linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2001
   6 *
   7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
   8 *
   9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
  10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  11 * Papers:
  12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  14 *
  15 * For detailed explanation of Read-Copy Update mechanism see -
  16 *              http://lse.sourceforge.net/locking/rcupdate.html
  17 *
  18 */
  19
  20#ifndef __LINUX_RCUPDATE_H
  21#define __LINUX_RCUPDATE_H
  22
  23#include <linux/types.h>
  24#include <linux/compiler.h>
  25#include <linux/atomic.h>
  26#include <linux/irqflags.h>
  27#include <linux/preempt.h>
  28#include <linux/bottom_half.h>
  29#include <linux/lockdep.h>
  30#include <asm/processor.h>
  31#include <linux/cpumask.h>
  32
  33#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  34#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  35#define ulong2long(a)           (*(long *)(&(a)))
  36#define USHORT_CMP_GE(a, b)     (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
  37#define USHORT_CMP_LT(a, b)     (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
  38
  39/* Exported common interfaces */
  40void call_rcu(struct rcu_head *head, rcu_callback_t func);
  41void rcu_barrier_tasks(void);
  42void rcu_barrier_tasks_rude(void);
  43void synchronize_rcu(void);
  44
  45#ifdef CONFIG_PREEMPT_RCU
  46
  47void __rcu_read_lock(void);
  48void __rcu_read_unlock(void);
  49
  50/*
  51 * Defined as a macro as it is a very low level header included from
  52 * areas that don't even know about current.  This gives the rcu_read_lock()
  53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  55 */
  56#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
  57
  58#else /* #ifdef CONFIG_PREEMPT_RCU */
  59
  60#ifdef CONFIG_TINY_RCU
  61#define rcu_read_unlock_strict() do { } while (0)
  62#else
  63void rcu_read_unlock_strict(void);
  64#endif
  65
  66static inline void __rcu_read_lock(void)
  67{
  68        preempt_disable();
  69}
  70
  71static inline void __rcu_read_unlock(void)
  72{
  73        preempt_enable();
  74        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
  75                rcu_read_unlock_strict();
  76}
  77
  78static inline int rcu_preempt_depth(void)
  79{
  80        return 0;
  81}
  82
  83#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  84
  85/* Internal to kernel */
  86void rcu_init(void);
  87extern int rcu_scheduler_active;
  88void rcu_sched_clock_irq(int user);
  89void rcu_report_dead(unsigned int cpu);
  90void rcutree_migrate_callbacks(int cpu);
  91
  92#ifdef CONFIG_TASKS_RCU_GENERIC
  93void rcu_init_tasks_generic(void);
  94#else
  95static inline void rcu_init_tasks_generic(void) { }
  96#endif
  97
  98#ifdef CONFIG_RCU_STALL_COMMON
  99void rcu_sysrq_start(void);
 100void rcu_sysrq_end(void);
 101#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 102static inline void rcu_sysrq_start(void) { }
 103static inline void rcu_sysrq_end(void) { }
 104#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 105
 106#ifdef CONFIG_NO_HZ_FULL
 107void rcu_user_enter(void);
 108void rcu_user_exit(void);
 109#else
 110static inline void rcu_user_enter(void) { }
 111static inline void rcu_user_exit(void) { }
 112#endif /* CONFIG_NO_HZ_FULL */
 113
 114#ifdef CONFIG_RCU_NOCB_CPU
 115void rcu_init_nohz(void);
 116int rcu_nocb_cpu_offload(int cpu);
 117int rcu_nocb_cpu_deoffload(int cpu);
 118void rcu_nocb_flush_deferred_wakeup(void);
 119#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 120static inline void rcu_init_nohz(void) { }
 121static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
 122static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
 123static inline void rcu_nocb_flush_deferred_wakeup(void) { }
 124#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 125
 126/**
 127 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 128 * @a: Code that RCU needs to pay attention to.
 129 *
 130 * RCU read-side critical sections are forbidden in the inner idle loop,
 131 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
 132 * will happily ignore any such read-side critical sections.  However,
 133 * things like powertop need tracepoints in the inner idle loop.
 134 *
 135 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 136 * will tell RCU that it needs to pay attention, invoke its argument
 137 * (in this example, calling the do_something_with_RCU() function),
 138 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 139 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 140 * on the order of a million or so, even on 32-bit systems).  It is
 141 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 142 * transfer control either into or out of RCU_NONIDLE()'s statement.
