linux/include/linux/power_supply.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *  Universal power supply monitor class
   4 *
   5 *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
   6 *  Copyright © 2004  Szabolcs Gyurko
   7 *  Copyright © 2003  Ian Molton <spyro@f2s.com>
   8 *
   9 *  Modified: 2004, Oct     Szabolcs Gyurko
  10 */
  11
  12#ifndef __LINUX_POWER_SUPPLY_H__
  13#define __LINUX_POWER_SUPPLY_H__
  14
  15#include <linux/device.h>
  16#include <linux/workqueue.h>
  17#include <linux/leds.h>
  18#include <linux/spinlock.h>
  19#include <linux/notifier.h>
  20
  21/*
  22 * All voltages, currents, charges, energies, time and temperatures in uV,
  23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
  24 * stated. It's driver's job to convert its raw values to units in which
  25 * this class operates.
  26 */
  27
  28/*
  29 * For systems where the charger determines the maximum battery capacity
  30 * the min and max fields should be used to present these values to user
  31 * space. Unused/unknown fields will not appear in sysfs.
  32 */
  33
  34enum {
  35        POWER_SUPPLY_STATUS_UNKNOWN = 0,
  36        POWER_SUPPLY_STATUS_CHARGING,
  37        POWER_SUPPLY_STATUS_DISCHARGING,
  38        POWER_SUPPLY_STATUS_NOT_CHARGING,
  39        POWER_SUPPLY_STATUS_FULL,
  40};
  41
  42/* What algorithm is the charger using? */
  43enum {
  44        POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
  45        POWER_SUPPLY_CHARGE_TYPE_NONE,
  46        POWER_SUPPLY_CHARGE_TYPE_TRICKLE,       /* slow speed */
  47        POWER_SUPPLY_CHARGE_TYPE_FAST,          /* fast speed */
  48        POWER_SUPPLY_CHARGE_TYPE_STANDARD,      /* normal speed */
  49        POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,      /* dynamically adjusted speed */
  50        POWER_SUPPLY_CHARGE_TYPE_CUSTOM,        /* use CHARGE_CONTROL_* props */
  51        POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,      /* slow speed, longer life */
  52        POWER_SUPPLY_CHARGE_TYPE_BYPASS,        /* bypassing the charger */
  53};
  54
  55enum {
  56        POWER_SUPPLY_HEALTH_UNKNOWN = 0,
  57        POWER_SUPPLY_HEALTH_GOOD,
  58        POWER_SUPPLY_HEALTH_OVERHEAT,
  59        POWER_SUPPLY_HEALTH_DEAD,
  60        POWER_SUPPLY_HEALTH_OVERVOLTAGE,
  61        POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
  62        POWER_SUPPLY_HEALTH_COLD,
  63        POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
  64        POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
  65        POWER_SUPPLY_HEALTH_OVERCURRENT,
  66        POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
  67        POWER_SUPPLY_HEALTH_WARM,
  68        POWER_SUPPLY_HEALTH_COOL,
  69        POWER_SUPPLY_HEALTH_HOT,
  70        POWER_SUPPLY_HEALTH_NO_BATTERY,
  71};
  72
  73enum {
  74        POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
  75        POWER_SUPPLY_TECHNOLOGY_NiMH,
  76        POWER_SUPPLY_TECHNOLOGY_LION,
  77        POWER_SUPPLY_TECHNOLOGY_LIPO,
  78        POWER_SUPPLY_TECHNOLOGY_LiFe,
  79        POWER_SUPPLY_TECHNOLOGY_NiCd,
  80        POWER_SUPPLY_TECHNOLOGY_LiMn,
  81};
  82
  83enum {
  84        POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
  85        POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
  86        POWER_SUPPLY_CAPACITY_LEVEL_LOW,
  87        POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
  88        POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
  89        POWER_SUPPLY_CAPACITY_LEVEL_FULL,
  90};
  91
  92enum {
  93        POWER_SUPPLY_SCOPE_UNKNOWN = 0,
  94        POWER_SUPPLY_SCOPE_SYSTEM,
  95        POWER_SUPPLY_SCOPE_DEVICE,
  96};
  97
  98enum power_supply_property {
  99        /* Properties of type `int' */
 100        POWER_SUPPLY_PROP_STATUS = 0,
 101        POWER_SUPPLY_PROP_CHARGE_TYPE,
 102        POWER_SUPPLY_PROP_HEALTH,
 103        POWER_SUPPLY_PROP_PRESENT,
 104        POWER_SUPPLY_PROP_ONLINE,
 105        POWER_SUPPLY_PROP_AUTHENTIC,
 106        POWER_SUPPLY_PROP_TECHNOLOGY,
 107        POWER_SUPPLY_PROP_CYCLE_COUNT,
 108        POWER_SUPPLY_PROP_VOLTAGE_MAX,
 109        POWER_SUPPLY_PROP_VOLTAGE_MIN,
 110        POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
 111        POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
 112        POWER_SUPPLY_PROP_VOLTAGE_NOW,
 113        POWER_SUPPLY_PROP_VOLTAGE_AVG,
 114        POWER_SUPPLY_PROP_VOLTAGE_OCV,
 115        POWER_SUPPLY_PROP_VOLTAGE_BOOT,
 116        POWER_SUPPLY_PROP_CURRENT_MAX,
 117        POWER_SUPPLY_PROP_CURRENT_NOW,
 118        POWER_SUPPLY_PROP_CURRENT_AVG,
 119        POWER_SUPPLY_PROP_CURRENT_BOOT,
 120        POWER_SUPPLY_PROP_POWER_NOW,
 121        POWER_SUPPLY_PROP_POWER_AVG,
 122        POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
 123        POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
 124        POWER_SUPPLY_PROP_CHARGE_FULL,
 125        POWER_SUPPLY_PROP_CHARGE_EMPTY,
 126        POWER_SUPPLY_PROP_CHARGE_NOW,
 127        POWER_SUPPLY_PROP_CHARGE_AVG,
 128        POWER_SUPPLY_PROP_CHARGE_COUNTER,
 129        POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
 130        POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
 131        POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
 132        POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
 133        POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
 134        POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
