linux/kernel/auditsc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67
  68#include "audit.h"
  69
  70/* flags stating the success for a syscall */
  71#define AUDITSC_INVALID 0
  72#define AUDITSC_SUCCESS 1
  73#define AUDITSC_FAILURE 2
  74
  75/* no execve audit message should be longer than this (userspace limits),
  76 * see the note near the top of audit_log_execve_info() about this value */
  77#define MAX_EXECVE_AUDIT_LEN 7500
  78
  79/* max length to print of cmdline/proctitle value during audit */
  80#define MAX_PROCTITLE_AUDIT_LEN 128
  81
  82/* number of audit rules */
  83int audit_n_rules;
  84
  85/* determines whether we collect data for signals sent */
  86int audit_signals;
  87
  88struct audit_aux_data {
  89        struct audit_aux_data   *next;
  90        int                     type;
  91};
  92
  93/* Number of target pids per aux struct. */
  94#define AUDIT_AUX_PIDS  16
  95
  96struct audit_aux_data_pids {
  97        struct audit_aux_data   d;
  98        pid_t                   target_pid[AUDIT_AUX_PIDS];
  99        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 100        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 101        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 102        u32                     target_sid[AUDIT_AUX_PIDS];
 103        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 104        int                     pid_count;
 105};
 106
 107struct audit_aux_data_bprm_fcaps {
 108        struct audit_aux_data   d;
 109        struct audit_cap_data   fcap;
 110        unsigned int            fcap_ver;
 111        struct audit_cap_data   old_pcap;
 112        struct audit_cap_data   new_pcap;
 113};
 114
 115struct audit_tree_refs {
 116        struct audit_tree_refs *next;
 117        struct audit_chunk *c[31];
 118};
 119
 120struct audit_nfcfgop_tab {
 121        enum audit_nfcfgop      op;
 122        const char              *s;
 123};
 124
 125static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 126        { AUDIT_XT_OP_REGISTER,                 "xt_register"              },
 127        { AUDIT_XT_OP_REPLACE,                  "xt_replace"               },
 128        { AUDIT_XT_OP_UNREGISTER,               "xt_unregister"            },
 129        { AUDIT_NFT_OP_TABLE_REGISTER,          "nft_register_table"       },
 130        { AUDIT_NFT_OP_TABLE_UNREGISTER,        "nft_unregister_table"     },
 131        { AUDIT_NFT_OP_CHAIN_REGISTER,          "nft_register_chain"       },
 132        { AUDIT_NFT_OP_CHAIN_UNREGISTER,        "nft_unregister_chain"     },
 133        { AUDIT_NFT_OP_RULE_REGISTER,           "nft_register_rule"        },
 134        { AUDIT_NFT_OP_RULE_UNREGISTER,         "nft_unregister_rule"      },
 135        { AUDIT_NFT_OP_SET_REGISTER,            "nft_register_set"         },
 136        { AUDIT_NFT_OP_SET_UNREGISTER,          "nft_unregister_set"       },
 137        { AUDIT_NFT_OP_SETELEM_REGISTER,        "nft_register_setelem"     },
 138        { AUDIT_NFT_OP_SETELEM_UNREGISTER,      "nft_unregister_setelem"   },
 139        { AUDIT_NFT_OP_GEN_REGISTER,            "nft_register_gen"         },
 140        { AUDIT_NFT_OP_OBJ_REGISTER,            "nft_register_obj"         },
 141        { AUDIT_NFT_OP_OBJ_UNREGISTER,          "nft_unregister_obj"       },
 142        { AUDIT_NFT_OP_OBJ_RESET,               "nft_reset_obj"            },
 143        { AUDIT_NFT_OP_FLOWTABLE_REGISTER,      "nft_register_flowtable"   },
 144        { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,    "nft_unregister_flowtable" },
 145        { AUDIT_NFT_OP_INVALID,                 "nft_invalid"              },
 146};
 147
 148static int audit_match_perm(struct audit_context *ctx, int mask)
 149{
 150        unsigned n;
 151
 152        if (unlikely(!ctx))
 153                return 0;
 154        n = ctx->major;
 155
 156        switch (audit_classify_syscall(ctx->arch, n)) {
 157        case AUDITSC_NATIVE:
 158                if ((mask & AUDIT_PERM_WRITE) &&
 159                     audit_match_class(AUDIT_CLASS_WRITE, n))
 160                        return 1;
 161                if ((mask & AUDIT_PERM_READ) &&
 162                     audit_match_class(AUDIT_CLASS_READ, n))
 163                        return 1;
 164                if ((mask & AUDIT_PERM_ATTR) &&
 165                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 166                        return 1;
 167                return 0;
 168        case AUDITSC_COMPAT: /* 32bit on biarch */
 169                if ((mask & AUDIT_PERM_WRITE) &&
 170                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 171                        return 1;
 172                if ((mask & AUDIT_PERM_READ) &&
 173                     audit_match_class(AUDIT_CLASS_READ_32, n))
 174                        return 1;
 175                if ((mask & AUDIT_PERM_ATTR) &&
 176                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 177                        return 1;
 178                return 0;
 179        case AUDITSC_OPEN:
 180                return mask & ACC_MODE(ctx->argv[1]);
 181        case AUDITSC_OPENAT:
 182                return mask & ACC_MODE(ctx->argv[2]);
