linux/include/uapi/linux/btrfs_tree.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2#ifndef _BTRFS_CTREE_H_
   3#define _BTRFS_CTREE_H_
   4
   5#include <linux/btrfs.h>
   6#include <linux/types.h>
   7#ifdef __KERNEL__
   8#include <linux/stddef.h>
   9#else
  10#include <stddef.h>
  11#endif
  12
  13/*
  14 * This header contains the structure definitions and constants used
  15 * by file system objects that can be retrieved using
  16 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
  17 * is needed to describe a leaf node's key or item contents.
  18 */
  19
  20/* holds pointers to all of the tree roots */
  21#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  22
  23/* stores information about which extents are in use, and reference counts */
  24#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  25
  26/*
  27 * chunk tree stores translations from logical -> physical block numbering
  28 * the super block points to the chunk tree
  29 */
  30#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  31
  32/*
  33 * stores information about which areas of a given device are in use.
  34 * one per device.  The tree of tree roots points to the device tree
  35 */
  36#define BTRFS_DEV_TREE_OBJECTID 4ULL
  37
  38/* one per subvolume, storing files and directories */
  39#define BTRFS_FS_TREE_OBJECTID 5ULL
  40
  41/* directory objectid inside the root tree */
  42#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  43
  44/* holds checksums of all the data extents */
  45#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  46
  47/* holds quota configuration and tracking */
  48#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  49
  50/* for storing items that use the BTRFS_UUID_KEY* types */
  51#define BTRFS_UUID_TREE_OBJECTID 9ULL
  52
  53/* tracks free space in block groups. */
  54#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
  55
  56/* Holds the block group items for extent tree v2. */
  57#define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL
  58
  59/* device stats in the device tree */
  60#define BTRFS_DEV_STATS_OBJECTID 0ULL
  61
  62/* for storing balance parameters in the root tree */
  63#define BTRFS_BALANCE_OBJECTID -4ULL
  64
  65/* orphan objectid for tracking unlinked/truncated files */
  66#define BTRFS_ORPHAN_OBJECTID -5ULL
  67
  68/* does write ahead logging to speed up fsyncs */
  69#define BTRFS_TREE_LOG_OBJECTID -6ULL
  70#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  71
  72/* for space balancing */
  73#define BTRFS_TREE_RELOC_OBJECTID -8ULL
  74#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  75
  76/*
  77 * extent checksums all have this objectid
  78 * this allows them to share the logging tree
  79 * for fsyncs
  80 */
  81#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
  82
  83/* For storing free space cache */
  84#define BTRFS_FREE_SPACE_OBJECTID -11ULL
  85
  86/*
  87 * The inode number assigned to the special inode for storing
  88 * free ino cache
  89 */
  90#define BTRFS_FREE_INO_OBJECTID -12ULL
  91
  92/* dummy objectid represents multiple objectids */
  93#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
  94
  95/*
  96 * All files have objectids in this range.
  97 */
  98#define BTRFS_FIRST_FREE_OBJECTID 256ULL
  99#define BTRFS_LAST_FREE_OBJECTID -256ULL
 100#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
 101
 102
 103/*
 104 * the device items go into the chunk tree.  The key is in the form
 105 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 106 */
 107#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 108
 109#define BTRFS_BTREE_INODE_OBJECTID 1
 110
 111#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 112
 113#define BTRFS_DEV_REPLACE_DEVID 0ULL
 114
 115/*
 116 * inode items have the data typically returned from stat and store other
 117 * info about object characteristics.  There is one for every file and dir in
 118 * the FS
 119 */
 120#define BTRFS_INODE_ITEM_KEY            1
 121#define BTRFS_INODE_REF_KEY             12
 122#define BTRFS_INODE_EXTREF_KEY          13
 123#define BTRFS_XATTR_ITEM_KEY            24
 124
 125/*
 126 * fs verity items are stored under two different key types on disk.
 127 * The descriptor items:
 128 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
 129 *
 130 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
 131 * of the descriptor item and some extra data for encryption.