 135        POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
 136        POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
 137        POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
 138        POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
 139        POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
 140        POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
 141        POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
 142        POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
 143        POWER_SUPPLY_PROP_ENERGY_FULL,
 144        POWER_SUPPLY_PROP_ENERGY_EMPTY,
 145        POWER_SUPPLY_PROP_ENERGY_NOW,
 146        POWER_SUPPLY_PROP_ENERGY_AVG,
 147        POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
 148        POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
 149        POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
 150        POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
 151        POWER_SUPPLY_PROP_CAPACITY_LEVEL,
 152        POWER_SUPPLY_PROP_TEMP,
 153        POWER_SUPPLY_PROP_TEMP_MAX,
 154        POWER_SUPPLY_PROP_TEMP_MIN,
 155        POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
 156        POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
 157        POWER_SUPPLY_PROP_TEMP_AMBIENT,
 158        POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
 159        POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
 160        POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
 161        POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
 162        POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
 163        POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
 164        POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
 165        POWER_SUPPLY_PROP_USB_TYPE,
 166        POWER_SUPPLY_PROP_SCOPE,
 167        POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
 168        POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
 169        POWER_SUPPLY_PROP_CALIBRATE,
 170        POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
 171        POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
 172        POWER_SUPPLY_PROP_MANUFACTURE_DAY,
 173        /* Properties of type `const char *' */
 174        POWER_SUPPLY_PROP_MODEL_NAME,
 175        POWER_SUPPLY_PROP_MANUFACTURER,
 176        POWER_SUPPLY_PROP_SERIAL_NUMBER,
 177};
 178
 179enum power_supply_type {
 180        POWER_SUPPLY_TYPE_UNKNOWN = 0,
 181        POWER_SUPPLY_TYPE_BATTERY,
 182        POWER_SUPPLY_TYPE_UPS,
 183        POWER_SUPPLY_TYPE_MAINS,
 184        POWER_SUPPLY_TYPE_USB,                  /* Standard Downstream Port */
 185        POWER_SUPPLY_TYPE_USB_DCP,              /* Dedicated Charging Port */
 186        POWER_SUPPLY_TYPE_USB_CDP,              /* Charging Downstream Port */
 187        POWER_SUPPLY_TYPE_USB_ACA,              /* Accessory Charger Adapters */
 188        POWER_SUPPLY_TYPE_USB_TYPE_C,           /* Type C Port */
 189        POWER_SUPPLY_TYPE_USB_PD,               /* Power Delivery Port */
 190        POWER_SUPPLY_TYPE_USB_PD_DRP,           /* PD Dual Role Port */
 191        POWER_SUPPLY_TYPE_APPLE_BRICK_ID,       /* Apple Charging Method */
 192        POWER_SUPPLY_TYPE_WIRELESS,             /* Wireless */
 193};
 194
 195enum power_supply_usb_type {
 196        POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
 197        POWER_SUPPLY_USB_TYPE_SDP,              /* Standard Downstream Port */
 198        POWER_SUPPLY_USB_TYPE_DCP,              /* Dedicated Charging Port */
 199        POWER_SUPPLY_USB_TYPE_CDP,              /* Charging Downstream Port */
 200        POWER_SUPPLY_USB_TYPE_ACA,              /* Accessory Charger Adapters */
 201        POWER_SUPPLY_USB_TYPE_C,                /* Type C Port */
 202        POWER_SUPPLY_USB_TYPE_PD,               /* Power Delivery Port */
 203        POWER_SUPPLY_USB_TYPE_PD_DRP,           /* PD Dual Role Port */
 204        POWER_SUPPLY_USB_TYPE_PD_PPS,           /* PD Programmable Power Supply */
 205        POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,   /* Apple Charging Method */
 206};
 207
 208enum power_supply_charge_behaviour {
 209        POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
 210        POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
 211        POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
 212};
 213
 214enum power_supply_notifier_events {
 215        PSY_EVENT_PROP_CHANGED,
 216};
 217
 218union power_supply_propval {
 219        int intval;
 220        const char *strval;
 221};
 222
 223struct device_node;
 224struct power_supply;
 225
 226/* Run-time specific power supply configuration */
 227struct power_supply_config {
 228        struct device_node *of_node;
 229        struct fwnode_handle *fwnode;
 230
 231        /* Driver private data */
 232        void *drv_data;
 233
 234        /* Device specific sysfs attributes */
 235        const struct attribute_group **attr_grp;
 236
 237        char **supplied_to;
 238        size_t num_supplicants;
 239};
 240
 241/* Description of power supply */
 242struct power_supply_desc {
 243        const char *name;
 244        enum power_supply_type type;
 245        const enum power_supply_usb_type *usb_types;
 246        size_t num_usb_types;
 247        const enum power_supply_property *properties;
 248        size_t num_properties;
 249
 250        /*
 251         * Functions for drivers implementing power supply class.
