linux/include/linux/platform_data/cros_ec_commands.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Host communication command constants for ChromeOS EC
   4 *
   5 * Copyright (C) 2012 Google, Inc
   6 *
   7 * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
   8 * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
   9 */
  10
  11/* Host communication command constants for Chrome EC */
  12
  13#ifndef __CROS_EC_COMMANDS_H
  14#define __CROS_EC_COMMANDS_H
  15
  16
  17
  18
  19#define BUILD_ASSERT(_cond)
  20
  21/*
  22 * Current version of this protocol
  23 *
  24 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
  25 * determined in other ways.  Remove this once the kernel code no longer
  26 * depends on it.
  27 */
  28#define EC_PROTO_VERSION          0x00000002
  29
  30/* Command version mask */
  31#define EC_VER_MASK(version) BIT(version)
  32
  33/* I/O addresses for ACPI commands */
  34#define EC_LPC_ADDR_ACPI_DATA  0x62
  35#define EC_LPC_ADDR_ACPI_CMD   0x66
  36
  37/* I/O addresses for host command */
  38#define EC_LPC_ADDR_HOST_DATA  0x200
  39#define EC_LPC_ADDR_HOST_CMD   0x204
  40
  41/* I/O addresses for host command args and params */
  42/* Protocol version 2 */
  43#define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
  44#define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
  45                                         * EC_PROTO2_MAX_PARAM_SIZE
  46                                         */
  47/* Protocol version 3 */
  48#define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
  49#define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
  50
  51/*
  52 * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
  53 * and they tell the kernel that so we have to think of it as two parts.
  54 *
  55 * Other BIOSes report only the I/O port region spanned by the Microchip
  56 * MEC series EC; an attempt to address a larger region may fail.
  57 */
  58#define EC_HOST_CMD_REGION0       0x800
  59#define EC_HOST_CMD_REGION1       0x880
  60#define EC_HOST_CMD_REGION_SIZE    0x80
  61#define EC_HOST_CMD_MEC_REGION_SIZE 0x8
  62
  63/* EC command register bit functions */
  64#define EC_LPC_CMDR_DATA        BIT(0)  /* Data ready for host to read */
  65#define EC_LPC_CMDR_PENDING     BIT(1)  /* Write pending to EC */
  66#define EC_LPC_CMDR_BUSY        BIT(2)  /* EC is busy processing a command */
  67#define EC_LPC_CMDR_CMD         BIT(3)  /* Last host write was a command */
  68#define EC_LPC_CMDR_ACPI_BRST   BIT(4)  /* Burst mode (not used) */
  69#define EC_LPC_CMDR_SCI         BIT(5)  /* SCI event is pending */
  70#define EC_LPC_CMDR_SMI         BIT(6)  /* SMI event is pending */
  71
  72#define EC_LPC_ADDR_MEMMAP       0x900
  73#define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
  74#define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
  75
  76/* The offset address of each type of data in mapped memory. */
  77#define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
  78#define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
  79#define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
  80#define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
  81#define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
  82#define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
  83#define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
  84#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
  85#define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
  86#define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
  87/* Unused 0x28 - 0x2f */
  88#define EC_MEMMAP_SWITCHES         0x30 /* 8 bits */
  89/* Unused 0x31 - 0x33 */
  90#define EC_MEMMAP_HOST_EVENTS      0x34 /* 64 bits */
  91/* Battery values are all 32 bits, unless otherwise noted. */
  92#define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
  93#define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
  94#define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
  95#define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, see below (8-bit) */
  96#define EC_MEMMAP_BATT_COUNT       0x4d /* Battery Count (8-bit) */
  97#define EC_MEMMAP_BATT_INDEX       0x4e /* Current Battery Data Index (8-bit) */
  98/* Unused 0x4f */
  99#define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
 100#define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
 101#define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
 102#define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
 103/* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
 104#define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
 105#define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
 106#define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
 107#define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
 108#define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
 109/* Unused 0x84 - 0x8f */
 110#define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
 111/* Unused 0x91 */
 112#define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
 113/* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
 114/* 0x94 - 0x99: 1st Accelerometer */
 115/* 0x9a - 0x9f: 2nd Accelerometer */
 116#define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
 117/* Unused 0xa6 - 0xdf */
 118
 119/*
 120 * ACPI is unable to access memory mapped data at or above this offset due to
 121 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
 122 * which might be needed by ACPI.
 123 */
 124#define EC_MEMMAP_NO_ACPI 0xe0
 125
 126/* Define the format of the accelerometer mapped memory status byte. */
 127#define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
 128#define EC_MEMMAP_ACC_STATUS_BUSY_BIT        BIT(4)
 129#define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    BIT(7)
 130
 131/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
 132#define EC_TEMP_SENSOR_ENTRIES     16
 133/*
 134 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
 135 *
 136 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
 137 */
 138#define EC_TEMP_SENSOR_B_ENTRIES      8
 139
 140/* Special values for mapped temperature sensors */
 141#define EC_TEMP_SENSOR_NOT_PRESENT    0xff
 142#define EC_TEMP_SENSOR_ERROR          0xfe
 143#define EC_TEMP_SENSOR_NOT_POWERED    0xfd
 144#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
 145/*
 146 * The offset of temperature value stored in mapped memory.  This allows
 147 * reporting a temperature range of 200K to 454K = -73C to 181C.
 148 */
 149#define EC_TEMP_SENSOR_OFFSET      200
 150
 151/*
 152 * Number of ALS readings at EC_MEMMAP_ALS
 153 */
 154#define EC_ALS_ENTRIES             2
 155
 156/*
 157 * The default value a temperature sensor will return when it is present but
 158 * has not been read this boot.  This is a reasonable number to avoid
 159 * triggering alarms on the host.
 160 */
 161#define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
 162
 163#define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
 164#define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
 165#define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
 166
 167/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
 168#define EC_BATT_FLAG_AC_PRESENT   0x01
 169#define EC_BATT_FLAG_BATT_PRESENT 0x02
 170#define EC_BATT_FLAG_DISCHARGING  0x04
 171#define EC_BATT_FLAG_CHARGING     0x08
 172#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
 173/* Set if some of the static/dynamic data is invalid (or outdated). */
 174#define EC_BATT_FLAG_INVALID_DATA 0x20
 175
 176/* Switch flags at EC_MEMMAP_SWITCHES */
 177#define EC_SWITCH_LID_OPEN               0x01
 178#define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
 179#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
 180/* Was recovery requested via keyboard; now unused. */
 181#define EC_SWITCH_IGNORE1                0x08
 182/* Recovery requested via dedicated signal (from servo board) */
 183#define EC_SWITCH_DEDICATED_RECOVERY     0x10
 184/* Was fake developer mode switch; now unused.  Remove in next refactor. */
 185#define EC_SWITCH_IGNORE0                0x20
 186
 187/* Host command interface flags */
 188/* Host command interface supports LPC args (LPC interface only) */
 189#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
 190/* Host command interface supports version 3 protocol */
 191#define EC_HOST_CMD_FLAG_VERSION_3   0x02
 192
 193/* Wireless switch flags */
 194#define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
 195#define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
 196#define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
 197#define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
 198#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
 199
 200/*****************************************************************************/
 201/*
 202 * ACPI commands
 203 *
 204 * These are valid ONLY on the ACPI command/data port.
 205 */
 206
 207/*
 208 * ACPI Read Embedded Controller
 209 *
 210 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
 211 *
 212 * Use the following sequence:
 213 *
 214 *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
 215 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 216 *    - Write address to EC_LPC_ADDR_ACPI_DATA
 217 *    - Wait for EC_LPC_CMDR_DATA bit to set
 218 *    - Read value from EC_LPC_ADDR_ACPI_DATA
 219 */
 220#define EC_CMD_ACPI_READ 0x0080
 221
 222/*
 223 * ACPI Write Embedded Controller
 224 *
 225 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
 226 *
 227 * Use the following sequence:
 228 *
 229 *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
 230 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 231 *    - Write address to EC_LPC_ADDR_ACPI_DATA
 232 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 233 *    - Write value to EC_LPC_ADDR_ACPI_DATA
 234 */
 235#define EC_CMD_ACPI_WRITE 0x0081
 236
 237/*
 238 * ACPI Burst Enable Embedded Controller
 239 *
 240 * This enables burst mode on the EC to allow the host to issue several
 241 * commands back-to-back. While in this mode, writes to mapped multi-byte
 242 * data are locked out to ensure data consistency.
 243 */
 244#define EC_CMD_ACPI_BURST_ENABLE 0x0082
 245
 246/*
 247 * ACPI Burst Disable Embedded Controller
 248 *
 249 * This disables burst mode on the EC and stops preventing EC writes to mapped
 250 * multi-byte data.
 251 */
 252#define EC_CMD_ACPI_BURST_DISABLE 0x0083
 253
 254/*
 255 * ACPI Query Embedded Controller
 256 *
 257 * This clears the lowest-order bit in the currently pending host events, and
 258 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
 259 * event 0x80000000 = 32), or 0 if no event was pending.
 260 */
 261#define EC_CMD_ACPI_QUERY_EVENT 0x0084
 262
 263/* Valid addresses in ACPI memory space, for read/write commands */
 264
 265/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
 266#define EC_ACPI_MEM_VERSION            0x00
 267/*
 268 * Test location; writing value here updates test compliment byte to (0xff -
 269 * value).
 270 */
 271#define EC_ACPI_MEM_TEST               0x01
 272/* Test compliment; writes here are ignored. */
 273#define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
 274
 275/* Keyboard backlight brightness percent (0 - 100) */
 276#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
 277/* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
 278#define EC_ACPI_MEM_FAN_DUTY           0x04
 279
 280/*
 281 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
 282 * independent thresholds attached to them. The current value of the ID
 283 * register determines which sensor is affected by the THRESHOLD and COMMIT
 284 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
 285 * as the memory-mapped sensors. The COMMIT register applies those settings.
 286 *
 287 * The spec does not mandate any way to read back the threshold settings
 288 * themselves, but when a threshold is crossed the AP needs a way to determine
 289 * which sensor(s) are responsible. Each reading of the ID register clears and
 290 * returns one sensor ID that has crossed one of its threshold (in either
 291 * direction) since the last read. A value of 0xFF means "no new thresholds
 292 * have tripped". Setting or enabling the thresholds for a sensor will clear
 293 * the unread event count for that sensor.
 294 */
 295#define EC_ACPI_MEM_TEMP_ID            0x05
 296#define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
 297#define EC_ACPI_MEM_TEMP_COMMIT        0x07
 298/*
 299 * Here are the bits for the COMMIT register:
 300 *   bit 0 selects the threshold index for the chosen sensor (0/1)
 301 *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
 302 * Each write to the commit register affects one threshold.
 303 */
 304#define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
 305#define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
 306/*
 307 * Example:
 308 *
 309 * Set the thresholds for sensor 2 to 50 C and 60 C:
 310 *   write 2 to [0x05]      --  select temp sensor 2
 311 *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
 312 *   write 0x2 to [0x07]    --  enable threshold 0 with this value
 313 *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
 314 *   write 0x3 to [0x07]    --  enable threshold 1 with this value
 315 *
 316 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
 317 *   write 2 to [0x05]      --  select temp sensor 2
 318 *   write 0x1 to [0x07]    --  disable threshold 1
 319 */
 320
 321/* DPTF battery charging current limit */
 322#define EC_ACPI_MEM_CHARGING_LIMIT     0x08
 323
 324/* Charging limit is specified in 64 mA steps */
 325#define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
 326/* Value to disable DPTF battery charging limit */
 327#define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
 328
 329/*
 330 * Report device orientation
 331 *  Bits       Definition
 332 *  3:1        Device DPTF Profile Number (DDPN)
 333 *               0   = Reserved for backward compatibility (indicates no valid
 334 *                     profile number. Host should fall back to using TBMD).
 335 *              1..7 = DPTF Profile number to indicate to host which table needs
 336 *                     to be loaded.
 337 *   0         Tablet Mode Device Indicator (TBMD)
 338 */
 339#define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
 340#define EC_ACPI_MEM_TBMD_SHIFT         0
 341#define EC_ACPI_MEM_TBMD_MASK          0x1
 342#define EC_ACPI_MEM_DDPN_SHIFT         1
 343#define EC_ACPI_MEM_DDPN_MASK          0x7
 344
 345/*
 346 * Report device features. Uses the same format as the host command, except:
 347 *
 348 * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
 349 * of features", which is of limited interest when the system is already
 350 * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
 351 * these are supported, it defaults to 0.
 352 * This allows detecting the presence of this field since older versions of
 353 * the EC codebase would simply return 0xff to that unknown address. Check
 354 * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
 355 * are valid.
 356 */
 357#define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
 358#define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
 359#define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
 360#define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
 361#define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
 362#define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
 363#define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
 364#define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
 365
 366#define EC_ACPI_MEM_BATTERY_INDEX    0x12
 367
 368/*
 369 * USB Port Power. Each bit indicates whether the corresponding USB ports' power
 370 * is enabled (1) or disabled (0).
 371 *   bit 0 USB port ID 0
 372 *   ...
 373 *   bit 7 USB port ID 7
 374 */
 375#define EC_ACPI_MEM_USB_PORT_POWER 0x13
 376
 377/*
 378 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
 379 * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
 380 */
 381#define EC_ACPI_MEM_MAPPED_BEGIN   0x20
 382#define EC_ACPI_MEM_MAPPED_SIZE    0xe0
 383
 384/* Current version of ACPI memory address space */
 385#define EC_ACPI_MEM_VERSION_CURRENT 2
 386
 387
 388/*
 389 * This header file is used in coreboot both in C and ACPI code.  The ACPI code
 390 * is pre-processed to handle constants but the ASL compiler is unable to
 391 * handle actual C code so keep it separate.
 392 */
 393
 394
 395/*
 396 * Attributes for EC request and response packets.  Just defining __packed
 397 * results in inefficient assembly code on ARM, if the structure is actually
 398 * 32-bit aligned, as it should be for all buffers.
 399 *
 400 * Be very careful when adding these to existing structures.  They will round
 401 * up the structure size to the specified boundary.
 402 *
 403 * Also be very careful to make that if a structure is included in some other
 404 * parent structure that the alignment will still be true given the packing of
 405 * the parent structure.  This is particularly important if the sub-structure
 406 * will be passed as a pointer to another function, since that function will
 407 * not know about the misaligment caused by the parent structure's packing.
 408 *
 409 * Also be very careful using __packed - particularly when nesting non-packed
 410 * structures inside packed ones.  In fact, DO NOT use __packed directly;
 411 * always use one of these attributes.
 412 *
 413 * Once everything is annotated properly, the following search strings should
 414 * not return ANY matches in this file other than right here:
 415 *
 416 * "__packed" - generates inefficient code; all sub-structs must also be packed
 417 *
 418 * "struct [^_]" - all structs should be annotated, except for structs that are
 419 * members of other structs/unions (and their original declarations should be
 420 * annotated).
 421 */
 422
 423/*
 424 * Packed structures make no assumption about alignment, so they do inefficient
 425 * byte-wise reads.
 426 */
 427#define __ec_align1 __packed
 428#define __ec_align2 __packed
 429#define __ec_align4 __packed
 430#define __ec_align_size1 __packed
 431#define __ec_align_offset1 __packed
 432#define __ec_align_offset2 __packed
 433#define __ec_todo_packed __packed
 434#define __ec_todo_unpacked
 435
 436
 437/* LPC command status byte masks */
 438/* EC has written a byte in the data register and host hasn't read it yet */
 439#define EC_LPC_STATUS_TO_HOST     0x01
 440/* Host has written a command/data byte and the EC hasn't read it yet */
 441#define EC_LPC_STATUS_FROM_HOST   0x02
 442/* EC is processing a command */
 443#define EC_LPC_STATUS_PROCESSING  0x04
 444/* Last write to EC was a command, not data */
 445#define EC_LPC_STATUS_LAST_CMD    0x08
 446/* EC is in burst mode */
 447#define EC_LPC_STATUS_BURST_MODE  0x10
 448/* SCI event is pending (requesting SCI query) */
 449#define EC_LPC_STATUS_SCI_PENDING 0x20
 450/* SMI event is pending (requesting SMI query) */
 451#define EC_LPC_STATUS_SMI_PENDING 0x40
 452/* (reserved) */
 453#define EC_LPC_STATUS_RESERVED    0x80
 454
 455/*
 456 * EC is busy.  This covers both the EC processing a command, and the host has
 457 * written a new command but the EC hasn't picked it up yet.
 458 */
 459#define EC_LPC_STATUS_BUSY_MASK \
 460        (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
 461
 462/*
 463 * Host command response codes (16-bit).  Note that response codes should be
 464 * stored in a uint16_t rather than directly in a value of this type.
 465 */
 466enum ec_status {
 467        EC_RES_SUCCESS = 0,
 468        EC_RES_INVALID_COMMAND = 1,
 469        EC_RES_ERROR = 2,
 470        EC_RES_INVALID_PARAM = 3,
 471        EC_RES_ACCESS_DENIED = 4,
 472        EC_RES_INVALID_RESPONSE = 5,
 473        EC_RES_INVALID_VERSION = 6,
 474        EC_RES_INVALID_CHECKSUM = 7,
 475        EC_RES_IN_PROGRESS = 8,         /* Accepted, command in progress */
 476        EC_RES_UNAVAILABLE = 9,         /* No response available */
 477        EC_RES_TIMEOUT = 10,            /* We got a timeout */
 478        EC_RES_OVERFLOW = 11,           /* Table / data overflow */
 479        EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
 480        EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
 481        EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
 482        EC_RES_BUS_ERROR = 15,          /* Communications bus error */
 483        EC_RES_BUSY = 16,               /* Up but too busy.  Should retry */
 484        EC_RES_INVALID_HEADER_VERSION = 17,  /* Header version invalid */
 485        EC_RES_INVALID_HEADER_CRC = 18,      /* Header CRC invalid */
 486        EC_RES_INVALID_DATA_CRC = 19,        /* Data CRC invalid */
 487        EC_RES_DUP_UNAVAILABLE = 20,         /* Can't resend response */
 488};
 489
 490/*
 491 * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
 492 * EC command uses code 0 to mean "no event pending".  We explicitly specify
 493 * each value in the enum listing so they won't change if we delete/insert an
 494 * item or rearrange the list (it needs to be stable across platforms, not
 495 * just within a single compiled instance).
 496 */
 497enum host_event_code {
 498        EC_HOST_EVENT_LID_CLOSED = 1,
 499        EC_HOST_EVENT_LID_OPEN = 2,
 500        EC_HOST_EVENT_POWER_BUTTON = 3,
 501        EC_HOST_EVENT_AC_CONNECTED = 4,
 502        EC_HOST_EVENT_AC_DISCONNECTED = 5,
 503        EC_HOST_EVENT_BATTERY_LOW = 6,
 504        EC_HOST_EVENT_BATTERY_CRITICAL = 7,
 505        EC_HOST_EVENT_BATTERY = 8,
 506        EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
 507        /* Event generated by a device attached to the EC */
 508        EC_HOST_EVENT_DEVICE = 10,
 509        EC_HOST_EVENT_THERMAL = 11,
 510        EC_HOST_EVENT_USB_CHARGER = 12,
 511        EC_HOST_EVENT_KEY_PRESSED = 13,
 512        /*
 513         * EC has finished initializing the host interface.  The host can check
 514         * for this event following sending a EC_CMD_REBOOT_EC command to
 515         * determine when the EC is ready to accept subsequent commands.
 516         */
 517        EC_HOST_EVENT_INTERFACE_READY = 14,
 518        /* Keyboard recovery combo has been pressed */
 519        EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
 520
 521        /* Shutdown due to thermal overload */
 522        EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
 523        /* Shutdown due to battery level too low */
 524        EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
 525
 526        /* Suggest that the AP throttle itself */
 527        EC_HOST_EVENT_THROTTLE_START = 18,
 528        /* Suggest that the AP resume normal speed */
 529        EC_HOST_EVENT_THROTTLE_STOP = 19,
 530
 531        /* Hang detect logic detected a hang and host event timeout expired */
 532        EC_HOST_EVENT_HANG_DETECT = 20,
 533        /* Hang detect logic detected a hang and warm rebooted the AP */
 534        EC_HOST_EVENT_HANG_REBOOT = 21,
 535
 536        /* PD MCU triggering host event */
 537        EC_HOST_EVENT_PD_MCU = 22,
 538
 539        /* Battery Status flags have changed */
 540        EC_HOST_EVENT_BATTERY_STATUS = 23,
 541
 542        /* EC encountered a panic, triggering a reset */
 543        EC_HOST_EVENT_PANIC = 24,
 544
 545        /* Keyboard fastboot combo has been pressed */
 546        EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
 547
 548        /* EC RTC event occurred */
 549        EC_HOST_EVENT_RTC = 26,
 550
 551        /* Emulate MKBP event */
 552        EC_HOST_EVENT_MKBP = 27,
 553
 554        /* EC desires to change state of host-controlled USB mux */
 555        EC_HOST_EVENT_USB_MUX = 28,
 556
 557        /* TABLET/LAPTOP mode or detachable base attach/detach event */
 558        EC_HOST_EVENT_MODE_CHANGE = 29,
 559
 560        /* Keyboard recovery combo with hardware reinitialization */
 561        EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
 562
 563        /* WoV */
 564        EC_HOST_EVENT_WOV = 31,
 565
 566        /*
 567         * The high bit of the event mask is not used as a host event code.  If
 568         * it reads back as set, then the entire event mask should be
 569         * considered invalid by the host.  This can happen when reading the
 570         * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
 571         * not initialized on the EC, or improperly configured on the host.
 572         */
 573        EC_HOST_EVENT_INVALID = 32
 574};
 575/* Host event mask */
 576#define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
 577
 578/**
 579 * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
 580 * @flags: The host argument flags.
 581 * @command_version: Command version.
 582 * @data_size: The length of data.
 583 * @checksum: Checksum; sum of command + flags + command_version + data_size +
 584 *            all params/response data bytes.
 585 */
 586struct ec_lpc_host_args {
 587        uint8_t flags;
 588        uint8_t command_version;
 589        uint8_t data_size;
 590        uint8_t checksum;
 591} __ec_align4;
 592
 593/* Flags for ec_lpc_host_args.flags */
 594/*
 595 * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
 596 * params.
 597 *
 598 * If EC gets a command and this flag is not set, this is an old-style command.
 599 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
 600 * unknown length.  EC must respond with an old-style response (that is,
 601 * without setting EC_HOST_ARGS_FLAG_TO_HOST).
 602 */
 603#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
 604/*
 605 * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
 606 *
 607 * If EC responds to a command and this flag is not set, this is an old-style
 608 * response.  Command version is 0 and response data from EC is at
 609 * EC_LPC_ADDR_OLD_PARAM with unknown length.
 610 */
 611#define EC_HOST_ARGS_FLAG_TO_HOST   0x02
 612
 613/*****************************************************************************/
 614/*
 615 * Byte codes returned by EC over SPI interface.
 616 *
 617 * These can be used by the AP to debug the EC interface, and to determine
 618 * when the EC is not in a state where it will ever get around to responding
 619 * to the AP.
 620 *
 621 * Example of sequence of bytes read from EC for a current good transfer:
 622 *   1. -                  - AP asserts chip select (CS#)
 623 *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
 624 *   3. -                  - EC starts handling CS# interrupt
 625 *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
 626 *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
 627 *                           bytes looking for EC_SPI_FRAME_START
 628 *   6. -                  - EC finishes processing and sets up response
 629 *   7. EC_SPI_FRAME_START - AP reads frame byte
 630 *   8. (response packet)  - AP reads response packet
 631 *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
 632 *   10 -                  - AP deasserts chip select
 633 *   11 -                  - EC processes CS# interrupt and sets up DMA for
 634 *                           next request
 635 *
 636 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
 637 * the following byte values:
 638 *   EC_SPI_OLD_READY
 639 *   EC_SPI_RX_READY
 640 *   EC_SPI_RECEIVING
 641 *   EC_SPI_PROCESSING
 642 *
 643 * Then the EC found an error in the request, or was not ready for the request
 644 * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
 645 * because the EC is unable to tell when the AP is done sending its request.
 646 */
 647
 648/*
 649 * Framing byte which precedes a response packet from the EC.  After sending a
 650 * request, the AP will clock in bytes until it sees the framing byte, then
 651 * clock in the response packet.
 652 */
 653#define EC_SPI_FRAME_START    0xec
 654
 655/*
 656 * Padding bytes which are clocked out after the end of a response packet.
 657 */
 658#define EC_SPI_PAST_END       0xed
 659
 660/*
 661 * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
 662 * that the AP will send a valid packet header (starting with
 663 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
 664 */
 665#define EC_SPI_RX_READY       0xf8
 666
 667/*
 668 * EC has started receiving the request from the AP, but hasn't started
 669 * processing it yet.
 670 */
 671#define EC_SPI_RECEIVING      0xf9
 672
 673/* EC has received the entire request from the AP and is processing it. */
 674#define EC_SPI_PROCESSING     0xfa
 675
 676/*
 677 * EC received bad data from the AP, such as a packet header with an invalid
 678 * length.  EC will ignore all data until chip select deasserts.
 679 */
 680#define EC_SPI_RX_BAD_DATA    0xfb
 681
 682/*
 683 * EC received data from the AP before it was ready.  That is, the AP asserted
 684 * chip select and started clocking data before the EC was ready to receive it.
 685 * EC will ignore all data until chip select deasserts.
 686 */
 687#define EC_SPI_NOT_READY      0xfc
 688
 689/*
 690 * EC was ready to receive a request from the AP.  EC has treated the byte sent
 691 * by the AP as part of a request packet, or (for old-style ECs) is processing
 692 * a fully received packet but is not ready to respond yet.
 693 */
 694#define EC_SPI_OLD_READY      0xfd
 695
 696/*****************************************************************************/
 697
 698/*
 699 * Protocol version 2 for I2C and SPI send a request this way:
 700 *
 701 *      0       EC_CMD_VERSION0 + (command version)
 702 *      1       Command number
 703 *      2       Length of params = N
 704 *      3..N+2  Params, if any
 705 *      N+3     8-bit checksum of bytes 0..N+2
 706 *
 707 * The corresponding response is:
 708 *
 709 *      0       Result code (EC_RES_*)
 710 *      1       Length of params = M
 711 *      2..M+1  Params, if any
 712 *      M+2     8-bit checksum of bytes 0..M+1
 713 */
 714#define EC_PROTO2_REQUEST_HEADER_BYTES 3
 715#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
 716#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +    \
 717                                    EC_PROTO2_REQUEST_TRAILER_BYTES)
 718
 719#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
 720#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
 721#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +  \
 722                                     EC_PROTO2_RESPONSE_TRAILER_BYTES)
 723
 724/* Parameter length was limited by the LPC interface */
 725#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
 726
 727/* Maximum request and response packet sizes for protocol version 2 */
 728#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +        \
 729                                    EC_PROTO2_MAX_PARAM_SIZE)
 730#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +      \
 731                                     EC_PROTO2_MAX_PARAM_SIZE)
 732
 733/*****************************************************************************/
 734
 735/*
 736 * Value written to legacy command port / prefix byte to indicate protocol
 737 * 3+ structs are being used.  Usage is bus-dependent.