 143 */
 144#define RCU_NONIDLE(a) \
 145        do { \
 146                rcu_irq_enter_irqson(); \
 147                do { a; } while (0); \
 148                rcu_irq_exit_irqson(); \
 149        } while (0)
 150
 151/*
 152 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 153 * This is a macro rather than an inline function to avoid #include hell.
 154 */
 155#ifdef CONFIG_TASKS_RCU_GENERIC
 156
 157# ifdef CONFIG_TASKS_RCU
 158# define rcu_tasks_classic_qs(t, preempt)                               \
 159        do {                                                            \
 160                if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))    \
 161                        WRITE_ONCE((t)->rcu_tasks_holdout, false);      \
 162        } while (0)
 163void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 164void synchronize_rcu_tasks(void);
 165# else
 166# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
 167# define call_rcu_tasks call_rcu
 168# define synchronize_rcu_tasks synchronize_rcu
 169# endif
 170
 171# ifdef CONFIG_TASKS_TRACE_RCU
 172# define rcu_tasks_trace_qs(t)                                          \
 173        do {                                                            \
 174                if (!likely(READ_ONCE((t)->trc_reader_checked)) &&      \
 175                    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {    \
 176                        smp_store_release(&(t)->trc_reader_checked, true); \
 177                        smp_mb(); /* Readers partitioned by store. */   \
 178                }                                                       \
 179        } while (0)
 180# else
 181# define rcu_tasks_trace_qs(t) do { } while (0)
 182# endif
 183
 184#define rcu_tasks_qs(t, preempt)                                        \
 185do {                                                                    \
 186        rcu_tasks_classic_qs((t), (preempt));                           \
 187        rcu_tasks_trace_qs((t));                                        \
 188} while (0)
 189
 190# ifdef CONFIG_TASKS_RUDE_RCU
 191void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
 192void synchronize_rcu_tasks_rude(void);
 193# endif
 194
 195#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
 196void exit_tasks_rcu_start(void);
 197void exit_tasks_rcu_finish(void);
 198#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
 199#define rcu_tasks_classic_qs(t, preempt) do { } while (0)
 200#define rcu_tasks_qs(t, preempt) do { } while (0)
 201#define rcu_note_voluntary_context_switch(t) do { } while (0)
 202#define call_rcu_tasks call_rcu
 203#define synchronize_rcu_tasks synchronize_rcu
 204static inline void exit_tasks_rcu_start(void) { }
 205static inline void exit_tasks_rcu_finish(void) { }
 206#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
 207
 208/**
 209 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 210 *
 211 * This macro resembles cond_resched(), except that it is defined to
 212 * report potential quiescent states to RCU-tasks even if the cond_resched()
 213 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
 214 */
 215#define cond_resched_tasks_rcu_qs() \
 216do { \
 217        rcu_tasks_qs(current, false); \
 218        cond_resched(); \
 219} while (0)
 220
 221/*
 222 * Infrastructure to implement the synchronize_() primitives in
 223 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 224 */
 225
 226#if defined(CONFIG_TREE_RCU)
 227#include <linux/rcutree.h>
 228#elif defined(CONFIG_TINY_RCU)
 229#include <linux/rcutiny.h>
 230#else
 231#error "Unknown RCU implementation specified to kernel configuration"
 232#endif
 233
 234/*
 235 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 236 * are needed for dynamic initialization and destruction of rcu_head
 237 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 238 * dynamic initialization and destruction of statically allocated rcu_head
 239 * structures.  However, rcu_head structures allocated dynamically in the
 240 * heap don't need any initialization.