 183        case AUDITSC_SOCKETCALL:
 184                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 185        case AUDITSC_EXECVE:
 186                return mask & AUDIT_PERM_EXEC;
 187        case AUDITSC_OPENAT2:
 188                return mask & ACC_MODE((u32)ctx->openat2.flags);
 189        default:
 190                return 0;
 191        }
 192}
 193
 194static int audit_match_filetype(struct audit_context *ctx, int val)
 195{
 196        struct audit_names *n;
 197        umode_t mode = (umode_t)val;
 198
 199        if (unlikely(!ctx))
 200                return 0;
 201
 202        list_for_each_entry(n, &ctx->names_list, list) {
 203                if ((n->ino != AUDIT_INO_UNSET) &&
 204                    ((n->mode & S_IFMT) == mode))
 205                        return 1;
 206        }
 207
 208        return 0;
 209}
 210
 211/*
 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 213 * ->first_trees points to its beginning, ->trees - to the current end of data.
 214 * ->tree_count is the number of free entries in array pointed to by ->trees.
 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 216 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 217 * it's going to remain 1-element for almost any setup) until we free context itself.
 218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 219 */
 220
 221static void audit_set_auditable(struct audit_context *ctx)
 222{
 223        if (!ctx->prio) {
 224                ctx->prio = 1;
 225                ctx->current_state = AUDIT_STATE_RECORD;
 226        }
 227}
 228
 229static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 230{
 231        struct audit_tree_refs *p = ctx->trees;
 232        int left = ctx->tree_count;
 233
 234        if (likely(left)) {
 235                p->c[--left] = chunk;
 236                ctx->tree_count = left;
 237                return 1;
 238        }
 239        if (!p)
 240                return 0;
 241        p = p->next;
 242        if (p) {
 243                p->c[30] = chunk;
 244                ctx->trees = p;
 245                ctx->tree_count = 30;
 246                return 1;
 247        }
 248        return 0;
 249}
 250
 251static int grow_tree_refs(struct audit_context *ctx)
 252{
 253        struct audit_tree_refs *p = ctx->trees;
 254
 255        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 256        if (!ctx->trees) {
 257                ctx->trees = p;
 258                return 0;
 259        }
 260        if (p)
 261                p->next = ctx->trees;
 262        else
 263                ctx->first_trees = ctx->trees;
 264        ctx->tree_count = 31;
 265        return 1;
 266}
 267
 268static void unroll_tree_refs(struct audit_context *ctx,
 269                      struct audit_tree_refs *p, int count)
 270{
 271        struct audit_tree_refs *q;
 272        int n;
 273
 274        if (!p) {
 275                /* we started with empty chain */
 276                p = ctx->first_trees;
 277                count = 31;
 278                /* if the very first allocation has failed, nothing to do */
 279                if (!p)
 280                        return;
 281        }
 282        n = count;
 283        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 284                while (n--) {
 285                        audit_put_chunk(q->c[n]);
 286                        q->c[n] = NULL;
 287                }
 288        }
 289        while (n-- > ctx->tree_count) {
 290                audit_put_chunk(q->c[n]);
 291                q->c[n] = NULL;
 292        }
 293        ctx->trees = p;
 294        ctx->tree_count = count;
 295}
 296
 297static void free_tree_refs(struct audit_context *ctx)
 298{
 299        struct audit_tree_refs *p, *q;
 300
 301        for (p = ctx->first_trees; p; p = q) {
 302                q = p->next;
 303                kfree(p);
 304        }
 305}
 306
 307static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 308{
 309        struct audit_tree_refs *p;
 310        int n;
 311
 312        if (!tree)
 313                return 0;
 314        /* full ones */
 315        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 316                for (n = 0; n < 31; n++)
 317                        if (audit_tree_match(p->c[n], tree))
 318                                return 1;
 319        }
 320        /* partial */
 321        if (p) {
 322                for (n = ctx->tree_count; n < 31; n++)
 323                        if (audit_tree_match(p->c[n], tree))
 324                                return 1;
 325        }
 326        return 0;
 327}
 328
 329static int audit_compare_uid(kuid_t uid,
 330                             struct audit_names *name,
 331                             struct audit_field *f,
 332                             struct audit_context *ctx)
 333{
 334        struct audit_names *n;
 335        int rc;
 336
 337        if (name) {
 338                rc = audit_uid_comparator(uid, f->op, name->uid);
 339                if (rc)
 340                        return rc;
 341        }
 342
 343        if (ctx) {
 344                list_for_each_entry(n, &ctx->names_list, list) {
 345                        rc = audit_uid_comparator(uid, f->op, n->uid);