 132 * Starting at offset 1, these hold the generic fs verity descriptor.  The
 133 * latter are opaque to btrfs, we just read and write them as a blob for the
 134 * higher level verity code.  The most common descriptor size is 256 bytes.
 135 *
 136 * The merkle tree items:
 137 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
 138 *
 139 * These also start at offset 0, and correspond to the merkle tree bytes.  When
 140 * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
 141 * offset 0 for this key type.  These are also opaque to btrfs, we're blindly
 142 * storing whatever fsverity sends down.
 143 */
 144#define BTRFS_VERITY_DESC_ITEM_KEY      36
 145#define BTRFS_VERITY_MERKLE_ITEM_KEY    37
 146
 147#define BTRFS_ORPHAN_ITEM_KEY           48
 148/* reserve 2-15 close to the inode for later flexibility */
 149
 150/*
 151 * dir items are the name -> inode pointers in a directory.  There is one
 152 * for every name in a directory.  BTRFS_DIR_LOG_ITEM_KEY is no longer used
 153 * but it's still defined here for documentation purposes and to help avoid
 154 * having its numerical value reused in the future.
 155 */
 156#define BTRFS_DIR_LOG_ITEM_KEY  60
 157#define BTRFS_DIR_LOG_INDEX_KEY 72
 158#define BTRFS_DIR_ITEM_KEY      84
 159#define BTRFS_DIR_INDEX_KEY     96
 160/*
 161 * extent data is for file data
 162 */
 163#define BTRFS_EXTENT_DATA_KEY   108
 164
 165/*
 166 * extent csums are stored in a separate tree and hold csums for
 167 * an entire extent on disk.
 168 */
 169#define BTRFS_EXTENT_CSUM_KEY   128
 170
 171/*
 172 * root items point to tree roots.  They are typically in the root
 173 * tree used by the super block to find all the other trees
 174 */
 175#define BTRFS_ROOT_ITEM_KEY     132
 176
 177/*
 178 * root backrefs tie subvols and snapshots to the directory entries that
 179 * reference them
 180 */
 181#define BTRFS_ROOT_BACKREF_KEY  144
 182
 183/*
 184 * root refs make a fast index for listing all of the snapshots and
 185 * subvolumes referenced by a given root.  They point directly to the
 186 * directory item in the root that references the subvol
 187 */
 188#define BTRFS_ROOT_REF_KEY      156
 189
 190/*
 191 * extent items are in the extent map tree.  These record which blocks
 192 * are used, and how many references there are to each block
 193 */
 194#define BTRFS_EXTENT_ITEM_KEY   168
 195
 196/*
 197 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 198 * the length, so we save the level in key->offset instead of the length.
 199 */
 200#define BTRFS_METADATA_ITEM_KEY 169
 201
 202#define BTRFS_TREE_BLOCK_REF_KEY        176
 203
 204#define BTRFS_EXTENT_DATA_REF_KEY       178
 205
 206#define BTRFS_EXTENT_REF_V0_KEY         180
 207
 208#define BTRFS_SHARED_BLOCK_REF_KEY      182
 209
 210#define BTRFS_SHARED_DATA_REF_KEY       184
 211
 212/*
 213 * block groups give us hints into the extent allocation trees.  Which
 214 * blocks are free etc etc
 215 */
 216#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
 217
 218/*
 219 * Every block group is represented in the free space tree by a free space info
 220 * item, which stores some accounting information. It is keyed on
 221 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 222 */
 223#define BTRFS_FREE_SPACE_INFO_KEY 198
 224
 225/*
 226 * A free space extent tracks an extent of space that is free in a block group.
 227 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 228 */
 229#define BTRFS_FREE_SPACE_EXTENT_KEY 199
 230
 231/*
 232 * When a block group becomes very fragmented, we convert it to use bitmaps
 233 * instead of extents. A free space bitmap is keyed on
 234 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 235 * (length / sectorsize) bits.
 236 */
 237#define BTRFS_FREE_SPACE_BITMAP_KEY 200
 238
 239#define BTRFS_DEV_EXTENT_KEY    204
 240#define BTRFS_DEV_ITEM_KEY      216
 241#define BTRFS_CHUNK_ITEM_KEY    228
 242
 243/*
 244 * Records the overall state of the qgroups.