 252         * These shouldn't be called directly by other drivers for accessing
 253         * this power supply. Instead use power_supply_*() functions (for
 254         * example power_supply_get_property()).
 255         */
 256        int (*get_property)(struct power_supply *psy,
 257                            enum power_supply_property psp,
 258                            union power_supply_propval *val);
 259        int (*set_property)(struct power_supply *psy,
 260                            enum power_supply_property psp,
 261                            const union power_supply_propval *val);
 262        /*
 263         * property_is_writeable() will be called during registration
 264         * of power supply. If this happens during device probe then it must
 265         * not access internal data of device (because probe did not end).
 266         */
 267        int (*property_is_writeable)(struct power_supply *psy,
 268                                     enum power_supply_property psp);
 269        void (*external_power_changed)(struct power_supply *psy);
 270        void (*set_charged)(struct power_supply *psy);
 271
 272        /*
 273         * Set if thermal zone should not be created for this power supply.
 274         * For example for virtual supplies forwarding calls to actual
 275         * sensors or other supplies.
 276         */
 277        bool no_thermal;
 278        /* For APM emulation, think legacy userspace. */
 279        int use_for_apm;
 280};
 281
 282struct power_supply {
 283        const struct power_supply_desc *desc;
 284
 285        char **supplied_to;
 286        size_t num_supplicants;
 287
 288        char **supplied_from;
 289        size_t num_supplies;
 290        struct device_node *of_node;
 291
 292        /* Driver private data */
 293        void *drv_data;
 294
 295        /* private */
 296        struct device dev;
 297        struct work_struct changed_work;
 298        struct delayed_work deferred_register_work;
 299        spinlock_t changed_lock;
 300        bool changed;
 301        bool initialized;
 302        bool removing;
 303        atomic_t use_cnt;
 304#ifdef CONFIG_THERMAL
 305        struct thermal_zone_device *tzd;
 306        struct thermal_cooling_device *tcd;
 307#endif
 308
 309#ifdef CONFIG_LEDS_TRIGGERS
 310        struct led_trigger *charging_full_trig;
 311        char *charging_full_trig_name;
 312        struct led_trigger *charging_trig;
 313        char *charging_trig_name;
 314        struct led_trigger *full_trig;
 315        char *full_trig_name;
 316        struct led_trigger *online_trig;
 317        char *online_trig_name;
 318        struct led_trigger *charging_blink_full_solid_trig;
 319        char *charging_blink_full_solid_trig_name;
 320#endif
 321};
 322
 323/*
 324 * This is recommended structure to specify static power supply parameters.
 325 * Generic one, parametrizable for different power supplies. Power supply
 326 * class itself does not use it, but that's what implementing most platform
 327 * drivers, should try reuse for consistency.
 328 */
 329
 330struct power_supply_info {
 331        const char *name;
 332        int technology;
 333        int voltage_max_design;
 334        int voltage_min_design;
 335        int charge_full_design;
 336        int charge_empty_design;
 337        int energy_full_design;
 338        int energy_empty_design;
 339        int use_for_apm;
 340};
 341
 342struct power_supply_battery_ocv_table {
 343        int ocv;        /* microVolts */
 344        int capacity;   /* percent */
 345};
 346
 347struct power_supply_resistance_temp_table {
 348        int temp;       /* celsius */
 349        int resistance; /* internal resistance percent */
 350};
 351
 352struct power_supply_vbat_ri_table {
 353        int vbat_uv;    /* Battery voltage in microvolt */
 354        int ri_uohm;    /* Internal resistance in microohm */
 355};
 356
 357/**
 358 * struct power_supply_maintenance_charge_table - setting for maintenace charging
 359 * @charge_current_max_ua: maintenance charging current that is used to keep
 360 *   the charge of the battery full as current is consumed after full charging.
 361 *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
 362 *   reach this voltage the maintenance charging current is turned off. It is
 363 *   turned back on if we fall below this voltage.
 364 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
 365 *   lower than the constant_charge_voltage_max_uv. We can apply this settings
 366 *   charge_current_max_ua until we get back up to this voltage.