 241 */
 242#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 243void init_rcu_head(struct rcu_head *head);
 244void destroy_rcu_head(struct rcu_head *head);
 245void init_rcu_head_on_stack(struct rcu_head *head);
 246void destroy_rcu_head_on_stack(struct rcu_head *head);
 247#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 248static inline void init_rcu_head(struct rcu_head *head) { }
 249static inline void destroy_rcu_head(struct rcu_head *head) { }
 250static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 251static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 252#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 253
 254#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 255bool rcu_lockdep_current_cpu_online(void);
 256#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 257static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 258#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 259
 260extern struct lockdep_map rcu_lock_map;
 261extern struct lockdep_map rcu_bh_lock_map;
 262extern struct lockdep_map rcu_sched_lock_map;
 263extern struct lockdep_map rcu_callback_map;
 264
 265#ifdef CONFIG_DEBUG_LOCK_ALLOC
 266
 267static inline void rcu_lock_acquire(struct lockdep_map *map)
 268{
 269        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 270}
 271
 272static inline void rcu_lock_release(struct lockdep_map *map)
 273{
 274        lock_release(map, _THIS_IP_);
 275}
 276
 277int debug_lockdep_rcu_enabled(void);
 278int rcu_read_lock_held(void);
 279int rcu_read_lock_bh_held(void);
 280int rcu_read_lock_sched_held(void);
 281int rcu_read_lock_any_held(void);
 282
 283#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 284
 285# define rcu_lock_acquire(a)            do { } while (0)
 286# define rcu_lock_release(a)            do { } while (0)
 287
 288static inline int rcu_read_lock_held(void)
 289{
 290        return 1;
 291}
 292
 293static inline int rcu_read_lock_bh_held(void)
 294{
 295        return 1;
 296}
 297
 298static inline int rcu_read_lock_sched_held(void)
 299{
 300        return !preemptible();
 301}
 302
 303static inline int rcu_read_lock_any_held(void)
 304{
 305        return !preemptible();
 306}
 307
 308#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 309
 310#ifdef CONFIG_PROVE_RCU
 311
 312/**
 313 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 314 * @c: condition to check
 315 * @s: informative message
 316 */
 317#define RCU_LOCKDEP_WARN(c, s)                                          \
 318        do {                                                            \
 319                static bool __section(".data.unlikely") __warned;       \
 320                if ((c) && debug_lockdep_rcu_enabled() && !__warned) {  \
 321                        __warned = true;                                \
 322                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 323                }                                                       \
 324        } while (0)
 325
 326#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 327static inline void rcu_preempt_sleep_check(void)
 328{
 329        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 330                         "Illegal context switch in RCU read-side critical section");
 331}
 332#else /* #ifdef CONFIG_PROVE_RCU */
 333static inline void rcu_preempt_sleep_check(void) { }
 334#endif /* #else #ifdef CONFIG_PROVE_RCU */
 335
 336#define rcu_sleep_check()                                               \
 337        do {                                                            \
 338                rcu_preempt_sleep_check();                              \
 339                if (!IS_ENABLED(CONFIG_PREEMPT_RT))                     \
 340                    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),    \
 341                                 "Illegal context switch in RCU-bh read-side critical section"); \
 342                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 343                                 "Illegal context switch in RCU-sched read-side critical section"); \
 344        } while (0)
 345
 346#else /* #ifdef CONFIG_PROVE_RCU */
 347
 348#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
 349#define rcu_sleep_check() do { } while (0)
 350
 351#endif /* #else #ifdef CONFIG_PROVE_RCU */
 352
 353/*
 354 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 355 * and rcu_assign_pointer().  Some of these could be folded into their
 356 * callers, but they are left separate in order to ease introduction of
 357 * multiple pointers markings to match different RCU implementations
 358 * (e.g., __srcu), should this make sense in the future.
 359 */
 360
 361#ifdef __CHECKER__
 362#define rcu_check_sparse(p, space) \
 363        ((void)(((typeof(*p) space *)p) == p))
 364#else /* #ifdef __CHECKER__ */
 365#define rcu_check_sparse(p, space)
 366#endif /* #else #ifdef __CHECKER__ */
 367
 368#define __unrcu_pointer(p, local)                                       \
 369({                                                                      \
 370        typeof(*p) *local = (typeof(*p) *__force)(p);                   \
 371        rcu_check_sparse(p, __rcu);                                     \
 372        ((typeof(*p) __force __kernel *)(local));                       \
 373})
 374/**
 375 * unrcu_pointer - mark a pointer as not being RCU protected
 376 * @p: pointer needing to lose its __rcu property
 377 *
 378 * Converts @p from an __rcu pointer to a __kernel pointer.
 379 * This allows an __rcu pointer to be used with xchg() and friends.
 380 */
 381#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
 382
 383#define __rcu_access_pointer(p, local, space) \
 384({ \
 385        typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
 386        rcu_check_sparse(p, space); \
 387        ((typeof(*p) __force __kernel *)(local)); \
 388})
 389#define __rcu_dereference_check(p, local, c, space) \
 390({ \
 391        /* Dependency order vs. p above. */ \
 392        typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
 393        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 394        rcu_check_sparse(p, space); \
 395        ((typeof(*p) __force __kernel *)(local)); \
 396})
 397#define __rcu_dereference_protected(p, local, c, space) \
 398({ \
 399        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 400        rcu_check_sparse(p, space); \
 401        ((typeof(*p) __force __kernel *)(p)); \
 402})
 403#define __rcu_dereference_raw(p, local) \
 404({ \
 405        /* Dependency order vs. p above. */ \
 406        typeof(p) local = READ_ONCE(p); \
 407        ((typeof(*p) __force __kernel *)(local)); \
 408})
 409#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
 410
 411/**
 412 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 413 * @v: The value to statically initialize with.