 245 * There's only one instance of this key present,
 246 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 247 */
 248#define BTRFS_QGROUP_STATUS_KEY         240
 249/*
 250 * Records the currently used space of the qgroup.
 251 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 252 */
 253#define BTRFS_QGROUP_INFO_KEY           242
 254/*
 255 * Contains the user configured limits for the qgroup.
 256 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 257 */
 258#define BTRFS_QGROUP_LIMIT_KEY          244
 259/*
 260 * Records the child-parent relationship of qgroups. For
 261 * each relation, 2 keys are present:
 262 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 263 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 264 */
 265#define BTRFS_QGROUP_RELATION_KEY       246
 266
 267/*
 268 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 269 */
 270#define BTRFS_BALANCE_ITEM_KEY  248
 271
 272/*
 273 * The key type for tree items that are stored persistently, but do not need to
 274 * exist for extended period of time. The items can exist in any tree.
 275 *
 276 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 277 *
 278 * Existing items:
 279 *
 280 * - balance status item
 281 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 282 */
 283#define BTRFS_TEMPORARY_ITEM_KEY        248
 284
 285/*
 286 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 287 */
 288#define BTRFS_DEV_STATS_KEY             249
 289
 290/*
 291 * The key type for tree items that are stored persistently and usually exist
 292 * for a long period, eg. filesystem lifetime. The item kinds can be status
 293 * information, stats or preference values. The item can exist in any tree.
 294 *
 295 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 296 *
 297 * Existing items:
 298 *
 299 * - device statistics, store IO stats in the device tree, one key for all
 300 *   stats
 301 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 302 */
 303#define BTRFS_PERSISTENT_ITEM_KEY       249
 304
 305/*
 306 * Persistently stores the device replace state in the device tree.
 307 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 308 */
 309#define BTRFS_DEV_REPLACE_KEY   250
 310
 311/*
 312 * Stores items that allow to quickly map UUIDs to something else.
 313 * These items are part of the filesystem UUID tree.
 314 * The key is built like this:
 315 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 316 */
 317#if BTRFS_UUID_SIZE != 16
 318#error "UUID items require BTRFS_UUID_SIZE == 16!"
 319#endif
 320#define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
 321#define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
 322                                                 * received subvols */
 323
 324/*
 325 * string items are for debugging.  They just store a short string of
 326 * data in the FS
 327 */
 328#define BTRFS_STRING_ITEM_KEY   253
 329
 330/* Maximum metadata block size (nodesize) */
 331#define BTRFS_MAX_METADATA_BLOCKSIZE                    65536
 332
 333/* 32 bytes in various csum fields */
 334#define BTRFS_CSUM_SIZE 32
 335
 336/* csum types */
 337enum btrfs_csum_type {
 338        BTRFS_CSUM_TYPE_CRC32   = 0,
 339        BTRFS_CSUM_TYPE_XXHASH  = 1,
 340        BTRFS_CSUM_TYPE_SHA256  = 2,
 341        BTRFS_CSUM_TYPE_BLAKE2  = 3,
 342};
 343
 344/*
 345 * flags definitions for directory entry item type
 346 *
 347 * Used by:
 348 * struct btrfs_dir_item.type
 349 *
 350 * Values 0..7 must match common file type values in fs_types.h.
 351 */
 352#define BTRFS_FT_UNKNOWN        0
 353#define BTRFS_FT_REG_FILE       1
 354#define BTRFS_FT_DIR            2
 355#define BTRFS_FT_CHRDEV         3
 356#define BTRFS_FT_BLKDEV         4
 357#define BTRFS_FT_FIFO           5
 358#define BTRFS_FT_SOCK           6
 359#define BTRFS_FT_SYMLINK        7
 360#define BTRFS_FT_XATTR          8
 361#define BTRFS_FT_MAX            9
 362
 363/*
 364 * The key defines the order in the tree, and so it also defines (optimal)
 365 * block layout.
 366 *
 367 * objectid corresponds to the inode number.