 738 */
 739#define EC_COMMAND_PROTOCOL_3 0xda
 740
 741#define EC_HOST_REQUEST_VERSION 3
 742
 743/**
 744 * struct ec_host_request - Version 3 request from host.
 745 * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
 746 *                  receives a header with a version it doesn't know how to
 747 *                  parse.
 748 * @checksum: Checksum of request and data; sum of all bytes including checksum
 749 *            should total to 0.
 750 * @command: Command to send (EC_CMD_...)
 751 * @command_version: Command version.
 752 * @reserved: Unused byte in current protocol version; set to 0.
 753 * @data_len: Length of data which follows this header.
 754 */
 755struct ec_host_request {
 756        uint8_t struct_version;
 757        uint8_t checksum;
 758        uint16_t command;
 759        uint8_t command_version;
 760        uint8_t reserved;
 761        uint16_t data_len;
 762} __ec_align4;
 763
 764#define EC_HOST_RESPONSE_VERSION 3
 765
 766/**
 767 * struct ec_host_response - Version 3 response from EC.
 768 * @struct_version: Struct version (=3).
 769 * @checksum: Checksum of response and data; sum of all bytes including
 770 *            checksum should total to 0.
 771 * @result: EC's response to the command (separate from communication failure)
 772 * @data_len: Length of data which follows this header.
 773 * @reserved: Unused bytes in current protocol version; set to 0.
 774 */
 775struct ec_host_response {
 776        uint8_t struct_version;
 777        uint8_t checksum;
 778        uint16_t result;
 779        uint16_t data_len;
 780        uint16_t reserved;
 781} __ec_align4;
 782
 783/*****************************************************************************/
 784
 785/*
 786 * Host command protocol V4.
 787 *
 788 * Packets always start with a request or response header.  They are followed
 789 * by data_len bytes of data.  If the data_crc_present flag is set, the data
 790 * bytes are followed by a CRC-8 of that data, using using x^8 + x^2 + x + 1
 791 * polynomial.
 792 *
 793 * Host algorithm when sending a request q:
 794 *
 795 * 101) tries_left=(some value, e.g. 3);
 796 * 102) q.seq_num++
 797 * 103) q.seq_dup=0
 798 * 104) Calculate q.header_crc.
 799 * 105) Send request q to EC.
 800 * 106) Wait for response r.  Go to 201 if received or 301 if timeout.
 801 *
 802 * 201) If r.struct_version != 4, go to 301.
 803 * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
 804 * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
 805 * 204) If r.seq_num != q.seq_num, go to 301.
 806 * 205) If r.seq_dup == q.seq_dup, return success.
 807 * 207) If r.seq_dup == 1, go to 301.
 808 * 208) Return error.
 809 *
 810 * 301) If --tries_left <= 0, return error.
 811 * 302) If q.seq_dup == 1, go to 105.
 812 * 303) q.seq_dup = 1
 813 * 304) Go to 104.
 814 *
 815 * EC algorithm when receiving a request q.
 816 * EC has response buffer r, error buffer e.
 817 *
 818 * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
 819 *      and go to 301
 820 * 102) If q.header_crc mismatches calculated CRC, set e.result =
 821 *      EC_RES_INVALID_HEADER_CRC and go to 301
 822 * 103) If q.data_crc_present, calculate data CRC.  If that mismatches the CRC
 823 *      byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
 824 *      and go to 301.
 825 * 104) If q.seq_dup == 0, go to 201.
 826 * 105) If q.seq_num != r.seq_num, go to 201.
 827 * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
 828 *
 829 * 201) Process request q into response r.
 830 * 202) r.seq_num = q.seq_num
 831 * 203) r.seq_dup = q.seq_dup
 832 * 204) Calculate r.header_crc
 833 * 205) If r.data_len > 0 and data is no longer available, set e.result =
 834 *      EC_RES_DUP_UNAVAILABLE and go to 301.
 835 * 206) Send response r.
 836 *
 837 * 301) e.seq_num = q.seq_num
 838 * 302) e.seq_dup = q.seq_dup
 839 * 303) Calculate e.header_crc.
 840 * 304) Send error response e.
 841 */
 842
 843/* Version 4 request from host */
 844struct ec_host_request4 {
 845        /*
 846         * bits 0-3: struct_version: Structure version (=4)
 847         * bit    4: is_response: Is response (=0)
 848         * bits 5-6: seq_num: Sequence number
 849         * bit    7: seq_dup: Sequence duplicate flag
 850         */
 851        uint8_t fields0;
 852
 853        /*
 854         * bits 0-4: command_version: Command version
 855         * bits 5-6: Reserved (set 0, ignore on read)
 856         * bit    7: data_crc_present: Is data CRC present after data
 857         */
 858        uint8_t fields1;
 859
 860        /* Command code (EC_CMD_*) */
 861        uint16_t command;
 862
 863        /* Length of data which follows this header (not including data CRC) */
 864        uint16_t data_len;
 865
 866        /* Reserved (set 0, ignore on read) */
 867        uint8_t reserved;
 868
 869        /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
 870        uint8_t header_crc;
 871} __ec_align4;
 872
 873/* Version 4 response from EC */
 874struct ec_host_response4 {
 875        /*
 876         * bits 0-3: struct_version: Structure version (=4)
 877         * bit    4: is_response: Is response (=1)
 878         * bits 5-6: seq_num: Sequence number
 879         * bit    7: seq_dup: Sequence duplicate flag
 880         */
 881        uint8_t fields0;
 882
 883        /*
 884         * bits 0-6: Reserved (set 0, ignore on read)
 885         * bit    7: data_crc_present: Is data CRC present after data
 886         */
 887        uint8_t fields1;
 888
 889        /* Result code (EC_RES_*) */
 890        uint16_t result;
 891
 892        /* Length of data which follows this header (not including data CRC) */
 893        uint16_t data_len;
 894
 895        /* Reserved (set 0, ignore on read) */
 896        uint8_t reserved;
 897
 898        /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
 899        uint8_t header_crc;
 900} __ec_align4;
 901
 902/* Fields in fields0 byte */
 903#define EC_PACKET4_0_STRUCT_VERSION_MASK        0x0f
 904#define EC_PACKET4_0_IS_RESPONSE_MASK           0x10
 905#define EC_PACKET4_0_SEQ_NUM_SHIFT              5
 906#define EC_PACKET4_0_SEQ_NUM_MASK               0x60
 907#define EC_PACKET4_0_SEQ_DUP_MASK               0x80
 908
 909/* Fields in fields1 byte */
 910#define EC_PACKET4_1_COMMAND_VERSION_MASK       0x1f  /* (request only) */
 911#define EC_PACKET4_1_DATA_CRC_PRESENT_MASK      0x80
 912
 913/*****************************************************************************/
 914/*
 915 * Notes on commands:
 916 *
 917 * Each command is an 16-bit command value.  Commands which take params or
 918 * return response data specify structures for that data.  If no structure is
 919 * specified, the command does not input or output data, respectively.
 920 * Parameter/response length is implicit in the structs.  Some underlying
 921 * communication protocols (I2C, SPI) may add length or checksum headers, but
 922 * those are implementation-dependent and not defined here.
 923 *
 924 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
 925 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
 926 */
 927
 928/*****************************************************************************/
 929/* General / test commands */
 930
 931/*
 932 * Get protocol version, used to deal with non-backward compatible protocol
 933 * changes.
 934 */
 935#define EC_CMD_PROTO_VERSION 0x0000
 936
 937/**
 938 * struct ec_response_proto_version - Response to the proto version command.
 939 * @version: The protocol version.
 940 */
 941struct ec_response_proto_version {
 942        uint32_t version;
 943} __ec_align4;
 944
 945/*
 946 * Hello.  This is a simple command to test the EC is responsive to
 947 * commands.
 948 */
 949#define EC_CMD_HELLO 0x0001
 950
 951/**
 952 * struct ec_params_hello - Parameters to the hello command.
 953 * @in_data: Pass anything here.
 954 */
 955struct ec_params_hello {
 956        uint32_t in_data;
 957} __ec_align4;
 958
 959/**
 960 * struct ec_response_hello - Response to the hello command.
 961 * @out_data: Output will be in_data + 0x01020304.
 962 */
 963struct ec_response_hello {
 964        uint32_t out_data;
 965} __ec_align4;
 966
 967/* Get version number */
 968#define EC_CMD_GET_VERSION 0x0002
 969
 970enum ec_current_image {
 971        EC_IMAGE_UNKNOWN = 0,
 972        EC_IMAGE_RO,
 973        EC_IMAGE_RW
 974};
 975
 976/**
 977 * struct ec_response_get_version - Response to the get version command.
 978 * @version_string_ro: Null-terminated RO firmware version string.
 979 * @version_string_rw: Null-terminated RW firmware version string.
 980 * @reserved: Unused bytes; was previously RW-B firmware version string.
 981 * @current_image: One of ec_current_image.
 982 */
 983struct ec_response_get_version {
 984        char version_string_ro[32];
 985        char version_string_rw[32];
 986        char reserved[32];
 987        uint32_t current_image;
 988} __ec_align4;
 989
 990/* Read test */
 991#define EC_CMD_READ_TEST 0x0003
 992
 993/**
 994 * struct ec_params_read_test - Parameters for the read test command.
 995 * @offset: Starting value for read buffer.
 996 * @size: Size to read in bytes.
 997 */
 998struct ec_params_read_test {
 999        uint32_t offset;
1000        uint32_t size;
1001} __ec_align4;
1002
1003/**
1004 * struct ec_response_read_test - Response to the read test command.
1005 * @data: Data returned by the read test command.
1006 */
1007struct ec_response_read_test {
1008        uint32_t data[32];
1009} __ec_align4;
1010
1011/*
1012 * Get build information
1013 *
1014 * Response is null-terminated string.
1015 */
1016#define EC_CMD_GET_BUILD_INFO 0x0004
1017
1018/* Get chip info */
1019#define EC_CMD_GET_CHIP_INFO 0x0005
1020
1021/**
1022 * struct ec_response_get_chip_info - Response to the get chip info command.
1023 * @vendor: Null-terminated string for chip vendor.
1024 * @name: Null-terminated string for chip name.
1025 * @revision: Null-terminated string for chip mask version.
1026 */
1027struct ec_response_get_chip_info {
1028        char vendor[32];
1029        char name[32];
1030        char revision[32];
1031} __ec_align4;
1032
1033/* Get board HW version */
1034#define EC_CMD_GET_BOARD_VERSION 0x0006
1035
1036/**
1037 * struct ec_response_board_version - Response to the board version command.
1038 * @board_version: A monotonously incrementing number.
1039 */
1040struct ec_response_board_version {
1041        uint16_t board_version;
1042} __ec_align2;
1043
1044/*
1045 * Read memory-mapped data.
1046 *
1047 * This is an alternate interface to memory-mapped data for bus protocols
1048 * which don't support direct-mapped memory - I2C, SPI, etc.
1049 *
1050 * Response is params.size bytes of data.
1051 */
1052#define EC_CMD_READ_MEMMAP 0x0007
1053
1054/**
1055 * struct ec_params_read_memmap - Parameters for the read memory map command.
1056 * @offset: Offset in memmap (EC_MEMMAP_*).
1057 * @size: Size to read in bytes.
1058 */
1059struct ec_params_read_memmap {
1060        uint8_t offset;
1061        uint8_t size;
1062} __ec_align1;
1063
1064/* Read versions supported for a command */
1065#define EC_CMD_GET_CMD_VERSIONS 0x0008
1066
1067/**
1068 * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1069 * @cmd: Command to check.
1070 */
1071struct ec_params_get_cmd_versions {
1072        uint8_t cmd;
1073} __ec_align1;
1074
1075/**
1076 * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1077 *         versions (v1)
1078 * @cmd: Command to check.
1079 */
1080struct ec_params_get_cmd_versions_v1 {
1081        uint16_t cmd;
1082} __ec_align2;
1083
1084/**
1085 * struct ec_response_get_cmd_version - Response to the get command versions.
1086 * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1087 *                a desired version.
1088 */
1089struct ec_response_get_cmd_versions {
1090        uint32_t version_mask;
1091} __ec_align4;
1092
1093/*
1094 * Check EC communications status (busy). This is needed on i2c/spi but not
1095 * on lpc since it has its own out-of-band busy indicator.
1096 *
1097 * lpc must read the status from the command register. Attempting this on
1098 * lpc will overwrite the args/parameter space and corrupt its data.
1099 */
1100#define EC_CMD_GET_COMMS_STATUS         0x0009
1101
1102/* Avoid using ec_status which is for return values */
1103enum ec_comms_status {
1104        EC_COMMS_STATUS_PROCESSING      = BIT(0),       /* Processing cmd */
1105};
1106
1107/**
1108 * struct ec_response_get_comms_status - Response to the get comms status
1109 *         command.
1110 * @flags: Mask of enum ec_comms_status.
1111 */
1112struct ec_response_get_comms_status {
1113        uint32_t flags;         /* Mask of enum ec_comms_status */
1114} __ec_align4;
1115
1116/* Fake a variety of responses, purely for testing purposes. */
1117#define EC_CMD_TEST_PROTOCOL            0x000A
1118
1119/* Tell the EC what to send back to us. */
1120struct ec_params_test_protocol {
1121        uint32_t ec_result;
1122        uint32_t ret_len;
1123        uint8_t buf[32];
1124} __ec_align4;
1125
1126/* Here it comes... */
1127struct ec_response_test_protocol {
1128        uint8_t buf[32];
1129} __ec_align4;
1130
1131/* Get protocol information */
1132#define EC_CMD_GET_PROTOCOL_INFO        0x000B
1133
1134/* Flags for ec_response_get_protocol_info.flags */
1135/* EC_RES_IN_PROGRESS may be returned if a command is slow */
1136#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1137
1138/**
1139 * struct ec_response_get_protocol_info - Response to the get protocol info.
1140 * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1141 *                     version n).
1142 * @max_request_packet_size: Maximum request packet size in bytes.
1143 * @max_response_packet_size: Maximum response packet size in bytes.
1144 * @flags: see EC_PROTOCOL_INFO_*
1145 */
1146struct ec_response_get_protocol_info {
1147        /* Fields which exist if at least protocol version 3 supported */
1148        uint32_t protocol_versions;
1149        uint16_t max_request_packet_size;
1150        uint16_t max_response_packet_size;
1151        uint32_t flags;
1152} __ec_align4;
1153
1154
1155/*****************************************************************************/
1156/* Get/Set miscellaneous values */
1157
1158/* The upper byte of .flags tells what to do (nothing means "get") */
1159#define EC_GSV_SET        0x80000000
1160
1161/*
1162 * The lower three bytes of .flags identifies the parameter, if that has
1163 * meaning for an individual command.
1164 */
1165#define EC_GSV_PARAM_MASK 0x00ffffff
1166
1167struct ec_params_get_set_value {
1168        uint32_t flags;
1169        uint32_t value;
1170} __ec_align4;
1171
1172struct ec_response_get_set_value {
1173        uint32_t flags;
1174        uint32_t value;
1175} __ec_align4;
1176
1177/* More than one command can use these structs to get/set parameters. */
1178#define EC_CMD_GSV_PAUSE_IN_S5  0x000C
1179
1180/*****************************************************************************/
1181/* List the features supported by the firmware */
1182#define EC_CMD_GET_FEATURES  0x000D
1183
1184/* Supported features */
1185enum ec_feature_code {
1186        /*
1187         * This image contains a limited set of features. Another image
1188         * in RW partition may support more features.
1189         */
1190        EC_FEATURE_LIMITED = 0,
1191        /*
1192         * Commands for probing/reading/writing/erasing the flash in the
1193         * EC are present.
1194         */
1195        EC_FEATURE_FLASH = 1,
1196        /*
1197         * Can control the fan speed directly.
1198         */
1199        EC_FEATURE_PWM_FAN = 2,
1200        /*
1201         * Can control the intensity of the keyboard backlight.
1202         */
1203        EC_FEATURE_PWM_KEYB = 3,
1204        /*
1205         * Support Google lightbar, introduced on Pixel.
1206         */
1207        EC_FEATURE_LIGHTBAR = 4,
1208        /* Control of LEDs  */
1209        EC_FEATURE_LED = 5,
1210        /* Exposes an interface to control gyro and sensors.
1211         * The host goes through the EC to access these sensors.
1212         * In addition, the EC may provide composite sensors, like lid angle.
1213         */
1214        EC_FEATURE_MOTION_SENSE = 6,
1215        /* The keyboard is controlled by the EC */
1216        EC_FEATURE_KEYB = 7,
1217        /* The AP can use part of the EC flash as persistent storage. */
1218        EC_FEATURE_PSTORE = 8,
1219        /* The EC monitors BIOS port 80h, and can return POST codes. */
1220        EC_FEATURE_PORT80 = 9,
1221        /*
1222         * Thermal management: include TMP specific commands.
1223         * Higher level than direct fan control.
1224         */
1225        EC_FEATURE_THERMAL = 10,
1226        /* Can switch the screen backlight on/off */
1227        EC_FEATURE_BKLIGHT_SWITCH = 11,
1228        /* Can switch the wifi module on/off */
1229        EC_FEATURE_WIFI_SWITCH = 12,
1230        /* Monitor host events, through for example SMI or SCI */
1231        EC_FEATURE_HOST_EVENTS = 13,
1232        /* The EC exposes GPIO commands to control/monitor connected devices. */
1233        EC_FEATURE_GPIO = 14,
1234        /* The EC can send i2c messages to downstream devices. */
1235        EC_FEATURE_I2C = 15,
1236        /* Command to control charger are included */
1237        EC_FEATURE_CHARGER = 16,
1238        /* Simple battery support. */
1239        EC_FEATURE_BATTERY = 17,
1240        /*
1241         * Support Smart battery protocol
1242         * (Common Smart Battery System Interface Specification)
1243         */
1244        EC_FEATURE_SMART_BATTERY = 18,
1245        /* EC can detect when the host hangs. */
1246        EC_FEATURE_HANG_DETECT = 19,
1247        /* Report power information, for pit only */
1248        EC_FEATURE_PMU = 20,
1249        /* Another Cros EC device is present downstream of this one */
1250        EC_FEATURE_SUB_MCU = 21,
1251        /* Support USB Power delivery (PD) commands */
1252        EC_FEATURE_USB_PD = 22,
1253        /* Control USB multiplexer, for audio through USB port for instance. */
1254        EC_FEATURE_USB_MUX = 23,
1255        /* Motion Sensor code has an internal software FIFO */
1256        EC_FEATURE_MOTION_SENSE_FIFO = 24,
1257        /* Support temporary secure vstore */
1258        EC_FEATURE_VSTORE = 25,
1259        /* EC decides on USB-C SS mux state, muxes configured by host */
1260        EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1261        /* EC has RTC feature that can be controlled by host commands */
1262        EC_FEATURE_RTC = 27,
1263        /* The MCU exposes a Fingerprint sensor */
1264        EC_FEATURE_FINGERPRINT = 28,
1265        /* The MCU exposes a Touchpad */
1266        EC_FEATURE_TOUCHPAD = 29,
1267        /* The MCU has RWSIG task enabled */
1268        EC_FEATURE_RWSIG = 30,
1269        /* EC has device events support */
1270        EC_FEATURE_DEVICE_EVENT = 31,
1271        /* EC supports the unified wake masks for LPC/eSPI systems */
1272        EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1273        /* EC supports 64-bit host events */
1274        EC_FEATURE_HOST_EVENT64 = 33,
1275        /* EC runs code in RAM (not in place, a.k.a. XIP) */
1276        EC_FEATURE_EXEC_IN_RAM = 34,
1277        /* EC supports CEC commands */
1278        EC_FEATURE_CEC = 35,
1279        /* EC supports tight sensor timestamping. */
1280        EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1281        /*
1282         * EC supports tablet mode detection aligned to Chrome and allows
1283         * setting of threshold by host command using
1284         * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1285         */
1286        EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1287        /* The MCU is a System Companion Processor (SCP). */
1288        EC_FEATURE_SCP = 39,
1289        /* The MCU is an Integrated Sensor Hub */
1290        EC_FEATURE_ISH = 40,
1291        /* New TCPMv2 TYPEC_ prefaced commands supported */
1292        EC_FEATURE_TYPEC_CMD = 41,
1293        /*
1294         * The EC will wait for direction from the AP to enter Type-C alternate
1295         * modes or USB4.
1296         */
1297        EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42,
1298        /*
1299         * The EC will wait for an acknowledge from the AP after setting the
1300         * mux.
1301         */
1302        EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43,
1303};
1304
1305#define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1306#define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1307
1308struct ec_response_get_features {
1309        uint32_t flags[2];
1310} __ec_align4;
1311
1312/*****************************************************************************/
1313/* Get the board's SKU ID from EC */
1314#define EC_CMD_GET_SKU_ID 0x000E
1315
1316/* Set SKU ID from AP */
1317#define EC_CMD_SET_SKU_ID 0x000F
1318
1319struct ec_sku_id_info {
1320        uint32_t sku_id;
1321} __ec_align4;
1322
1323/*****************************************************************************/
1324/* Flash commands */
1325
1326/* Get flash info */
1327#define EC_CMD_FLASH_INFO 0x0010
1328#define EC_VER_FLASH_INFO 2
1329
1330/**
1331 * struct ec_response_flash_info - Response to the flash info command.
1332 * @flash_size: Usable flash size in bytes.
1333 * @write_block_size: Write block size. Write offset and size must be a
1334 *                    multiple of this.
1335 * @erase_block_size: Erase block size. Erase offset and size must be a
1336 *                    multiple of this.
1337 * @protect_block_size: Protection block size. Protection offset and size
1338 *                      must be a multiple of this.
1339 *
1340 * Version 0 returns these fields.
1341 */
1342struct ec_response_flash_info {
1343        uint32_t flash_size;
1344        uint32_t write_block_size;
1345        uint32_t erase_block_size;
1346        uint32_t protect_block_size;
1347} __ec_align4;
1348
1349/*
1350 * Flags for version 1+ flash info command
1351 * EC flash erases bits to 0 instead of 1.
1352 */
1353#define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1354
1355/*
1356 * Flash must be selected for read/write/erase operations to succeed.  This may
1357 * be necessary on a chip where write/erase can be corrupted by other board
1358 * activity, or where the chip needs to enable some sort of programming voltage,
1359 * or where the read/write/erase operations require cleanly suspending other
1360 * chip functionality.
1361 */
1362#define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1363
1364/**
1365 * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1366 * @flash_size: Usable flash size in bytes.
1367 * @write_block_size: Write block size. Write offset and size must be a
1368 *                    multiple of this.
1369 * @erase_block_size: Erase block size. Erase offset and size must be a
1370 *                    multiple of this.
1371 * @protect_block_size: Protection block size. Protection offset and size
1372 *                      must be a multiple of this.
1373 * @write_ideal_size: Ideal write size in bytes.  Writes will be fastest if
1374 *                    size is exactly this and offset is a multiple of this.
1375 *                    For example, an EC may have a write buffer which can do
1376 *                    half-page operations if data is aligned, and a slower
1377 *                    word-at-a-time write mode.
1378 * @flags: Flags; see EC_FLASH_INFO_*
1379 *
1380 * Version 1 returns the same initial fields as version 0, with additional
1381 * fields following.
1382 *
1383 * gcc anonymous structs don't seem to get along with the __packed directive;
1384 * if they did we'd define the version 0 structure as a sub-structure of this
1385 * one.
1386 *
1387 * Version 2 supports flash banks of different sizes:
1388 * The caller specified the number of banks it has preallocated
1389 * (num_banks_desc)
1390 * The EC returns the number of banks describing the flash memory.
1391 * It adds banks descriptions up to num_banks_desc.
1392 */
1393struct ec_response_flash_info_1 {
1394        /* Version 0 fields; see above for description */
1395        uint32_t flash_size;
1396        uint32_t write_block_size;
1397        uint32_t erase_block_size;
1398        uint32_t protect_block_size;
1399
1400        /* Version 1 adds these fields: */
1401        uint32_t write_ideal_size;
1402        uint32_t flags;
1403} __ec_align4;
1404
1405struct ec_params_flash_info_2 {
1406        /* Number of banks to describe */
1407        uint16_t num_banks_desc;
1408        /* Reserved; set 0; ignore on read */
1409        uint8_t reserved[2];
1410} __ec_align4;
1411
1412struct ec_flash_bank {
1413        /* Number of sector is in this bank. */
1414        uint16_t count;
1415        /* Size in power of 2 of each sector (8 --> 256 bytes) */
1416        uint8_t size_exp;
1417        /* Minimal write size for the sectors in this bank */
1418        uint8_t write_size_exp;
1419        /* Erase size for the sectors in this bank */
1420        uint8_t erase_size_exp;
1421        /* Size for write protection, usually identical to erase size. */
1422        uint8_t protect_size_exp;
1423        /* Reserved; set 0; ignore on read */
1424        uint8_t reserved[2];
1425};
1426
1427struct ec_response_flash_info_2 {
1428        /* Total flash in the EC. */
1429        uint32_t flash_size;
1430        /* Flags; see EC_FLASH_INFO_* */
1431        uint32_t flags;
1432        /* Maximum size to use to send data to write to the EC. */
1433        uint32_t write_ideal_size;
1434        /* Number of banks present in the EC. */
1435        uint16_t num_banks_total;
1436        /* Number of banks described in banks array. */
1437        uint16_t num_banks_desc;
1438        struct ec_flash_bank banks[];
1439} __ec_align4;
1440
1441/*
1442 * Read flash
1443 *
1444 * Response is params.size bytes of data.
1445 */
1446#define EC_CMD_FLASH_READ 0x0011
1447
1448/**
1449 * struct ec_params_flash_read - Parameters for the flash read command.
1450 * @offset: Byte offset to read.
1451 * @size: Size to read in bytes.
1452 */
1453struct ec_params_flash_read {
1454        uint32_t offset;
1455        uint32_t size;
1456} __ec_align4;
1457
1458/* Write flash */
1459#define EC_CMD_FLASH_WRITE 0x0012
1460#define EC_VER_FLASH_WRITE 1
1461
1462/* Version 0 of the flash command supported only 64 bytes of data */
1463#define EC_FLASH_WRITE_VER0_SIZE 64
1464
1465/**
1466 * struct ec_params_flash_write - Parameters for the flash write command.
1467 * @offset: Byte offset to write.
1468 * @size: Size to write in bytes.
1469 */
1470struct ec_params_flash_write {
1471        uint32_t offset;
1472        uint32_t size;
1473        /* Followed by data to write */
1474} __ec_align4;
1475
1476/* Erase flash */
1477#define EC_CMD_FLASH_ERASE 0x0013
1478
1479/**
1480 * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1481 * @offset: Byte offset to erase.
1482 * @size: Size to erase in bytes.
1483 */
1484struct ec_params_flash_erase {
1485        uint32_t offset;
1486        uint32_t size;
1487} __ec_align4;
1488
1489/*
1490 * v1 add async erase:
1491 * subcommands can returns:
1492 * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1493 * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1494 * EC_RES_ERROR : other errors.
1495 * EC_RES_BUSY : an existing erase operation is in progress.
1496 * EC_RES_ACCESS_DENIED: Trying to erase running image.
1497 *
1498 * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1499 * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1500 * the proper result.
1501 * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1502 * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1503 * ERASE_GET_RESULT command may timeout on EC where flash access is not
1504 * permitted while erasing. (For instance, STM32F4).