 346                        if (rc)
 347                                return rc;
 348                }
 349        }
 350        return 0;
 351}
 352
 353static int audit_compare_gid(kgid_t gid,
 354                             struct audit_names *name,
 355                             struct audit_field *f,
 356                             struct audit_context *ctx)
 357{
 358        struct audit_names *n;
 359        int rc;
 360
 361        if (name) {
 362                rc = audit_gid_comparator(gid, f->op, name->gid);
 363                if (rc)
 364                        return rc;
 365        }
 366
 367        if (ctx) {
 368                list_for_each_entry(n, &ctx->names_list, list) {
 369                        rc = audit_gid_comparator(gid, f->op, n->gid);
 370                        if (rc)
 371                                return rc;
 372                }
 373        }
 374        return 0;
 375}
 376
 377static int audit_field_compare(struct task_struct *tsk,
 378                               const struct cred *cred,
 379                               struct audit_field *f,
 380                               struct audit_context *ctx,
 381                               struct audit_names *name)
 382{
 383        switch (f->val) {
 384        /* process to file object comparisons */
 385        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 386                return audit_compare_uid(cred->uid, name, f, ctx);
 387        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 388                return audit_compare_gid(cred->gid, name, f, ctx);
 389        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 390                return audit_compare_uid(cred->euid, name, f, ctx);
 391        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 392                return audit_compare_gid(cred->egid, name, f, ctx);
 393        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 394                return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 395        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 396                return audit_compare_uid(cred->suid, name, f, ctx);
 397        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 398                return audit_compare_gid(cred->sgid, name, f, ctx);
 399        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 400                return audit_compare_uid(cred->fsuid, name, f, ctx);
 401        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 402                return audit_compare_gid(cred->fsgid, name, f, ctx);
 403        /* uid comparisons */
 404        case AUDIT_COMPARE_UID_TO_AUID:
 405                return audit_uid_comparator(cred->uid, f->op,
 406                                            audit_get_loginuid(tsk));
 407        case AUDIT_COMPARE_UID_TO_EUID:
 408                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 409        case AUDIT_COMPARE_UID_TO_SUID:
 410                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 411        case AUDIT_COMPARE_UID_TO_FSUID:
 412                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 413        /* auid comparisons */
 414        case AUDIT_COMPARE_AUID_TO_EUID:
 415                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 416                                            cred->euid);
 417        case AUDIT_COMPARE_AUID_TO_SUID:
 418                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419                                            cred->suid);
 420        case AUDIT_COMPARE_AUID_TO_FSUID:
 421                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422                                            cred->fsuid);
 423        /* euid comparisons */
 424        case AUDIT_COMPARE_EUID_TO_SUID:
 425                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 426        case AUDIT_COMPARE_EUID_TO_FSUID:
 427                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 428        /* suid comparisons */
 429        case AUDIT_COMPARE_SUID_TO_FSUID:
 430                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 431        /* gid comparisons */
 432        case AUDIT_COMPARE_GID_TO_EGID:
 433                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 434        case AUDIT_COMPARE_GID_TO_SGID:
 435                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 436        case AUDIT_COMPARE_GID_TO_FSGID:
 437                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 438        /* egid comparisons */
 439        case AUDIT_COMPARE_EGID_TO_SGID:
 440                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 441        case AUDIT_COMPARE_EGID_TO_FSGID:
 442                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 443        /* sgid comparison */
 444        case AUDIT_COMPARE_SGID_TO_FSGID:
 445                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 446        default:
 447                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 448                return 0;
 449        }
 450        return 0;
 451}
 452
 453/* Determine if any context name data matches a rule's watch data */
 454/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 455 * otherwise.