 368 *
 369 * type tells us things about the object, and is a kind of stream selector.
 370 * so for a given inode, keys with type of 1 might refer to the inode data,
 371 * type of 2 may point to file data in the btree and type == 3 may point to
 372 * extents.
 373 *
 374 * offset is the starting byte offset for this key in the stream.
 375 *
 376 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 377 * in cpu native order.  Otherwise they are identical and their sizes
 378 * should be the same (ie both packed)
 379 */
 380struct btrfs_disk_key {
 381        __le64 objectid;
 382        __u8 type;
 383        __le64 offset;
 384} __attribute__ ((__packed__));
 385
 386struct btrfs_key {
 387        __u64 objectid;
 388        __u8 type;
 389        __u64 offset;
 390} __attribute__ ((__packed__));
 391
 392struct btrfs_dev_item {
 393        /* the internal btrfs device id */
 394        __le64 devid;
 395
 396        /* size of the device */
 397        __le64 total_bytes;
 398
 399        /* bytes used */
 400        __le64 bytes_used;
 401
 402        /* optimal io alignment for this device */
 403        __le32 io_align;
 404
 405        /* optimal io width for this device */
 406        __le32 io_width;
 407
 408        /* minimal io size for this device */
 409        __le32 sector_size;
 410
 411        /* type and info about this device */
 412        __le64 type;
 413
 414        /* expected generation for this device */
 415        __le64 generation;
 416
 417        /*
 418         * starting byte of this partition on the device,
 419         * to allow for stripe alignment in the future
 420         */
 421        __le64 start_offset;
 422
 423        /* grouping information for allocation decisions */
 424        __le32 dev_group;
 425
 426        /* seek speed 0-100 where 100 is fastest */
 427        __u8 seek_speed;
 428
 429        /* bandwidth 0-100 where 100 is fastest */
 430        __u8 bandwidth;
 431
 432        /* btrfs generated uuid for this device */
 433        __u8 uuid[BTRFS_UUID_SIZE];
 434
 435        /* uuid of FS who owns this device */
 436        __u8 fsid[BTRFS_UUID_SIZE];
 437} __attribute__ ((__packed__));
 438
 439struct btrfs_stripe {
 440        __le64 devid;
 441        __le64 offset;
 442        __u8 dev_uuid[BTRFS_UUID_SIZE];
 443} __attribute__ ((__packed__));
 444
 445struct btrfs_chunk {
 446        /* size of this chunk in bytes */
 447        __le64 length;
 448
 449        /* objectid of the root referencing this chunk */
 450        __le64 owner;
 451
 452        __le64 stripe_len;
 453        __le64 type;
 454
 455        /* optimal io alignment for this chunk */
 456        __le32 io_align;
 457
 458        /* optimal io width for this chunk */
 459        __le32 io_width;
 460
 461        /* minimal io size for this chunk */
 462        __le32 sector_size;
 463
 464        /* 2^16 stripes is quite a lot, a second limit is the size of a single
 465         * item in the btree
 466         */
 467        __le16 num_stripes;
 468
 469        /* sub stripes only matter for raid10 */
 470        __le16 sub_stripes;
 471        struct btrfs_stripe stripe;
 472        /* additional stripes go here */
 473} __attribute__ ((__packed__));
 474
 475#define BTRFS_FREE_SPACE_EXTENT 1
 476#define BTRFS_FREE_SPACE_BITMAP 2
 477
 478struct btrfs_free_space_entry {
 479        __le64 offset;
 480        __le64 bytes;
 481        __u8 type;
 482} __attribute__ ((__packed__));
 483
 484struct btrfs_free_space_header {
 485        struct btrfs_disk_key location;
 486        __le64 generation;
 487        __le64 num_entries;
 488        __le64 num_bitmaps;
 489} __attribute__ ((__packed__));
 490
 491#define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
 492#define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
 493
 494/* Super block flags */
 495/* Errors detected */
 496#define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
 497
 498#define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
 499#define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
 500#define BTRFS_SUPER_FLAG_METADUMP_V2    (1ULL << 34)
 501#define BTRFS_SUPER_FLAG_CHANGING_FSID  (1ULL << 35)
 502#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
 503
 504
 505/*
 506 * items in the extent btree are used to record the objectid of the
 507 * owner of the block and the number of references