 414 */
 415#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 416
 417/**
 418 * rcu_assign_pointer() - assign to RCU-protected pointer
 419 * @p: pointer to assign to
 420 * @v: value to assign (publish)
 421 *
 422 * Assigns the specified value to the specified RCU-protected
 423 * pointer, ensuring that any concurrent RCU readers will see
 424 * any prior initialization.
 425 *
 426 * Inserts memory barriers on architectures that require them
 427 * (which is most of them), and also prevents the compiler from
 428 * reordering the code that initializes the structure after the pointer
 429 * assignment.  More importantly, this call documents which pointers
 430 * will be dereferenced by RCU read-side code.
 431 *
 432 * In some special cases, you may use RCU_INIT_POINTER() instead
 433 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 434 * to the fact that it does not constrain either the CPU or the compiler.
 435 * That said, using RCU_INIT_POINTER() when you should have used
 436 * rcu_assign_pointer() is a very bad thing that results in
 437 * impossible-to-diagnose memory corruption.  So please be careful.
 438 * See the RCU_INIT_POINTER() comment header for details.
 439 *
 440 * Note that rcu_assign_pointer() evaluates each of its arguments only
 441 * once, appearances notwithstanding.  One of the "extra" evaluations
 442 * is in typeof() and the other visible only to sparse (__CHECKER__),
 443 * neither of which actually execute the argument.  As with most cpp
 444 * macros, this execute-arguments-only-once property is important, so
 445 * please be careful when making changes to rcu_assign_pointer() and the
 446 * other macros that it invokes.
 447 */
 448#define rcu_assign_pointer(p, v)                                              \
 449do {                                                                          \
 450        uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 451        rcu_check_sparse(p, __rcu);                                           \
 452                                                                              \
 453        if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 454                WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 455        else                                                                  \
 456                smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 457} while (0)
 458
 459/**
 460 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
 461 * @rcu_ptr: RCU pointer, whose old value is returned
 462 * @ptr: regular pointer
 463 * @c: the lockdep conditions under which the dereference will take place
 464 *
 465 * Perform a replacement, where @rcu_ptr is an RCU-annotated
 466 * pointer and @c is the lockdep argument that is passed to the
 467 * rcu_dereference_protected() call used to read that pointer.  The old
 468 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
 469 */
 470#define rcu_replace_pointer(rcu_ptr, ptr, c)                            \
 471({                                                                      \
 472        typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 473        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 474        __tmp;                                                          \
 475})
 476
 477/**
 478 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 479 * @p: The pointer to read
 480 *
 481 * Return the value of the specified RCU-protected pointer, but omit the
 482 * lockdep checks for being in an RCU read-side critical section.  This is
 483 * useful when the value of this pointer is accessed, but the pointer is
 484 * not dereferenced, for example, when testing an RCU-protected pointer
 485 * against NULL.  Although rcu_access_pointer() may also be used in cases
 486 * where update-side locks prevent the value of the pointer from changing,
 487 * you should instead use rcu_dereference_protected() for this use case.
 488 *
 489 * It is also permissible to use rcu_access_pointer() when read-side
 490 * access to the pointer was removed at least one grace period ago, as
 491 * is the case in the context of the RCU callback that is freeing up
 492 * the data, or after a synchronize_rcu() returns.  This can be useful
 493 * when tearing down multi-linked structures after a grace period
 494 * has elapsed.
 495 */
 496#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
 497
 498/**
 499 * rcu_dereference_check() - rcu_dereference with debug checking
 500 * @p: The pointer to read, prior to dereferencing
 501 * @c: The conditions under which the dereference will take place
 502 *
 503 * Do an rcu_dereference(), but check that the conditions under which the
 504 * dereference will take place are correct.  Typically the conditions
 505 * indicate the various locking conditions that should be held at that
 506 * point.  The check should return true if the conditions are satisfied.
 507 * An implicit check for being in an RCU read-side critical section
 508 * (rcu_read_lock()) is included.
 509 *
 510 * For example:
 511 *
 512 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 513 *
 514 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 515 * if either rcu_read_lock() is held, or that the lock required to replace
 516 * the bar struct at foo->bar is held.