 456 *
 457 * If task_creation is true, this is an explicit indication that we are
 458 * filtering a task rule at task creation time.  This and tsk == current are
 459 * the only situations where tsk->cred may be accessed without an rcu read lock.
 460 */
 461static int audit_filter_rules(struct task_struct *tsk,
 462                              struct audit_krule *rule,
 463                              struct audit_context *ctx,
 464                              struct audit_names *name,
 465                              enum audit_state *state,
 466                              bool task_creation)
 467{
 468        const struct cred *cred;
 469        int i, need_sid = 1;
 470        u32 sid;
 471        unsigned int sessionid;
 472
 473        if (ctx && rule->prio <= ctx->prio)
 474                return 0;
 475
 476        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 477
 478        for (i = 0; i < rule->field_count; i++) {
 479                struct audit_field *f = &rule->fields[i];
 480                struct audit_names *n;
 481                int result = 0;
 482                pid_t pid;
 483
 484                switch (f->type) {
 485                case AUDIT_PID:
 486                        pid = task_tgid_nr(tsk);
 487                        result = audit_comparator(pid, f->op, f->val);
 488                        break;
 489                case AUDIT_PPID:
 490                        if (ctx) {
 491                                if (!ctx->ppid)
 492                                        ctx->ppid = task_ppid_nr(tsk);
 493                                result = audit_comparator(ctx->ppid, f->op, f->val);
 494                        }
 495                        break;
 496                case AUDIT_EXE:
 497                        result = audit_exe_compare(tsk, rule->exe);
 498                        if (f->op == Audit_not_equal)
 499                                result = !result;
 500                        break;
 501                case AUDIT_UID:
 502                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 503                        break;
 504                case AUDIT_EUID:
 505                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 506                        break;
 507                case AUDIT_SUID:
 508                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 509                        break;
 510                case AUDIT_FSUID:
 511                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 512                        break;
 513                case AUDIT_GID:
 514                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 515                        if (f->op == Audit_equal) {
 516                                if (!result)
 517                                        result = groups_search(cred->group_info, f->gid);
 518                        } else if (f->op == Audit_not_equal) {
 519                                if (result)
 520                                        result = !groups_search(cred->group_info, f->gid);
 521                        }
 522                        break;
 523                case AUDIT_EGID:
 524                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 525                        if (f->op == Audit_equal) {
 526                                if (!result)
 527                                        result = groups_search(cred->group_info, f->gid);
 528                        } else if (f->op == Audit_not_equal) {
 529                                if (result)
 530                                        result = !groups_search(cred->group_info, f->gid);
 531                        }
 532                        break;
 533                case AUDIT_SGID:
 534                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 535                        break;
 536                case AUDIT_FSGID:
 537                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 538                        break;
 539                case AUDIT_SESSIONID:
 540                        sessionid = audit_get_sessionid(tsk);
 541                        result = audit_comparator(sessionid, f->op, f->val);
 542                        break;
 543                case AUDIT_PERS:
 544                        result = audit_comparator(tsk->personality, f->op, f->val);
 545                        break;
 546                case AUDIT_ARCH:
 547                        if (ctx)
 548                                result = audit_comparator(ctx->arch, f->op, f->val);
 549                        break;
 550
 551                case AUDIT_EXIT:
 552                        if (ctx && ctx->return_valid != AUDITSC_INVALID)
 553                                result = audit_comparator(ctx->return_code, f->op, f->val);
 554                        break;
 555                case AUDIT_SUCCESS:
 556                        if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 557                                if (f->val)
 558                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 559                                else
 560                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 561                        }
 562                        break;
 563                case AUDIT_DEVMAJOR:
 564                        if (name) {
 565                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 566                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 567                                        ++result;
 568                        } else if (ctx) {
 569                                list_for_each_entry(n, &ctx->names_list, list) {
 570                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 571                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 572                                                ++result;
 573                                                break;
 574                                        }
 575                                }
 576                        }
 577                        break;
 578                case AUDIT_DEVMINOR:
 579                        if (name) {
 580                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 581                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 582                                        ++result;