 508 */
 509
 510struct btrfs_extent_item {
 511        __le64 refs;
 512        __le64 generation;
 513        __le64 flags;
 514} __attribute__ ((__packed__));
 515
 516struct btrfs_extent_item_v0 {
 517        __le32 refs;
 518} __attribute__ ((__packed__));
 519
 520
 521#define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
 522#define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
 523
 524/* following flags only apply to tree blocks */
 525
 526/* use full backrefs for extent pointers in the block */
 527#define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
 528
 529/*
 530 * this flag is only used internally by scrub and may be changed at any time
 531 * it is only declared here to avoid collisions
 532 */
 533#define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
 534
 535struct btrfs_tree_block_info {
 536        struct btrfs_disk_key key;
 537        __u8 level;
 538} __attribute__ ((__packed__));
 539
 540struct btrfs_extent_data_ref {
 541        __le64 root;
 542        __le64 objectid;
 543        __le64 offset;
 544        __le32 count;
 545} __attribute__ ((__packed__));
 546
 547struct btrfs_shared_data_ref {
 548        __le32 count;
 549} __attribute__ ((__packed__));
 550
 551struct btrfs_extent_inline_ref {
 552        __u8 type;
 553        __le64 offset;
 554} __attribute__ ((__packed__));
 555
 556/* dev extents record free space on individual devices.  The owner
 557 * field points back to the chunk allocation mapping tree that allocated
 558 * the extent.  The chunk tree uuid field is a way to double check the owner
 559 */
 560struct btrfs_dev_extent {
 561        __le64 chunk_tree;
 562        __le64 chunk_objectid;
 563        __le64 chunk_offset;
 564        __le64 length;
 565        __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 566} __attribute__ ((__packed__));
 567
 568struct btrfs_inode_ref {
 569        __le64 index;
 570        __le16 name_len;
 571        /* name goes here */
 572} __attribute__ ((__packed__));
 573
 574struct btrfs_inode_extref {
 575        __le64 parent_objectid;
 576        __le64 index;
 577        __le16 name_len;
 578        __u8   name[0];
 579        /* name goes here */
 580} __attribute__ ((__packed__));
 581
 582struct btrfs_timespec {
 583        __le64 sec;
 584        __le32 nsec;
 585} __attribute__ ((__packed__));
 586
 587struct btrfs_inode_item {
 588        /* nfs style generation number */
 589        __le64 generation;
 590        /* transid that last touched this inode */
 591        __le64 transid;
 592        __le64 size;
 593        __le64 nbytes;
 594        __le64 block_group;
 595        __le32 nlink;
 596        __le32 uid;
 597        __le32 gid;
 598        __le32 mode;
 599        __le64 rdev;
 600        __le64 flags;
 601
 602        /* modification sequence number for NFS */
 603        __le64 sequence;
 604
 605        /*
 606         * a little future expansion, for more than this we can
 607         * just grow the inode item and version it
 608         */
 609        __le64 reserved[4];
 610        struct btrfs_timespec atime;
 611        struct btrfs_timespec ctime;
 612        struct btrfs_timespec mtime;
 613        struct btrfs_timespec otime;
 614} __attribute__ ((__packed__));
 615
 616struct btrfs_dir_log_item {
 617        __le64 end;
 618} __attribute__ ((__packed__));
 619
 620struct btrfs_dir_item {
 621        struct btrfs_disk_key location;
 622        __le64 transid;
 623        __le16 data_len;
 624        __le16 name_len;
 625        __u8 type;
 626} __attribute__ ((__packed__));
 627
 628#define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
 629
 630/*
 631 * Internal in-memory flag that a subvolume has been marked for deletion but
 632 * still visible as a directory
 633 */
 634#define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
 635
 636struct btrfs_root_item {
 637        struct btrfs_inode_item inode;
 638        __le64 generation;
 639        __le64 root_dirid;
 640        __le64 bytenr;
 641        __le64 byte_limit;
 642        __le64 bytes_used;
 643        __le64 last_snapshot;
 644        __le64 flags;
 645        __le32 refs;
 646        struct btrfs_disk_key drop_progress;
 647        __u8 drop_level;
 648        __u8 level;
 649
 650        /*
 651         * The following fields appear after subvol_uuids+subvol_times
 652         * were introduced.