 517 *
 518 * Note that the list of conditions may also include indications of when a lock
 519 * need not be held, for example during initialisation or destruction of the
 520 * target struct:
 521 *
 522 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 523 *                                            atomic_read(&foo->usage) == 0);
 524 *
 525 * Inserts memory barriers on architectures that require them
 526 * (currently only the Alpha), prevents the compiler from refetching
 527 * (and from merging fetches), and, more importantly, documents exactly
 528 * which pointers are protected by RCU and checks that the pointer is
 529 * annotated as __rcu.
 530 */
 531#define rcu_dereference_check(p, c) \
 532        __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
 533                                (c) || rcu_read_lock_held(), __rcu)
 534
 535/**
 536 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 537 * @p: The pointer to read, prior to dereferencing
 538 * @c: The conditions under which the dereference will take place
 539 *
 540 * This is the RCU-bh counterpart to rcu_dereference_check().  However,
 541 * please note that starting in v5.0 kernels, vanilla RCU grace periods
 542 * wait for local_bh_disable() regions of code in addition to regions of
 543 * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
 544 * that synchronize_rcu(), call_rcu, and friends all take not only
 545 * rcu_read_lock() but also rcu_read_lock_bh() into account.
 546 */
 547#define rcu_dereference_bh_check(p, c) \
 548        __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
 549                                (c) || rcu_read_lock_bh_held(), __rcu)
 550
 551/**
 552 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 553 * @p: The pointer to read, prior to dereferencing
 554 * @c: The conditions under which the dereference will take place
 555 *
 556 * This is the RCU-sched counterpart to rcu_dereference_check().
 557 * However, please note that starting in v5.0 kernels, vanilla RCU grace
 558 * periods wait for preempt_disable() regions of code in addition to
 559 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
 560 * This means that synchronize_rcu(), call_rcu, and friends all take not
 561 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
 562 */
 563#define rcu_dereference_sched_check(p, c) \
 564        __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
 565                                (c) || rcu_read_lock_sched_held(), \
 566                                __rcu)
 567
 568/*
 569 * The tracing infrastructure traces RCU (we want that), but unfortunately
 570 * some of the RCU checks causes tracing to lock up the system.
 571 *
 572 * The no-tracing version of rcu_dereference_raw() must not call
 573 * rcu_read_lock_held().
 574 */
 575#define rcu_dereference_raw_check(p) \
 576        __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
 577
 578/**
 579 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 580 * @p: The pointer to read, prior to dereferencing
 581 * @c: The conditions under which the dereference will take place
 582 *
 583 * Return the value of the specified RCU-protected pointer, but omit
 584 * the READ_ONCE().  This is useful in cases where update-side locks
 585 * prevent the value of the pointer from changing.  Please note that this
 586 * primitive does *not* prevent the compiler from repeating this reference
 587 * or combining it with other references, so it should not be used without
 588 * protection of appropriate locks.
 589 *
 590 * This function is only for update-side use.  Using this function
 591 * when protected only by rcu_read_lock() will result in infrequent
 592 * but very ugly failures.
 593 */
 594#define rcu_dereference_protected(p, c) \
 595        __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
 596
 597
 598/**
 599 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 600 * @p: The pointer to read, prior to dereferencing
 601 *
 602 * This is a simple wrapper around rcu_dereference_check().
 603 */
 604#define rcu_dereference(p) rcu_dereference_check(p, 0)
 605
 606/**
 607 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 608 * @p: The pointer to read, prior to dereferencing
 609 *
 610 * Makes rcu_dereference_check() do the dirty work.
 611 */
 612#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 613
 614/**
 615 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 616 * @p: The pointer to read, prior to dereferencing
 617 *
 618 * Makes rcu_dereference_check() do the dirty work.
 619 */
 620#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 621
 622/**
 623 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 624 * @p: The pointer to hand off
 625 *
 626 * This is simply an identity function, but it documents where a pointer
 627 * is handed off from RCU to some other synchronization mechanism, for
 628 * example, reference counting or locking.  In C11, it would map to
 629 * kill_dependency().  It could be used as follows::
 630 *
 631 *      rcu_read_lock();
 632 *      p = rcu_dereference(gp);
 633 *      long_lived = is_long_lived(p);
 634 *      if (long_lived) {
 635 *              if (!atomic_inc_not_zero(p->refcnt))
 636 *                      long_lived = false;
 637 *              else
 638 *                      p = rcu_pointer_handoff(p);
 639 *      }
 640 *      rcu_read_unlock();
 641 */
 642#define rcu_pointer_handoff(p) (p)
 643
 644/**
 645 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 646 *
 647 * When synchronize_rcu() is invoked on one CPU while other CPUs
 648 * are within RCU read-side critical sections, then the
 649 * synchronize_rcu() is guaranteed to block until after all the other
 650 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 651 * on one CPU while other CPUs are within RCU read-side critical
 652 * sections, invocation of the corresponding RCU callback is deferred
 653 * until after the all the other CPUs exit their critical sections.