 583                        } else if (ctx) {
 584                                list_for_each_entry(n, &ctx->names_list, list) {
 585                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 586                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 587                                                ++result;
 588                                                break;
 589                                        }
 590                                }
 591                        }
 592                        break;
 593                case AUDIT_INODE:
 594                        if (name)
 595                                result = audit_comparator(name->ino, f->op, f->val);
 596                        else if (ctx) {
 597                                list_for_each_entry(n, &ctx->names_list, list) {
 598                                        if (audit_comparator(n->ino, f->op, f->val)) {
 599                                                ++result;
 600                                                break;
 601                                        }
 602                                }
 603                        }
 604                        break;
 605                case AUDIT_OBJ_UID:
 606                        if (name) {
 607                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 608                        } else if (ctx) {
 609                                list_for_each_entry(n, &ctx->names_list, list) {
 610                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 611                                                ++result;
 612                                                break;
 613                                        }
 614                                }
 615                        }
 616                        break;
 617                case AUDIT_OBJ_GID:
 618                        if (name) {
 619                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 620                        } else if (ctx) {
 621                                list_for_each_entry(n, &ctx->names_list, list) {
 622                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 623                                                ++result;
 624                                                break;
 625                                        }
 626                                }
 627                        }
 628                        break;
 629                case AUDIT_WATCH:
 630                        if (name) {
 631                                result = audit_watch_compare(rule->watch,
 632                                                             name->ino,
 633                                                             name->dev);
 634                                if (f->op == Audit_not_equal)
 635                                        result = !result;
 636                        }
 637                        break;
 638                case AUDIT_DIR:
 639                        if (ctx) {
 640                                result = match_tree_refs(ctx, rule->tree);
 641                                if (f->op == Audit_not_equal)
 642                                        result = !result;
 643                        }
 644                        break;
 645                case AUDIT_LOGINUID:
 646                        result = audit_uid_comparator(audit_get_loginuid(tsk),
 647                                                      f->op, f->uid);
 648                        break;
 649                case AUDIT_LOGINUID_SET:
 650                        result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 651                        break;
 652                case AUDIT_SADDR_FAM:
 653                        if (ctx && ctx->sockaddr)
 654                                result = audit_comparator(ctx->sockaddr->ss_family,
 655                                                          f->op, f->val);
 656                        break;
 657                case AUDIT_SUBJ_USER:
 658                case AUDIT_SUBJ_ROLE:
 659                case AUDIT_SUBJ_TYPE:
 660                case AUDIT_SUBJ_SEN:
 661                case AUDIT_SUBJ_CLR:
 662                        /* NOTE: this may return negative values indicating
 663                           a temporary error.  We simply treat this as a
 664                           match for now to avoid losing information that
 665                           may be wanted.   An error message will also be
 666                           logged upon error */
 667                        if (f->lsm_rule) {
 668                                if (need_sid) {
 669                                        /* @tsk should always be equal to
 670                                         * @current with the exception of
 671                                         * fork()/copy_process() in which case
 672                                         * the new @tsk creds are still a dup
 673                                         * of @current's creds so we can still
 674                                         * use security_current_getsecid_subj()
 675                                         * here even though it always refs
 676                                         * @current's creds
 677                                         */
 678                                        security_current_getsecid_subj(&sid);
 679                                        need_sid = 0;
 680                                }
 681                                result = security_audit_rule_match(sid, f->type,
 682                                                                   f->op,
 683                                                                   f->lsm_rule);
 684                        }
 685                        break;
 686                case AUDIT_OBJ_USER:
 687                case AUDIT_OBJ_ROLE:
 688                case AUDIT_OBJ_TYPE:
 689                case AUDIT_OBJ_LEV_LOW:
 690                case AUDIT_OBJ_LEV_HIGH:
 691                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 692                           also applies here */
