311extern void __this_cpu_preempt_check(const char *op);
 312#else
 313static inline void __this_cpu_preempt_check(const char *op) { }
 314#endif
 315
 316#define __pcpu_size_call_return(stem, variable)                         \
 317({                                                                      \
 318        typeof(variable) pscr_ret__;                                    \
 319        __verify_pcpu_ptr(&(variable));                                 \
 320        switch(sizeof(variable)) {                                      \
 321        case 1: pscr_ret__ = stem##1(variable); break;                  \
 322        case 2: pscr_ret__ = stem##2(variable); break;                  \
 323        case 4: pscr_ret__ = stem##4(variable); break;                  \
 324        case 8: pscr_ret__ = stem##8(variable); break;                  \
 325        default:                                                        \
 326                __bad_size_call_parameter(); break;                     \
 327        }                                                               \
 328        pscr_ret__;                                                     \
 329})
 330
 331#define __pcpu_size_call_return2(stem, variable, ...)                   \
 332({                                                                      \
 333        typeof(variable) pscr2_ret__;                                   \
 334        __verify_pcpu_ptr(&(variable));                                 \
 335        switch(sizeof(variable)) {                                      \
 336        case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;    \
 337        case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;    \
 338        case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;    \
 339        case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;    \
 340        default:                                                        \
 341                __bad_size_call_parameter(); break;                     \
 342        }                                                               \
 343        pscr2_ret__;                                                    \
 344})
 345
 346/*
 347 * Special handling for cmpxchg_double.  cmpxchg_double is passed two
 348 * percpu variables.  The first has to be aligned to a double word
 349 * boundary and the second has to follow directly thereafter.
 350 * We enforce this on all architectures even if they don't support
 351 * a double cmpxchg instruction, since it's a cheap requirement, and it
 352 * avoids breaking the requirement for architectures with the instruction.
 353 */
 354#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)           \
 355({                                                                      \
 356        bool pdcrb_ret__;                                               \
 357        __verify_pcpu_ptr(&(pcp1));                                     \
 358        BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));                     \
 359        VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1)));       \
 360        VM_BUG_ON((unsigned long)(&(pcp2)) !=                           \
 361                  (unsigned long)(&(pcp1)) + sizeof(pcp1));             \
 362        switch(sizeof(pcp1)) {                                          \
 363        case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;  \
 364        case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;  \
 365        case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;  \
 366        case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;  \
 367        default:                                                        \
 368                __bad_size_call_parameter(); break;                     \
 369        }                                                               \
 370        pdcrb_ret__;                                                    \
 371})
 372
 373#define __pcpu_size_call(stem, variable, ...)                           \
 374do {                                                                    \
 375        __verify_pcpu_ptr(&(variable));                                 \
 376        switch(sizeof(variable)) {                                      \
 377                case 1: stem##1(variable, __VA_ARGS__);break;           \
 378                case 2: stem##2(variable, __VA_ARGS__);break;           \
 379                case 4: stem##4(variable, __VA_ARGS__);break;           \
 380                case 8: stem##8(variable, __VA_ARGS__);break;           \
 381                default:                                                \
 382                        __bad_size_call_parameter();break;              \
 383        }                                                               \
 384} while (0)
 385
 386/*
 387 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
 388 *
 389 * Optimized manipulation for memory allocated through the per cpu
 390 * allocator or for addresses of per cpu variables.
 391 *
 392 * These operation guarantee exclusivity of access for other operations
 393 * on the *same* processor. The assumption is that per cpu data is only
 394 * accessed by a single processor instance (the current one).
 395 *
 396 * The arch code can provide optimized implementation by defining macros
 397 * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
 398 * cpu atomic operations for 2 byte sized RMW actions. If arch code does
 399 * not provide operations for a scalar size then the fallback in the
 400 * generic code will be used.
 401 *
 402 * cmpxchg_double replaces two adjacent scalars at once.  The first two
 403 * parameters are per cpu variables which have to be of the same size.  A
 404 * truth value is returned to indicate success or failure (since a double
 405 * register result is difficult to handle).  There is very limited hardware
 406 * support for these operations, so only certain sizes may work.
 407 */
 408
 409/*
 410 * Operations for contexts where we do not want to do any checks for
 411 * preemptions.  Unless strictly necessary, always use [__]this_cpu_*()
 412 * instead.
 413 *
 414 * If there is no other protection through preempt disable and/or disabling
 415 * interrupts then one of these RMW operations can show unexpected behavior
 416 * because the execution thread was rescheduled on another processor or an
 417 * interrupt occurred and the same percpu variable was modified from the
 418 * interrupt context.