 654 *
 655 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
 656 * wait for regions of code with preemption disabled, including regions of
 657 * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
 658 * define synchronize_sched(), only code enclosed within rcu_read_lock()
 659 * and rcu_read_unlock() are guaranteed to be waited for.
 660 *
 661 * Note, however, that RCU callbacks are permitted to run concurrently
 662 * with new RCU read-side critical sections.  One way that this can happen
 663 * is via the following sequence of events: (1) CPU 0 enters an RCU
 664 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 665 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 666 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 667 * callback is invoked.  This is legal, because the RCU read-side critical
 668 * section that was running concurrently with the call_rcu() (and which
 669 * therefore might be referencing something that the corresponding RCU
 670 * callback would free up) has completed before the corresponding
 671 * RCU callback is invoked.
 672 *
 673 * RCU read-side critical sections may be nested.  Any deferred actions
 674 * will be deferred until the outermost RCU read-side critical section
 675 * completes.
 676 *
 677 * You can avoid reading and understanding the next paragraph by
 678 * following this rule: don't put anything in an rcu_read_lock() RCU
 679 * read-side critical section that would block in a !PREEMPTION kernel.
 680 * But if you want the full story, read on!
 681 *
 682 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
 683 * it is illegal to block while in an RCU read-side critical section.
 684 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
 685 * kernel builds, RCU read-side critical sections may be preempted,
 686 * but explicit blocking is illegal.  Finally, in preemptible RCU
 687 * implementations in real-time (with -rt patchset) kernel builds, RCU
 688 * read-side critical sections may be preempted and they may also block, but
 689 * only when acquiring spinlocks that are subject to priority inheritance.
 690 */
 691static __always_inline void rcu_read_lock(void)
 692{
 693        __rcu_read_lock();
 694        __acquire(RCU);
 695        rcu_lock_acquire(&rcu_lock_map);
 696        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 697                         "rcu_read_lock() used illegally while idle");
 698}
 699
 700/*
 701 * So where is rcu_write_lock()?  It does not exist, as there is no
 702 * way for writers to lock out RCU readers.  This is a feature, not
 703 * a bug -- this property is what provides RCU's performance benefits.
 704 * Of course, writers must coordinate with each other.  The normal
 705 * spinlock primitives work well for this, but any other technique may be
 706 * used as well.  RCU does not care how the writers keep out of each
 707 * others' way, as long as they do so.
 708 */
 709
 710/**
 711 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 712 *
 713 * In almost all situations, rcu_read_unlock() is immune from deadlock.
 714 * In recent kernels that have consolidated synchronize_sched() and
 715 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
 716 * also extends to the scheduler's runqueue and priority-inheritance
 717 * spinlocks, courtesy of the quiescent-state deferral that is carried
 718 * out when rcu_read_unlock() is invoked with interrupts disabled.
 719 *
 720 * See rcu_read_lock() for more information.
 721 */
 722static inline void rcu_read_unlock(void)
 723{
 724        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 725                         "rcu_read_unlock() used illegally while idle");
 726        __release(RCU);
 727        __rcu_read_unlock();
 728        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 729}
 730
 731/**
 732 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 733 *
 734 * This is equivalent to rcu_read_lock(), but also disables softirqs.
 735 * Note that anything else that disables softirqs can also serve as an RCU
 736 * read-side critical section.  However, please note that this equivalence
 737 * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
 738 * rcu_read_lock_bh() were unrelated.
 739 *
 740 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 741 * must occur in the same context, for example, it is illegal to invoke
 742 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 743 * was invoked from some other task.
 744 */
 745static inline void rcu_read_lock_bh(void)
 746{
 747        local_bh_disable();
 748        __acquire(RCU_BH);
 749        rcu_lock_acquire(&rcu_bh_lock_map);
 750        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 751                         "rcu_read_lock_bh() used illegally while idle");
 752}
 753
 754/**
 755 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
 756 *
 757 * See rcu_read_lock_bh() for more information.
 758 */
 759static inline void rcu_read_unlock_bh(void)
 760{
 761        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 762                         "rcu_read_unlock_bh() used illegally while idle");
 763        rcu_lock_release(&rcu_bh_lock_map);
 764        __release(RCU_BH);
 765        local_bh_enable();
 766}
 767
 768/**
 769 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 770 *
 771 * This is equivalent to rcu_read_lock(), but also disables preemption.