 653         */
 654
 655        /*
 656         * This generation number is used to test if the new fields are valid
 657         * and up to date while reading the root item. Every time the root item
 658         * is written out, the "generation" field is copied into this field. If
 659         * anyone ever mounted the fs with an older kernel, we will have
 660         * mismatching generation values here and thus must invalidate the
 661         * new fields. See btrfs_update_root and btrfs_find_last_root for
 662         * details.
 663         * the offset of generation_v2 is also used as the start for the memset
 664         * when invalidating the fields.
 665         */
 666        __le64 generation_v2;
 667        __u8 uuid[BTRFS_UUID_SIZE];
 668        __u8 parent_uuid[BTRFS_UUID_SIZE];
 669        __u8 received_uuid[BTRFS_UUID_SIZE];
 670        __le64 ctransid; /* updated when an inode changes */
 671        __le64 otransid; /* trans when created */
 672        __le64 stransid; /* trans when sent. non-zero for received subvol */
 673        __le64 rtransid; /* trans when received. non-zero for received subvol */
 674        struct btrfs_timespec ctime;
 675        struct btrfs_timespec otime;
 676        struct btrfs_timespec stime;
 677        struct btrfs_timespec rtime;
 678        __le64 reserved[8]; /* for future */
 679} __attribute__ ((__packed__));
 680
 681/*
 682 * Btrfs root item used to be smaller than current size.  The old format ends
 683 * at where member generation_v2 is.
 684 */
 685static inline __u32 btrfs_legacy_root_item_size(void)
 686{
 687        return offsetof(struct btrfs_root_item, generation_v2);
 688}
 689
 690/*
 691 * this is used for both forward and backward root refs
 692 */
 693struct btrfs_root_ref {
 694        __le64 dirid;
 695        __le64 sequence;
 696        __le16 name_len;
 697} __attribute__ ((__packed__));
 698
 699struct btrfs_disk_balance_args {
 700        /*
 701         * profiles to operate on, single is denoted by
 702         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 703         */
 704        __le64 profiles;
 705
 706        /*
 707         * usage filter
 708         * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
 709         * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
 710         */
 711        union {
 712                __le64 usage;
 713                struct {
 714                        __le32 usage_min;
 715                        __le32 usage_max;
 716                };
 717        };
 718
 719        /* devid filter */
 720        __le64 devid;
 721
 722        /* devid subset filter [pstart..pend) */
 723        __le64 pstart;
 724        __le64 pend;
 725
 726        /* btrfs virtual address space subset filter [vstart..vend) */
 727        __le64 vstart;
 728        __le64 vend;
 729
 730        /*
 731         * profile to convert to, single is denoted by
 732         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 733         */
 734        __le64 target;
 735
 736        /* BTRFS_BALANCE_ARGS_* */
 737        __le64 flags;
 738
 739        /*
 740         * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
 741         * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
 742         * and maximum
 743         */
 744        union {
 745                __le64 limit;
 746                struct {
 747                        __le32 limit_min;
 748                        __le32 limit_max;
 749                };
 750        };
 751
 752        /*
 753         * Process chunks that cross stripes_min..stripes_max devices,
 754         * BTRFS_BALANCE_ARGS_STRIPES_RANGE
 755         */
 756        __le32 stripes_min;
 757        __le32 stripes_max;
 758
 759        __le64 unused[6];
 760} __attribute__ ((__packed__));
 761
 762/*
 763 * store balance parameters to disk so that balance can be properly
 764 * resumed after crash or unmount
 765 */
 766struct btrfs_balance_item {
 767        /* BTRFS_BALANCE_* */
 768        __le64 flags;
 769
 770        struct btrfs_disk_balance_args data;
 771        struct btrfs_disk_balance_args meta;
 772        struct btrfs_disk_balance_args sys;
 773
 774        __le64 unused[4];
 775} __attribute__ ((__packed__));
 776
 777enum {
 778        BTRFS_FILE_EXTENT_INLINE   = 0,
 779        BTRFS_FILE_EXTENT_REG      = 1,
 780        BTRFS_FILE_EXTENT_PREALLOC = 2,
 781        BTRFS_NR_FILE_EXTENT_TYPES = 3,
 782};
 783
 784struct btrfs_file_extent_item {
 785        /*
 786         * transaction id that created this extent
 787         */
 788        __le64 generation;
 789        /*
 790         * max number of bytes to hold this extent in ram
 791         * when we split a compressed extent we can't know how big
 792         * each of the resulting pieces will be.  So, this is
 793         * an upper limit on the size of the extent in ram instead of
 794         * an exact limit.