 367 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
 368 *   time in minutes. We will only use maintenance charging in this setting
 369 *   for a certain amount of time, then we will first move to the next
 370 *   maintenance charge current and voltage pair in respective array and wait
 371 *   for the next safety timer timeout, or, if we reached the last maintencance
 372 *   charging setting, disable charging until we reach
 373 *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
 374 *   These timers should be chosen to align with the typical discharge curve
 375 *   for the battery.
 376 *
 377 * When the main CC/CV charging is complete the battery can optionally be
 378 * maintenance charged at the voltages from this table: a table of settings is
 379 * traversed using a slightly lower current and voltage than what is used for
 380 * CC/CV charging. The maintenance charging will for safety reasons not go on
 381 * indefinately: we lower the current and voltage with successive maintenance
 382 * settings, then disable charging completely after we reach the last one,
 383 * and after that we do not restart charging until we reach
 384 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
 385 * ordinary CC/CV charging from there.
 386 *
 387 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
 388 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for
 389 * 60 hours, then maintenance charged at 600mA and 4100mV for 200 hours.
 390 * After this the charge cycle is restarted waiting for
 391 * charge_restart_voltage_uv.
 392 *
 393 * For most mobile electronics this type of maintenance charging is enough for
 394 * the user to disconnect the device and make use of it before both maintenance
 395 * charging cycles are complete.
 396 */
 397struct power_supply_maintenance_charge_table {
 398        int charge_current_max_ua;
 399        int charge_voltage_max_uv;
 400        int charge_safety_timer_minutes;
 401};
 402
 403#define POWER_SUPPLY_OCV_TEMP_MAX 20
 404
 405/**
 406 * struct power_supply_battery_info - information about batteries
 407 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
 408 * @energy_full_design_uwh: energy content when fully charged in microwatt
 409 *   hours
 410 * @charge_full_design_uah: charge content when fully charged in microampere
 411 *   hours
 412 * @voltage_min_design_uv: minimum voltage across the poles when the battery
 413 *   is at minimum voltage level in microvolts. If the voltage drops below this
 414 *   level the battery will need precharging when using CC/CV charging.
 415 * @voltage_max_design_uv: voltage across the poles when the battery is fully
 416 *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
 417 *   printed on the label of the battery.
 418 * @tricklecharge_current_ua: the tricklecharge current used when trickle
 419 *   charging the battery in microamperes. This is the charging phase when the
 420 *   battery is completely empty and we need to carefully trickle in some
 421 *   charge until we reach the precharging voltage.
 422 * @precharge_current_ua: current to use in the precharge phase in microamperes,
 423 *   the precharge rate is limited by limiting the current to this value.
 424 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
 425 *   microvolts. When we pass this voltage we will nominally switch over to the
 426 *   CC (constant current) charging phase defined by constant_charge_current_ua
 427 *   and constant_charge_voltage_max_uv.
 428 * @charge_term_current_ua: when the current in the CV (constant voltage)
 429 *   charging phase drops below this value in microamperes the charging will
 430 *   terminate completely and not restart until the voltage over the battery
 431 *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
 432 * @charge_restart_voltage_uv: when the battery has been fully charged by
 433 *   CC/CV charging and charging has been disabled, and the voltage subsequently
 434 *   drops below this value in microvolts, the charging will be restarted
 435 *   (typically using CV charging).
 436 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
 437 *   voltage_max_design_uv and we reach this voltage level, all charging must
 438 *   stop and emergency procedures take place, such as shutting down the system
 439 *   in some cases.
 440 * @constant_charge_current_max_ua: current in microamperes to use in the CC
 441 *   (constant current) charging phase. The charging rate is limited
 442 *   by this current. This is the main charging phase and as the current is
 443 *   constant into the battery the voltage slowly ascends to
 444 *   constant_charge_voltage_max_uv.
 445 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
 446 *   the CC (constant current) charging phase and the beginning of the CV
 447 *   (constant voltage) charging phase.
 448 * @maintenance_charge: an array of maintenance charging settings to be used
 449 *   after the main CC/CV charging phase is complete.
 450 * @maintenance_charge_size: the number of maintenance charging settings in
 451 *   maintenance_charge.
 452 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
 453 *   enters low alert temperature, i.e. if the internal temperature is between
 454 *   temp_alert_min and temp_min. No matter the charging phase, this
 455 *   and alert_high_temp_charge_voltage_uv will be applied.
 456 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
 457 *   but for the charging voltage.
 458 * @alert_high_temp_charge_current_ua: The charging current to use if the
 459 *   battery enters high alert temperature, i.e. if the internal temperature is
 460 *   between temp_alert_max and temp_max. No matter the charging phase, this
 461 *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
 462 *   the charging current as an evasive manouver.
 463 * @alert_high_temp_charge_voltage_uv: Same as
 464 *   alert_high_temp_charge_current_ua, but for the charging voltage.
 465 * @factory_internal_resistance_uohm: the internal resistance of the battery
 466 *   at fabrication time, expressed in microohms. This resistance will vary
 467 *   depending on the lifetime and charge of the battery, so this is just a
 468 *   nominal ballpark figure. This internal resistance is given for the state
 469 *   when the battery is discharging.