 419 */
 420#define raw_cpu_read(pcp)               __pcpu_size_call_return(raw_cpu_read_, pcp)
 421#define raw_cpu_write(pcp, val)         __pcpu_size_call(raw_cpu_write_, pcp, val)
 422#define raw_cpu_add(pcp, val)           __pcpu_size_call(raw_cpu_add_, pcp, val)
 423#define raw_cpu_and(pcp, val)           __pcpu_size_call(raw_cpu_and_, pcp, val)
 424#define raw_cpu_or(pcp, val)            __pcpu_size_call(raw_cpu_or_, pcp, val)
 425#define raw_cpu_add_return(pcp, val)    __pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
 426#define raw_cpu_xchg(pcp, nval)         __pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
 427#define raw_cpu_cmpxchg(pcp, oval, nval) \
 428        __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
 429#define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
 430        __pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
 431
 432#define raw_cpu_sub(pcp, val)           raw_cpu_add(pcp, -(val))
 433#define raw_cpu_inc(pcp)                raw_cpu_add(pcp, 1)
 434#define raw_cpu_dec(pcp)                raw_cpu_sub(pcp, 1)
 435#define raw_cpu_sub_return(pcp, val)    raw_cpu_add_return(pcp, -(typeof(pcp))(val))
 436#define raw_cpu_inc_return(pcp)         raw_cpu_add_return(pcp, 1)
 437#define raw_cpu_dec_return(pcp)         raw_cpu_add_return(pcp, -1)
 438
 439/*
 440 * Operations for contexts that are safe from preemption/interrupts.  These
 441 * operations verify that preemption is disabled.
 442 */
 443#define __this_cpu_read(pcp)                                            \
 444({                                                                      \
 445        __this_cpu_preempt_check("read");                               \
 446        raw_cpu_read(pcp);                                              \
 447})
 448
 449#define __this_cpu_write(pcp, val)                                      \
 450({                                                                      \
 451        __this_cpu_preempt_check("write");                              \
 452        raw_cpu_write(pcp, val);                                        \
 453})
 454
 455#define __this_cpu_add(pcp, val)                                        \
 456({                                                                      \
 457        __this_cpu_preempt_check("add");                                \
 458        raw_cpu_add(pcp, val);                                          \
 459})
 460
 461#define __this_cpu_and(pcp, val)                                        \
 462({                                                                      \
 463        __this_cpu_preempt_check("and");                                \
 464        raw_cpu_and(pcp, val);                                          \
 465})
 466
 467#define __this_cpu_or(pcp, val)                                         \
 468({                                                                      \
 469        __this_cpu_preempt_check("or");                                 \
 470        raw_cpu_or(pcp, val);                                           \
 471})
 472
 473#define __this_cpu_add_return(pcp, val)                                 \
 474({                                                                      \
 475        __this_cpu_preempt_check("add_return");                         \
 476        raw_cpu_add_return(pcp, val);                                   \
 477})
 478
 479#define __this_cpu_xchg(pcp, nval)                                      \
 480({                                                                      \
 481        __this_cpu_preempt_check("xchg");                               \
 482        raw_cpu_xchg(pcp, nval);                                        \
 483})
 484
 485#define __this_cpu_cmpxchg(pcp, oval, nval)                             \
 486({                                                                      \
 487        __this_cpu_preempt_check("cmpxchg");                            \
 488        raw_cpu_cmpxchg(pcp, oval, nval);                               \
 489})
 490
 491#define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
 492({      __this_cpu_preempt_check("cmpxchg_double");                     \
 493        raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2); \
 494})
 495
 496#define __this_cpu_sub(pcp, val)        __this_cpu_add(pcp, -(typeof(pcp))(val))
 497#define __this_cpu_inc(pcp)             __this_cpu_add(pcp, 1)
 498#define __this_cpu_dec(pcp)             __this_cpu_sub(pcp, 1)
 499#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
 500#define __this_cpu_inc_return(pcp)      __this_cpu_add_return(pcp, 1)
 501#define __this_cpu_dec_return(pcp)      __this_cpu_add_return(pcp, -1)
 502
 503/*
 504 * Operations with implied preemption/interrupt protection.  These
 505 * operations can be used without worrying about preemption or interrupt.
 506 */
 507#define this_cpu_read(pcp)              __pcpu_size_call_return(this_cpu_read_, pcp)
 508#define this_cpu_write(pcp, val)        __pcpu_size_call(this_cpu_write_, pcp, val)
 509#define this_cpu_add(pcp, val)          __pcpu_size_call(this_cpu_add_, pcp, val)
 510#define this_cpu_and(pcp, val)          __pcpu_size_call(this_cpu_and_, pcp, val)
 511#define this_cpu_or(pcp, val)           __pcpu_size_call(this_cpu_or_, pcp, val)
 512#define this_cpu_add_return(pcp, val)   __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
 513#define this_cpu_xchg(pcp, nval)        __pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
 514#define this_cpu_cmpxchg(pcp, oval, nval) \
 515        __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
 516#define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
 517        __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
 518
 519#define this_cpu_sub(pcp, val)          this_cpu_add(pcp, -(typeof(pcp))(val))
 520#define this_cpu_inc(pcp)               this_cpu_add(pcp, 1)
 521#define this_cpu_dec(pcp)               this_cpu_sub(pcp, 1)
 522#define this_cpu_sub_return(pcp, val)   this_cpu_add_return(pcp, -(typeof(pcp))(val))
 523#define this_cpu_inc_return(pcp)        this_cpu_add_return(pcp, 1)
 524#define this_cpu_dec_return(pcp)        this_cpu_add_return(pcp, -1)
 525
 526#endif /* __ASSEMBLY__ */
 527#endif /* _LINUX_PERCPU_DEFS_H */
 528