 795         */
 796        __le64 ram_bytes;
 797
 798        /*
 799         * 32 bits for the various ways we might encode the data,
 800         * including compression and encryption.  If any of these
 801         * are set to something a given disk format doesn't understand
 802         * it is treated like an incompat flag for reading and writing,
 803         * but not for stat.
 804         */
 805        __u8 compression;
 806        __u8 encryption;
 807        __le16 other_encoding; /* spare for later use */
 808
 809        /* are we inline data or a real extent? */
 810        __u8 type;
 811
 812        /*
 813         * disk space consumed by the extent, checksum blocks are included
 814         * in these numbers
 815         *
 816         * At this offset in the structure, the inline extent data start.
 817         */
 818        __le64 disk_bytenr;
 819        __le64 disk_num_bytes;
 820        /*
 821         * the logical offset in file blocks (no csums)
 822         * this extent record is for.  This allows a file extent to point
 823         * into the middle of an existing extent on disk, sharing it
 824         * between two snapshots (useful if some bytes in the middle of the
 825         * extent have changed
 826         */
 827        __le64 offset;
 828        /*
 829         * the logical number of file blocks (no csums included).  This
 830         * always reflects the size uncompressed and without encoding.
 831         */
 832        __le64 num_bytes;
 833
 834} __attribute__ ((__packed__));
 835
 836struct btrfs_csum_item {
 837        __u8 csum;
 838} __attribute__ ((__packed__));
 839
 840struct btrfs_dev_stats_item {
 841        /*
 842         * grow this item struct at the end for future enhancements and keep
 843         * the existing values unchanged
 844         */
 845        __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 846} __attribute__ ((__packed__));
 847
 848#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
 849#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
 850
 851struct btrfs_dev_replace_item {
 852        /*
 853         * grow this item struct at the end for future enhancements and keep
 854         * the existing values unchanged
 855         */
 856        __le64 src_devid;
 857        __le64 cursor_left;
 858        __le64 cursor_right;
 859        __le64 cont_reading_from_srcdev_mode;
 860
 861        __le64 replace_state;
 862        __le64 time_started;
 863        __le64 time_stopped;
 864        __le64 num_write_errors;
 865        __le64 num_uncorrectable_read_errors;
 866} __attribute__ ((__packed__));
 867
 868/* different types of block groups (and chunks) */
 869#define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
 870#define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
 871#define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
 872#define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
 873#define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
 874#define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
 875#define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
 876#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 877#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 878#define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
 879#define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
 880#define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 881                                         BTRFS_SPACE_INFO_GLOBAL_RSV)
 882
 883#define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
 884                                         BTRFS_BLOCK_GROUP_SYSTEM |  \
 885                                         BTRFS_BLOCK_GROUP_METADATA)
 886
 887#define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
 888                                         BTRFS_BLOCK_GROUP_RAID1 |   \
 889                                         BTRFS_BLOCK_GROUP_RAID1C3 | \
 890                                         BTRFS_BLOCK_GROUP_RAID1C4 | \
 891                                         BTRFS_BLOCK_GROUP_RAID5 |   \
 892                                         BTRFS_BLOCK_GROUP_RAID6 |   \
 893                                         BTRFS_BLOCK_GROUP_DUP |     \
 894                                         BTRFS_BLOCK_GROUP_RAID10)
 895#define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
 896                                         BTRFS_BLOCK_GROUP_RAID6)
 897
 898#define BTRFS_BLOCK_GROUP_RAID1_MASK    (BTRFS_BLOCK_GROUP_RAID1 |   \
 899                                         BTRFS_BLOCK_GROUP_RAID1C3 | \
 900                                         BTRFS_BLOCK_GROUP_RAID1C4)
 901
 902/*
 903 * We need a bit for restriper to be able to tell when chunks of type
 904 * SINGLE are available.  This "extended" profile format is used in
 905 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 906 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 907 * to avoid remappings between two formats in future.