 693                        if (f->lsm_rule) {
 694                                /* Find files that match */
 695                                if (name) {
 696                                        result = security_audit_rule_match(
 697                                                                name->osid,
 698                                                                f->type,
 699                                                                f->op,
 700                                                                f->lsm_rule);
 701                                } else if (ctx) {
 702                                        list_for_each_entry(n, &ctx->names_list, list) {
 703                                                if (security_audit_rule_match(
 704                                                                n->osid,
 705                                                                f->type,
 706                                                                f->op,
 707                                                                f->lsm_rule)) {
 708                                                        ++result;
 709                                                        break;
 710                                                }
 711                                        }
 712                                }
 713                                /* Find ipc objects that match */
 714                                if (!ctx || ctx->type != AUDIT_IPC)
 715                                        break;
 716                                if (security_audit_rule_match(ctx->ipc.osid,
 717                                                              f->type, f->op,
 718                                                              f->lsm_rule))
 719                                        ++result;
 720                        }
 721                        break;
 722                case AUDIT_ARG0:
 723                case AUDIT_ARG1:
 724                case AUDIT_ARG2:
 725                case AUDIT_ARG3:
 726                        if (ctx)
 727                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 728                        break;
 729                case AUDIT_FILTERKEY:
 730                        /* ignore this field for filtering */
 731                        result = 1;
 732                        break;
 733                case AUDIT_PERM:
 734                        result = audit_match_perm(ctx, f->val);
 735                        if (f->op == Audit_not_equal)
 736                                result = !result;
 737                        break;
 738                case AUDIT_FILETYPE:
 739                        result = audit_match_filetype(ctx, f->val);
 740                        if (f->op == Audit_not_equal)
 741                                result = !result;
 742                        break;
 743                case AUDIT_FIELD_COMPARE:
 744                        result = audit_field_compare(tsk, cred, f, ctx, name);
 745                        break;
 746                }
 747                if (!result)
 748                        return 0;
 749        }
 750
 751        if (ctx) {
 752                if (rule->filterkey) {
 753                        kfree(ctx->filterkey);
 754                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 755                }
 756                ctx->prio = rule->prio;
 757        }
 758        switch (rule->action) {
 759        case AUDIT_NEVER:
 760                *state = AUDIT_STATE_DISABLED;
 761                break;
 762        case AUDIT_ALWAYS:
 763                *state = AUDIT_STATE_RECORD;
 764                break;
 765        }
 766        return 1;
 767}
 768
 769/* At process creation time, we can determine if system-call auditing is
 770 * completely disabled for this task.  Since we only have the task
 771 * structure at this point, we can only check uid and gid.
 772 */
 773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 774{
 775        struct audit_entry *e;
 776        enum audit_state   state;
 777
 778        rcu_read_lock();
 779        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 780                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 781                                       &state, true)) {
 782                        if (state == AUDIT_STATE_RECORD)
 783                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 784                        rcu_read_unlock();
 785                        return state;
 786                }
 787        }
 788        rcu_read_unlock();
 789        return AUDIT_STATE_BUILD;
 790}
 791
 792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 793{
 794        int word, bit;
 795
 796        if (val > 0xffffffff)
 797                return false;
 798
 799        word = AUDIT_WORD(val);
 800        if (word >= AUDIT_BITMASK_SIZE)
 801                return false;
 802
 803        bit = AUDIT_BIT(val);
 804
 805        return rule->mask[word] & bit;
 806}
 807
 808/**
 809 * audit_filter_uring - apply filters to an io_uring operation
 810 * @tsk: associated task
 811 * @ctx: audit context
 812 */
 813static void audit_filter_uring(struct task_struct *tsk,
 814                               struct audit_context *ctx)
 815{
 816        struct audit_entry *e;
 817        enum audit_state state;
 818
 819        if (auditd_test_task(tsk))
 820                return;
 821
 822        rcu_read_lock();
 823        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 824                                list) {
 825                if (audit_in_mask(&e->rule, ctx->uring_op) &&
 826                    audit_filter_rules(tsk, &e->rule, ctx, NULL, &state,
 827                                       false)) {
 828                        rcu_read_unlock();
 829                        ctx->current_state = state;
 830                        return;
 831                }
 832        }
 833        rcu_read_unlock();
 834}
 835
 836/* At syscall exit time, this filter is called if the audit_state is
 837 * not low enough that auditing cannot take place, but is also not
 838 * high enough that we already know we have to write an audit record
 839 * (i.e., the state is AUDIT_STATE_BUILD).