1505 */
1506enum ec_flash_erase_cmd {
1507        FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1508        FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1509        FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1510};
1511
1512/**
1513 * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1514 * @cmd: One of ec_flash_erase_cmd.
1515 * @reserved: Pad byte; currently always contains 0.
1516 * @flag: No flags defined yet; set to 0.
1517 * @params: Same as v0 parameters.
1518 */
1519struct ec_params_flash_erase_v1 {
1520        uint8_t  cmd;
1521        uint8_t  reserved;
1522        uint16_t flag;
1523        struct ec_params_flash_erase params;
1524} __ec_align4;
1525
1526/*
1527 * Get/set flash protection.
1528 *
1529 * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1530 * firmware write protect GPIO, not all flags will take effect immediately;
1531 * some flags require a subsequent hard reset to take effect.  Check the
1532 * returned flags bits to see what actually happened.
1533 *
1534 * If mask=0, simply returns the current flags state.
1535 */
1536#define EC_CMD_FLASH_PROTECT 0x0015
1537#define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1538
1539/* Flags for flash protection */
1540/* RO flash code protected when the EC boots */
1541#define EC_FLASH_PROTECT_RO_AT_BOOT         BIT(0)
1542/*
1543 * RO flash code protected now.  If this bit is set, at-boot status cannot
1544 * be changed.
1545 */
1546#define EC_FLASH_PROTECT_RO_NOW             BIT(1)
1547/* Entire flash code protected now, until reboot. */
1548#define EC_FLASH_PROTECT_ALL_NOW            BIT(2)
1549/* Flash write protect GPIO is asserted now */
1550#define EC_FLASH_PROTECT_GPIO_ASSERTED      BIT(3)
1551/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1552#define EC_FLASH_PROTECT_ERROR_STUCK        BIT(4)
1553/*
1554 * Error - flash protection is in inconsistent state.  At least one bank of
1555 * flash which should be protected is not protected.  Usually fixed by
1556 * re-requesting the desired flags, or by a hard reset if that fails.
1557 */
1558#define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1559/* Entire flash code protected when the EC boots */
1560#define EC_FLASH_PROTECT_ALL_AT_BOOT        BIT(6)
1561/* RW flash code protected when the EC boots */
1562#define EC_FLASH_PROTECT_RW_AT_BOOT         BIT(7)
1563/* RW flash code protected now. */
1564#define EC_FLASH_PROTECT_RW_NOW             BIT(8)
1565/* Rollback information flash region protected when the EC boots */
1566#define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   BIT(9)
1567/* Rollback information flash region protected now */
1568#define EC_FLASH_PROTECT_ROLLBACK_NOW       BIT(10)
1569
1570
1571/**
1572 * struct ec_params_flash_protect - Parameters for the flash protect command.
1573 * @mask: Bits in flags to apply.
1574 * @flags: New flags to apply.
1575 */
1576struct ec_params_flash_protect {
1577        uint32_t mask;
1578        uint32_t flags;
1579} __ec_align4;
1580
1581/**
1582 * struct ec_response_flash_protect - Response to the flash protect command.
1583 * @flags: Current value of flash protect flags.
1584 * @valid_flags: Flags which are valid on this platform. This allows the
1585 *               caller to distinguish between flags which aren't set vs. flags
1586 *               which can't be set on this platform.
1587 * @writable_flags: Flags which can be changed given the current protection
1588 *                  state.
1589 */
1590struct ec_response_flash_protect {
1591        uint32_t flags;
1592        uint32_t valid_flags;
1593        uint32_t writable_flags;
1594} __ec_align4;
1595
1596/*
1597 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1598 * write protect.  These commands may be reused with version > 0.
1599 */
1600
1601/* Get the region offset/size */
1602#define EC_CMD_FLASH_REGION_INFO 0x0016
1603#define EC_VER_FLASH_REGION_INFO 1
1604
1605enum ec_flash_region {
1606        /* Region which holds read-only EC image */
1607        EC_FLASH_REGION_RO = 0,
1608        /*
1609         * Region which holds active RW image. 'Active' is different from
1610         * 'running'. Active means 'scheduled-to-run'. Since RO image always
1611         * scheduled to run, active/non-active applies only to RW images (for
1612         * the same reason 'update' applies only to RW images. It's a state of
1613         * an image on a flash. Running image can be RO, RW_A, RW_B but active
1614         * image can only be RW_A or RW_B. In recovery mode, an active RW image
1615         * doesn't enter 'running' state but it's still active on a flash.
1616         */
1617        EC_FLASH_REGION_ACTIVE,
1618        /*
1619         * Region which should be write-protected in the factory (a superset of
1620         * EC_FLASH_REGION_RO)
1621         */
1622        EC_FLASH_REGION_WP_RO,
1623        /* Region which holds updatable (non-active) RW image */
1624        EC_FLASH_REGION_UPDATE,
1625        /* Number of regions */
1626        EC_FLASH_REGION_COUNT,
1627};
1628/*
1629 * 'RW' is vague if there are multiple RW images; we mean the active one,
1630 * so the old constant is deprecated.
1631 */
1632#define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1633
1634/**
1635 * struct ec_params_flash_region_info - Parameters for the flash region info
1636 *         command.
1637 * @region: Flash region; see EC_FLASH_REGION_*
1638 */
1639struct ec_params_flash_region_info {
1640        uint32_t region;
1641} __ec_align4;
1642
1643struct ec_response_flash_region_info {
1644        uint32_t offset;
1645        uint32_t size;
1646} __ec_align4;
1647
1648/* Read/write VbNvContext */
1649#define EC_CMD_VBNV_CONTEXT 0x0017
1650#define EC_VER_VBNV_CONTEXT 1
1651#define EC_VBNV_BLOCK_SIZE 16
1652
1653enum ec_vbnvcontext_op {
1654        EC_VBNV_CONTEXT_OP_READ,
1655        EC_VBNV_CONTEXT_OP_WRITE,
1656};
1657
1658struct ec_params_vbnvcontext {
1659        uint32_t op;
1660        uint8_t block[EC_VBNV_BLOCK_SIZE];
1661} __ec_align4;
1662
1663struct ec_response_vbnvcontext {
1664        uint8_t block[EC_VBNV_BLOCK_SIZE];
1665} __ec_align4;
1666
1667
1668/* Get SPI flash information */
1669#define EC_CMD_FLASH_SPI_INFO 0x0018
1670
1671struct ec_response_flash_spi_info {
1672        /* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1673        uint8_t jedec[3];
1674
1675        /* Pad byte; currently always contains 0 */
1676        uint8_t reserved0;
1677
1678        /* Manufacturer / device ID from command 0x90 */
1679        uint8_t mfr_dev_id[2];
1680
1681        /* Status registers from command 0x05 and 0x35 */
1682        uint8_t sr1, sr2;
1683} __ec_align1;
1684
1685
1686/* Select flash during flash operations */
1687#define EC_CMD_FLASH_SELECT 0x0019
1688
1689/**
1690 * struct ec_params_flash_select - Parameters for the flash select command.
1691 * @select: 1 to select flash, 0 to deselect flash
1692 */
1693struct ec_params_flash_select {
1694        uint8_t select;
1695} __ec_align4;
1696
1697
1698/*****************************************************************************/
1699/* PWM commands */
1700
1701/* Get fan target RPM */
1702#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1703
1704struct ec_response_pwm_get_fan_rpm {
1705        uint32_t rpm;
1706} __ec_align4;
1707
1708/* Set target fan RPM */
1709#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1710
1711/* Version 0 of input params */
1712struct ec_params_pwm_set_fan_target_rpm_v0 {
1713        uint32_t rpm;
1714} __ec_align4;
1715
1716/* Version 1 of input params */
1717struct ec_params_pwm_set_fan_target_rpm_v1 {
1718        uint32_t rpm;
1719        uint8_t fan_idx;
1720} __ec_align_size1;
1721
1722/* Get keyboard backlight */
1723/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1724#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1725
1726struct ec_response_pwm_get_keyboard_backlight {
1727        uint8_t percent;
1728        uint8_t enabled;
1729} __ec_align1;
1730
1731/* Set keyboard backlight */
1732/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1733#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1734
1735struct ec_params_pwm_set_keyboard_backlight {
1736        uint8_t percent;
1737} __ec_align1;
1738
1739/* Set target fan PWM duty cycle */
1740#define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1741
1742/* Version 0 of input params */
1743struct ec_params_pwm_set_fan_duty_v0 {
1744        uint32_t percent;
1745} __ec_align4;
1746
1747/* Version 1 of input params */
1748struct ec_params_pwm_set_fan_duty_v1 {
1749        uint32_t percent;
1750        uint8_t fan_idx;
1751} __ec_align_size1;
1752
1753#define EC_CMD_PWM_SET_DUTY 0x0025
1754/* 16 bit duty cycle, 0xffff = 100% */
1755#define EC_PWM_MAX_DUTY 0xffff
1756
1757enum ec_pwm_type {
1758        /* All types, indexed by board-specific enum pwm_channel */
1759        EC_PWM_TYPE_GENERIC = 0,
1760        /* Keyboard backlight */
1761        EC_PWM_TYPE_KB_LIGHT,
1762        /* Display backlight */
1763        EC_PWM_TYPE_DISPLAY_LIGHT,
1764        EC_PWM_TYPE_COUNT,
1765};
1766
1767struct ec_params_pwm_set_duty {
1768        uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1769        uint8_t pwm_type;  /* ec_pwm_type */
1770        uint8_t index;     /* Type-specific index, or 0 if unique */
1771} __ec_align4;
1772
1773#define EC_CMD_PWM_GET_DUTY 0x0026
1774
1775struct ec_params_pwm_get_duty {
1776        uint8_t pwm_type;  /* ec_pwm_type */
1777        uint8_t index;     /* Type-specific index, or 0 if unique */
1778} __ec_align1;
1779
1780struct ec_response_pwm_get_duty {
1781        uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1782} __ec_align2;
1783
1784/*****************************************************************************/
1785/*
1786 * Lightbar commands. This looks worse than it is. Since we only use one HOST
1787 * command to say "talk to the lightbar", we put the "and tell it to do X" part
1788 * into a subcommand. We'll make separate structs for subcommands with
1789 * different input args, so that we know how much to expect.
1790 */
1791#define EC_CMD_LIGHTBAR_CMD 0x0028
1792
1793struct rgb_s {
1794        uint8_t r, g, b;
1795} __ec_todo_unpacked;
1796
1797#define LB_BATTERY_LEVELS 4
1798
1799/*
1800 * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1801 * host command, but the alignment is the same regardless. Keep it that way.
1802 */
1803struct lightbar_params_v0 {
1804        /* Timing */
1805        int32_t google_ramp_up;
1806        int32_t google_ramp_down;
1807        int32_t s3s0_ramp_up;
1808        int32_t s0_tick_delay[2];               /* AC=0/1 */
1809        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1810        int32_t s0s3_ramp_down;
1811        int32_t s3_sleep_for;
1812        int32_t s3_ramp_up;
1813        int32_t s3_ramp_down;
1814
1815        /* Oscillation */
1816        uint8_t new_s0;
1817        uint8_t osc_min[2];                     /* AC=0/1 */
1818        uint8_t osc_max[2];                     /* AC=0/1 */
1819        uint8_t w_ofs[2];                       /* AC=0/1 */
1820
1821        /* Brightness limits based on the backlight and AC. */
1822        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1823        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1824        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1825
1826        /* Battery level thresholds */
1827        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1828
1829        /* Map [AC][battery_level] to color index */
1830        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1831        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1832
1833        /* Color palette */
1834        struct rgb_s color[8];                  /* 0-3 are Google colors */
1835} __ec_todo_packed;
1836
1837struct lightbar_params_v1 {
1838        /* Timing */
1839        int32_t google_ramp_up;
1840        int32_t google_ramp_down;
1841        int32_t s3s0_ramp_up;
1842        int32_t s0_tick_delay[2];               /* AC=0/1 */
1843        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1844        int32_t s0s3_ramp_down;
1845        int32_t s3_sleep_for;
1846        int32_t s3_ramp_up;
1847        int32_t s3_ramp_down;
1848        int32_t s5_ramp_up;
1849        int32_t s5_ramp_down;
1850        int32_t tap_tick_delay;
1851        int32_t tap_gate_delay;
1852        int32_t tap_display_time;
1853
1854        /* Tap-for-battery params */
1855        uint8_t tap_pct_red;
1856        uint8_t tap_pct_green;
1857        uint8_t tap_seg_min_on;
1858        uint8_t tap_seg_max_on;
1859        uint8_t tap_seg_osc;
1860        uint8_t tap_idx[3];
1861
1862        /* Oscillation */
1863        uint8_t osc_min[2];                     /* AC=0/1 */
1864        uint8_t osc_max[2];                     /* AC=0/1 */
1865        uint8_t w_ofs[2];                       /* AC=0/1 */
1866
1867        /* Brightness limits based on the backlight and AC. */
1868        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1869        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1870        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1871
1872        /* Battery level thresholds */
1873        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1874
1875        /* Map [AC][battery_level] to color index */
1876        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1877        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1878
1879        /* s5: single color pulse on inhibited power-up */
1880        uint8_t s5_idx;
1881
1882        /* Color palette */
1883        struct rgb_s color[8];                  /* 0-3 are Google colors */
1884} __ec_todo_packed;
1885
1886/* Lightbar command params v2
1887 * crbug.com/467716
1888 *
1889 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1890 * logical groups to make it more manageable ( < 120 bytes).
1891 *
1892 * NOTE: Each of these groups must be less than 120 bytes.
1893 */
1894
1895struct lightbar_params_v2_timing {
1896        /* Timing */
1897        int32_t google_ramp_up;
1898        int32_t google_ramp_down;
1899        int32_t s3s0_ramp_up;
1900        int32_t s0_tick_delay[2];               /* AC=0/1 */
1901        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1902        int32_t s0s3_ramp_down;
1903        int32_t s3_sleep_for;
1904        int32_t s3_ramp_up;
1905        int32_t s3_ramp_down;
1906        int32_t s5_ramp_up;
1907        int32_t s5_ramp_down;
1908        int32_t tap_tick_delay;
1909        int32_t tap_gate_delay;
1910        int32_t tap_display_time;
1911} __ec_todo_packed;
1912
1913struct lightbar_params_v2_tap {
1914        /* Tap-for-battery params */
1915        uint8_t tap_pct_red;
1916        uint8_t tap_pct_green;
1917        uint8_t tap_seg_min_on;
1918        uint8_t tap_seg_max_on;
1919        uint8_t tap_seg_osc;
1920        uint8_t tap_idx[3];
1921} __ec_todo_packed;
1922
1923struct lightbar_params_v2_oscillation {
1924        /* Oscillation */
1925        uint8_t osc_min[2];                     /* AC=0/1 */
1926        uint8_t osc_max[2];                     /* AC=0/1 */
1927        uint8_t w_ofs[2];                       /* AC=0/1 */
1928} __ec_todo_packed;
1929
1930struct lightbar_params_v2_brightness {
1931        /* Brightness limits based on the backlight and AC. */
1932        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1933        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1934        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1935} __ec_todo_packed;
1936
1937struct lightbar_params_v2_thresholds {
1938        /* Battery level thresholds */
1939        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1940} __ec_todo_packed;
1941
1942struct lightbar_params_v2_colors {
1943        /* Map [AC][battery_level] to color index */
1944        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1945        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1946
1947        /* s5: single color pulse on inhibited power-up */
1948        uint8_t s5_idx;
1949
1950        /* Color palette */
1951        struct rgb_s color[8];                  /* 0-3 are Google colors */
1952} __ec_todo_packed;
1953
1954/* Lightbar program. */
1955#define EC_LB_PROG_LEN 192
1956struct lightbar_program {
1957        uint8_t size;
1958        uint8_t data[EC_LB_PROG_LEN];
1959} __ec_todo_unpacked;
1960
1961struct ec_params_lightbar {
1962        uint8_t cmd;                  /* Command (see enum lightbar_command) */
1963        union {
1964                /*
1965                 * The following commands have no args:
1966                 *
1967                 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1968                 * version, get_brightness, get_demo, suspend, resume,
1969                 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
1970                 * get_params_v2_bright, get_params_v2_thlds,
1971                 * get_params_v2_colors
1972                 *
1973                 * Don't use an empty struct, because C++ hates that.
1974                 */
1975
1976                struct __ec_todo_unpacked {
1977                        uint8_t num;
1978                } set_brightness, seq, demo;
1979
1980                struct __ec_todo_unpacked {
1981                        uint8_t ctrl, reg, value;
1982                } reg;
1983
1984                struct __ec_todo_unpacked {
1985                        uint8_t led, red, green, blue;
1986                } set_rgb;
1987
1988                struct __ec_todo_unpacked {
1989                        uint8_t led;
1990                } get_rgb;
1991
1992                struct __ec_todo_unpacked {
1993                        uint8_t enable;
1994                } manual_suspend_ctrl;
1995
1996                struct lightbar_params_v0 set_params_v0;
1997                struct lightbar_params_v1 set_params_v1;
1998
1999                struct lightbar_params_v2_timing set_v2par_timing;
2000                struct lightbar_params_v2_tap set_v2par_tap;
2001                struct lightbar_params_v2_oscillation set_v2par_osc;
2002                struct lightbar_params_v2_brightness set_v2par_bright;
2003                struct lightbar_params_v2_thresholds set_v2par_thlds;
2004                struct lightbar_params_v2_colors set_v2par_colors;
2005
2006                struct lightbar_program set_program;
2007        };
2008} __ec_todo_packed;
2009
2010struct ec_response_lightbar {
2011        union {
2012                struct __ec_todo_unpacked {
2013                        struct __ec_todo_unpacked {
2014                                uint8_t reg;
2015                                uint8_t ic0;
2016                                uint8_t ic1;
2017                        } vals[23];
2018                } dump;
2019
2020                struct __ec_todo_unpacked {
2021                        uint8_t num;
2022                } get_seq, get_brightness, get_demo;
2023
2024                struct lightbar_params_v0 get_params_v0;
2025                struct lightbar_params_v1 get_params_v1;
2026
2027
2028                struct lightbar_params_v2_timing get_params_v2_timing;
2029                struct lightbar_params_v2_tap get_params_v2_tap;
2030                struct lightbar_params_v2_oscillation get_params_v2_osc;
2031                struct lightbar_params_v2_brightness get_params_v2_bright;
2032                struct lightbar_params_v2_thresholds get_params_v2_thlds;
2033                struct lightbar_params_v2_colors get_params_v2_colors;
2034
2035                struct __ec_todo_unpacked {
2036                        uint32_t num;
2037                        uint32_t flags;
2038                } version;
2039
2040                struct __ec_todo_unpacked {
2041                        uint8_t red, green, blue;
2042                } get_rgb;
2043
2044                /*
2045                 * The following commands have no response:
2046                 *
2047                 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2048                 * set_params_v0, set_params_v1, set_program,
2049                 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2050                 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2051                 * set_v2par_thlds, set_v2par_colors
2052                 */
2053        };
2054} __ec_todo_packed;
2055
2056/* Lightbar commands */
2057enum lightbar_command {
2058        LIGHTBAR_CMD_DUMP = 0,
2059        LIGHTBAR_CMD_OFF = 1,
2060        LIGHTBAR_CMD_ON = 2,
2061        LIGHTBAR_CMD_INIT = 3,
2062        LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2063        LIGHTBAR_CMD_SEQ = 5,
2064        LIGHTBAR_CMD_REG = 6,
2065        LIGHTBAR_CMD_SET_RGB = 7,
2066        LIGHTBAR_CMD_GET_SEQ = 8,
2067        LIGHTBAR_CMD_DEMO = 9,
2068        LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2069        LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2070        LIGHTBAR_CMD_VERSION = 12,
2071        LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2072        LIGHTBAR_CMD_GET_RGB = 14,
2073        LIGHTBAR_CMD_GET_DEMO = 15,
2074        LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2075        LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2076        LIGHTBAR_CMD_SET_PROGRAM = 18,
2077        LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2078        LIGHTBAR_CMD_SUSPEND = 20,
2079        LIGHTBAR_CMD_RESUME = 21,
2080        LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2081        LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2082        LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2083        LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2084        LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2085        LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2086        LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2087        LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2088        LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2089        LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2090        LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2091        LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2092        LIGHTBAR_NUM_CMDS
2093};
2094
2095/*****************************************************************************/
2096/* LED control commands */
2097
2098#define EC_CMD_LED_CONTROL 0x0029
2099
2100enum ec_led_id {
2101        /* LED to indicate battery state of charge */
2102        EC_LED_ID_BATTERY_LED = 0,
2103        /*
2104         * LED to indicate system power state (on or in suspend).
2105         * May be on power button or on C-panel.
2106         */
2107        EC_LED_ID_POWER_LED,
2108        /* LED on power adapter or its plug */
2109        EC_LED_ID_ADAPTER_LED,
2110        /* LED to indicate left side */
2111        EC_LED_ID_LEFT_LED,
2112        /* LED to indicate right side */
2113        EC_LED_ID_RIGHT_LED,
2114        /* LED to indicate recovery mode with HW_REINIT */
2115        EC_LED_ID_RECOVERY_HW_REINIT_LED,
2116        /* LED to indicate sysrq debug mode. */
2117        EC_LED_ID_SYSRQ_DEBUG_LED,
2118
2119        EC_LED_ID_COUNT
2120};
2121
2122/* LED control flags */
2123#define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2124#define EC_LED_FLAGS_AUTO  BIT(1) /* Switch LED back to automatic control */
2125
2126enum ec_led_colors {
2127        EC_LED_COLOR_RED = 0,
2128        EC_LED_COLOR_GREEN,
2129        EC_LED_COLOR_BLUE,
2130        EC_LED_COLOR_YELLOW,
2131        EC_LED_COLOR_WHITE,
2132        EC_LED_COLOR_AMBER,
2133
2134        EC_LED_COLOR_COUNT
2135};
2136
2137struct ec_params_led_control {
2138        uint8_t led_id;     /* Which LED to control */
2139        uint8_t flags;      /* Control flags */
2140
2141        uint8_t brightness[EC_LED_COLOR_COUNT];
2142} __ec_align1;
2143
2144struct ec_response_led_control {
2145        /*
2146         * Available brightness value range.
2147         *
2148         * Range 0 means color channel not present.
2149         * Range 1 means on/off control.
2150         * Other values means the LED is control by PWM.
2151         */
2152        uint8_t brightness_range[EC_LED_COLOR_COUNT];
2153} __ec_align1;
2154
2155/*****************************************************************************/
2156/* Verified boot commands */
2157
2158/*
2159 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2160 * reused for other purposes with version > 0.
2161 */
2162
2163/* Verified boot hash command */
2164#define EC_CMD_VBOOT_HASH 0x002A
2165
2166struct ec_params_vboot_hash {
2167        uint8_t cmd;             /* enum ec_vboot_hash_cmd */
2168        uint8_t hash_type;       /* enum ec_vboot_hash_type */
2169        uint8_t nonce_size;      /* Nonce size; may be 0 */
2170        uint8_t reserved0;       /* Reserved; set 0 */
2171        uint32_t offset;         /* Offset in flash to hash */
2172        uint32_t size;           /* Number of bytes to hash */
2173        uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
2174} __ec_align4;
2175
2176struct ec_response_vboot_hash {
2177        uint8_t status;          /* enum ec_vboot_hash_status */
2178        uint8_t hash_type;       /* enum ec_vboot_hash_type */
2179        uint8_t digest_size;     /* Size of hash digest in bytes */
2180        uint8_t reserved0;       /* Ignore; will be 0 */
2181        uint32_t offset;         /* Offset in flash which was hashed */
2182        uint32_t size;           /* Number of bytes hashed */
2183        uint8_t hash_digest[64]; /* Hash digest data */
2184} __ec_align4;
2185
2186enum ec_vboot_hash_cmd {
2187        EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
2188        EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
2189        EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
2190        EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
2191};
2192
2193enum ec_vboot_hash_type {
2194        EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2195};
2196
2197enum ec_vboot_hash_status {
2198        EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2199        EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2200        EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2201};
2202
2203/*
2204 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2205 * If one of these is specified, the EC will automatically update offset and
2206 * size to the correct values for the specified image (RO or RW).
2207 */
2208#define EC_VBOOT_HASH_OFFSET_RO         0xfffffffe
2209#define EC_VBOOT_HASH_OFFSET_ACTIVE     0xfffffffd
2210#define EC_VBOOT_HASH_OFFSET_UPDATE     0xfffffffc
2211
2212/*
2213 * 'RW' is vague if there are multiple RW images; we mean the active one,
2214 * so the old constant is deprecated.
2215 */
2216#define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2217
2218/*****************************************************************************/
2219/*
2220 * Motion sense commands. We'll make separate structs for sub-commands with
2221 * different input args, so that we know how much to expect.
2222 */
2223#define EC_CMD_MOTION_SENSE_CMD 0x002B
2224
2225/* Motion sense commands */
2226enum motionsense_command {
2227        /*
2228         * Dump command returns all motion sensor data including motion sense
2229         * module flags and individual sensor flags.
2230         */
2231        MOTIONSENSE_CMD_DUMP = 0,
2232
2233        /*
2234         * Info command returns data describing the details of a given sensor,
2235         * including enum motionsensor_type, enum motionsensor_location, and
2236         * enum motionsensor_chip.
2237         */
2238        MOTIONSENSE_CMD_INFO = 1,
2239
2240        /*
2241         * EC Rate command is a setter/getter command for the EC sampling rate
2242         * in milliseconds.
2243         * It is per sensor, the EC run sample task  at the minimum of all
2244         * sensors EC_RATE.
2245         * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2246         * to collect all the sensor samples.
2247         * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2248         * to process of all motion sensors in milliseconds.
2249         */
2250        MOTIONSENSE_CMD_EC_RATE = 2,
2251
2252        /*
2253         * Sensor ODR command is a setter/getter command for the output data
2254         * rate of a specific motion sensor in millihertz.
2255         */
2256        MOTIONSENSE_CMD_SENSOR_ODR = 3,
2257
2258        /*
2259         * Sensor range command is a setter/getter command for the range of
2260         * a specified motion sensor in +/-G's or +/- deg/s.
2261         */
2262        MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2263
2264        /*
2265         * Setter/getter command for the keyboard wake angle. When the lid
2266         * angle is greater than this value, keyboard wake is disabled in S3,
2267         * and when the lid angle goes less than this value, keyboard wake is
2268         * enabled. Note, the lid angle measurement is an approximate,
2269         * un-calibrated value, hence the wake angle isn't exact.
2270         */
2271        MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2272
2273        /*
2274         * Returns a single sensor data.
2275         */
2276        MOTIONSENSE_CMD_DATA = 6,
2277
2278        /*
2279         * Return sensor fifo info.
2280         */
2281        MOTIONSENSE_CMD_FIFO_INFO = 7,
2282
2283        /*
2284         * Insert a flush element in the fifo and return sensor fifo info.
2285         * The host can use that element to synchronize its operation.
2286         */
2287        MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2288
2289        /*
2290         * Return a portion of the fifo.
2291         */
2292        MOTIONSENSE_CMD_FIFO_READ = 9,
2293
2294        /*
2295         * Perform low level calibration.
2296         * On sensors that support it, ask to do offset calibration.