 772 * Read-side critical sections can also be introduced by anything else that
 773 * disables preemption, including local_irq_disable() and friends.  However,
 774 * please note that the equivalence to rcu_read_lock() applies only to
 775 * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
 776 * were unrelated.
 777 *
 778 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 779 * must occur in the same context, for example, it is illegal to invoke
 780 * rcu_read_unlock_sched() from process context if the matching
 781 * rcu_read_lock_sched() was invoked from an NMI handler.
 782 */
 783static inline void rcu_read_lock_sched(void)
 784{
 785        preempt_disable();
 786        __acquire(RCU_SCHED);
 787        rcu_lock_acquire(&rcu_sched_lock_map);
 788        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 789                         "rcu_read_lock_sched() used illegally while idle");
 790}
 791
 792/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 793static inline notrace void rcu_read_lock_sched_notrace(void)
 794{
 795        preempt_disable_notrace();
 796        __acquire(RCU_SCHED);
 797}
 798
 799/**
 800 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
 801 *
 802 * See rcu_read_lock_sched() for more information.
 803 */
 804static inline void rcu_read_unlock_sched(void)
 805{
 806        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 807                         "rcu_read_unlock_sched() used illegally while idle");
 808        rcu_lock_release(&rcu_sched_lock_map);
 809        __release(RCU_SCHED);
 810        preempt_enable();
 811}
 812
 813/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 814static inline notrace void rcu_read_unlock_sched_notrace(void)
 815{
 816        __release(RCU_SCHED);
 817        preempt_enable_notrace();
 818}
 819
 820/**
 821 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 822 * @p: The pointer to be initialized.
 823 * @v: The value to initialized the pointer to.
 824 *
 825 * Initialize an RCU-protected pointer in special cases where readers
 826 * do not need ordering constraints on the CPU or the compiler.  These
 827 * special cases are:
 828 *
 829 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 830 * 2.   The caller has taken whatever steps are required to prevent
 831 *      RCU readers from concurrently accessing this pointer *or*
 832 * 3.   The referenced data structure has already been exposed to
 833 *      readers either at compile time or via rcu_assign_pointer() *and*
 834 *
 835 *      a.      You have not made *any* reader-visible changes to
 836 *              this structure since then *or*
 837 *      b.      It is OK for readers accessing this structure from its
 838 *              new location to see the old state of the structure.  (For
 839 *              example, the changes were to statistical counters or to
 840 *              other state where exact synchronization is not required.)
 841 *
 842 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 843 * result in impossible-to-diagnose memory corruption.  As in the structures
 844 * will look OK in crash dumps, but any concurrent RCU readers might
 845 * see pre-initialized values of the referenced data structure.  So
 846 * please be very careful how you use RCU_INIT_POINTER()!!!
 847 *
 848 * If you are creating an RCU-protected linked structure that is accessed
 849 * by a single external-to-structure RCU-protected pointer, then you may
 850 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 851 * pointers, but you must use rcu_assign_pointer() to initialize the
 852 * external-to-structure pointer *after* you have completely initialized
 853 * the reader-accessible portions of the linked structure.
 854 *
 855 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 856 * ordering guarantees for either the CPU or the compiler.
 857 */
 858#define RCU_INIT_POINTER(p, v) \
 859        do { \
 860                rcu_check_sparse(p, __rcu); \
 861                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 862        } while (0)
 863
 864/**
 865 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 866 * @p: The pointer to be initialized.
 867 * @v: The value to initialized the pointer to.
 868 *
 869 * GCC-style initialization for an RCU-protected pointer in a structure field.
 870 */
 871#define RCU_POINTER_INITIALIZER(p, v) \
 872                .p = RCU_INITIALIZER(v)
 873
 874/*
 875 * Does the specified offset indicate that the corresponding rcu_head
 876 * structure can be handled by kvfree_rcu()?
 877 */
 878#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
 879
 880/**
 881 * kfree_rcu() - kfree an object after a grace period.
 882 * @ptr: pointer to kfree for both single- and double-argument invocations.
 883 * @rhf: the name of the struct rcu_head within the type of @ptr,
 884 *       but only for double-argument invocations.
 885 *
 886 * Many rcu callbacks functions just call kfree() on the base structure.
 887 * These functions are trivial, but their size adds up, and furthermore
 888 * when they are used in a kernel module, that module must invoke the
 889 * high-latency rcu_barrier() function at module-unload time.