 908 */
 909#define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
 910
 911/*
 912 * A fake block group type that is used to communicate global block reserve
 913 * size to userspace via the SPACE_INFO ioctl.
 914 */
 915#define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
 916
 917#define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 918                                         BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 919
 920static inline __u64 chunk_to_extended(__u64 flags)
 921{
 922        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
 923                flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 924
 925        return flags;
 926}
 927static inline __u64 extended_to_chunk(__u64 flags)
 928{
 929        return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 930}
 931
 932struct btrfs_block_group_item {
 933        __le64 used;
 934        __le64 chunk_objectid;
 935        __le64 flags;
 936} __attribute__ ((__packed__));
 937
 938struct btrfs_free_space_info {
 939        __le32 extent_count;
 940        __le32 flags;
 941} __attribute__ ((__packed__));
 942
 943#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
 944
 945#define BTRFS_QGROUP_LEVEL_SHIFT                48
 946static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
 947{
 948        return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
 949}
 950
 951/*
 952 * is subvolume quota turned on?
 953 */
 954#define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
 955/*
 956 * RESCAN is set during the initialization phase
 957 */
 958#define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
 959/*
 960 * Some qgroup entries are known to be out of date,
 961 * either because the configuration has changed in a way that
 962 * makes a rescan necessary, or because the fs has been mounted
 963 * with a non-qgroup-aware version.
 964 * Turning qouta off and on again makes it inconsistent, too.
 965 */
 966#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
 967
 968#define BTRFS_QGROUP_STATUS_VERSION        1
 969
 970struct btrfs_qgroup_status_item {
 971        __le64 version;
 972        /*
 973         * the generation is updated during every commit. As older
 974         * versions of btrfs are not aware of qgroups, it will be
 975         * possible to detect inconsistencies by checking the
 976         * generation on mount time
 977         */
 978        __le64 generation;
 979
 980        /* flag definitions see above */
 981        __le64 flags;
 982
 983        /*
 984         * only used during scanning to record the progress
 985         * of the scan. It contains a logical address
 986         */
 987        __le64 rescan;
 988} __attribute__ ((__packed__));
 989
 990struct btrfs_qgroup_info_item {
 991        __le64 generation;
 992        __le64 rfer;
 993        __le64 rfer_cmpr;
 994        __le64 excl;
 995        __le64 excl_cmpr;
 996} __attribute__ ((__packed__));
 997
 998struct btrfs_qgroup_limit_item {
 999        /*
1000         * only updated when any of the other values change
1001         */
1002        __le64 flags;
1003        __le64 max_rfer;
1004        __le64 max_excl;
1005        __le64 rsv_rfer;
1006        __le64 rsv_excl;
1007} __attribute__ ((__packed__));
1008
1009struct btrfs_verity_descriptor_item {
1010        /* Size of the verity descriptor in bytes */
1011        __le64 size;
1012        /*
1013         * When we implement support for fscrypt, we will need to encrypt the
1014         * Merkle tree for encrypted verity files. These 128 bits are for the
1015         * eventual storage of an fscrypt initialization vector.
1016         */
1017        __le64 reserved[2];
1018        __u8 encryption;
1019} __attribute__ ((__packed__));
1020
1021#endif /* _BTRFS_CTREE_H_ */
1022