2297         */
2298        MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2299
2300        /*
2301         * Sensor Offset command is a setter/getter command for the offset
2302         * used for calibration.
2303         * The offsets can be calculated by the host, or via
2304         * PERFORM_CALIB command.
2305         */
2306        MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2307
2308        /*
2309         * List available activities for a MOTION sensor.
2310         * Indicates if they are enabled or disabled.
2311         */
2312        MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2313
2314        /*
2315         * Activity management
2316         * Enable/Disable activity recognition.
2317         */
2318        MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2319
2320        /*
2321         * Lid Angle
2322         */
2323        MOTIONSENSE_CMD_LID_ANGLE = 14,
2324
2325        /*
2326         * Allow the FIFO to trigger interrupt via MKBP events.
2327         * By default the FIFO does not send interrupt to process the FIFO
2328         * until the AP is ready or it is coming from a wakeup sensor.
2329         */
2330        MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2331
2332        /*
2333         * Spoof the readings of the sensors.  The spoofed readings can be set
2334         * to arbitrary values, or will lock to the last read actual values.
2335         */
2336        MOTIONSENSE_CMD_SPOOF = 16,
2337
2338        /* Set lid angle for tablet mode detection. */
2339        MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2340
2341        /*
2342         * Sensor Scale command is a setter/getter command for the calibration
2343         * scale.
2344         */
2345        MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2346
2347        /* Number of motionsense sub-commands. */
2348        MOTIONSENSE_NUM_CMDS
2349};
2350
2351/* List of motion sensor types. */
2352enum motionsensor_type {
2353        MOTIONSENSE_TYPE_ACCEL = 0,
2354        MOTIONSENSE_TYPE_GYRO = 1,
2355        MOTIONSENSE_TYPE_MAG = 2,
2356        MOTIONSENSE_TYPE_PROX = 3,
2357        MOTIONSENSE_TYPE_LIGHT = 4,
2358        MOTIONSENSE_TYPE_ACTIVITY = 5,
2359        MOTIONSENSE_TYPE_BARO = 6,
2360        MOTIONSENSE_TYPE_SYNC = 7,
2361        MOTIONSENSE_TYPE_MAX,
2362};
2363
2364/* List of motion sensor locations. */
2365enum motionsensor_location {
2366        MOTIONSENSE_LOC_BASE = 0,
2367        MOTIONSENSE_LOC_LID = 1,
2368        MOTIONSENSE_LOC_CAMERA = 2,
2369        MOTIONSENSE_LOC_MAX,
2370};
2371
2372/* List of motion sensor chips. */
2373enum motionsensor_chip {
2374        MOTIONSENSE_CHIP_KXCJ9 = 0,
2375        MOTIONSENSE_CHIP_LSM6DS0 = 1,
2376        MOTIONSENSE_CHIP_BMI160 = 2,
2377        MOTIONSENSE_CHIP_SI1141 = 3,
2378        MOTIONSENSE_CHIP_SI1142 = 4,
2379        MOTIONSENSE_CHIP_SI1143 = 5,
2380        MOTIONSENSE_CHIP_KX022 = 6,
2381        MOTIONSENSE_CHIP_L3GD20H = 7,
2382        MOTIONSENSE_CHIP_BMA255 = 8,
2383        MOTIONSENSE_CHIP_BMP280 = 9,
2384        MOTIONSENSE_CHIP_OPT3001 = 10,
2385        MOTIONSENSE_CHIP_BH1730 = 11,
2386        MOTIONSENSE_CHIP_GPIO = 12,
2387        MOTIONSENSE_CHIP_LIS2DH = 13,
2388        MOTIONSENSE_CHIP_LSM6DSM = 14,
2389        MOTIONSENSE_CHIP_LIS2DE = 15,
2390        MOTIONSENSE_CHIP_LIS2MDL = 16,
2391        MOTIONSENSE_CHIP_LSM6DS3 = 17,
2392        MOTIONSENSE_CHIP_LSM6DSO = 18,
2393        MOTIONSENSE_CHIP_LNG2DM = 19,
2394        MOTIONSENSE_CHIP_MAX,
2395};
2396
2397/* List of orientation positions */
2398enum motionsensor_orientation {
2399        MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2400        MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2401        MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2402        MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2403        MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2404};
2405
2406struct ec_response_motion_sensor_data {
2407        /* Flags for each sensor. */
2408        uint8_t flags;
2409        /* Sensor number the data comes from. */
2410        uint8_t sensor_num;
2411        /* Each sensor is up to 3-axis. */
2412        union {
2413                int16_t             data[3];
2414                struct __ec_todo_packed {
2415                        uint16_t    reserved;
2416                        uint32_t    timestamp;
2417                };
2418                struct __ec_todo_unpacked {
2419                        uint8_t     activity; /* motionsensor_activity */
2420                        uint8_t     state;
2421                        int16_t     add_info[2];
2422                };
2423        };
2424} __ec_todo_packed;
2425
2426/* Note: used in ec_response_get_next_data */
2427struct ec_response_motion_sense_fifo_info {
2428        /* Size of the fifo */
2429        uint16_t size;
2430        /* Amount of space used in the fifo */
2431        uint16_t count;
2432        /* Timestamp recorded in us.
2433         * aka accurate timestamp when host event was triggered.
2434         */
2435        uint32_t timestamp;
2436        /* Total amount of vector lost */
2437        uint16_t total_lost;
2438        /* Lost events since the last fifo_info, per sensors */
2439        uint16_t lost[];
2440} __ec_todo_packed;
2441
2442struct ec_response_motion_sense_fifo_data {
2443        uint32_t number_data;
2444        struct ec_response_motion_sensor_data data[];
2445} __ec_todo_packed;
2446
2447/* List supported activity recognition */
2448enum motionsensor_activity {
2449        MOTIONSENSE_ACTIVITY_RESERVED = 0,
2450        MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2451        MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2452        MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2453};
2454
2455struct ec_motion_sense_activity {
2456        uint8_t sensor_num;
2457        uint8_t activity; /* one of enum motionsensor_activity */
2458        uint8_t enable;   /* 1: enable, 0: disable */
2459        uint8_t reserved;
2460        uint16_t parameters[3]; /* activity dependent parameters */
2461} __ec_todo_unpacked;
2462
2463/* Module flag masks used for the dump sub-command. */
2464#define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2465
2466/* Sensor flag masks used for the dump sub-command. */
2467#define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2468
2469/*
2470 * Flush entry for synchronization.
2471 * data contains time stamp
2472 */
2473#define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2474#define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2475#define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2476#define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2477#define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2478
2479/*
2480 * Send this value for the data element to only perform a read. If you
2481 * send any other value, the EC will interpret it as data to set and will
2482 * return the actual value set.
2483 */
2484#define EC_MOTION_SENSE_NO_VALUE -1
2485
2486#define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2487
2488/* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2489/* Set Calibration information */
2490#define MOTION_SENSE_SET_OFFSET BIT(0)
2491
2492/* Default Scale value, factor 1. */
2493#define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2494
2495#define LID_ANGLE_UNRELIABLE 500
2496
2497enum motionsense_spoof_mode {
2498        /* Disable spoof mode. */
2499        MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2500
2501        /* Enable spoof mode, but use provided component values. */
2502        MOTIONSENSE_SPOOF_MODE_CUSTOM,
2503
2504        /* Enable spoof mode, but use the current sensor values. */
2505        MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2506
2507        /* Query the current spoof mode status for the sensor. */
2508        MOTIONSENSE_SPOOF_MODE_QUERY,
2509};
2510
2511struct ec_params_motion_sense {
2512        uint8_t cmd;
2513        union {
2514                /* Used for MOTIONSENSE_CMD_DUMP. */
2515                struct __ec_todo_unpacked {
2516                        /*
2517                         * Maximal number of sensor the host is expecting.
2518                         * 0 means the host is only interested in the number
2519                         * of sensors controlled by the EC.
2520                         */
2521                        uint8_t max_sensor_count;
2522                } dump;
2523
2524                /*
2525                 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2526                 */
2527                struct __ec_todo_unpacked {
2528                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2529                         * kb_wake_angle: angle to wakup AP.
2530                         */
2531                        int16_t data;
2532                } kb_wake_angle;
2533
2534                /*
2535                 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2536                 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2537                 */
2538                struct __ec_todo_unpacked {
2539                        uint8_t sensor_num;
2540                } info, info_3, data, fifo_flush, perform_calib,
2541                                list_activities;
2542
2543                /*
2544                 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2545                 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2546                 */
2547                struct __ec_todo_unpacked {
2548                        uint8_t sensor_num;
2549
2550                        /* Rounding flag, true for round-up, false for down. */
2551                        uint8_t roundup;
2552
2553                        uint16_t reserved;
2554
2555                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2556                        int32_t data;
2557                } ec_rate, sensor_odr, sensor_range;
2558
2559                /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2560                struct __ec_todo_packed {
2561                        uint8_t sensor_num;
2562
2563                        /*
2564                         * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2565                         * the calibration information in the EC.
2566                         * If unset, just retrieve calibration information.
2567                         */
2568                        uint16_t flags;
2569
2570                        /*
2571                         * Temperature at calibration, in units of 0.01 C
2572                         * 0x8000: invalid / unknown.
2573                         * 0x0: 0C
2574                         * 0x7fff: +327.67C
2575                         */
2576                        int16_t temp;
2577
2578                        /*
2579                         * Offset for calibration.
2580                         * Unit:
2581                         * Accelerometer: 1/1024 g
2582                         * Gyro:          1/1024 deg/s
2583                         * Compass:       1/16 uT
2584                         */
2585                        int16_t offset[3];
2586                } sensor_offset;
2587
2588                /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2589                struct __ec_todo_packed {
2590                        uint8_t sensor_num;
2591
2592                        /*
2593                         * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2594                         * the calibration information in the EC.
2595                         * If unset, just retrieve calibration information.
2596                         */
2597                        uint16_t flags;
2598
2599                        /*
2600                         * Temperature at calibration, in units of 0.01 C
2601                         * 0x8000: invalid / unknown.
2602                         * 0x0: 0C
2603                         * 0x7fff: +327.67C
2604                         */
2605                        int16_t temp;
2606
2607                        /*
2608                         * Scale for calibration:
2609                         * By default scale is 1, it is encoded on 16bits:
2610                         * 1 = BIT(15)
2611                         * ~2 = 0xFFFF
2612                         * ~0 = 0.
2613                         */
2614                        uint16_t scale[3];
2615                } sensor_scale;
2616
2617
2618                /* Used for MOTIONSENSE_CMD_FIFO_INFO */
2619                /* (no params) */
2620
2621                /* Used for MOTIONSENSE_CMD_FIFO_READ */
2622                struct __ec_todo_unpacked {
2623                        /*
2624                         * Number of expected vector to return.
2625                         * EC may return less or 0 if none available.
2626                         */
2627                        uint32_t max_data_vector;
2628                } fifo_read;
2629
2630                struct ec_motion_sense_activity set_activity;
2631
2632                /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2633                /* (no params) */
2634
2635                /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2636                struct __ec_todo_unpacked {
2637                        /*
2638                         * 1: enable, 0 disable fifo,
2639                         * EC_MOTION_SENSE_NO_VALUE return value.
2640                         */
2641                        int8_t enable;
2642                } fifo_int_enable;
2643
2644                /* Used for MOTIONSENSE_CMD_SPOOF */
2645                struct __ec_todo_packed {
2646                        uint8_t sensor_id;
2647
2648                        /* See enum motionsense_spoof_mode. */
2649                        uint8_t spoof_enable;
2650
2651                        /* Ignored, used for alignment. */
2652                        uint8_t reserved;
2653
2654                        /* Individual component values to spoof. */
2655                        int16_t components[3];
2656                } spoof;
2657
2658                /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2659                struct __ec_todo_unpacked {
2660                        /*
2661                         * Lid angle threshold for switching between tablet and
2662                         * clamshell mode.
2663                         */
2664                        int16_t lid_angle;
2665
2666                        /*
2667                         * Hysteresis degree to prevent fluctuations between
2668                         * clamshell and tablet mode if lid angle keeps
2669                         * changing around the threshold. Lid motion driver will
2670                         * use lid_angle + hys_degree to trigger tablet mode and
2671                         * lid_angle - hys_degree to trigger clamshell mode.
2672                         */
2673                        int16_t hys_degree;
2674                } tablet_mode_threshold;
2675        };
2676} __ec_todo_packed;
2677
2678struct ec_response_motion_sense {
2679        union {
2680                /* Used for MOTIONSENSE_CMD_DUMP */
2681                struct __ec_todo_unpacked {
2682                        /* Flags representing the motion sensor module. */
2683                        uint8_t module_flags;
2684
2685                        /* Number of sensors managed directly by the EC. */
2686                        uint8_t sensor_count;
2687
2688                        /*
2689                         * Sensor data is truncated if response_max is too small
2690                         * for holding all the data.
2691                         */
2692                        struct ec_response_motion_sensor_data sensor[0];
2693                } dump;
2694
2695                /* Used for MOTIONSENSE_CMD_INFO. */
2696                struct __ec_todo_unpacked {
2697                        /* Should be element of enum motionsensor_type. */
2698                        uint8_t type;
2699
2700                        /* Should be element of enum motionsensor_location. */
2701                        uint8_t location;
2702
2703                        /* Should be element of enum motionsensor_chip. */
2704                        uint8_t chip;
2705                } info;
2706
2707                /* Used for MOTIONSENSE_CMD_INFO version 3 */
2708                struct __ec_todo_unpacked {
2709                        /* Should be element of enum motionsensor_type. */
2710                        uint8_t type;
2711
2712                        /* Should be element of enum motionsensor_location. */
2713                        uint8_t location;
2714
2715                        /* Should be element of enum motionsensor_chip. */
2716                        uint8_t chip;
2717
2718                        /* Minimum sensor sampling frequency */
2719                        uint32_t min_frequency;
2720
2721                        /* Maximum sensor sampling frequency */
2722                        uint32_t max_frequency;
2723
2724                        /* Max number of sensor events that could be in fifo */
2725                        uint32_t fifo_max_event_count;
2726                } info_3;
2727
2728                /* Used for MOTIONSENSE_CMD_DATA */
2729                struct ec_response_motion_sensor_data data;
2730
2731                /*
2732                 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2733                 * MOTIONSENSE_CMD_SENSOR_RANGE,
2734                 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2735                 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2736                 * MOTIONSENSE_CMD_SPOOF.
2737                 */
2738                struct __ec_todo_unpacked {
2739                        /* Current value of the parameter queried. */
2740                        int32_t ret;
2741                } ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2742                  fifo_int_enable, spoof;
2743
2744                /*
2745                 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2746                 * PERFORM_CALIB.
2747                 */
2748                struct __ec_todo_unpacked  {
2749                        int16_t temp;
2750                        int16_t offset[3];
2751                } sensor_offset, perform_calib;
2752
2753                /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2754                struct __ec_todo_unpacked  {
2755                        int16_t temp;
2756                        uint16_t scale[3];
2757                } sensor_scale;
2758
2759                struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2760
2761                struct ec_response_motion_sense_fifo_data fifo_read;
2762
2763                struct __ec_todo_packed {
2764                        uint16_t reserved;
2765                        uint32_t enabled;
2766                        uint32_t disabled;
2767                } list_activities;
2768
2769                /* No params for set activity */
2770
2771                /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2772                struct __ec_todo_unpacked {
2773                        /*
2774                         * Angle between 0 and 360 degree if available,
2775                         * LID_ANGLE_UNRELIABLE otherwise.
2776                         */
2777                        uint16_t value;
2778                } lid_angle;
2779
2780                /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2781                struct __ec_todo_unpacked {
2782                        /*
2783                         * Lid angle threshold for switching between tablet and
2784                         * clamshell mode.
2785                         */
2786                        uint16_t lid_angle;
2787
2788                        /* Hysteresis degree. */
2789                        uint16_t hys_degree;
2790                } tablet_mode_threshold;
2791
2792        };
2793} __ec_todo_packed;
2794
2795/*****************************************************************************/
2796/* Force lid open command */
2797
2798/* Make lid event always open */
2799#define EC_CMD_FORCE_LID_OPEN 0x002C
2800
2801struct ec_params_force_lid_open {
2802        uint8_t enabled;
2803} __ec_align1;
2804
2805/*****************************************************************************/
2806/* Configure the behavior of the power button */
2807#define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2808
2809enum ec_config_power_button_flags {
2810        /* Enable/Disable power button pulses for x86 devices */
2811        EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2812};
2813
2814struct ec_params_config_power_button {
2815        /* See enum ec_config_power_button_flags */
2816        uint8_t flags;
2817} __ec_align1;
2818
2819/*****************************************************************************/
2820/* USB charging control commands */
2821
2822/* Set USB port charging mode */
2823#define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2824
2825struct ec_params_usb_charge_set_mode {
2826        uint8_t usb_port_id;
2827        uint8_t mode:7;
2828        uint8_t inhibit_charge:1;
2829} __ec_align1;
2830
2831/*****************************************************************************/
2832/* Persistent storage for host */
2833
2834/* Maximum bytes that can be read/written in a single command */
2835#define EC_PSTORE_SIZE_MAX 64
2836
2837/* Get persistent storage info */
2838#define EC_CMD_PSTORE_INFO 0x0040
2839
2840struct ec_response_pstore_info {
2841        /* Persistent storage size, in bytes */
2842        uint32_t pstore_size;
2843        /* Access size; read/write offset and size must be a multiple of this */
2844        uint32_t access_size;
2845} __ec_align4;
2846
2847/*
2848 * Read persistent storage
2849 *
2850 * Response is params.size bytes of data.
2851 */
2852#define EC_CMD_PSTORE_READ 0x0041
2853
2854struct ec_params_pstore_read {
2855        uint32_t offset;   /* Byte offset to read */
2856        uint32_t size;     /* Size to read in bytes */
2857} __ec_align4;
2858
2859/* Write persistent storage */
2860#define EC_CMD_PSTORE_WRITE 0x0042
2861
2862struct ec_params_pstore_write {
2863        uint32_t offset;   /* Byte offset to write */
2864        uint32_t size;     /* Size to write in bytes */
2865        uint8_t data[EC_PSTORE_SIZE_MAX];
2866} __ec_align4;
2867
2868/*****************************************************************************/
2869/* Real-time clock */
2870
2871/* RTC params and response structures */
2872struct ec_params_rtc {
2873        uint32_t time;
2874} __ec_align4;
2875
2876struct ec_response_rtc {
2877        uint32_t time;
2878} __ec_align4;
2879
2880/* These use ec_response_rtc */
2881#define EC_CMD_RTC_GET_VALUE 0x0044
2882#define EC_CMD_RTC_GET_ALARM 0x0045
2883
2884/* These all use ec_params_rtc */
2885#define EC_CMD_RTC_SET_VALUE 0x0046
2886#define EC_CMD_RTC_SET_ALARM 0x0047
2887
2888/* Pass as time param to SET_ALARM to clear the current alarm */
2889#define EC_RTC_ALARM_CLEAR 0
2890
2891/*****************************************************************************/
2892/* Port80 log access */
2893
2894/* Maximum entries that can be read/written in a single command */
2895#define EC_PORT80_SIZE_MAX 32
2896
2897/* Get last port80 code from previous boot */
2898#define EC_CMD_PORT80_LAST_BOOT 0x0048
2899#define EC_CMD_PORT80_READ 0x0048
2900
2901enum ec_port80_subcmd {
2902        EC_PORT80_GET_INFO = 0,
2903        EC_PORT80_READ_BUFFER,
2904};
2905
2906struct ec_params_port80_read {
2907        uint16_t subcmd;
2908        union {
2909                struct __ec_todo_unpacked {
2910                        uint32_t offset;
2911                        uint32_t num_entries;
2912                } read_buffer;
2913        };
2914} __ec_todo_packed;
2915
2916struct ec_response_port80_read {
2917        union {
2918                struct __ec_todo_unpacked {
2919                        uint32_t writes;
2920                        uint32_t history_size;
2921                        uint32_t last_boot;
2922                } get_info;
2923                struct __ec_todo_unpacked {
2924                        uint16_t codes[EC_PORT80_SIZE_MAX];
2925                } data;
2926        };
2927} __ec_todo_packed;
2928
2929struct ec_response_port80_last_boot {
2930        uint16_t code;
2931} __ec_align2;
2932
2933/*****************************************************************************/
2934/* Temporary secure storage for host verified boot use */
2935
2936/* Number of bytes in a vstore slot */
2937#define EC_VSTORE_SLOT_SIZE 64
2938
2939/* Maximum number of vstore slots */
2940#define EC_VSTORE_SLOT_MAX 32
2941
2942/* Get persistent storage info */
2943#define EC_CMD_VSTORE_INFO 0x0049
2944struct ec_response_vstore_info {
2945        /* Indicates which slots are locked */
2946        uint32_t slot_locked;
2947        /* Total number of slots available */
2948        uint8_t slot_count;
2949} __ec_align_size1;
2950
2951/*
2952 * Read temporary secure storage
2953 *
2954 * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2955 */
2956#define EC_CMD_VSTORE_READ 0x004A
2957
2958struct ec_params_vstore_read {
2959        uint8_t slot; /* Slot to read from */
2960} __ec_align1;
2961
2962struct ec_response_vstore_read {
2963        uint8_t data[EC_VSTORE_SLOT_SIZE];
2964} __ec_align1;
2965
2966/*
2967 * Write temporary secure storage and lock it.
2968 */
2969#define EC_CMD_VSTORE_WRITE 0x004B
2970
2971struct ec_params_vstore_write {
2972        uint8_t slot; /* Slot to write to */
2973        uint8_t data[EC_VSTORE_SLOT_SIZE];
2974} __ec_align1;
2975
2976/*****************************************************************************/
2977/* Thermal engine commands. Note that there are two implementations. We'll
2978 * reuse the command number, but the data and behavior is incompatible.
2979 * Version 0 is what originally shipped on Link.
2980 * Version 1 separates the CPU thermal limits from the fan control.
2981 */
2982
2983#define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2984#define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2985
2986/* The version 0 structs are opaque. You have to know what they are for
2987 * the get/set commands to make any sense.
2988 */
2989
2990/* Version 0 - set */
2991struct ec_params_thermal_set_threshold {
2992        uint8_t sensor_type;
2993        uint8_t threshold_id;
2994        uint16_t value;
2995} __ec_align2;
2996
2997/* Version 0 - get */
2998struct ec_params_thermal_get_threshold {
2999        uint8_t sensor_type;
3000        uint8_t threshold_id;
3001} __ec_align1;
3002
3003struct ec_response_thermal_get_threshold {
3004        uint16_t value;
3005} __ec_align2;
3006
3007
3008/* The version 1 structs are visible. */
3009enum ec_temp_thresholds {
3010        EC_TEMP_THRESH_WARN = 0,
3011        EC_TEMP_THRESH_HIGH,
3012        EC_TEMP_THRESH_HALT,
3013
3014        EC_TEMP_THRESH_COUNT
3015};
3016
3017/*
3018 * Thermal configuration for one temperature sensor. Temps are in degrees K.
3019 * Zero values will be silently ignored by the thermal task.
3020 *
3021 * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3022 * hysteresis.
3023 * For example,
3024 *      temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3025 *      temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3026 * EC will throttle ap when temperature >= 301 K, and release throttling when
3027 * temperature <= 299 K.
3028 *
3029 * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3030 * For example,
3031 *      temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3032 *      temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3033 * EC will throttle ap when temperature >= 301 K, and release throttling when
3034 * temperature <= 294 K.
3035 *
3036 * Note that this structure is a sub-structure of
3037 * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3038 */
3039struct ec_thermal_config {
3040        uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3041        uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3042        uint32_t temp_fan_off;          /* no active cooling needed */
3043        uint32_t temp_fan_max;          /* max active cooling needed */
3044} __ec_align4;
3045
3046/* Version 1 - get config for one sensor. */
3047struct ec_params_thermal_get_threshold_v1 {
3048        uint32_t sensor_num;
3049} __ec_align4;
3050/* This returns a struct ec_thermal_config */
3051
3052/*
3053 * Version 1 - set config for one sensor.
3054 * Use read-modify-write for best results!
3055 */
3056struct ec_params_thermal_set_threshold_v1 {
3057        uint32_t sensor_num;
3058        struct ec_thermal_config cfg;
3059} __ec_align4;
3060/* This returns no data */
3061
3062/****************************************************************************/
3063
3064/* Toggle automatic fan control */
3065#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3066
3067/* Version 1 of input params */
3068struct ec_params_auto_fan_ctrl_v1 {
3069        uint8_t fan_idx;
3070} __ec_align1;
3071
3072/* Get/Set TMP006 calibration data */
3073#define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3074#define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3075
3076/*
3077 * The original TMP006 calibration only needed four params, but now we need
3078 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3079 * the params opaque. The v1 "get" response will include the algorithm number
3080 * and how many params it requires. That way we can change the EC code without
3081 * needing to update this file. We can also use a different algorithm on each
3082 * sensor.
3083 */
3084
3085/* This is the same struct for both v0 and v1. */
3086struct ec_params_tmp006_get_calibration {
3087        uint8_t index;
3088} __ec_align1;
3089
3090/* Version 0 */
3091struct ec_response_tmp006_get_calibration_v0 {
3092        float s0;
3093        float b0;
3094        float b1;
3095        float b2;
3096} __ec_align4;
3097
3098struct ec_params_tmp006_set_calibration_v0 {
3099        uint8_t index;
3100        uint8_t reserved[3];
3101        float s0;
3102        float b0;
3103        float b1;
3104        float b2;
3105} __ec_align4;
3106
3107/* Version 1 */
3108struct ec_response_tmp006_get_calibration_v1 {
3109        uint8_t algorithm;
3110        uint8_t num_params;
3111        uint8_t reserved[2];
3112        float val[];
3113} __ec_align4;
3114
3115struct ec_params_tmp006_set_calibration_v1 {
3116        uint8_t index;
3117        uint8_t algorithm;
3118        uint8_t num_params;
3119        uint8_t reserved;
3120        float val[];
3121} __ec_align4;
3122
3123
3124/* Read raw TMP006 data */
3125#define EC_CMD_TMP006_GET_RAW 0x0055
3126
3127struct ec_params_tmp006_get_raw {
3128        uint8_t index;
3129} __ec_align1;
3130
3131struct ec_response_tmp006_get_raw {
3132        int32_t t;  /* In 1/100 K */
3133        int32_t v;  /* In nV */
3134} __ec_align4;
3135
3136/*****************************************************************************/
3137/* MKBP - Matrix KeyBoard Protocol */
3138
3139/*
3140 * Read key state
3141 *
3142 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3143 * expected response size.
3144 *
3145 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
3146 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3147 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3148 */
3149#define EC_CMD_MKBP_STATE 0x0060
3150
3151/*
3152 * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
3153 */
3154#define EC_CMD_MKBP_INFO 0x0061
3155
3156struct ec_response_mkbp_info {
3157        uint32_t rows;
3158        uint32_t cols;
3159        /* Formerly "switches", which was 0. */
3160        uint8_t reserved;
3161} __ec_align_size1;
3162
3163struct ec_params_mkbp_info {
3164        uint8_t info_type;
3165        uint8_t event_type;
3166} __ec_align1;
3167
3168enum ec_mkbp_info_type {
3169        /*
3170         * Info about the keyboard matrix: number of rows and columns.