 470 * @factory_internal_resistance_charging_uohm: the internal resistance of the
 471 *   battery at fabrication time while charging, expressed in microohms.
 472 *   The charging process will affect the internal resistance of the battery
 473 *   so this value provides a better resistance under these circumstances.
 474 *   This resistance will vary depending on the lifetime and charge of the
 475 *   battery, so this is just a nominal ballpark figure.
 476 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
 477 *   temperature indices. This is an array of temperatures in degrees Celsius
 478 *   indicating which capacity table to use for a certain temperature, since
 479 *   the capacity for reasons of chemistry will be different at different
 480 *   temperatures. Determining capacity is a multivariate problem and the
 481 *   temperature is the first variable we determine.
 482 * @temp_ambient_alert_min: the battery will go outside of operating conditions
 483 *   when the ambient temperature goes below this temperature in degrees
 484 *   Celsius.
 485 * @temp_ambient_alert_max: the battery will go outside of operating conditions
 486 *   when the ambient temperature goes above this temperature in degrees
 487 *   Celsius.
 488 * @temp_alert_min: the battery should issue an alert if the internal
 489 *   temperature goes below this temperature in degrees Celsius.
 490 * @temp_alert_max: the battery should issue an alert if the internal
 491 *   temperature goes above this temperature in degrees Celsius.
 492 * @temp_min: the battery will go outside of operating conditions when
 493 *   the internal temperature goes below this temperature in degrees Celsius.
 494 *   Normally this means the system should shut down.
 495 * @temp_max: the battery will go outside of operating conditions when
 496 *   the internal temperature goes above this temperature in degrees Celsius.
 497 *   Normally this means the system should shut down.
 498 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
 499 *   ocv_table and a size for each entry in ocv_table_size. These arrays
 500 *   determine the capacity in percent in relation to the voltage in microvolts
 501 *   at the indexed temperature.
 502 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
 503 *   each entry in the array of capacity arrays in ocv_table.
 504 * @resist_table: this is a table that correlates a battery temperature to the
 505 *   expected internal resistance at this temperature. The resistance is given
 506 *   as a percentage of factory_internal_resistance_uohm. Knowing the
 507 *   resistance of the battery is usually necessary for calculating the open
 508 *   circuit voltage (OCV) that is then used with the ocv_table to calculate
 509 *   the capacity of the battery. The resist_table must be ordered descending
 510 *   by temperature: highest temperature with lowest resistance first, lowest
 511 *   temperature with highest resistance last.
 512 * @resist_table_size: the number of items in the resist_table.
 513 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
 514 *   to internal resistance (Ri). The resistance is given in microohm for the
 515 *   corresponding voltage in microvolts. The internal resistance is used to
 516 *   determine the open circuit voltage so that we can determine the capacity
 517 *   of the battery. These voltages to resistance tables apply when the battery
 518 *   is discharging. The table must be ordered descending by voltage: highest
 519 *   voltage first.
 520 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
 521 *   table.
 522 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
 523 *   when the battery is charging. Being under charge changes the battery's
 524 *   internal resistance characteristics so a separate table is needed.*
 525 *   The table must be ordered descending by voltage: highest voltage first.
 526 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
 527 *   table.
 528 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
 529 *   in ohms for this battery, if an identification resistor is mounted
 530 *   between a third battery terminal and ground. This scheme is used by a lot
 531 *   of mobile device batteries.
 532 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
 533 *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
 534 *   tolerance is 10% we will detect a proper battery if the BTI resistance
 535 *   is between 6300 and 7700 Ohm.
 536 *
 537 * This is the recommended struct to manage static battery parameters,
 538 * populated by power_supply_get_battery_info(). Most platform drivers should
 539 * use these for consistency.
 540 *
 541 * Its field names must correspond to elements in enum power_supply_property.
 542 * The default field value is -EINVAL or NULL for pointers.
 543 *
 544 * CC/CV CHARGING:
 545 *
 546 * The charging parameters here assume a CC/CV charging scheme. This method
 547 * is most common with Lithium Ion batteries (other methods are possible) and
 548 * looks as follows:
 549 *
 550 * ^ Battery voltage
 551 * |                                               --- overvoltage_limit_uv
 552 * |
 553 * |                    ...................................................
 554 * |                 .. constant_charge_voltage_max_uv
 555 * |              ..
 556 * |             .
 557 * |            .
 558 * |           .
 559 * |          .
 560 * |         .
 561 * |     .. precharge_voltage_max_uv
 562 * |  ..
 563 * |. (trickle charging)
 564 * +------------------------------------------------------------------> time
 565 *
 566 * ^ Current into the battery
 567 * |
 568 * |      ............. constant_charge_current_max_ua
 569 * |      .            .
 570 * |      .             .
 571 * |      .              .
 572 * |      .               .
 573 * |      .                ..
 574 * |      .                  ....
 575 * |      .                       .....
 576 * |    ... precharge_current_ua       .......  charge_term_current_ua
 577 * |    .                                    .