 840 */
 841static void audit_filter_syscall(struct task_struct *tsk,
 842                                 struct audit_context *ctx)
 843{
 844        struct audit_entry *e;
 845        enum audit_state state;
 846
 847        if (auditd_test_task(tsk))
 848                return;
 849
 850        rcu_read_lock();
 851        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
 852                if (audit_in_mask(&e->rule, ctx->major) &&
 853                    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 854                                       &state, false)) {
 855                        rcu_read_unlock();
 856                        ctx->current_state = state;
 857                        return;
 858                }
 859        }
 860        rcu_read_unlock();
 861        return;
 862}
 863
 864/*
 865 * Given an audit_name check the inode hash table to see if they match.
 866 * Called holding the rcu read lock to protect the use of audit_inode_hash
 867 */
 868static int audit_filter_inode_name(struct task_struct *tsk,
 869                                   struct audit_names *n,
 870                                   struct audit_context *ctx) {
 871        int h = audit_hash_ino((u32)n->ino);
 872        struct list_head *list = &audit_inode_hash[h];
 873        struct audit_entry *e;
 874        enum audit_state state;
 875
 876        list_for_each_entry_rcu(e, list, list) {
 877                if (audit_in_mask(&e->rule, ctx->major) &&
 878                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 879                        ctx->current_state = state;
 880                        return 1;
 881                }
 882        }
 883        return 0;
 884}
 885
 886/* At syscall exit time, this filter is called if any audit_names have been
 887 * collected during syscall processing.  We only check rules in sublists at hash
 888 * buckets applicable to the inode numbers in audit_names.
 889 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 890 */
 891void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 892{
 893        struct audit_names *n;
 894
 895        if (auditd_test_task(tsk))
 896                return;
 897
 898        rcu_read_lock();
 899
 900        list_for_each_entry(n, &ctx->names_list, list) {
 901                if (audit_filter_inode_name(tsk, n, ctx))
 902                        break;
 903        }
 904        rcu_read_unlock();
 905}
 906
 907static inline void audit_proctitle_free(struct audit_context *context)
 908{
 909        kfree(context->proctitle.value);
 910        context->proctitle.value = NULL;
 911        context->proctitle.len = 0;
 912}
 913
 914static inline void audit_free_module(struct audit_context *context)
 915{
 916        if (context->type == AUDIT_KERN_MODULE) {
 917                kfree(context->module.name);
 918                context->module.name = NULL;
 919        }
 920}
 921static inline void audit_free_names(struct audit_context *context)
 922{
 923        struct audit_names *n, *next;
 924
 925        list_for_each_entry_safe(n, next, &context->names_list, list) {
 926                list_del(&n->list);
 927                if (n->name)
 928                        putname(n->name);
 929                if (n->should_free)
 930                        kfree(n);
 931        }
 932        context->name_count = 0;
 933        path_put(&context->pwd);
 934        context->pwd.dentry = NULL;
 935        context->pwd.mnt = NULL;
 936}
 937
 938static inline void audit_free_aux(struct audit_context *context)
 939{
 940        struct audit_aux_data *aux;
 941
 942        while ((aux = context->aux)) {
 943                context->aux = aux->next;
 944                kfree(aux);
 945        }
 946        context->aux = NULL;
 947        while ((aux = context->aux_pids)) {
 948                context->aux_pids = aux->next;
 949                kfree(aux);
 950        }
 951        context->aux_pids = NULL;
 952}
 953
 954/**
 955 * audit_reset_context - reset a audit_context structure
 956 * @ctx: the audit_context to reset
 957 *
 958 * All fields in the audit_context will be reset to an initial state, all
 959 * references held by fields will be dropped, and private memory will be
 960 * released.  When this function returns the audit_context will be suitable
 961 * for reuse, so long as the passed context is not NULL or a dummy context.
 962 */
 963static void audit_reset_context(struct audit_context *ctx)
 964{
 965        if (!ctx)
 966                return;
 967
 968        /* if ctx is non-null, reset the "ctx->state" regardless */
 969        ctx->context = AUDIT_CTX_UNUSED;
 970        if (ctx->dummy)
 971                return;
 972
 973        /*
 974         * NOTE: It shouldn't matter in what order we release the fields, so
 975         *       release them in the order in which they appear in the struct;
 976         *       this gives us some hope of quickly making sure we are
 977         *       resetting the audit_context properly.