3171         *
3172         * Returns struct ec_response_mkbp_info.
3173         */
3174        EC_MKBP_INFO_KBD = 0,
3175
3176        /*
3177         * For buttons and switches, info about which specifically are
3178         * supported.  event_type must be set to one of the values in enum
3179         * ec_mkbp_event.
3180         *
3181         * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3182         * bitmask indicating which buttons or switches are present.  See the
3183         * bit inidices below.
3184         */
3185        EC_MKBP_INFO_SUPPORTED = 1,
3186
3187        /*
3188         * Instantaneous state of buttons and switches.
3189         *
3190         * event_type must be set to one of the values in enum ec_mkbp_event.
3191         *
3192         * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3193         * indicating the current state of the keyboard matrix.
3194         *
3195         * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3196         * event state.
3197         *
3198         * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3199         * state of supported buttons.
3200         *
3201         * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3202         * state of supported switches.
3203         */
3204        EC_MKBP_INFO_CURRENT = 2,
3205};
3206
3207/* Simulate key press */
3208#define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3209
3210struct ec_params_mkbp_simulate_key {
3211        uint8_t col;
3212        uint8_t row;
3213        uint8_t pressed;
3214} __ec_align1;
3215
3216#define EC_CMD_GET_KEYBOARD_ID 0x0063
3217
3218struct ec_response_keyboard_id {
3219        uint32_t keyboard_id;
3220} __ec_align4;
3221
3222enum keyboard_id {
3223        KEYBOARD_ID_UNSUPPORTED = 0,
3224        KEYBOARD_ID_UNREADABLE = 0xffffffff,
3225};
3226
3227/* Configure keyboard scanning */
3228#define EC_CMD_MKBP_SET_CONFIG 0x0064
3229#define EC_CMD_MKBP_GET_CONFIG 0x0065
3230
3231/* flags */
3232enum mkbp_config_flags {
3233        EC_MKBP_FLAGS_ENABLE = 1,       /* Enable keyboard scanning */
3234};
3235
3236enum mkbp_config_valid {
3237        EC_MKBP_VALID_SCAN_PERIOD               = BIT(0),
3238        EC_MKBP_VALID_POLL_TIMEOUT              = BIT(1),
3239        EC_MKBP_VALID_MIN_POST_SCAN_DELAY       = BIT(3),
3240        EC_MKBP_VALID_OUTPUT_SETTLE             = BIT(4),
3241        EC_MKBP_VALID_DEBOUNCE_DOWN             = BIT(5),
3242        EC_MKBP_VALID_DEBOUNCE_UP               = BIT(6),
3243        EC_MKBP_VALID_FIFO_MAX_DEPTH            = BIT(7),
3244};
3245
3246/*
3247 * Configuration for our key scanning algorithm.
3248 *
3249 * Note that this is used as a sub-structure of
3250 * ec_{params/response}_mkbp_get_config.
3251 */
3252struct ec_mkbp_config {
3253        uint32_t valid_mask;            /* valid fields */
3254        uint8_t flags;          /* some flags (enum mkbp_config_flags) */
3255        uint8_t valid_flags;            /* which flags are valid */
3256        uint16_t scan_period_us;        /* period between start of scans */
3257        /* revert to interrupt mode after no activity for this long */
3258        uint32_t poll_timeout_us;
3259        /*
3260         * minimum post-scan relax time. Once we finish a scan we check
3261         * the time until we are due to start the next one. If this time is
3262         * shorter this field, we use this instead.
3263         */
3264        uint16_t min_post_scan_delay_us;
3265        /* delay between setting up output and waiting for it to settle */
3266        uint16_t output_settle_us;
3267        uint16_t debounce_down_us;      /* time for debounce on key down */
3268        uint16_t debounce_up_us;        /* time for debounce on key up */
3269        /* maximum depth to allow for fifo (0 = no keyscan output) */
3270        uint8_t fifo_max_depth;
3271} __ec_align_size1;
3272
3273struct ec_params_mkbp_set_config {
3274        struct ec_mkbp_config config;
3275} __ec_align_size1;
3276
3277struct ec_response_mkbp_get_config {
3278        struct ec_mkbp_config config;
3279} __ec_align_size1;
3280
3281/* Run the key scan emulation */
3282#define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3283
3284enum ec_keyscan_seq_cmd {
3285        EC_KEYSCAN_SEQ_STATUS = 0,      /* Get status information */
3286        EC_KEYSCAN_SEQ_CLEAR = 1,       /* Clear sequence */
3287        EC_KEYSCAN_SEQ_ADD = 2,         /* Add item to sequence */
3288        EC_KEYSCAN_SEQ_START = 3,       /* Start running sequence */
3289        EC_KEYSCAN_SEQ_COLLECT = 4,     /* Collect sequence summary data */
3290};
3291
3292enum ec_collect_flags {
3293        /*
3294         * Indicates this scan was processed by the EC. Due to timing, some
3295         * scans may be skipped.
3296         */
3297        EC_KEYSCAN_SEQ_FLAG_DONE        = BIT(0),
3298};
3299
3300struct ec_collect_item {
3301        uint8_t flags;          /* some flags (enum ec_collect_flags) */
3302} __ec_align1;
3303
3304struct ec_params_keyscan_seq_ctrl {
3305        uint8_t cmd;    /* Command to send (enum ec_keyscan_seq_cmd) */
3306        union {
3307                struct __ec_align1 {
3308                        uint8_t active;         /* still active */
3309                        uint8_t num_items;      /* number of items */
3310                        /* Current item being presented */
3311                        uint8_t cur_item;
3312                } status;
3313                struct __ec_todo_unpacked {
3314                        /*
3315                         * Absolute time for this scan, measured from the
3316                         * start of the sequence.
3317                         */
3318                        uint32_t time_us;
3319                        uint8_t scan[0];        /* keyscan data */
3320                } add;
3321                struct __ec_align1 {
3322                        uint8_t start_item;     /* First item to return */
3323                        uint8_t num_items;      /* Number of items to return */
3324                } collect;
3325        };
3326} __ec_todo_packed;
3327
3328struct ec_result_keyscan_seq_ctrl {
3329        union {
3330                struct __ec_todo_unpacked {
3331                        uint8_t num_items;      /* Number of items */
3332                        /* Data for each item */
3333                        struct ec_collect_item item[0];
3334                } collect;
3335        };
3336} __ec_todo_packed;
3337
3338/*
3339 * Get the next pending MKBP event.
3340 *
3341 * Returns EC_RES_UNAVAILABLE if there is no event pending.
3342 */
3343#define EC_CMD_GET_NEXT_EVENT 0x0067
3344
3345#define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3346
3347/*
3348 * We use the most significant bit of the event type to indicate to the host
3349 * that the EC has more MKBP events available to provide.
3350 */
3351#define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3352
3353/* The mask to apply to get the raw event type */
3354#define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3355
3356enum ec_mkbp_event {
3357        /* Keyboard matrix changed. The event data is the new matrix state. */
3358        EC_MKBP_EVENT_KEY_MATRIX = 0,
3359
3360        /* New host event. The event data is 4 bytes of host event flags. */
3361        EC_MKBP_EVENT_HOST_EVENT = 1,
3362
3363        /* New Sensor FIFO data. The event data is fifo_info structure. */
3364        EC_MKBP_EVENT_SENSOR_FIFO = 2,
3365
3366        /* The state of the non-matrixed buttons have changed. */
3367        EC_MKBP_EVENT_BUTTON = 3,
3368
3369        /* The state of the switches have changed. */
3370        EC_MKBP_EVENT_SWITCH = 4,
3371
3372        /* New Fingerprint sensor event, the event data is fp_events bitmap. */
3373        EC_MKBP_EVENT_FINGERPRINT = 5,
3374
3375        /*
3376         * Sysrq event: send emulated sysrq. The event data is sysrq,
3377         * corresponding to the key to be pressed.
3378         */
3379        EC_MKBP_EVENT_SYSRQ = 6,
3380
3381        /*
3382         * New 64-bit host event.
3383         * The event data is 8 bytes of host event flags.
3384         */
3385        EC_MKBP_EVENT_HOST_EVENT64 = 7,
3386
3387        /* Notify the AP that something happened on CEC */
3388        EC_MKBP_EVENT_CEC_EVENT = 8,
3389
3390        /* Send an incoming CEC message to the AP */
3391        EC_MKBP_EVENT_CEC_MESSAGE = 9,
3392
3393        /* Peripheral device charger event */
3394        EC_MKBP_EVENT_PCHG = 12,
3395
3396        /* Number of MKBP events */
3397        EC_MKBP_EVENT_COUNT,
3398};
3399BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3400
3401union __ec_align_offset1 ec_response_get_next_data {
3402        uint8_t key_matrix[13];
3403
3404        /* Unaligned */
3405        uint32_t host_event;
3406        uint64_t host_event64;
3407
3408        struct __ec_todo_unpacked {
3409                /* For aligning the fifo_info */
3410                uint8_t reserved[3];
3411                struct ec_response_motion_sense_fifo_info info;
3412        } sensor_fifo;
3413
3414        uint32_t buttons;
3415
3416        uint32_t switches;
3417
3418        uint32_t fp_events;
3419
3420        uint32_t sysrq;
3421
3422        /* CEC events from enum mkbp_cec_event */
3423        uint32_t cec_events;
3424};
3425
3426union __ec_align_offset1 ec_response_get_next_data_v1 {
3427        uint8_t key_matrix[16];
3428
3429        /* Unaligned */
3430        uint32_t host_event;
3431        uint64_t host_event64;
3432
3433        struct __ec_todo_unpacked {
3434                /* For aligning the fifo_info */
3435                uint8_t reserved[3];
3436                struct ec_response_motion_sense_fifo_info info;
3437        } sensor_fifo;
3438
3439        uint32_t buttons;
3440
3441        uint32_t switches;
3442
3443        uint32_t fp_events;
3444
3445        uint32_t sysrq;
3446
3447        /* CEC events from enum mkbp_cec_event */
3448        uint32_t cec_events;
3449
3450        uint8_t cec_message[16];
3451};
3452BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3453
3454struct ec_response_get_next_event {
3455        uint8_t event_type;
3456        /* Followed by event data if any */
3457        union ec_response_get_next_data data;
3458} __ec_align1;
3459
3460struct ec_response_get_next_event_v1 {
3461        uint8_t event_type;
3462        /* Followed by event data if any */
3463        union ec_response_get_next_data_v1 data;
3464} __ec_align1;
3465
3466/* Bit indices for buttons and switches.*/
3467/* Buttons */
3468#define EC_MKBP_POWER_BUTTON    0
3469#define EC_MKBP_VOL_UP          1
3470#define EC_MKBP_VOL_DOWN        2
3471#define EC_MKBP_RECOVERY        3
3472
3473/* Switches */
3474#define EC_MKBP_LID_OPEN        0
3475#define EC_MKBP_TABLET_MODE     1
3476#define EC_MKBP_BASE_ATTACHED   2
3477#define EC_MKBP_FRONT_PROXIMITY 3
3478
3479/* Run keyboard factory test scanning */
3480#define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3481
3482struct ec_response_keyboard_factory_test {
3483        uint16_t shorted;       /* Keyboard pins are shorted */
3484} __ec_align2;
3485
3486/* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3487#define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3488#define EC_MKBP_FP_ERRCODE(fp_events)   ((fp_events) & 0x0000000F)
3489#define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3490#define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3491                                         >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3492#define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3493#define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3494#define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3495                                         >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3496#define EC_MKBP_FP_ENROLL               BIT(27)
3497#define EC_MKBP_FP_MATCH                BIT(28)
3498#define EC_MKBP_FP_FINGER_DOWN          BIT(29)
3499#define EC_MKBP_FP_FINGER_UP            BIT(30)
3500#define EC_MKBP_FP_IMAGE_READY          BIT(31)
3501/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3502#define EC_MKBP_FP_ERR_ENROLL_OK               0
3503#define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY      1
3504#define EC_MKBP_FP_ERR_ENROLL_IMMOBILE         2
3505#define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE     3
3506#define EC_MKBP_FP_ERR_ENROLL_INTERNAL         5
3507/* Can be used to detect if image was usable for enrollment or not. */
3508#define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK     1
3509/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3510#define EC_MKBP_FP_ERR_MATCH_NO                0
3511#define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL       6
3512#define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES      7
3513#define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY    2
3514#define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE   4
3515#define EC_MKBP_FP_ERR_MATCH_YES               1
3516#define EC_MKBP_FP_ERR_MATCH_YES_UPDATED       3
3517#define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3518
3519
3520/*****************************************************************************/
3521/* Temperature sensor commands */
3522
3523/* Read temperature sensor info */
3524#define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3525
3526struct ec_params_temp_sensor_get_info {
3527        uint8_t id;
3528} __ec_align1;
3529
3530struct ec_response_temp_sensor_get_info {
3531        char sensor_name[32];
3532        uint8_t sensor_type;
3533} __ec_align1;
3534
3535/*****************************************************************************/
3536
3537/*
3538 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3539 * commands accidentally sent to the wrong interface.  See the ACPI section
3540 * below.
3541 */
3542
3543/*****************************************************************************/
3544/* Host event commands */
3545
3546
3547/* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3548/*
3549 * Host event mask params and response structures, shared by all of the host
3550 * event commands below.
3551 */
3552struct ec_params_host_event_mask {
3553        uint32_t mask;
3554} __ec_align4;
3555
3556struct ec_response_host_event_mask {
3557        uint32_t mask;
3558} __ec_align4;
3559
3560/* These all use ec_response_host_event_mask */
3561#define EC_CMD_HOST_EVENT_GET_B         0x0087
3562#define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3563#define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3564#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3565
3566/* These all use ec_params_host_event_mask */
3567#define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3568#define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3569#define EC_CMD_HOST_EVENT_CLEAR         0x008C
3570#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3571#define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3572
3573/*
3574 * Unified host event programming interface - Should be used by newer versions
3575 * of BIOS/OS to program host events and masks
3576 */
3577
3578struct ec_params_host_event {
3579
3580        /* Action requested by host - one of enum ec_host_event_action. */
3581        uint8_t action;
3582
3583        /*
3584         * Mask type that the host requested the action on - one of
3585         * enum ec_host_event_mask_type.
3586         */
3587        uint8_t mask_type;
3588
3589        /* Set to 0, ignore on read */
3590        uint16_t reserved;
3591
3592        /* Value to be used in case of set operations. */
3593        uint64_t value;
3594} __ec_align4;
3595
3596/*
3597 * Response structure returned by EC_CMD_HOST_EVENT.
3598 * Update the value on a GET request. Set to 0 on GET/CLEAR
3599 */
3600
3601struct ec_response_host_event {
3602
3603        /* Mask value in case of get operation */
3604        uint64_t value;
3605} __ec_align4;
3606
3607enum ec_host_event_action {
3608        /*
3609         * params.value is ignored. Value of mask_type populated
3610         * in response.value
3611         */
3612        EC_HOST_EVENT_GET,
3613
3614        /* Bits in params.value are set */
3615        EC_HOST_EVENT_SET,
3616
3617        /* Bits in params.value are cleared */
3618        EC_HOST_EVENT_CLEAR,
3619};
3620
3621enum ec_host_event_mask_type {
3622
3623        /* Main host event copy */
3624        EC_HOST_EVENT_MAIN,
3625
3626        /* Copy B of host events */
3627        EC_HOST_EVENT_B,
3628
3629        /* SCI Mask */
3630        EC_HOST_EVENT_SCI_MASK,
3631
3632        /* SMI Mask */
3633        EC_HOST_EVENT_SMI_MASK,
3634
3635        /* Mask of events that should be always reported in hostevents */
3636        EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3637
3638        /* Active wake mask */
3639        EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3640
3641        /* Lazy wake mask for S0ix */
3642        EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3643
3644        /* Lazy wake mask for S3 */
3645        EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3646
3647        /* Lazy wake mask for S5 */
3648        EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3649};
3650
3651#define EC_CMD_HOST_EVENT       0x00A4
3652
3653/*****************************************************************************/
3654/* Switch commands */
3655
3656/* Enable/disable LCD backlight */
3657#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3658
3659struct ec_params_switch_enable_backlight {
3660        uint8_t enabled;
3661} __ec_align1;
3662
3663/* Enable/disable WLAN/Bluetooth */
3664#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3665#define EC_VER_SWITCH_ENABLE_WIRELESS 1
3666
3667/* Version 0 params; no response */
3668struct ec_params_switch_enable_wireless_v0 {
3669        uint8_t enabled;
3670} __ec_align1;
3671
3672/* Version 1 params */
3673struct ec_params_switch_enable_wireless_v1 {
3674        /* Flags to enable now */
3675        uint8_t now_flags;
3676
3677        /* Which flags to copy from now_flags */
3678        uint8_t now_mask;
3679
3680        /*
3681         * Flags to leave enabled in S3, if they're on at the S0->S3
3682         * transition.  (Other flags will be disabled by the S0->S3
3683         * transition.)
3684         */
3685        uint8_t suspend_flags;
3686
3687        /* Which flags to copy from suspend_flags */
3688        uint8_t suspend_mask;
3689} __ec_align1;
3690
3691/* Version 1 response */
3692struct ec_response_switch_enable_wireless_v1 {
3693        /* Flags to enable now */
3694        uint8_t now_flags;
3695
3696        /* Flags to leave enabled in S3 */
3697        uint8_t suspend_flags;
3698} __ec_align1;
3699
3700/*****************************************************************************/
3701/* GPIO commands. Only available on EC if write protect has been disabled. */
3702
3703/* Set GPIO output value */
3704#define EC_CMD_GPIO_SET 0x0092
3705
3706struct ec_params_gpio_set {
3707        char name[32];
3708        uint8_t val;
3709} __ec_align1;
3710
3711/* Get GPIO value */
3712#define EC_CMD_GPIO_GET 0x0093
3713
3714/* Version 0 of input params and response */
3715struct ec_params_gpio_get {
3716        char name[32];
3717} __ec_align1;
3718
3719struct ec_response_gpio_get {
3720        uint8_t val;
3721} __ec_align1;
3722
3723/* Version 1 of input params and response */
3724struct ec_params_gpio_get_v1 {
3725        uint8_t subcmd;
3726        union {
3727                struct __ec_align1 {
3728                        char name[32];
3729                } get_value_by_name;
3730                struct __ec_align1 {
3731                        uint8_t index;
3732                } get_info;
3733        };
3734} __ec_align1;
3735
3736struct ec_response_gpio_get_v1 {
3737        union {
3738                struct __ec_align1 {
3739                        uint8_t val;
3740                } get_value_by_name, get_count;
3741                struct __ec_todo_unpacked {
3742                        uint8_t val;
3743                        char name[32];
3744                        uint32_t flags;
3745                } get_info;
3746        };
3747} __ec_todo_packed;
3748
3749enum gpio_get_subcmd {
3750        EC_GPIO_GET_BY_NAME = 0,
3751        EC_GPIO_GET_COUNT = 1,
3752        EC_GPIO_GET_INFO = 2,
3753};
3754
3755/*****************************************************************************/
3756/* I2C commands. Only available when flash write protect is unlocked. */
3757
3758/*
3759 * CAUTION: These commands are deprecated, and are not supported anymore in EC
3760 * builds >= 8398.0.0 (see crosbug.com/p/23570).
3761 *
3762 * Use EC_CMD_I2C_PASSTHRU instead.
3763 */
3764
3765/* Read I2C bus */
3766#define EC_CMD_I2C_READ 0x0094
3767
3768struct ec_params_i2c_read {
3769        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3770        uint8_t read_size; /* Either 8 or 16. */
3771        uint8_t port;
3772        uint8_t offset;
3773} __ec_align_size1;
3774
3775struct ec_response_i2c_read {
3776        uint16_t data;
3777} __ec_align2;
3778
3779/* Write I2C bus */
3780#define EC_CMD_I2C_WRITE 0x0095
3781
3782struct ec_params_i2c_write {
3783        uint16_t data;
3784        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3785        uint8_t write_size; /* Either 8 or 16. */
3786        uint8_t port;
3787        uint8_t offset;
3788} __ec_align_size1;
3789
3790/*****************************************************************************/
3791/* Charge state commands. Only available when flash write protect unlocked. */
3792
3793/* Force charge state machine to stop charging the battery or force it to
3794 * discharge the battery.
3795 */
3796#define EC_CMD_CHARGE_CONTROL 0x0096
3797#define EC_VER_CHARGE_CONTROL 1
3798
3799enum ec_charge_control_mode {
3800        CHARGE_CONTROL_NORMAL = 0,
3801        CHARGE_CONTROL_IDLE,
3802        CHARGE_CONTROL_DISCHARGE,
3803};
3804
3805struct ec_params_charge_control {
3806        uint32_t mode;  /* enum charge_control_mode */
3807} __ec_align4;
3808
3809/*****************************************************************************/
3810
3811/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3812#define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3813
3814/*
3815 * Read data from the saved snapshot. If the subcmd parameter is
3816 * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3817 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3818 * end of the previous snapshot.
3819 *
3820 * The params are only looked at in version >= 1 of this command. Prior
3821 * versions will just default to CONSOLE_READ_NEXT behavior.
3822 *
3823 * Response is null-terminated string.  Empty string, if there is no more
3824 * remaining output.
3825 */
3826#define EC_CMD_CONSOLE_READ 0x0098
3827
3828enum ec_console_read_subcmd {
3829        CONSOLE_READ_NEXT = 0,
3830        CONSOLE_READ_RECENT
3831};
3832
3833struct ec_params_console_read_v1 {
3834        uint8_t subcmd; /* enum ec_console_read_subcmd */
3835} __ec_align1;
3836
3837/*****************************************************************************/
3838
3839/*
3840 * Cut off battery power immediately or after the host has shut down.
3841 *
3842 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3843 *        EC_RES_SUCCESS if the command was successful.
3844 *        EC_RES_ERROR if the cut off command failed.
3845 */
3846#define EC_CMD_BATTERY_CUT_OFF 0x0099
3847
3848#define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN      BIT(0)
3849
3850struct ec_params_battery_cutoff {
3851        uint8_t flags;
3852} __ec_align1;
3853
3854/*****************************************************************************/
3855/* USB port mux control. */
3856
3857/*
3858 * Switch USB mux or return to automatic switching.
3859 */
3860#define EC_CMD_USB_MUX 0x009A
3861
3862struct ec_params_usb_mux {
3863        uint8_t mux;
3864} __ec_align1;
3865
3866/*****************************************************************************/
3867/* LDOs / FETs control. */
3868
3869enum ec_ldo_state {
3870        EC_LDO_STATE_OFF = 0,   /* the LDO / FET is shut down */
3871        EC_LDO_STATE_ON = 1,    /* the LDO / FET is ON / providing power */
3872};
3873
3874/*
3875 * Switch on/off a LDO.
3876 */
3877#define EC_CMD_LDO_SET 0x009B
3878
3879struct ec_params_ldo_set {
3880        uint8_t index;
3881        uint8_t state;
3882} __ec_align1;
3883
3884/*
3885 * Get LDO state.
3886 */
3887#define EC_CMD_LDO_GET 0x009C
3888
3889struct ec_params_ldo_get {
3890        uint8_t index;
3891} __ec_align1;
3892
3893struct ec_response_ldo_get {
3894        uint8_t state;
3895} __ec_align1;
3896
3897/*****************************************************************************/
3898/* Power info. */
3899
3900/*
3901 * Get power info.
3902 */
3903#define EC_CMD_POWER_INFO 0x009D
3904
3905struct ec_response_power_info {
3906        uint32_t usb_dev_type;
3907        uint16_t voltage_ac;
3908        uint16_t voltage_system;
3909        uint16_t current_system;
3910        uint16_t usb_current_limit;
3911} __ec_align4;
3912
3913/*****************************************************************************/
3914/* I2C passthru command */
3915
3916#define EC_CMD_I2C_PASSTHRU 0x009E
3917
3918/* Read data; if not present, message is a write */
3919#define EC_I2C_FLAG_READ        BIT(15)
3920
3921/* Mask for address */
3922#define EC_I2C_ADDR_MASK        0x3ff
3923
3924#define EC_I2C_STATUS_NAK       BIT(0) /* Transfer was not acknowledged */
3925#define EC_I2C_STATUS_TIMEOUT   BIT(1) /* Timeout during transfer */
3926
3927/* Any error */
3928#define EC_I2C_STATUS_ERROR     (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3929
3930struct ec_params_i2c_passthru_msg {
3931        uint16_t addr_flags;    /* I2C slave address (7 or 10 bits) and flags */
3932        uint16_t len;           /* Number of bytes to read or write */
3933} __ec_align2;
3934
3935struct ec_params_i2c_passthru {
3936        uint8_t port;           /* I2C port number */
3937        uint8_t num_msgs;       /* Number of messages */
3938        struct ec_params_i2c_passthru_msg msg[];
3939        /* Data to write for all messages is concatenated here */
3940} __ec_align2;
3941
3942struct ec_response_i2c_passthru {
3943        uint8_t i2c_status;     /* Status flags (EC_I2C_STATUS_...) */
3944        uint8_t num_msgs;       /* Number of messages processed */
3945        uint8_t data[];         /* Data read by messages concatenated here */
3946} __ec_align1;
3947
3948/*****************************************************************************/
3949/* Power button hang detect */
3950
3951#define EC_CMD_HANG_DETECT 0x009F
3952
3953/* Reasons to start hang detection timer */
3954/* Power button pressed */
3955#define EC_HANG_START_ON_POWER_PRESS  BIT(0)
3956
3957/* Lid closed */
3958#define EC_HANG_START_ON_LID_CLOSE    BIT(1)
3959
3960 /* Lid opened */
3961#define EC_HANG_START_ON_LID_OPEN     BIT(2)
3962
3963/* Start of AP S3->S0 transition (booting or resuming from suspend) */
3964#define EC_HANG_START_ON_RESUME       BIT(3)
3965
3966/* Reasons to cancel hang detection */
3967
3968/* Power button released */
3969#define EC_HANG_STOP_ON_POWER_RELEASE BIT(8)
3970
3971/* Any host command from AP received */
3972#define EC_HANG_STOP_ON_HOST_COMMAND  BIT(9)
3973
3974/* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3975#define EC_HANG_STOP_ON_SUSPEND       BIT(10)
3976
3977/*
3978 * If this flag is set, all the other fields are ignored, and the hang detect
3979 * timer is started.  This provides the AP a way to start the hang timer
3980 * without reconfiguring any of the other hang detect settings.  Note that
3981 * you must previously have configured the timeouts.
3982 */
3983#define EC_HANG_START_NOW             BIT(30)
3984
3985/*
3986 * If this flag is set, all the other fields are ignored (including
3987 * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
3988 * without reconfiguring any of the other hang detect settings.
3989 */
3990#define EC_HANG_STOP_NOW              BIT(31)
3991
3992struct ec_params_hang_detect {
3993        /* Flags; see EC_HANG_* */
3994        uint32_t flags;
3995
3996        /* Timeout in msec before generating host event, if enabled */
3997        uint16_t host_event_timeout_msec;
3998
3999        /* Timeout in msec before generating warm reboot, if enabled */
4000        uint16_t warm_reboot_timeout_msec;
4001} __ec_align4;
4002
4003/*****************************************************************************/
4004/* Commands for battery charging */
4005
4006/*
4007 * This is the single catch-all host command to exchange data regarding the
4008 * charge state machine (v2 and up).