 890 *
 891 * The kfree_rcu() function handles this issue.  Rather than encoding a
 892 * function address in the embedded rcu_head structure, kfree_rcu() instead
 893 * encodes the offset of the rcu_head structure within the base structure.
 894 * Because the functions are not allowed in the low-order 4096 bytes of
 895 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 896 * If the offset is larger than 4095 bytes, a compile-time error will
 897 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
 898 * either fall back to use of call_rcu() or rearrange the structure to
 899 * position the rcu_head structure into the first 4096 bytes.
 900 *
 901 * Note that the allowable offset might decrease in the future, for example,
 902 * to allow something like kmem_cache_free_rcu().
 903 *
 904 * The BUILD_BUG_ON check must not involve any function calls, hence the
 905 * checks are done in macros here.
 906 */
 907#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
 908
 909/**
 910 * kvfree_rcu() - kvfree an object after a grace period.
 911 *
 912 * This macro consists of one or two arguments and it is
 913 * based on whether an object is head-less or not. If it
 914 * has a head then a semantic stays the same as it used
 915 * to be before:
 916 *
 917 *     kvfree_rcu(ptr, rhf);
 918 *
 919 * where @ptr is a pointer to kvfree(), @rhf is the name
 920 * of the rcu_head structure within the type of @ptr.
 921 *
 922 * When it comes to head-less variant, only one argument
 923 * is passed and that is just a pointer which has to be
 924 * freed after a grace period. Therefore the semantic is
 925 *
 926 *     kvfree_rcu(ptr);
 927 *
 928 * where @ptr is the pointer to be freed by kvfree().
 929 *
 930 * Please note, head-less way of freeing is permitted to
 931 * use from a context that has to follow might_sleep()
 932 * annotation. Otherwise, please switch and embed the
 933 * rcu_head structure within the type of @ptr.
 934 */
 935#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,           \
 936        kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
 937
 938#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
 939#define kvfree_rcu_arg_2(ptr, rhf)                                      \
 940do {                                                                    \
 941        typeof (ptr) ___p = (ptr);                                      \
 942                                                                        \
 943        if (___p) {                                                                     \
 944                BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));   \
 945                kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long)         \
 946                        (offsetof(typeof(*(ptr)), rhf)));                               \
 947        }                                                                               \
 948} while (0)
 949
 950#define kvfree_rcu_arg_1(ptr)                                   \
 951do {                                                            \
 952        typeof(ptr) ___p = (ptr);                               \
 953                                                                \
 954        if (___p)                                               \
 955                kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
 956} while (0)
 957
 958/*
 959 * Place this after a lock-acquisition primitive to guarantee that
 960 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 961 * if the UNLOCK and LOCK are executed by the same CPU or if the
 962 * UNLOCK and LOCK operate on the same lock variable.
 963 */
 964#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
 965#define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
 966#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 967#define smp_mb__after_unlock_lock()     do { } while (0)
 968#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 969
 970
 971/* Has the specified rcu_head structure been handed to call_rcu()? */
 972
 973/**
 974 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
 975 * @rhp: The rcu_head structure to initialize.
 976 *
 977 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
 978 * given rcu_head structure has already been passed to call_rcu(), then
 979 * you must also invoke this rcu_head_init() function on it just after
 980 * allocating that structure.  Calls to this function must not race with
 981 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
 982 */
 983static inline void rcu_head_init(struct rcu_head *rhp)
 984{
 985        rhp->func = (rcu_callback_t)~0L;
 986}
 987
 988/**
 989 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
 990 * @rhp: The rcu_head structure to test.
 991 * @f: The function passed to call_rcu() along with @rhp.
 992 *
 993 * Returns @true if the @rhp has been passed to call_rcu() with @func,
 994 * and @false otherwise.  Emits a warning in any other case, including
 995 * the case where @rhp has already been invoked after a grace period.
 996 * Calls to this function must not race with callback invocation.  One way
 997 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
 998 * in an RCU read-side critical section that includes a read-side fetch
 999 * of the pointer to the structure containing @rhp.
1000 */
1001static inline bool
1002rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1003{
1004        rcu_callback_t func = READ_ONCE(rhp->func);
1005
1006        if (func == f)
1007                return true;
1008        WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1009        return false;
1010}
1011
1012/* kernel/ksysfs.c definitions */
1013extern int rcu_expedited;
1014extern int rcu_normal;
1015
1016#endif /* __LINUX_RCUPDATE_H */
1017