 578 * |    .                                    .
 579 * |.... tricklecharge_current_ua            .
 580 * |                                         .
 581 * +-----------------------------------------------------------------> time
 582 *
 583 * These diagrams are synchronized on time and the voltage and current
 584 * follow each other.
 585 *
 586 * With CC/CV charging commence over time like this for an empty battery:
 587 *
 588 * 1. When the battery is completely empty it may need to be charged with
 589 *    an especially small current so that electrons just "trickle in",
 590 *    this is the tricklecharge_current_ua.
 591 *
 592 * 2. Next a small initial pre-charge current (precharge_current_ua)
 593 *    is applied if the voltage is below precharge_voltage_max_uv until we
 594 *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
 595 *    to as "trickle charging" but the use in the Linux kernel is different
 596 *    see below!
 597 *
 598 * 3. Then the main charging current is applied, which is called the constant
 599 *    current (CC) phase. A current regulator is set up to allow
 600 *    constant_charge_current_max_ua of current to flow into the battery.
 601 *    The chemical reaction in the battery will make the voltage go up as
 602 *    charge goes into the battery. This current is applied until we reach
 603 *    the constant_charge_voltage_max_uv voltage.
 604 *
 605 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
 606 *    means we allow current to go into the battery, but we keep the voltage
 607 *    fixed. This current will continue to charge the battery while keeping
 608 *    the voltage the same. A chemical reaction in the battery goes on
 609 *    storing energy without affecting the voltage. Over time the current
 610 *    will slowly drop and when we reach charge_term_current_ua we will
 611 *    end the constant voltage phase.
 612 *
 613 * After this the battery is fully charged, and if we do not support maintenance
 614 * charging, the charging will not restart until power dissipation makes the
 615 * voltage fall so that we reach charge_restart_voltage_uv and at this point
 616 * we restart charging at the appropriate phase, usually this will be inside
 617 * the CV phase.
 618 *
 619 * If we support maintenance charging the voltage is however kept high after
 620 * the CV phase with a very low current. This is meant to let the same charge
 621 * go in for usage while the charger is still connected, mainly for
 622 * dissipation for the power consuming entity while connected to the
 623 * charger.
 624 *
 625 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
 626 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
 627 * explosions.
 628 *
 629 * DETERMINING BATTERY CAPACITY:
 630 *
 631 * Several members of the struct deal with trying to determine the remaining
 632 * capacity in the battery, usually as a percentage of charge. In practice
 633 * many chargers uses a so-called fuel gauge or coloumb counter that measure
 634 * how much charge goes into the battery and how much goes out (+/- leak
 635 * consumption). This does not help if we do not know how much capacity the
 636 * battery has to begin with, such as when it is first used or was taken out
 637 * and charged in a separate charger. Therefore many capacity algorithms use
 638 * the open circuit voltage with a look-up table to determine the rough
 639 * capacity of the battery. The open circuit voltage can be conceptualized
 640 * with an ideal voltage source (V) in series with an internal resistance (Ri)
 641 * like this:
 642 *
 643 *      +-------> IBAT >----------------+
 644 *      |                    ^          |
 645 *     [ ] Ri                |          |
 646 *      |                    | VBAT     |
 647 *      o <----------        |          |
 648 *     +|           ^        |         [ ] Rload
 649 *    .---.         |        |          |
 650 *    | V |         | OCV    |          |
 651 *    '---'         |        |          |
 652 *      |           |        |          |
 653 *  GND +-------------------------------+
 654 *
 655 * If we disconnect the load (here simplified as a fixed resistance Rload)
 656 * and measure VBAT with a infinite impedance voltage meter we will get
 657 * VBAT = OCV and this assumption is sometimes made even under load, assuming
 658 * Rload is insignificant. However this will be of dubious quality because the
 659 * load is rarely that small and Ri is strongly nonlinear depending on
 660 * temperature and how much capacity is left in the battery due to the
 661 * chemistry involved.
 662 *
 663 * In many practical applications we cannot just disconnect the battery from
 664 * the load, so instead we often try to measure the instantaneous IBAT (the
 665 * current out from the battery), estimate the Ri and thus calculate the
 666 * voltage drop over Ri and compensate like this:
 667 *
 668 *   OCV = VBAT - (IBAT * Ri)
 669 *
 670 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
 671 * (by interpolation) the Ri from the VBAT under load. These curves are highly
 672 * nonlinear and may need many datapoints but can be found in datasheets for
 673 * some batteries. This gives the compensated open circuit voltage (OCV) for
 674 * the battery even under load. Using this method will also compensate for
 675 * temperature changes in the environment: this will also make the internal
 676 * resistance change, and it will affect the VBAT under load, so correlating
 677 * VBAT to Ri takes both remaining capacity and temperature into consideration.
 678 *
 679 * Alternatively a manufacturer can specify how the capacity of the battery
 680 * is dependent on the battery temperature which is the main factor affecting
 681 * Ri. As we know all checmical reactions are faster when it is warm and slower
 682 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
 683 * voltage drops too low for example. This effect is also highly nonlinear and
 684 * the purpose of the table resist_table: this will take a temperature and
 685 * tell us how big percentage of Ri the specified temperature correlates to.