4009 */
4010#define EC_CMD_CHARGE_STATE 0x00A0
4011
4012/* Subcommands for this host command */
4013enum charge_state_command {
4014        CHARGE_STATE_CMD_GET_STATE,
4015        CHARGE_STATE_CMD_GET_PARAM,
4016        CHARGE_STATE_CMD_SET_PARAM,
4017        CHARGE_STATE_NUM_CMDS
4018};
4019
4020/*
4021 * Known param numbers are defined here. Ranges are reserved for board-specific
4022 * params, which are handled by the particular implementations.
4023 */
4024enum charge_state_params {
4025        CS_PARAM_CHG_VOLTAGE,         /* charger voltage limit */
4026        CS_PARAM_CHG_CURRENT,         /* charger current limit */
4027        CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
4028        CS_PARAM_CHG_STATUS,          /* charger-specific status */
4029        CS_PARAM_CHG_OPTION,          /* charger-specific options */
4030        CS_PARAM_LIMIT_POWER,         /*
4031                                       * Check if power is limited due to
4032                                       * low battery and / or a weak external
4033                                       * charger. READ ONLY.
4034                                       */
4035        /* How many so far? */
4036        CS_NUM_BASE_PARAMS,
4037
4038        /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4039        CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4040        CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4041
4042        /* Range for CONFIG_CHARGE_STATE_DEBUG params */
4043        CS_PARAM_DEBUG_MIN = 0x20000,
4044        CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4045        CS_PARAM_DEBUG_MANUAL_MODE,
4046        CS_PARAM_DEBUG_SEEMS_DEAD,
4047        CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4048        CS_PARAM_DEBUG_BATT_REMOVED,
4049        CS_PARAM_DEBUG_MANUAL_CURRENT,
4050        CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4051        CS_PARAM_DEBUG_MAX = 0x2ffff,
4052
4053        /* Other custom param ranges go here... */
4054};
4055
4056struct ec_params_charge_state {
4057        uint8_t cmd;                            /* enum charge_state_command */
4058        union {
4059                /* get_state has no args */
4060
4061                struct __ec_todo_unpacked {
4062                        uint32_t param;         /* enum charge_state_param */
4063                } get_param;
4064
4065                struct __ec_todo_unpacked {
4066                        uint32_t param;         /* param to set */
4067                        uint32_t value;         /* value to set */
4068                } set_param;
4069        };
4070} __ec_todo_packed;
4071
4072struct ec_response_charge_state {
4073        union {
4074                struct __ec_align4 {
4075                        int ac;
4076                        int chg_voltage;
4077                        int chg_current;
4078                        int chg_input_current;
4079                        int batt_state_of_charge;
4080                } get_state;
4081
4082                struct __ec_align4 {
4083                        uint32_t value;
4084                } get_param;
4085
4086                /* set_param returns no args */
4087        };
4088} __ec_align4;
4089
4090
4091/*
4092 * Set maximum battery charging current.
4093 */
4094#define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4095
4096struct ec_params_current_limit {
4097        uint32_t limit; /* in mA */
4098} __ec_align4;
4099
4100/*
4101 * Set maximum external voltage / current.
4102 */
4103#define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4104
4105/* Command v0 is used only on Spring and is obsolete + unsupported */
4106struct ec_params_external_power_limit_v1 {
4107        uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4108        uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4109} __ec_align2;
4110
4111#define EC_POWER_LIMIT_NONE 0xffff
4112
4113/*
4114 * Set maximum voltage & current of a dedicated charge port
4115 */
4116#define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4117
4118struct ec_params_dedicated_charger_limit {
4119        uint16_t current_lim; /* in mA */
4120        uint16_t voltage_lim; /* in mV */
4121} __ec_align2;
4122
4123/*****************************************************************************/
4124/* Hibernate/Deep Sleep Commands */
4125
4126/* Set the delay before going into hibernation. */
4127#define EC_CMD_HIBERNATION_DELAY 0x00A8
4128
4129struct ec_params_hibernation_delay {
4130        /*
4131         * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
4132         * current settings without changing them.
4133         */
4134        uint32_t seconds;
4135} __ec_align4;
4136
4137struct ec_response_hibernation_delay {
4138        /*
4139         * The current time in seconds in which the system has been in the G3
4140         * state.  This value is reset if the EC transitions out of G3.
4141         */
4142        uint32_t time_g3;
4143
4144        /*
4145         * The current time remaining in seconds until the EC should hibernate.
4146         * This value is also reset if the EC transitions out of G3.
4147         */
4148        uint32_t time_remaining;
4149
4150        /*
4151         * The current time in seconds that the EC should wait in G3 before
4152         * hibernating.
4153         */
4154        uint32_t hibernate_delay;
4155} __ec_align4;
4156
4157/* Inform the EC when entering a sleep state */
4158#define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4159
4160enum host_sleep_event {
4161        HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
4162        HOST_SLEEP_EVENT_S3_RESUME    = 2,
4163        HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4164        HOST_SLEEP_EVENT_S0IX_RESUME  = 4,
4165        /* S3 suspend with additional enabled wake sources */
4166        HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4167};
4168
4169struct ec_params_host_sleep_event {
4170        uint8_t sleep_event;
4171} __ec_align1;
4172
4173/*
4174 * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4175 * transition failures
4176 */
4177#define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4178
4179/* Disable timeout detection for this sleep transition */
4180#define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4181
4182struct ec_params_host_sleep_event_v1 {
4183        /* The type of sleep being entered or exited. */
4184        uint8_t sleep_event;
4185
4186        /* Padding */
4187        uint8_t reserved;
4188        union {
4189                /* Parameters that apply for suspend messages. */
4190                struct {
4191                        /*
4192                         * The timeout in milliseconds between when this message
4193                         * is received and when the EC will declare sleep
4194                         * transition failure if the sleep signal is not
4195                         * asserted.
4196                         */
4197                        uint16_t sleep_timeout_ms;
4198                } suspend_params;
4199
4200                /* No parameters for non-suspend messages. */
4201        };
4202} __ec_align2;
4203
4204/* A timeout occurred when this bit is set */
4205#define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4206
4207/*
4208 * The mask defining which bits correspond to the number of sleep transitions,
4209 * as well as the maximum number of suspend line transitions that will be
4210 * reported back to the host.
4211 */
4212#define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4213
4214struct ec_response_host_sleep_event_v1 {
4215        union {
4216                /* Response fields that apply for resume messages. */
4217                struct {
4218                        /*
4219                         * The number of sleep power signal transitions that
4220                         * occurred since the suspend message. The high bit
4221                         * indicates a timeout occurred.
4222                         */
4223                        uint32_t sleep_transitions;
4224                } resume_response;
4225
4226                /* No response fields for non-resume messages. */
4227        };
4228} __ec_align4;
4229
4230/*****************************************************************************/
4231/* Device events */
4232#define EC_CMD_DEVICE_EVENT 0x00AA
4233
4234enum ec_device_event {
4235        EC_DEVICE_EVENT_TRACKPAD,
4236        EC_DEVICE_EVENT_DSP,
4237        EC_DEVICE_EVENT_WIFI,
4238        EC_DEVICE_EVENT_WLC,
4239};
4240
4241enum ec_device_event_param {
4242        /* Get and clear pending device events */
4243        EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4244        /* Get device event mask */
4245        EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4246        /* Set device event mask */
4247        EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4248};
4249
4250#define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4251
4252struct ec_params_device_event {
4253        uint32_t event_mask;
4254        uint8_t param;
4255} __ec_align_size1;
4256
4257struct ec_response_device_event {
4258        uint32_t event_mask;
4259} __ec_align4;
4260
4261/*****************************************************************************/
4262/* Smart battery pass-through */
4263
4264/* Get / Set 16-bit smart battery registers */
4265#define EC_CMD_SB_READ_WORD   0x00B0
4266#define EC_CMD_SB_WRITE_WORD  0x00B1
4267
4268/* Get / Set string smart battery parameters
4269 * formatted as SMBUS "block".
4270 */
4271#define EC_CMD_SB_READ_BLOCK  0x00B2
4272#define EC_CMD_SB_WRITE_BLOCK 0x00B3
4273
4274struct ec_params_sb_rd {
4275        uint8_t reg;
4276} __ec_align1;
4277
4278struct ec_response_sb_rd_word {
4279        uint16_t value;
4280} __ec_align2;
4281
4282struct ec_params_sb_wr_word {
4283        uint8_t reg;
4284        uint16_t value;
4285} __ec_align1;
4286
4287struct ec_response_sb_rd_block {
4288        uint8_t data[32];
4289} __ec_align1;
4290
4291struct ec_params_sb_wr_block {
4292        uint8_t reg;
4293        uint16_t data[32];
4294} __ec_align1;
4295
4296/*****************************************************************************/
4297/* Battery vendor parameters
4298 *
4299 * Get or set vendor-specific parameters in the battery. Implementations may
4300 * differ between boards or batteries. On a set operation, the response
4301 * contains the actual value set, which may be rounded or clipped from the
4302 * requested value.
4303 */
4304
4305#define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4306
4307enum ec_battery_vendor_param_mode {
4308        BATTERY_VENDOR_PARAM_MODE_GET = 0,
4309        BATTERY_VENDOR_PARAM_MODE_SET,
4310};
4311
4312struct ec_params_battery_vendor_param {
4313        uint32_t param;
4314        uint32_t value;
4315        uint8_t mode;
4316} __ec_align_size1;
4317
4318struct ec_response_battery_vendor_param {
4319        uint32_t value;
4320} __ec_align4;
4321
4322/*****************************************************************************/
4323/*
4324 * Smart Battery Firmware Update Commands
4325 */
4326#define EC_CMD_SB_FW_UPDATE 0x00B5
4327
4328enum ec_sb_fw_update_subcmd {
4329        EC_SB_FW_UPDATE_PREPARE  = 0x0,
4330        EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
4331        EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
4332        EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
4333        EC_SB_FW_UPDATE_END      = 0x4,
4334        EC_SB_FW_UPDATE_STATUS   = 0x5,
4335        EC_SB_FW_UPDATE_PROTECT  = 0x6,
4336        EC_SB_FW_UPDATE_MAX      = 0x7,
4337};
4338
4339#define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4340#define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4341#define SB_FW_UPDATE_CMD_INFO_SIZE 8
4342
4343struct ec_sb_fw_update_header {
4344        uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
4345        uint16_t fw_id;   /* firmware id */
4346} __ec_align4;
4347
4348struct ec_params_sb_fw_update {
4349        struct ec_sb_fw_update_header hdr;
4350        union {
4351                /* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
4352                /* EC_SB_FW_UPDATE_INFO     = 0x1 */
4353                /* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
4354                /* EC_SB_FW_UPDATE_END      = 0x4 */
4355                /* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4356                /* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
4357                /* Those have no args */
4358
4359                /* EC_SB_FW_UPDATE_WRITE    = 0x3 */
4360                struct __ec_align4 {
4361                        uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4362                } write;
4363        };
4364} __ec_align4;
4365
4366struct ec_response_sb_fw_update {
4367        union {
4368                /* EC_SB_FW_UPDATE_INFO     = 0x1 */
4369                struct __ec_align1 {
4370                        uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4371                } info;
4372
4373                /* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4374                struct __ec_align1 {
4375                        uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4376                } status;
4377        };
4378} __ec_align1;
4379
4380/*
4381 * Entering Verified Boot Mode Command
4382 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4383 * Valid Modes are: normal, developer, and recovery.
4384 */
4385#define EC_CMD_ENTERING_MODE 0x00B6
4386
4387struct ec_params_entering_mode {
4388        int vboot_mode;
4389} __ec_align4;
4390
4391#define VBOOT_MODE_NORMAL    0
4392#define VBOOT_MODE_DEVELOPER 1
4393#define VBOOT_MODE_RECOVERY  2
4394
4395/*****************************************************************************/
4396/*
4397 * I2C passthru protection command: Protects I2C tunnels against access on
4398 * certain addresses (board-specific).
4399 */
4400#define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4401
4402enum ec_i2c_passthru_protect_subcmd {
4403        EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4404        EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4405};
4406
4407struct ec_params_i2c_passthru_protect {
4408        uint8_t subcmd;
4409        uint8_t port;           /* I2C port number */
4410} __ec_align1;
4411
4412struct ec_response_i2c_passthru_protect {
4413        uint8_t status;         /* Status flags (0: unlocked, 1: locked) */
4414} __ec_align1;
4415
4416
4417/*****************************************************************************/
4418/*
4419 * HDMI CEC commands
4420 *
4421 * These commands are for sending and receiving message via HDMI CEC
4422 */
4423
4424#define MAX_CEC_MSG_LEN 16
4425
4426/* CEC message from the AP to be written on the CEC bus */
4427#define EC_CMD_CEC_WRITE_MSG 0x00B8
4428
4429/**
4430 * struct ec_params_cec_write - Message to write to the CEC bus
4431 * @msg: message content to write to the CEC bus
4432 */
4433struct ec_params_cec_write {
4434        uint8_t msg[MAX_CEC_MSG_LEN];
4435} __ec_align1;
4436
4437/* Set various CEC parameters */
4438#define EC_CMD_CEC_SET 0x00BA
4439
4440/**
4441 * struct ec_params_cec_set - CEC parameters set
4442 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4443 * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4444 *      or 1 to enable CEC functionality, in case cmd is
4445 *      CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4446 *      address between 0 and 15 or 0xff to unregister
4447 */
4448struct ec_params_cec_set {
4449        uint8_t cmd; /* enum cec_command */
4450        uint8_t val;
4451} __ec_align1;
4452
4453/* Read various CEC parameters */
4454#define EC_CMD_CEC_GET 0x00BB
4455
4456/**
4457 * struct ec_params_cec_get - CEC parameters get
4458 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4459 */
4460struct ec_params_cec_get {
4461        uint8_t cmd; /* enum cec_command */
4462} __ec_align1;
4463
4464/**
4465 * struct ec_response_cec_get - CEC parameters get response
4466 * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4467 *      disabled or 1 if CEC functionality is enabled,
4468 *      in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4469 *      configured logical address between 0 and 15 or 0xff if unregistered
4470 */
4471struct ec_response_cec_get {
4472        uint8_t val;
4473} __ec_align1;
4474
4475/* CEC parameters command */
4476enum cec_command {
4477        /* CEC reading, writing and events enable */
4478        CEC_CMD_ENABLE,
4479        /* CEC logical address  */
4480        CEC_CMD_LOGICAL_ADDRESS,
4481};
4482
4483/* Events from CEC to AP */
4484enum mkbp_cec_event {
4485        /* Outgoing message was acknowledged by a follower */
4486        EC_MKBP_CEC_SEND_OK                     = BIT(0),
4487        /* Outgoing message was not acknowledged */
4488        EC_MKBP_CEC_SEND_FAILED                 = BIT(1),
4489};
4490
4491/*****************************************************************************/
4492
4493/* Commands for audio codec. */
4494#define EC_CMD_EC_CODEC 0x00BC
4495
4496enum ec_codec_subcmd {
4497        EC_CODEC_GET_CAPABILITIES = 0x0,
4498        EC_CODEC_GET_SHM_ADDR = 0x1,
4499        EC_CODEC_SET_SHM_ADDR = 0x2,
4500        EC_CODEC_SUBCMD_COUNT,
4501};
4502
4503enum ec_codec_cap {
4504        EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
4505        EC_CODEC_CAP_WOV_LANG_SHM = 1,
4506        EC_CODEC_CAP_LAST = 32,
4507};
4508
4509enum ec_codec_shm_id {
4510        EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
4511        EC_CODEC_SHM_ID_WOV_LANG = 0x1,
4512        EC_CODEC_SHM_ID_LAST,
4513};
4514
4515enum ec_codec_shm_type {
4516        EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
4517        EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
4518};
4519
4520struct __ec_align1 ec_param_ec_codec_get_shm_addr {
4521        uint8_t shm_id;
4522        uint8_t reserved[3];
4523};
4524
4525struct __ec_align4 ec_param_ec_codec_set_shm_addr {
4526        uint64_t phys_addr;
4527        uint32_t len;
4528        uint8_t shm_id;
4529        uint8_t reserved[3];
4530};
4531
4532struct __ec_align4 ec_param_ec_codec {
4533        uint8_t cmd; /* enum ec_codec_subcmd */
4534        uint8_t reserved[3];
4535
4536        union {
4537                struct ec_param_ec_codec_get_shm_addr
4538                                get_shm_addr_param;
4539                struct ec_param_ec_codec_set_shm_addr
4540                                set_shm_addr_param;
4541        };
4542};
4543
4544struct __ec_align4 ec_response_ec_codec_get_capabilities {
4545        uint32_t capabilities;
4546};
4547
4548struct __ec_align4 ec_response_ec_codec_get_shm_addr {
4549        uint64_t phys_addr;
4550        uint32_t len;
4551        uint8_t type;
4552        uint8_t reserved[3];
4553};
4554
4555/*****************************************************************************/
4556
4557/* Commands for DMIC on audio codec. */
4558#define EC_CMD_EC_CODEC_DMIC 0x00BD
4559
4560enum ec_codec_dmic_subcmd {
4561        EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
4562        EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
4563        EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
4564        EC_CODEC_DMIC_SUBCMD_COUNT,
4565};
4566
4567enum ec_codec_dmic_channel {
4568        EC_CODEC_DMIC_CHANNEL_0 = 0x0,
4569        EC_CODEC_DMIC_CHANNEL_1 = 0x1,
4570        EC_CODEC_DMIC_CHANNEL_2 = 0x2,
4571        EC_CODEC_DMIC_CHANNEL_3 = 0x3,
4572        EC_CODEC_DMIC_CHANNEL_4 = 0x4,
4573        EC_CODEC_DMIC_CHANNEL_5 = 0x5,
4574        EC_CODEC_DMIC_CHANNEL_6 = 0x6,
4575        EC_CODEC_DMIC_CHANNEL_7 = 0x7,
4576        EC_CODEC_DMIC_CHANNEL_COUNT,
4577};
4578
4579struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
4580        uint8_t channel; /* enum ec_codec_dmic_channel */
4581        uint8_t gain;
4582        uint8_t reserved[2];
4583};
4584
4585struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
4586        uint8_t channel; /* enum ec_codec_dmic_channel */
4587        uint8_t reserved[3];
4588};
4589
4590struct __ec_align4 ec_param_ec_codec_dmic {
4591        uint8_t cmd; /* enum ec_codec_dmic_subcmd */
4592        uint8_t reserved[3];
4593
4594        union {
4595                struct ec_param_ec_codec_dmic_set_gain_idx
4596                                set_gain_idx_param;
4597                struct ec_param_ec_codec_dmic_get_gain_idx
4598                                get_gain_idx_param;
4599        };
4600};
4601
4602struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
4603        uint8_t max_gain;
4604};
4605
4606struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
4607        uint8_t gain;
4608};
4609
4610/*****************************************************************************/
4611
4612/* Commands for I2S RX on audio codec. */
4613
4614#define EC_CMD_EC_CODEC_I2S_RX 0x00BE
4615
4616enum ec_codec_i2s_rx_subcmd {
4617        EC_CODEC_I2S_RX_ENABLE = 0x0,
4618        EC_CODEC_I2S_RX_DISABLE = 0x1,
4619        EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
4620        EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
4621        EC_CODEC_I2S_RX_SET_BCLK = 0x4,
4622        EC_CODEC_I2S_RX_RESET = 0x5,
4623        EC_CODEC_I2S_RX_SUBCMD_COUNT,
4624};
4625
4626enum ec_codec_i2s_rx_sample_depth {
4627        EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
4628        EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
4629        EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
4630};
4631
4632enum ec_codec_i2s_rx_daifmt {
4633        EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
4634        EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
4635        EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
4636        EC_CODEC_I2S_RX_DAIFMT_COUNT,
4637};
4638
4639struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
4640        uint8_t depth;
4641        uint8_t reserved[3];
4642};
4643
4644struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
4645        uint8_t left;
4646        uint8_t right;
4647        uint8_t reserved[2];
4648};
4649
4650struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
4651        uint8_t daifmt;
4652        uint8_t reserved[3];
4653};
4654
4655struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
4656        uint32_t bclk;
4657};
4658
4659struct __ec_align4 ec_param_ec_codec_i2s_rx {
4660        uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
4661        uint8_t reserved[3];
4662
4663        union {
4664                struct ec_param_ec_codec_i2s_rx_set_sample_depth
4665                                set_sample_depth_param;
4666                struct ec_param_ec_codec_i2s_rx_set_daifmt
4667                                set_daifmt_param;
4668                struct ec_param_ec_codec_i2s_rx_set_bclk
4669                                set_bclk_param;
4670        };
4671};
4672
4673/*****************************************************************************/
4674/* Commands for WoV on audio codec. */
4675
4676#define EC_CMD_EC_CODEC_WOV 0x00BF
4677
4678enum ec_codec_wov_subcmd {
4679        EC_CODEC_WOV_SET_LANG = 0x0,
4680        EC_CODEC_WOV_SET_LANG_SHM = 0x1,
4681        EC_CODEC_WOV_GET_LANG = 0x2,
4682        EC_CODEC_WOV_ENABLE = 0x3,
4683        EC_CODEC_WOV_DISABLE = 0x4,
4684        EC_CODEC_WOV_READ_AUDIO = 0x5,
4685        EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
4686        EC_CODEC_WOV_SUBCMD_COUNT,
4687};
4688
4689/*
4690 * @hash is SHA256 of the whole language model.
4691 * @total_len indicates the length of whole language model.
4692 * @offset is the cursor from the beginning of the model.
4693 * @buf is the packet buffer.
4694 * @len denotes how many bytes in the buf.
4695 */
4696struct __ec_align4 ec_param_ec_codec_wov_set_lang {
4697        uint8_t hash[32];
4698        uint32_t total_len;
4699        uint32_t offset;
4700        uint8_t buf[128];
4701        uint32_t len;
4702};
4703
4704struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
4705        uint8_t hash[32];
4706        uint32_t total_len;
4707};
4708
4709struct __ec_align4 ec_param_ec_codec_wov {
4710        uint8_t cmd; /* enum ec_codec_wov_subcmd */
4711        uint8_t reserved[3];
4712
4713        union {
4714                struct ec_param_ec_codec_wov_set_lang
4715                                set_lang_param;
4716                struct ec_param_ec_codec_wov_set_lang_shm
4717                                set_lang_shm_param;
4718        };
4719};
4720
4721struct __ec_align4 ec_response_ec_codec_wov_get_lang {
4722        uint8_t hash[32];
4723};
4724
4725struct __ec_align4 ec_response_ec_codec_wov_read_audio {
4726        uint8_t buf[128];
4727        uint32_t len;
4728};
4729
4730struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
4731        uint32_t offset;
4732        uint32_t len;
4733};
4734
4735/*****************************************************************************/
4736/* System commands */
4737
4738/*
4739 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4740 * necessarily reboot the EC.  Rename to "image" or something similar?
4741 */
4742#define EC_CMD_REBOOT_EC 0x00D2
4743
4744/* Command */
4745enum ec_reboot_cmd {
4746        EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
4747        EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
4748        EC_REBOOT_JUMP_RW = 2,       /* Jump to active RW without rebooting */
4749        /* (command 3 was jump to RW-B) */
4750        EC_REBOOT_COLD = 4,          /* Cold-reboot */
4751        EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
4752        EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
4753        EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4754        EC_REBOOT_COLD_AP_OFF = 8,   /* Cold-reboot and don't boot AP */
4755};
4756
4757/* Flags for ec_params_reboot_ec.reboot_flags */
4758#define EC_REBOOT_FLAG_RESERVED0      BIT(0)  /* Was recovery request */
4759#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1)  /* Reboot after AP shutdown */
4760#define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2)  /* Switch RW slot */
4761
4762struct ec_params_reboot_ec {
4763        uint8_t cmd;           /* enum ec_reboot_cmd */
4764        uint8_t flags;         /* See EC_REBOOT_FLAG_* */
4765} __ec_align1;
4766
4767/*
4768 * Get information on last EC panic.
4769 *
4770 * Returns variable-length platform-dependent panic information.  See panic.h
4771 * for details.
4772 */
4773#define EC_CMD_GET_PANIC_INFO 0x00D3
4774
4775/*****************************************************************************/
4776/*
4777 * Special commands
4778 *
4779 * These do not follow the normal rules for commands.  See each command for
4780 * details.
4781 */
4782
4783/*
4784 * Reboot NOW
4785 *
4786 * This command will work even when the EC LPC interface is busy, because the
4787 * reboot command is processed at interrupt level.  Note that when the EC
4788 * reboots, the host will reboot too, so there is no response to this command.
4789 *
4790 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
4791 */
4792#define EC_CMD_REBOOT 0x00D1  /* Think "die" */
4793
4794/*
4795 * Resend last response (not supported on LPC).
4796 *
4797 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
4798 * there was no previous command, or the previous command's response was too
4799 * big to save.
4800 */
4801#define EC_CMD_RESEND_RESPONSE 0x00DB
4802
4803/*
4804 * This header byte on a command indicate version 0. Any header byte less
4805 * than this means that we are talking to an old EC which doesn't support
4806 * versioning. In that case, we assume version 0.
4807 *
4808 * Header bytes greater than this indicate a later version. For example,
4809 * EC_CMD_VERSION0 + 1 means we are using version 1.
4810 *
4811 * The old EC interface must not use commands 0xdc or higher.
4812 */
4813#define EC_CMD_VERSION0 0x00DC
4814
4815/*****************************************************************************/
4816/*
4817 * PD commands
4818 *
4819 * These commands are for PD MCU communication.