 686 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
 687 * Celsius.
 688 *
 689 * The power supply class itself doesn't use this struct as of now.
 690 */
 691
 692struct power_supply_battery_info {
 693        unsigned int technology;
 694        int energy_full_design_uwh;
 695        int charge_full_design_uah;
 696        int voltage_min_design_uv;
 697        int voltage_max_design_uv;
 698        int tricklecharge_current_ua;
 699        int precharge_current_ua;
 700        int precharge_voltage_max_uv;
 701        int charge_term_current_ua;
 702        int charge_restart_voltage_uv;
 703        int overvoltage_limit_uv;
 704        int constant_charge_current_max_ua;
 705        int constant_charge_voltage_max_uv;
 706        struct power_supply_maintenance_charge_table *maintenance_charge;
 707        int maintenance_charge_size;
 708        int alert_low_temp_charge_current_ua;
 709        int alert_low_temp_charge_voltage_uv;
 710        int alert_high_temp_charge_current_ua;
 711        int alert_high_temp_charge_voltage_uv;
 712        int factory_internal_resistance_uohm;
 713        int factory_internal_resistance_charging_uohm;
 714        int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
 715        int temp_ambient_alert_min;
 716        int temp_ambient_alert_max;
 717        int temp_alert_min;
 718        int temp_alert_max;
 719        int temp_min;
 720        int temp_max;
 721        struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
 722        int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
 723        struct power_supply_resistance_temp_table *resist_table;
 724        int resist_table_size;
 725        struct power_supply_vbat_ri_table *vbat2ri_discharging;
 726        int vbat2ri_discharging_size;
 727        struct power_supply_vbat_ri_table *vbat2ri_charging;
 728        int vbat2ri_charging_size;
 729        int bti_resistance_ohm;
 730        int bti_resistance_tolerance;
 731};
 732
 733extern struct atomic_notifier_head power_supply_notifier;
 734extern int power_supply_reg_notifier(struct notifier_block *nb);
 735extern void power_supply_unreg_notifier(struct notifier_block *nb);
 736#if IS_ENABLED(CONFIG_POWER_SUPPLY)
 737extern struct power_supply *power_supply_get_by_name(const char *name);
 738extern void power_supply_put(struct power_supply *psy);
 739#else
 740static inline void power_supply_put(struct power_supply *psy) {}
 741static inline struct power_supply *power_supply_get_by_name(const char *name)
 742{ return NULL; }
 743#endif
 744#ifdef CONFIG_OF
 745extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
 746                                                        const char *property);
 747extern struct power_supply *devm_power_supply_get_by_phandle(
 748                                    struct device *dev, const char *property);
 749#else /* !CONFIG_OF */
 750static inline struct power_supply *
 751power_supply_get_by_phandle(struct device_node *np, const char *property)
 752{ return NULL; }
 753static inline struct power_supply *
 754devm_power_supply_get_by_phandle(struct device *dev, const char *property)
 755{ return NULL; }
 756#endif /* CONFIG_OF */
 757
 758extern int power_supply_get_battery_info(struct power_supply *psy,
 759                                         struct power_supply_battery_info **info_out);
 760extern void power_supply_put_battery_info(struct power_supply *psy,
 761                                          struct power_supply_battery_info *info);
 762extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
 763                                       int table_len, int ocv);
 764extern struct power_supply_battery_ocv_table *
 765power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
 766                                int temp, int *table_len);
 767extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
 768                                        int ocv, int temp);
 769extern int
 770power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
 771                                int table_len, int temp);
 772extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
 773                                int vbat_uv, bool charging);
 774extern struct power_supply_maintenance_charge_table *
 775power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
 776extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
 777                                              int resistance);
 778extern void power_supply_changed(struct power_supply *psy);
 779extern int power_supply_am_i_supplied(struct power_supply *psy);
 780int power_supply_get_property_from_supplier(struct power_supply *psy,
 781                                            enum power_supply_property psp,
 782                                            union power_supply_propval *val);
 783extern int power_supply_set_battery_charged(struct power_supply *psy);
 784
 785static inline bool
 786power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
 787{
 788        struct power_supply_maintenance_charge_table *mt;
 789
 790        mt = power_supply_get_maintenance_charging_setting(info, 0);
 791
 792        return (mt != NULL);
 793}
 794
 795static inline bool
 796power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
 797{
 798        return ((info->vbat2ri_discharging != NULL) &&
 799                info->vbat2ri_discharging_size > 0);
 800}
 801
 802static inline bool
 803power_supply_supports_temp2ri(struct power_supply_battery_info *info)
 804{
 805        return ((info->resist_table != NULL) &&
 806                info->resist_table_size > 0);
 807}
 808
 809#ifdef CONFIG_POWER_SUPPLY
 810extern int power_supply_is_system_supplied(void);
 811#else
 812static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
 813#endif
 814
 815extern int power_supply_get_property(struct power_supply *psy,
 816                            enum power_supply_property psp,