4820 */
4821
4822/* EC to PD MCU exchange status command */
4823#define EC_CMD_PD_EXCHANGE_STATUS 0x0100
4824#define EC_VER_PD_EXCHANGE_STATUS 2
4825
4826enum pd_charge_state {
4827        PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
4828        PD_CHARGE_NONE,          /* No charging allowed */
4829        PD_CHARGE_5V,            /* 5V charging only */
4830        PD_CHARGE_MAX            /* Charge at max voltage */
4831};
4832
4833/* Status of EC being sent to PD */
4834#define EC_STATUS_HIBERNATING   BIT(0)
4835
4836struct ec_params_pd_status {
4837        uint8_t status;       /* EC status */
4838        int8_t batt_soc;      /* battery state of charge */
4839        uint8_t charge_state; /* charging state (from enum pd_charge_state) */
4840} __ec_align1;
4841
4842/* Status of PD being sent back to EC */
4843#define PD_STATUS_HOST_EVENT      BIT(0) /* Forward host event to AP */
4844#define PD_STATUS_IN_RW           BIT(1) /* Running RW image */
4845#define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
4846#define PD_STATUS_TCPC_ALERT_0    BIT(3) /* Alert active in port 0 TCPC */
4847#define PD_STATUS_TCPC_ALERT_1    BIT(4) /* Alert active in port 1 TCPC */
4848#define PD_STATUS_TCPC_ALERT_2    BIT(5) /* Alert active in port 2 TCPC */
4849#define PD_STATUS_TCPC_ALERT_3    BIT(6) /* Alert active in port 3 TCPC */
4850#define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
4851                                      PD_STATUS_TCPC_ALERT_1 | \
4852                                      PD_STATUS_HOST_EVENT)
4853struct ec_response_pd_status {
4854        uint32_t curr_lim_ma;       /* input current limit */
4855        uint16_t status;            /* PD MCU status */
4856        int8_t active_charge_port;  /* active charging port */
4857} __ec_align_size1;
4858
4859/* AP to PD MCU host event status command, cleared on read */
4860#define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4861
4862/* PD MCU host event status bits */
4863#define PD_EVENT_UPDATE_DEVICE     BIT(0)
4864#define PD_EVENT_POWER_CHANGE      BIT(1)
4865#define PD_EVENT_IDENTITY_RECEIVED BIT(2)
4866#define PD_EVENT_DATA_SWAP         BIT(3)
4867struct ec_response_host_event_status {
4868        uint32_t status;      /* PD MCU host event status */
4869} __ec_align4;
4870
4871/* Set USB type-C port role and muxes */
4872#define EC_CMD_USB_PD_CONTROL 0x0101
4873
4874enum usb_pd_control_role {
4875        USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4876        USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4877        USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4878        USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4879        USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4880        USB_PD_CTRL_ROLE_FREEZE = 5,
4881        USB_PD_CTRL_ROLE_COUNT
4882};
4883
4884enum usb_pd_control_mux {
4885        USB_PD_CTRL_MUX_NO_CHANGE = 0,
4886        USB_PD_CTRL_MUX_NONE = 1,
4887        USB_PD_CTRL_MUX_USB = 2,
4888        USB_PD_CTRL_MUX_DP = 3,
4889        USB_PD_CTRL_MUX_DOCK = 4,
4890        USB_PD_CTRL_MUX_AUTO = 5,
4891        USB_PD_CTRL_MUX_COUNT
4892};
4893
4894enum usb_pd_control_swap {
4895        USB_PD_CTRL_SWAP_NONE = 0,
4896        USB_PD_CTRL_SWAP_DATA = 1,
4897        USB_PD_CTRL_SWAP_POWER = 2,
4898        USB_PD_CTRL_SWAP_VCONN = 3,
4899        USB_PD_CTRL_SWAP_COUNT
4900};
4901
4902struct ec_params_usb_pd_control {
4903        uint8_t port;
4904        uint8_t role;
4905        uint8_t mux;
4906        uint8_t swap;
4907} __ec_align1;
4908
4909#define PD_CTRL_RESP_ENABLED_COMMS      BIT(0) /* Communication enabled */
4910#define PD_CTRL_RESP_ENABLED_CONNECTED  BIT(1) /* Device connected */
4911#define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
4912
4913#define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
4914#define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
4915#define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
4916#define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
4917#define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
4918#define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
4919#define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
4920
4921struct ec_response_usb_pd_control {
4922        uint8_t enabled;
4923        uint8_t role;
4924        uint8_t polarity;
4925        uint8_t state;
4926} __ec_align1;
4927
4928struct ec_response_usb_pd_control_v1 {
4929        uint8_t enabled;
4930        uint8_t role;
4931        uint8_t polarity;
4932        char state[32];
4933} __ec_align1;
4934
4935/* Values representing usbc PD CC state */
4936#define USBC_PD_CC_NONE         0 /* No accessory connected */
4937#define USBC_PD_CC_NO_UFP       1 /* No UFP accessory connected */
4938#define USBC_PD_CC_AUDIO_ACC    2 /* Audio accessory connected */
4939#define USBC_PD_CC_DEBUG_ACC    3 /* Debug accessory connected */
4940#define USBC_PD_CC_UFP_ATTACHED 4 /* UFP attached to usbc */
4941#define USBC_PD_CC_DFP_ATTACHED 5 /* DPF attached to usbc */
4942
4943/* Active/Passive Cable */
4944#define USB_PD_CTRL_ACTIVE_CABLE        BIT(0)
4945/* Optical/Non-optical cable */
4946#define USB_PD_CTRL_OPTICAL_CABLE       BIT(1)
4947/* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
4948#define USB_PD_CTRL_TBT_LEGACY_ADAPTER  BIT(2)
4949/* Active Link Uni-Direction */
4950#define USB_PD_CTRL_ACTIVE_LINK_UNIDIR  BIT(3)
4951
4952struct ec_response_usb_pd_control_v2 {
4953        uint8_t enabled;
4954        uint8_t role;
4955        uint8_t polarity;
4956        char state[32];
4957        uint8_t cc_state;       /* enum pd_cc_states representing cc state */
4958        uint8_t dp_mode;        /* Current DP pin mode (MODE_DP_PIN_[A-E]) */
4959        uint8_t reserved;       /* Reserved for future use */
4960        uint8_t control_flags;  /* USB_PD_CTRL_*flags */
4961        uint8_t cable_speed;    /* TBT_SS_* cable speed */
4962        uint8_t cable_gen;      /* TBT_GEN3_* cable rounded support */
4963} __ec_align1;
4964
4965#define EC_CMD_USB_PD_PORTS 0x0102
4966
4967/* Maximum number of PD ports on a device, num_ports will be <= this */
4968#define EC_USB_PD_MAX_PORTS 8
4969
4970struct ec_response_usb_pd_ports {
4971        uint8_t num_ports;
4972} __ec_align1;
4973
4974#define EC_CMD_USB_PD_POWER_INFO 0x0103
4975
4976#define PD_POWER_CHARGING_PORT 0xff
4977struct ec_params_usb_pd_power_info {
4978        uint8_t port;
4979} __ec_align1;
4980
4981enum usb_chg_type {
4982        USB_CHG_TYPE_NONE,
4983        USB_CHG_TYPE_PD,
4984        USB_CHG_TYPE_C,
4985        USB_CHG_TYPE_PROPRIETARY,
4986        USB_CHG_TYPE_BC12_DCP,
4987        USB_CHG_TYPE_BC12_CDP,
4988        USB_CHG_TYPE_BC12_SDP,
4989        USB_CHG_TYPE_OTHER,
4990        USB_CHG_TYPE_VBUS,
4991        USB_CHG_TYPE_UNKNOWN,
4992        USB_CHG_TYPE_DEDICATED,
4993};
4994enum usb_power_roles {
4995        USB_PD_PORT_POWER_DISCONNECTED,
4996        USB_PD_PORT_POWER_SOURCE,
4997        USB_PD_PORT_POWER_SINK,
4998        USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4999};
5000
5001struct usb_chg_measures {
5002        uint16_t voltage_max;
5003        uint16_t voltage_now;
5004        uint16_t current_max;
5005        uint16_t current_lim;
5006} __ec_align2;
5007
5008struct ec_response_usb_pd_power_info {
5009        uint8_t role;
5010        uint8_t type;
5011        uint8_t dualrole;
5012        uint8_t reserved1;
5013        struct usb_chg_measures meas;
5014        uint32_t max_power;
5015} __ec_align4;
5016
5017
5018/*
5019 * This command will return the number of USB PD charge port + the number
5020 * of dedicated port present.
5021 * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
5022 */
5023#define EC_CMD_CHARGE_PORT_COUNT 0x0105
5024struct ec_response_charge_port_count {
5025        uint8_t port_count;
5026} __ec_align1;
5027
5028/* Write USB-PD device FW */
5029#define EC_CMD_USB_PD_FW_UPDATE 0x0110
5030
5031enum usb_pd_fw_update_cmds {
5032        USB_PD_FW_REBOOT,
5033        USB_PD_FW_FLASH_ERASE,
5034        USB_PD_FW_FLASH_WRITE,
5035        USB_PD_FW_ERASE_SIG,
5036};
5037
5038struct ec_params_usb_pd_fw_update {
5039        uint16_t dev_id;
5040        uint8_t cmd;
5041        uint8_t port;
5042        uint32_t size;     /* Size to write in bytes */
5043        /* Followed by data to write */
5044} __ec_align4;
5045
5046/* Write USB-PD Accessory RW_HASH table entry */
5047#define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
5048/* RW hash is first 20 bytes of SHA-256 of RW section */
5049#define PD_RW_HASH_SIZE 20
5050struct ec_params_usb_pd_rw_hash_entry {
5051        uint16_t dev_id;
5052        uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
5053        uint8_t reserved;        /*
5054                                  * For alignment of current_image
5055                                  * TODO(rspangler) but it's not aligned!
5056                                  * Should have been reserved[2].
5057                                  */
5058        uint32_t current_image;  /* One of ec_current_image */
5059} __ec_align1;
5060
5061/* Read USB-PD Accessory info */
5062#define EC_CMD_USB_PD_DEV_INFO 0x0112
5063
5064struct ec_params_usb_pd_info_request {
5065        uint8_t port;
5066} __ec_align1;
5067
5068/* Read USB-PD Device discovery info */
5069#define EC_CMD_USB_PD_DISCOVERY 0x0113
5070struct ec_params_usb_pd_discovery_entry {
5071        uint16_t vid;  /* USB-IF VID */
5072        uint16_t pid;  /* USB-IF PID */
5073        uint8_t ptype; /* product type (hub,periph,cable,ama) */
5074} __ec_align_size1;
5075
5076/* Override default charge behavior */
5077#define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
5078
5079/* Negative port parameters have special meaning */
5080enum usb_pd_override_ports {
5081        OVERRIDE_DONT_CHARGE = -2,
5082        OVERRIDE_OFF = -1,
5083        /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
5084};
5085
5086struct ec_params_charge_port_override {
5087        int16_t override_port; /* Override port# */
5088} __ec_align2;
5089
5090/*
5091 * Read (and delete) one entry of PD event log.
5092 * TODO(crbug.com/751742): Make this host command more generic to accommodate
5093 * future non-PD logs that use the same internal EC event_log.
5094 */
5095#define EC_CMD_PD_GET_LOG_ENTRY 0x0115
5096
5097struct ec_response_pd_log {
5098        uint32_t timestamp; /* relative timestamp in milliseconds */
5099        uint8_t type;       /* event type : see PD_EVENT_xx below */
5100        uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
5101        uint16_t data;      /* type-defined data payload */
5102        uint8_t payload[];  /* optional additional data payload: 0..16 bytes */
5103} __ec_align4;
5104
5105/* The timestamp is the microsecond counter shifted to get about a ms. */
5106#define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
5107
5108#define PD_LOG_SIZE_MASK  0x1f
5109#define PD_LOG_PORT_MASK  0xe0
5110#define PD_LOG_PORT_SHIFT    5
5111#define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
5112                                      ((size) & PD_LOG_SIZE_MASK))
5113#define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
5114#define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
5115
5116/* PD event log : entry types */
5117/* PD MCU events */
5118#define PD_EVENT_MCU_BASE       0x00
5119#define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
5120#define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
5121/* Reserved for custom board event */
5122#define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
5123/* PD generic accessory events */
5124#define PD_EVENT_ACC_BASE       0x20
5125#define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
5126#define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
5127/* PD power supply events */
5128#define PD_EVENT_PS_BASE        0x40
5129#define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
5130/* PD video dongles events */
5131#define PD_EVENT_VIDEO_BASE     0x60
5132#define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
5133#define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
5134/* Returned in the "type" field, when there is no entry available */
5135#define PD_EVENT_NO_ENTRY       0xff
5136
5137/*
5138 * PD_EVENT_MCU_CHARGE event definition :
5139 * the payload is "struct usb_chg_measures"
5140 * the data field contains the port state flags as defined below :
5141 */
5142/* Port partner is a dual role device */
5143#define CHARGE_FLAGS_DUAL_ROLE         BIT(15)
5144/* Port is the pending override port */
5145#define CHARGE_FLAGS_DELAYED_OVERRIDE  BIT(14)
5146/* Port is the override port */
5147#define CHARGE_FLAGS_OVERRIDE          BIT(13)
5148/* Charger type */
5149#define CHARGE_FLAGS_TYPE_SHIFT               3
5150#define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
5151/* Power delivery role */
5152#define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
5153
5154/*
5155 * PD_EVENT_PS_FAULT data field flags definition :
5156 */
5157#define PS_FAULT_OCP                          1
5158#define PS_FAULT_FAST_OCP                     2
5159#define PS_FAULT_OVP                          3
5160#define PS_FAULT_DISCH                        4
5161
5162/*
5163 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
5164 */
5165struct mcdp_version {
5166        uint8_t major;
5167        uint8_t minor;
5168        uint16_t build;
5169} __ec_align4;
5170
5171struct mcdp_info {
5172        uint8_t family[2];
5173        uint8_t chipid[2];
5174        struct mcdp_version irom;
5175        struct mcdp_version fw;
5176} __ec_align4;
5177
5178/* struct mcdp_info field decoding */
5179#define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
5180#define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
5181
5182/* Get/Set USB-PD Alternate mode info */
5183#define EC_CMD_USB_PD_GET_AMODE 0x0116
5184struct ec_params_usb_pd_get_mode_request {
5185        uint16_t svid_idx; /* SVID index to get */
5186        uint8_t port;      /* port */
5187} __ec_align_size1;
5188
5189struct ec_params_usb_pd_get_mode_response {
5190        uint16_t svid;   /* SVID */
5191        uint16_t opos;    /* Object Position */
5192        uint32_t vdo[6]; /* Mode VDOs */
5193} __ec_align4;
5194
5195#define EC_CMD_USB_PD_SET_AMODE 0x0117
5196
5197enum pd_mode_cmd {
5198        PD_EXIT_MODE = 0,
5199        PD_ENTER_MODE = 1,
5200        /* Not a command.  Do NOT remove. */
5201        PD_MODE_CMD_COUNT,
5202};
5203
5204struct ec_params_usb_pd_set_mode_request {
5205        uint32_t cmd;  /* enum pd_mode_cmd */
5206        uint16_t svid; /* SVID to set */
5207        uint8_t opos;  /* Object Position */
5208        uint8_t port;  /* port */
5209} __ec_align4;
5210
5211/* Ask the PD MCU to record a log of a requested type */
5212#define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5213
5214struct ec_params_pd_write_log_entry {
5215        uint8_t type; /* event type : see PD_EVENT_xx above */
5216        uint8_t port; /* port#, or 0 for events unrelated to a given port */
5217} __ec_align1;
5218
5219
5220/* Control USB-PD chip */
5221#define EC_CMD_PD_CONTROL 0x0119
5222
5223enum ec_pd_control_cmd {
5224        PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
5225        PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
5226        PD_RESET,            /* Force reset the PD chip */
5227        PD_CONTROL_DISABLE,  /* Disable further calls to this command */
5228        PD_CHIP_ON,          /* Power on the PD chip */
5229};
5230
5231struct ec_params_pd_control {
5232        uint8_t chip;         /* chip id */
5233        uint8_t subcmd;
5234} __ec_align1;
5235
5236/* Get info about USB-C SS muxes */
5237#define EC_CMD_USB_PD_MUX_INFO 0x011A
5238
5239struct ec_params_usb_pd_mux_info {
5240        uint8_t port; /* USB-C port number */
5241} __ec_align1;
5242
5243/* Flags representing mux state */
5244#define USB_PD_MUX_NONE               0      /* Open switch */
5245#define USB_PD_MUX_USB_ENABLED        BIT(0) /* USB connected */
5246#define USB_PD_MUX_DP_ENABLED         BIT(1) /* DP connected */
5247#define USB_PD_MUX_POLARITY_INVERTED  BIT(2) /* CC line Polarity inverted */
5248#define USB_PD_MUX_HPD_IRQ            BIT(3) /* HPD IRQ is asserted */
5249#define USB_PD_MUX_HPD_LVL            BIT(4) /* HPD level is asserted */
5250#define USB_PD_MUX_SAFE_MODE          BIT(5) /* DP is in safe mode */
5251#define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
5252#define USB_PD_MUX_USB4_ENABLED       BIT(7) /* USB4 enabled */
5253
5254struct ec_response_usb_pd_mux_info {
5255        uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5256} __ec_align1;
5257
5258#define EC_CMD_PD_CHIP_INFO             0x011B
5259
5260struct ec_params_pd_chip_info {
5261        uint8_t port;   /* USB-C port number */
5262        uint8_t renew;  /* Force renewal */
5263} __ec_align1;
5264
5265struct ec_response_pd_chip_info {
5266        uint16_t vendor_id;
5267        uint16_t product_id;
5268        uint16_t device_id;
5269        union {
5270                uint8_t fw_version_string[8];
5271                uint64_t fw_version_number;
5272        };
5273} __ec_align2;
5274
5275struct ec_response_pd_chip_info_v1 {
5276        uint16_t vendor_id;
5277        uint16_t product_id;
5278        uint16_t device_id;
5279        union {
5280                uint8_t fw_version_string[8];
5281                uint64_t fw_version_number;
5282        };
5283        union {
5284                uint8_t min_req_fw_version_string[8];
5285                uint64_t min_req_fw_version_number;
5286        };
5287} __ec_align2;
5288
5289/* Run RW signature verification and get status */
5290#define EC_CMD_RWSIG_CHECK_STATUS       0x011C
5291
5292struct ec_response_rwsig_check_status {
5293        uint32_t status;
5294} __ec_align4;
5295
5296/* For controlling RWSIG task */
5297#define EC_CMD_RWSIG_ACTION     0x011D
5298
5299enum rwsig_action {
5300        RWSIG_ACTION_ABORT = 0,         /* Abort RWSIG and prevent jumping */
5301        RWSIG_ACTION_CONTINUE = 1,      /* Jump to RW immediately */
5302};
5303
5304struct ec_params_rwsig_action {
5305        uint32_t action;
5306} __ec_align4;
5307
5308/* Run verification on a slot */
5309#define EC_CMD_EFS_VERIFY       0x011E
5310
5311struct ec_params_efs_verify {
5312        uint8_t region;         /* enum ec_flash_region */
5313} __ec_align1;
5314
5315/*
5316 * Retrieve info from Cros Board Info store. Response is based on the data
5317 * type. Integers return a uint32. Strings return a string, using the response
5318 * size to determine how big it is.
5319 */
5320#define EC_CMD_GET_CROS_BOARD_INFO      0x011F
5321/*
5322 * Write info into Cros Board Info on EEPROM. Write fails if the board has
5323 * hardware write-protect enabled.
5324 */
5325#define EC_CMD_SET_CROS_BOARD_INFO      0x0120
5326
5327enum cbi_data_tag {
5328        CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5329        CBI_TAG_OEM_ID = 1,        /* uint32_t or smaller */
5330        CBI_TAG_SKU_ID = 2,        /* uint32_t or smaller */
5331        CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5332        CBI_TAG_OEM_NAME = 4,      /* variable length ascii, nul terminated. */
5333        CBI_TAG_MODEL_ID = 5,      /* uint32_t or smaller */
5334        CBI_TAG_COUNT,
5335};
5336
5337/*
5338 * Flags to control read operation
5339 *
5340 * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
5341 *          write was successful without reboot.
5342 */
5343#define CBI_GET_RELOAD          BIT(0)
5344
5345struct ec_params_get_cbi {
5346        uint32_t tag;           /* enum cbi_data_tag */
5347        uint32_t flag;          /* CBI_GET_* */
5348} __ec_align4;
5349
5350/*
5351 * Flags to control write behavior.
5352 *
5353 * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5354 *          useful when writing multiple fields in a row.
5355 * INIT:    Need to be set when creating a new CBI from scratch. All fields
5356 *          will be initialized to zero first.
5357 */
5358#define CBI_SET_NO_SYNC         BIT(0)
5359#define CBI_SET_INIT            BIT(1)
5360
5361struct ec_params_set_cbi {
5362        uint32_t tag;           /* enum cbi_data_tag */
5363        uint32_t flag;          /* CBI_SET_* */
5364        uint32_t size;          /* Data size */
5365        uint8_t data[];         /* For string and raw data */
5366} __ec_align1;
5367
5368/*
5369 * Information about resets of the AP by the EC and the EC's own uptime.
5370 */
5371#define EC_CMD_GET_UPTIME_INFO 0x0121
5372
5373struct ec_response_uptime_info {
5374        /*
5375         * Number of milliseconds since the last EC boot. Sysjump resets
5376         * typically do not restart the EC's time_since_boot epoch.
5377         *
5378         * WARNING: The EC's sense of time is much less accurate than the AP's
5379         * sense of time, in both phase and frequency.  This timebase is similar
5380         * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5381         */
5382        uint32_t time_since_ec_boot_ms;
5383
5384        /*
5385         * Number of times the AP was reset by the EC since the last EC boot.
5386         * Note that the AP may be held in reset by the EC during the initial
5387         * boot sequence, such that the very first AP boot may count as more
5388         * than one here.
5389         */
5390        uint32_t ap_resets_since_ec_boot;
5391
5392        /*
5393         * The set of flags which describe the EC's most recent reset.  See
5394         * include/system.h RESET_FLAG_* for details.
5395         */
5396        uint32_t ec_reset_flags;
5397
5398        /* Empty log entries have both the cause and timestamp set to zero. */
5399        struct ap_reset_log_entry {
5400                /*
5401                 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5402                 * for details.
5403                 */
5404                uint16_t reset_cause;
5405
5406                /* Reserved for protocol growth. */
5407                uint16_t reserved;
5408
5409                /*
5410                 * The time of the reset's assertion, in milliseconds since the
5411                 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5412                 * Set to zero if the log entry is empty.
5413                 */
5414                uint32_t reset_time_ms;
5415        } recent_ap_reset[4];
5416} __ec_align4;
5417
5418/*
5419 * Add entropy to the device secret (stored in the rollback region).
5420 *
5421 * Depending on the chip, the operation may take a long time (e.g. to erase
5422 * flash), so the commands are asynchronous.
5423 */
5424#define EC_CMD_ADD_ENTROPY      0x0122
5425
5426enum add_entropy_action {
5427        /* Add entropy to the current secret. */
5428        ADD_ENTROPY_ASYNC = 0,
5429        /*
5430         * Add entropy, and also make sure that the previous secret is erased.
5431         * (this can be implemented by adding entropy multiple times until
5432         * all rolback blocks have been overwritten).
5433         */
5434        ADD_ENTROPY_RESET_ASYNC = 1,
5435        /* Read back result from the previous operation. */
5436        ADD_ENTROPY_GET_RESULT = 2,
5437};
5438
5439struct ec_params_rollback_add_entropy {
5440        uint8_t action;
5441} __ec_align1;
5442
5443/*
5444 * Perform a single read of a given ADC channel.
5445 */
5446#define EC_CMD_ADC_READ         0x0123
5447
5448struct ec_params_adc_read {
5449        uint8_t adc_channel;
5450} __ec_align1;
5451
5452struct ec_response_adc_read {
5453        int32_t adc_value;
5454} __ec_align4;
5455
5456/*
5457 * Read back rollback info
5458 */
5459#define EC_CMD_ROLLBACK_INFO            0x0124
5460
5461struct ec_response_rollback_info {
5462        int32_t id; /* Incrementing number to indicate which region to use. */
5463        int32_t rollback_min_version;
5464        int32_t rw_rollback_version;
5465} __ec_align4;
5466
5467
5468/* Issue AP reset */
5469#define EC_CMD_AP_RESET 0x0125
5470
5471/**
5472 * Get the number of peripheral charge ports
5473 */
5474#define EC_CMD_PCHG_COUNT 0x0134
5475
5476#define EC_PCHG_MAX_PORTS 8
5477
5478struct ec_response_pchg_count {
5479        uint8_t port_count;
5480} __ec_align1;
5481
5482/**
5483 * Get the status of a peripheral charge port
5484 */
5485#define EC_CMD_PCHG 0x0135
5486
5487struct ec_params_pchg {
5488        uint8_t port;
5489} __ec_align1;
5490
5491struct ec_response_pchg {
5492        uint32_t error;                 /* enum pchg_error */
5493        uint8_t state;                  /* enum pchg_state state */
5494        uint8_t battery_percentage;
5495        uint8_t unused0;
5496        uint8_t unused1;
5497        /* Fields added in version 1 */
5498        uint32_t fw_version;
5499        uint32_t dropped_event_count;
5500} __ec_align2;
5501
5502enum pchg_state {
5503        /* Charger is reset and not initialized. */
5504        PCHG_STATE_RESET = 0,
5505        /* Charger is initialized or disabled. */
5506        PCHG_STATE_INITIALIZED,
5507        /* Charger is enabled and ready to detect a device. */
5508        PCHG_STATE_ENABLED,
5509        /* Device is in proximity. */
5510        PCHG_STATE_DETECTED,
5511        /* Device is being charged. */
5512        PCHG_STATE_CHARGING,
5513        /* Device is fully charged. It implies DETECTED (& not charging). */
5514        PCHG_STATE_FULL,
5515        /* In download (a.k.a. firmware update) mode */
5516        PCHG_STATE_DOWNLOAD,
5517        /* In download mode. Ready for receiving data. */
5518        PCHG_STATE_DOWNLOADING,
5519        /* Device is ready for data communication. */
5520        PCHG_STATE_CONNECTED,
5521        /* Put no more entry below */
5522        PCHG_STATE_COUNT,
5523};
5524
5525#define EC_PCHG_STATE_TEXT { \
5526        [PCHG_STATE_RESET] = "RESET", \
5527        [PCHG_STATE_INITIALIZED] = "INITIALIZED", \
5528        [PCHG_STATE_ENABLED] = "ENABLED", \
5529        [PCHG_STATE_DETECTED] = "DETECTED", \
5530        [PCHG_STATE_CHARGING] = "CHARGING", \
5531        [PCHG_STATE_FULL] = "FULL", \
5532        [PCHG_STATE_DOWNLOAD] = "DOWNLOAD", \
5533        [PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \
5534        [PCHG_STATE_CONNECTED] = "CONNECTED", \
5535        }
5536
5537/*
5538 * Update firmware of peripheral chip
5539 */
5540#define EC_CMD_PCHG_UPDATE 0x0136
5541
5542/* Port number is encoded in bit[28:31]. */
5543#define EC_MKBP_PCHG_PORT_SHIFT         28
5544/* Utility macro for converting MKBP event to port number. */
5545#define EC_MKBP_PCHG_EVENT_TO_PORT(e)   (((e) >> EC_MKBP_PCHG_PORT_SHIFT) & 0xf)
5546/* Utility macro for extracting event bits. */
5547#define EC_MKBP_PCHG_EVENT_MASK(e)      ((e) \
5548                                        & GENMASK(EC_MKBP_PCHG_PORT_SHIFT-1, 0))
5549
5550#define EC_MKBP_PCHG_UPDATE_OPENED      BIT(0)
5551#define EC_MKBP_PCHG_WRITE_COMPLETE     BIT(1)
5552#define EC_MKBP_PCHG_UPDATE_CLOSED      BIT(2)
5553#define EC_MKBP_PCHG_UPDATE_ERROR       BIT(3)
5554#define EC_MKBP_PCHG_DEVICE_EVENT       BIT(4)
5555
5556enum ec_pchg_update_cmd {
5557        /* Reset chip to normal mode. */
5558        EC_PCHG_UPDATE_CMD_RESET_TO_NORMAL = 0,
5559        /* Reset and put a chip in update (a.k.a. download) mode. */
5560        EC_PCHG_UPDATE_CMD_OPEN,
5561        /* Write a block of data containing FW image. */
5562        EC_PCHG_UPDATE_CMD_WRITE,
5563        /* Close update session. */
5564        EC_PCHG_UPDATE_CMD_CLOSE,
5565        /* End of commands */
5566        EC_PCHG_UPDATE_CMD_COUNT,
5567};
5568
5569struct ec_params_pchg_update {
5570        /* PCHG port number */
5571        uint8_t port;
5572        /* enum ec_pchg_update_cmd */
5573        uint8_t cmd;
5574        /* Padding */
5575        uint8_t reserved0;
5576        uint8_t reserved1;
5577        /* Version of new firmware */
5578        uint32_t version;
5579        /* CRC32 of new firmware */
5580        uint32_t crc32;
5581        /* Address in chip memory where <data> is written to */
5582        uint32_t addr;
5583        /* Size of <data> */
5584        uint32_t size;
5585        /* Partial data of new firmware */
5586        uint8_t data[];
5587} __ec_align4;
5588
5589BUILD_ASSERT(EC_PCHG_UPDATE_CMD_COUNT
5590             < BIT(sizeof(((struct ec_params_pchg_update *)0)->cmd)*8));
5591
5592struct ec_response_pchg_update {
5593        /* Block size */
5594        uint32_t block_size;
5595} __ec_align4;
5596
5597
5598/*****************************************************************************/
5599/* Voltage regulator controls */
5600
5601/*
5602 * Get basic info of voltage regulator for given index.
5603 *
5604 * Returns the regulator name and supported voltage list in mV.
5605 */
5606#define EC_CMD_REGULATOR_GET_INFO 0x012C
5607
5608/* Maximum length of regulator name */
5609#define EC_REGULATOR_NAME_MAX_LEN 16
5610
5611/* Maximum length of the supported voltage list. */
5612#define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
5613
5614struct ec_params_regulator_get_info {
5615        uint32_t index;
5616} __ec_align4;
5617
5618struct ec_response_regulator_get_info {
5619        char name[EC_REGULATOR_NAME_MAX_LEN];
5620        uint16_t num_voltages;
5621        uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
5622} __ec_align2;
5623
5624/*
5625 * Configure the regulator as enabled / disabled.
5626 */
5627#define EC_CMD_REGULATOR_ENABLE 0x012D
5628
5629struct ec_params_regulator_enable {
5630        uint32_t index;
5631        uint8_t enable;
5632} __ec_align4;
5633
5634/*
5635 * Query if the regulator is enabled.
5636 *
5637 * Returns 1 if the regulator is enabled, 0 if not.
5638 */
5639#define EC_CMD_REGULATOR_IS_ENABLED 0x012E
5640
5641struct ec_params_regulator_is_enabled {
5642        uint32_t index;
5643} __ec_align4;
5644
5645struct ec_response_regulator_is_enabled {
5646        uint8_t enabled;
5647} __ec_align1;
5648
5649/*
5650 * Set voltage for the voltage regulator within the range specified.
5651 *
5652 * The driver should select the voltage in range closest to min_mv.
5653 *
5654 * Also note that this might be called before the regulator is enabled, and the
5655 * setting should be in effect after the regulator is enabled.
5656 */
5657#define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
5658
5659struct ec_params_regulator_set_voltage {
5660        uint32_t index;
5661        uint32_t min_mv;
5662        uint32_t max_mv;
5663} __ec_align4;
5664
5665/*
5666 * Get the currently configured voltage for the voltage regulator.
5667 *
5668 * Note that this might be called before the regulator is enabled, and this
5669 * should return the configured output voltage if the regulator is enabled.
5670 */
5671#define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
5672
5673struct ec_params_regulator_get_voltage {
5674        uint32_t index;
5675} __ec_align4;
5676
5677struct ec_response_regulator_get_voltage {
5678        uint32_t voltage_mv;
5679} __ec_align4;
5680
5681/*
5682 * Gather all discovery information for the given port and partner type.
5683 *
5684 * Note that if discovery has not yet completed, only the currently completed
5685 * responses will be filled in.   If the discovery data structures are changed
5686 * in the process of the command running, BUSY will be returned.
5687 *
5688 * VDO field sizes are set to the maximum possible number of VDOs a VDM may
5689 * contain, while the number of SVIDs here is selected to fit within the PROTO2
5690 * maximum parameter size.
5691 */
5692#define EC_CMD_TYPEC_DISCOVERY 0x0131
5693
5694enum typec_partner_type {
5695        TYPEC_PARTNER_SOP = 0,
5696        TYPEC_PARTNER_SOP_PRIME = 1,
5697};
5698
5699struct ec_params_typec_discovery {
5700        uint8_t port;
5701        uint8_t partner_type; /* enum typec_partner_type */
5702} __ec_align1;
5703
5704struct svid_mode_info {
5705        uint16_t svid;
5706        uint16_t mode_count;  /* Number of modes partner sent */
5707        uint32_t mode_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5708};
5709
5710struct ec_response_typec_discovery {
5711        uint8_t identity_count;    /* Number of identity VDOs partner sent */
5712        uint8_t svid_count;        /* Number of SVIDs partner sent */
5713        uint16_t reserved;
5714        uint32_t discovery_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5715        struct svid_mode_info svids[];
5716} __ec_align1;
5717
5718/* USB Type-C commands for AP-controlled device policy. */
5719#define EC_CMD_TYPEC_CONTROL 0x0132
5720
5721enum typec_control_command {
5722        TYPEC_CONTROL_COMMAND_EXIT_MODES,
5723        TYPEC_CONTROL_COMMAND_CLEAR_EVENTS,
5724        TYPEC_CONTROL_COMMAND_ENTER_MODE,
5725};
5726
5727struct ec_params_typec_control {
5728        uint8_t port;
5729        uint8_t command;        /* enum typec_control_command */
5730        uint16_t reserved;
5731
5732        /*
5733         * This section will be interpreted based on |command|. Define a
5734         * placeholder structure to avoid having to increase the size and bump
5735         * the command version when adding new sub-commands.
5736         */
5737        union {
5738                uint32_t clear_events_mask;
5739                uint8_t mode_to_enter;      /* enum typec_mode */
5740                uint8_t placeholder[128];
5741        };
5742} __ec_align1;
5743
5744/*
5745 * Gather all status information for a port.
5746 *
5747 * Note: this covers many of the return fields from the deprecated
5748 * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the
5749 * discovery data.  The "enum pd_cc_states" is defined with the deprecated
5750 * EC_CMD_USB_PD_CONTROL command.
5751 *
5752 * This also combines in the EC_CMD_USB_PD_MUX_INFO flags.
5753 */
5754#define EC_CMD_TYPEC_STATUS 0x0133
5755
5756/*
5757 * Power role.
5758 *
5759 * Note this is also used for PD header creation, and values align to those in
5760 * the Power Delivery Specification Revision 3.0 (See
5761 * 6.2.1.1.4 Port Power Role).
5762 */
5763enum pd_power_role {
5764        PD_ROLE_SINK = 0,
5765        PD_ROLE_SOURCE = 1
5766};
5767
5768/*
5769 * Data role.
5770 *
5771 * Note this is also used for PD header creation, and the first two values
5772 * align to those in the Power Delivery Specification Revision 3.0 (See
5773 * 6.2.1.1.6 Port Data Role).
5774 */
5775enum pd_data_role {
5776        PD_ROLE_UFP = 0,
5777        PD_ROLE_DFP = 1,
5778        PD_ROLE_DISCONNECTED = 2,
5779};
5780
5781enum pd_vconn_role {
5782        PD_ROLE_VCONN_OFF = 0,
5783        PD_ROLE_VCONN_SRC = 1,
5784};
5785
5786/*
5787 * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2,
5788 * regardless of whether a debug accessory is connected.
5789 */
5790enum tcpc_cc_polarity {
5791        /*
5792         * _CCx: is used to indicate the polarity while not connected to
5793         * a Debug Accessory.  Only one CC line will assert a resistor and
5794         * the other will be open.
5795         */
5796        POLARITY_CC1 = 0,
5797        POLARITY_CC2 = 1,
5798
5799        /*
5800         * _CCx_DTS is used to indicate the polarity while connected to a
5801         * SRC Debug Accessory.  Assert resistors on both lines.
5802         */
5803        POLARITY_CC1_DTS = 2,
5804        POLARITY_CC2_DTS = 3,
5805
5806        /*
5807         * The current TCPC code relies on these specific POLARITY values.
5808         * Adding in a check to verify if the list grows for any reason
5809         * that this will give a hint that other places need to be
5810         * adjusted.
5811         */
5812        POLARITY_COUNT
5813};
5814
5815#define PD_STATUS_EVENT_SOP_DISC_DONE           BIT(0)
5816#define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE     BIT(1)
5817#define PD_STATUS_EVENT_HARD_RESET              BIT(2)
5818
5819struct ec_params_typec_status {
5820        uint8_t port;
5821} __ec_align1;
5822
5823struct ec_response_typec_status {
5824        uint8_t pd_enabled;             /* PD communication enabled - bool */
5825        uint8_t dev_connected;          /* Device connected - bool */
5826        uint8_t sop_connected;          /* Device is SOP PD capable - bool */
5827        uint8_t source_cap_count;       /* Number of Source Cap PDOs */
5828
5829        uint8_t power_role;             /* enum pd_power_role */
5830        uint8_t data_role;              /* enum pd_data_role */
5831        uint8_t vconn_role;             /* enum pd_vconn_role */
5832        uint8_t sink_cap_count;         /* Number of Sink Cap PDOs */
5833
5834        uint8_t polarity;               /* enum tcpc_cc_polarity */
5835        uint8_t cc_state;               /* enum pd_cc_states */
5836        uint8_t dp_pin;                 /* DP pin mode (MODE_DP_IN_[A-E]) */
5837        uint8_t mux_state;              /* USB_PD_MUX* - encoded mux state */
5838
5839        char tc_state[32];              /* TC state name */
5840
5841        uint32_t events;                /* PD_STATUS_EVENT bitmask */
5842
5843        /*
5844         * BCD PD revisions for partners
5845         *
5846         * The format has the PD major reversion in the upper nibble, and PD
5847         * minor version in the next nibble.  Following two nibbles are
5848         * currently 0.
5849         * ex. PD 3.2 would map to 0x3200
5850         *
5851         * PD major/minor will be 0 if no PD device is connected.
5852         */
5853        uint16_t sop_revision;
5854        uint16_t sop_prime_revision;
5855
5856        uint32_t source_cap_pdos[7];    /* Max 7 PDOs can be present */
5857
5858        uint32_t sink_cap_pdos[7];      /* Max 7 PDOs can be present */
5859} __ec_align1;
5860
5861/*****************************************************************************/
5862/* The command range 0x200-0x2FF is reserved for Rotor. */
5863
5864/*****************************************************************************/
5865/*
5866 * Reserve a range of host commands for the CR51 firmware.
5867 */
5868#define EC_CMD_CR51_BASE 0x0300
5869#define EC_CMD_CR51_LAST 0x03FF
5870
5871/*****************************************************************************/
5872/* Fingerprint MCU commands: range 0x0400-0x040x */
5873
5874/* Fingerprint SPI sensor passthru command: prototyping ONLY */
5875#define EC_CMD_FP_PASSTHRU 0x0400
5876
5877#define EC_FP_FLAG_NOT_COMPLETE 0x1
5878
5879struct ec_params_fp_passthru {
5880        uint16_t len;           /* Number of bytes to write then read */
5881        uint16_t flags;         /* EC_FP_FLAG_xxx */
5882        uint8_t data[];         /* Data to send */
5883} __ec_align2;
5884
5885/* Configure the Fingerprint MCU behavior */
5886#define EC_CMD_FP_MODE 0x0402
5887
5888/* Put the sensor in its lowest power mode */
5889#define FP_MODE_DEEPSLEEP      BIT(0)
5890/* Wait to see a finger on the sensor */
5891#define FP_MODE_FINGER_DOWN    BIT(1)
5892/* Poll until the finger has left the sensor */
5893#define FP_MODE_FINGER_UP      BIT(2)
5894/* Capture the current finger image */
5895#define FP_MODE_CAPTURE        BIT(3)
5896/* Finger enrollment session on-going */
5897#define FP_MODE_ENROLL_SESSION BIT(4)
5898/* Enroll the current finger image */
5899#define FP_MODE_ENROLL_IMAGE   BIT(5)
5900/* Try to match the current finger image */
5901#define FP_MODE_MATCH          BIT(6)
5902/* Reset and re-initialize the sensor. */
5903#define FP_MODE_RESET_SENSOR   BIT(7)
5904/* special value: don't change anything just read back current mode */
5905#define FP_MODE_DONT_CHANGE    BIT(31)
5906
5907#define FP_VALID_MODES (FP_MODE_DEEPSLEEP      | \
5908                        FP_MODE_FINGER_DOWN    | \
5909                        FP_MODE_FINGER_UP      | \
5910                        FP_MODE_CAPTURE        | \
5911                        FP_MODE_ENROLL_SESSION | \
5912                        FP_MODE_ENROLL_IMAGE   | \
5913                        FP_MODE_MATCH          | \
5914                        FP_MODE_RESET_SENSOR   | \
5915                        FP_MODE_DONT_CHANGE)
5916
5917/* Capture types defined in bits [30..28] */
5918#define FP_MODE_CAPTURE_TYPE_SHIFT 28
5919#define FP_MODE_CAPTURE_TYPE_MASK  (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
5920/*
5921 * This enum must remain ordered, if you add new values you must ensure that
5922 * FP_CAPTURE_TYPE_MAX is still the last one.
5923 */
5924enum fp_capture_type {
5925        /* Full blown vendor-defined capture (produces 'frame_size' bytes) */
5926        FP_CAPTURE_VENDOR_FORMAT = 0,
5927        /* Simple raw image capture (produces width x height x bpp bits) */
5928        FP_CAPTURE_SIMPLE_IMAGE = 1,
5929        /* Self test pattern (e.g. checkerboard) */
5930        FP_CAPTURE_PATTERN0 = 2,
5931        /* Self test pattern (e.g. inverted checkerboard) */
5932        FP_CAPTURE_PATTERN1 = 3,
5933        /* Capture for Quality test with fixed contrast */
5934        FP_CAPTURE_QUALITY_TEST = 4,
5935        /* Capture for pixel reset value test */
5936        FP_CAPTURE_RESET_TEST = 5,
5937        FP_CAPTURE_TYPE_MAX,
5938};
5939/* Extracts the capture type from the sensor 'mode' word */
5940#define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
5941                                       >> FP_MODE_CAPTURE_TYPE_SHIFT)
5942
5943struct ec_params_fp_mode {
5944        uint32_t mode; /* as defined by FP_MODE_ constants */
5945} __ec_align4;
5946
5947struct ec_response_fp_mode {
5948        uint32_t mode; /* as defined by FP_MODE_ constants */
5949} __ec_align4;
5950
5951/* Retrieve Fingerprint sensor information */
5952#define EC_CMD_FP_INFO 0x0403
5953
5954/* Number of dead pixels detected on the last maintenance */
5955#define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
5956/* Unknown number of dead pixels detected on the last maintenance */
5957#define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
5958/* No interrupt from the sensor */
5959#define FP_ERROR_NO_IRQ    BIT(12)
5960/* SPI communication error */
5961#define FP_ERROR_SPI_COMM  BIT(13)
5962/* Invalid sensor Hardware ID */
5963#define FP_ERROR_BAD_HWID  BIT(14)
5964/* Sensor initialization failed */
5965#define FP_ERROR_INIT_FAIL BIT(15)
5966
5967struct ec_response_fp_info_v0 {
5968        /* Sensor identification */
5969        uint32_t vendor_id;
5970        uint32_t product_id;
5971        uint32_t model_id;
5972        uint32_t version;
5973        /* Image frame characteristics */
5974        uint32_t frame_size;
5975        uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5976        uint16_t width;
5977        uint16_t height;
5978        uint16_t bpp;
5979        uint16_t errors; /* see FP_ERROR_ flags above */
5980} __ec_align4;
5981
5982struct ec_response_fp_info {
5983        /* Sensor identification */
5984        uint32_t vendor_id;
5985        uint32_t product_id;
5986        uint32_t model_id;
5987        uint32_t version;
5988        /* Image frame characteristics */
5989        uint32_t frame_size;
5990        uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5991        uint16_t width;
5992        uint16_t height;
5993        uint16_t bpp;
5994        uint16_t errors; /* see FP_ERROR_ flags above */
5995        /* Template/finger current information */
5996        uint32_t template_size;  /* max template size in bytes */
5997        uint16_t template_max;   /* maximum number of fingers/templates */
5998        uint16_t template_valid; /* number of valid fingers/templates */
5999        uint32_t template_dirty; /* bitmap of templates with MCU side changes */
6000        uint32_t template_version; /* version of the template format */
6001} __ec_align4;
6002
6003/* Get the last captured finger frame or a template content */
6004#define EC_CMD_FP_FRAME 0x0404
6005
6006/* constants defining the 'offset' field which also contains the frame index */
6007#define FP_FRAME_INDEX_SHIFT       28
6008/* Frame buffer where the captured image is stored */
6009#define FP_FRAME_INDEX_RAW_IMAGE    0
6010/* First frame buffer holding a template */
6011#define FP_FRAME_INDEX_TEMPLATE     1
6012#define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
6013#define FP_FRAME_OFFSET_MASK       0x0FFFFFFF
6014
6015/* Version of the format of the encrypted templates. */
6016#define FP_TEMPLATE_FORMAT_VERSION 3
6017
6018/* Constants for encryption parameters */
6019#define FP_CONTEXT_NONCE_BYTES 12
6020#define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
6021#define FP_CONTEXT_TAG_BYTES 16
6022#define FP_CONTEXT_SALT_BYTES 16
6023#define FP_CONTEXT_TPM_BYTES 32
6024
6025struct ec_fp_template_encryption_metadata {
6026        /*
6027         * Version of the structure format (N=3).
6028         */
6029        uint16_t struct_version;
6030        /* Reserved bytes, set to 0. */
6031        uint16_t reserved;
6032        /*
6033         * The salt is *only* ever used for key derivation. The nonce is unique,
6034         * a different one is used for every message.
6035         */
6036        uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
6037        uint8_t salt[FP_CONTEXT_SALT_BYTES];
6038        uint8_t tag[FP_CONTEXT_TAG_BYTES];
6039};
6040
6041struct ec_params_fp_frame {
6042        /*
6043         * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
6044         * in the high nibble, and the real offset within the frame in
6045         * FP_FRAME_OFFSET_MASK.
6046         */
6047        uint32_t offset;
6048        uint32_t size;
6049} __ec_align4;
6050
6051/* Load a template into the MCU */
6052#define EC_CMD_FP_TEMPLATE 0x0405
6053
6054/* Flag in the 'size' field indicating that the full template has been sent */
6055#define FP_TEMPLATE_COMMIT 0x80000000
6056
6057struct ec_params_fp_template {
6058        uint32_t offset;
6059        uint32_t size;
6060        uint8_t data[];
6061} __ec_align4;
6062
6063/* Clear the current fingerprint user context and set a new one */
6064#define EC_CMD_FP_CONTEXT 0x0406
6065
6066struct ec_params_fp_context {
6067        uint32_t userid[FP_CONTEXT_USERID_WORDS];
6068} __ec_align4;
6069
6070#define EC_CMD_FP_STATS 0x0407
6071
6072#define FPSTATS_CAPTURE_INV  BIT(0)
6073#define FPSTATS_MATCHING_INV BIT(1)
6074
6075struct ec_response_fp_stats {
6076        uint32_t capture_time_us;
6077        uint32_t matching_time_us;
6078        uint32_t overall_time_us;
6079        struct {
6080                uint32_t lo;
6081                uint32_t hi;
6082        } overall_t0;
6083        uint8_t timestamps_invalid;
6084        int8_t template_matched;
6085} __ec_align2;
6086
6087#define EC_CMD_FP_SEED 0x0408
6088struct ec_params_fp_seed {
6089        /*
6090         * Version of the structure format (N=3).
6091         */
6092        uint16_t struct_version;
6093        /* Reserved bytes, set to 0. */
6094        uint16_t reserved;
6095        /* Seed from the TPM. */
6096        uint8_t seed[FP_CONTEXT_TPM_BYTES];
6097} __ec_align4;
6098
6099#define EC_CMD_FP_ENC_STATUS 0x0409
6100
6101/* FP TPM seed has been set or not */
6102#define FP_ENC_STATUS_SEED_SET BIT(0)
6103
6104struct ec_response_fp_encryption_status {
6105        /* Used bits in encryption engine status */
6106        uint32_t valid_flags;
6107        /* Encryption engine status */
6108        uint32_t status;
6109} __ec_align4;
6110
6111/*****************************************************************************/
6112/* Touchpad MCU commands: range 0x0500-0x05FF */
6113
6114/* Perform touchpad self test */
6115#define EC_CMD_TP_SELF_TEST 0x0500
6116
6117/* Get number of frame types, and the size of each type */
6118#define EC_CMD_TP_FRAME_INFO 0x0501
6119
6120struct ec_response_tp_frame_info {
6121        uint32_t n_frames;
6122        uint32_t frame_sizes[];
6123} __ec_align4;
6124
6125/* Create a snapshot of current frame readings */
6126#define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
6127
6128/* Read the frame */
6129#define EC_CMD_TP_FRAME_GET 0x0503
6130
6131struct ec_params_tp_frame_get {
6132        uint32_t frame_index;
6133        uint32_t offset;
6134        uint32_t size;
6135} __ec_align4;
6136
6137/*****************************************************************************/
6138/* EC-EC communication commands: range 0x0600-0x06FF */
6139
6140#define EC_COMM_TEXT_MAX 8
6141
6142/*
6143 * Get battery static information, i.e. information that never changes, or
6144 * very infrequently.
6145 */
6146#define EC_CMD_BATTERY_GET_STATIC 0x0600
6147
6148/**
6149 * struct ec_params_battery_static_info - Battery static info parameters
6150 * @index: Battery index.
6151 */
6152struct ec_params_battery_static_info {
6153        uint8_t index;
6154} __ec_align_size1;
6155
6156/**
6157 * struct ec_response_battery_static_info - Battery static info response
6158 * @design_capacity: Battery Design Capacity (mAh)
6159 * @design_voltage: Battery Design Voltage (mV)
6160 * @manufacturer: Battery Manufacturer String
6161 * @model: Battery Model Number String
6162 * @serial: Battery Serial Number String
6163 * @type: Battery Type String
6164 * @cycle_count: Battery Cycle Count
6165 */
6166struct ec_response_battery_static_info {
6167        uint16_t design_capacity;
6168        uint16_t design_voltage;
6169        char manufacturer[EC_COMM_TEXT_MAX];
6170        char model[EC_COMM_TEXT_MAX];
6171        char serial[EC_COMM_TEXT_MAX];
6172        char type[EC_COMM_TEXT_MAX];
6173        /* TODO(crbug.com/795991): Consider moving to dynamic structure. */
6174        uint32_t cycle_count;
6175} __ec_align4;
6176
6177/*
6178 * Get battery dynamic information, i.e. information that is likely to change
6179 * every time it is read.
6180 */
6181#define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
6182
6183/**
6184 * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
6185 * @index: Battery index.
6186 */
6187struct ec_params_battery_dynamic_info {
6188        uint8_t index;
6189} __ec_align_size1;
6190
6191/**
6192 * struct ec_response_battery_dynamic_info - Battery dynamic info response
6193 * @actual_voltage: Battery voltage (mV)
6194 * @actual_current: Battery current (mA); negative=discharging
6195 * @remaining_capacity: Remaining capacity (mAh)
6196 * @full_capacity: Capacity (mAh, might change occasionally)
6197 * @flags: Flags, see EC_BATT_FLAG_*
6198 * @desired_voltage: Charging voltage desired by battery (mV)
6199 * @desired_current: Charging current desired by battery (mA)
6200 */
6201struct ec_response_battery_dynamic_info {
6202        int16_t actual_voltage;
6203        int16_t actual_current;
6204        int16_t remaining_capacity;
6205        int16_t full_capacity;
6206        int16_t flags;
6207        int16_t desired_voltage;
6208        int16_t desired_current;
6209} __ec_align2;
6210
6211/*
6212 * Control charger chip. Used to control charger chip on the slave.
6213 */
6214#define EC_CMD_CHARGER_CONTROL 0x0602
6215
6216/**
6217 * struct ec_params_charger_control - Charger control parameters
6218 * @max_current: Charger current (mA). Positive to allow base to draw up to
6219 *     max_current and (possibly) charge battery, negative to request current
6220 *     from base (OTG).
6221 * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
6222 *     >= 0.
6223 * @allow_charging: Allow base battery charging (only makes sense if
6224 *     max_current > 0).
6225 */
6226struct ec_params_charger_control {
6227        int16_t max_current;
6228        uint16_t otg_voltage;
6229        uint8_t allow_charging;
6230} __ec_align_size1;
6231
6232/* Get ACK from the USB-C SS muxes */
6233#define EC_CMD_USB_PD_MUX_ACK 0x0603
6234
6235struct ec_params_usb_pd_mux_ack {
6236        uint8_t port; /* USB-C port number */
6237} __ec_align1;
6238
6239/*****************************************************************************/
6240/*
6241 * Reserve a range of host commands for board-specific, experimental, or
6242 * special purpose features. These can be (re)used without updating this file.
6243 *
6244 * CAUTION: Don't go nuts with this. Shipping products should document ALL
6245 * their EC commands for easier development, testing, debugging, and support.
6246 *
6247 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
6248 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
6249 *
6250 * In your experimental code, you may want to do something like this:
6251 *
6252 *   #define EC_CMD_MAGIC_FOO 0x0000
6253 *   #define EC_CMD_MAGIC_BAR 0x0001
6254 *   #define EC_CMD_MAGIC_HEY 0x0002
6255 *
6256 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
6257 *      EC_VER_MASK(0);
6258 *
6259 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
6260 *      EC_VER_MASK(0);
6261 *
6262 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
6263 *      EC_VER_MASK(0);
6264 */
6265#define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
6266#define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
6267
6268/*
6269 * Given the private host command offset, calculate the true private host
6270 * command value.
6271 */
6272#define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
6273        (EC_CMD_BOARD_SPECIFIC_BASE + (command))
6274
6275/*****************************************************************************/
6276/*
6277 * Passthru commands
6278 *
6279 * Some platforms have sub-processors chained to each other.  For example.
6280 *
6281 *     AP <--> EC <--> PD MCU
6282 *
6283 * The top 2 bits of the command number are used to indicate which device the
6284 * command is intended for.  Device 0 is always the device receiving the
6285 * command; other device mapping is board-specific.
6286 *
6287 * When a device receives a command to be passed to a sub-processor, it passes
6288 * it on with the device number set back to 0.  This allows the sub-processor
6289 * to remain blissfully unaware of whether the command originated on the next
6290 * device up the chain, or was passed through from the AP.
6291 *
6292 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
6293 *     AP sends command 0x4002 to the EC
6294 *     EC sends command 0x0002 to the PD MCU
6295 *     EC forwards PD MCU response back to the AP
6296 */
6297
6298/* Offset and max command number for sub-device n */
6299#define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
6300#define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
6301
6302/*****************************************************************************/
6303/*
6304 * Deprecated constants. These constants have been renamed for clarity. The
6305 * meaning and size has not changed. Programs that use the old names should
6306 * switch to the new names soon, as the old names may not be carried forward
6307 * forever.
6308 */
6309#define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
6310#define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
6311#define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
6312
6313
6314
6315#endif  /* __CROS_EC_COMMANDS_H */
6316