 817                            union power_supply_propval *val);
 818#if IS_ENABLED(CONFIG_POWER_SUPPLY)
 819extern int power_supply_set_property(struct power_supply *psy,
 820                            enum power_supply_property psp,
 821                            const union power_supply_propval *val);
 822#else
 823static inline int power_supply_set_property(struct power_supply *psy,
 824                            enum power_supply_property psp,
 825                            const union power_supply_propval *val)
 826{ return 0; }
 827#endif
 828extern int power_supply_property_is_writeable(struct power_supply *psy,
 829                                        enum power_supply_property psp);
 830extern void power_supply_external_power_changed(struct power_supply *psy);
 831
 832extern struct power_supply *__must_check
 833power_supply_register(struct device *parent,
 834                                 const struct power_supply_desc *desc,
 835                                 const struct power_supply_config *cfg);
 836extern struct power_supply *__must_check
 837power_supply_register_no_ws(struct device *parent,
 838                                 const struct power_supply_desc *desc,
 839                                 const struct power_supply_config *cfg);
 840extern struct power_supply *__must_check
 841devm_power_supply_register(struct device *parent,
 842                                 const struct power_supply_desc *desc,
 843                                 const struct power_supply_config *cfg);
 844extern struct power_supply *__must_check
 845devm_power_supply_register_no_ws(struct device *parent,
 846                                 const struct power_supply_desc *desc,
 847                                 const struct power_supply_config *cfg);
 848extern void power_supply_unregister(struct power_supply *psy);
 849extern int power_supply_powers(struct power_supply *psy, struct device *dev);
 850
 851#define to_power_supply(device) container_of(device, struct power_supply, dev)
 852
 853extern void *power_supply_get_drvdata(struct power_supply *psy);
 854/* For APM emulation, think legacy userspace. */
 855extern struct class *power_supply_class;
 856
 857static inline bool power_supply_is_amp_property(enum power_supply_property psp)
 858{
 859        switch (psp) {
 860        case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
 861        case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
 862        case POWER_SUPPLY_PROP_CHARGE_FULL:
 863        case POWER_SUPPLY_PROP_CHARGE_EMPTY:
 864        case POWER_SUPPLY_PROP_CHARGE_NOW:
 865        case POWER_SUPPLY_PROP_CHARGE_AVG:
 866        case POWER_SUPPLY_PROP_CHARGE_COUNTER:
 867        case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
 868        case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
 869        case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
 870        case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
 871        case POWER_SUPPLY_PROP_CURRENT_MAX:
 872        case POWER_SUPPLY_PROP_CURRENT_NOW:
 873        case POWER_SUPPLY_PROP_CURRENT_AVG:
 874        case POWER_SUPPLY_PROP_CURRENT_BOOT:
 875                return true;
 876        default:
 877                break;
 878        }
 879
 880        return false;
 881}
 882
 883static inline bool power_supply_is_watt_property(enum power_supply_property psp)
 884{
 885        switch (psp) {
 886        case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
 887        case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
 888        case POWER_SUPPLY_PROP_ENERGY_FULL:
 889        case POWER_SUPPLY_PROP_ENERGY_EMPTY:
 890        case POWER_SUPPLY_PROP_ENERGY_NOW:
 891        case POWER_SUPPLY_PROP_ENERGY_AVG:
 892        case POWER_SUPPLY_PROP_VOLTAGE_MAX:
 893        case POWER_SUPPLY_PROP_VOLTAGE_MIN:
 894        case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
 895        case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
 896        case POWER_SUPPLY_PROP_VOLTAGE_NOW:
 897        case POWER_SUPPLY_PROP_VOLTAGE_AVG:
 898        case POWER_SUPPLY_PROP_VOLTAGE_OCV:
 899        case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
 900        case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
 901        case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
 902        case POWER_SUPPLY_PROP_POWER_NOW:
 903                return true;
 904        default:
 905                break;
 906        }
 907
 908        return false;
 909}
 910
 911#ifdef CONFIG_POWER_SUPPLY_HWMON
 912int power_supply_add_hwmon_sysfs(struct power_supply *psy);
 913void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
 914#else
 915static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
 916{
 917        return 0;
 918}
 919
 920static inline
 921void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
 922#endif
 923
 924#ifdef CONFIG_SYSFS
 925ssize_t power_supply_charge_behaviour_show(struct device *dev,
 926                                           unsigned int available_behaviours,
 927                                           enum power_supply_charge_behaviour behaviour,
 928                                           char *buf);
 929
 930int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
 931#else
 932static inline
 933ssize_t power_supply_charge_behaviour_show(struct device *dev,
 934                                           unsigned int available_behaviours,
 935                                           enum power_supply_charge_behaviour behaviour,
 936                                           char *buf)
 937{
 938        return -EOPNOTSUPP;
 939}
 940
 941static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
 942                                                      const char *buf)
 943{
 944        return -EOPNOTSUPP;
 945}
 946#endif
 947
 948#endif /* __LINUX_POWER_SUPPLY_H__ */
 949