 978         *
 979         *       Other things worth mentioning:
 980         *       - we don't reset "dummy"
 981         *       - we don't reset "state", we do reset "current_state"
 982         *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 983         *       - much of this is likely overkill, but play it safe for now
 984         *       - we really need to work on improving the audit_context struct
 985         */
 986
 987        ctx->current_state = ctx->state;
 988        ctx->serial = 0;
 989        ctx->major = 0;
 990        ctx->uring_op = 0;
 991        ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
 992        memset(ctx->argv, 0, sizeof(ctx->argv));
 993        ctx->return_code = 0;
 994        ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
 995        ctx->return_valid = AUDITSC_INVALID;
 996        audit_free_names(ctx);
 997        if (ctx->state != AUDIT_STATE_RECORD) {
 998                kfree(ctx->filterkey);
 999                ctx->filterkey = NULL;
1000        }
1001        audit_free_aux(ctx);
1002        kfree(ctx->sockaddr);
1003        ctx->sockaddr = NULL;
1004        ctx->sockaddr_len = 0;
1005        ctx->pid = ctx->ppid = 0;
1006        ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1007        ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1008        ctx->personality = 0;
1009        ctx->arch = 0;
1010        ctx->target_pid = 0;
1011        ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1012        ctx->target_sessionid = 0;
1013        ctx->target_sid = 0;
1014        ctx->target_comm[0] = '\0';
1015        unroll_tree_refs(ctx, NULL, 0);
1016        WARN_ON(!list_empty(&ctx->killed_trees));
1017        audit_free_module(ctx);
1018        ctx->fds[0] = -1;
1019        audit_proctitle_free(ctx);
1020        ctx->type = 0; /* reset last for audit_free_*() */
1021}
1022
1023static inline struct audit_context *audit_alloc_context(enum audit_state state)
1024{
1025        struct audit_context *context;
1026
1027        context = kzalloc(sizeof(*context), GFP_KERNEL);
1028        if (!context)
1029                return NULL;
1030        context->context = AUDIT_CTX_UNUSED;
1031        context->state = state;
1032        context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1033        INIT_LIST_HEAD(&context->killed_trees);
1034        INIT_LIST_HEAD(&context->names_list);
1035        context->fds[0] = -1;
1036        context->return_valid = AUDITSC_INVALID;
1037        return context;
1038}
1039
1040/**
1041 * audit_alloc - allocate an audit context block for a task
1042 * @tsk: task
1043 *
1044 * Filter on the task information and allocate a per-task audit context
1045 * if necessary.  Doing so turns on system call auditing for the
1046 * specified task.  This is called from copy_process, so no lock is
1047 * needed.
1048 */
1049int audit_alloc(struct task_struct *tsk)
1050{
1051        struct audit_context *context;
1052        enum audit_state     state;
1053        char *key = NULL;
1054
1055        if (likely(!audit_ever_enabled))
1056                return 0;
1057
1058        state = audit_filter_task(tsk, &key);
1059        if (state == AUDIT_STATE_DISABLED) {
1060                clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1061                return 0;
1062        }
1063
1064        if (!(context = audit_alloc_context(state))) {
1065                kfree(key);
1066                audit_log_lost("out of memory in audit_alloc");
1067                return -ENOMEM;
1068        }
1069        context->filterkey = key;
1070
1071        audit_set_context(tsk, context);
1072        set_task_syscall_work(tsk, SYSCALL_AUDIT);
1073        return 0;
1074}
1075
1076/**
1077 * audit_alloc_kernel - allocate an audit_context for a kernel task
1078 * @tsk: the kernel task
1079 *
1080 * Similar to the audit_alloc() function, but intended for kernel private
1081 * threads.  Returns zero on success, negative values on failure.
1082 */
1083int audit_alloc_kernel(struct task_struct *tsk)
1084{
1085        /*
1086         * At the moment we are just going to call into audit_alloc() to
1087         * simplify the code, but there two things to keep in mind with this
1088         * approach:
1089         *
1090         * 1. Filtering internal kernel tasks is a bit laughable in almost all
1091         * cases, but there is at least one case where there is a benefit:
1092         * the '-a task,never' case allows the admin to effectively disable
1093         * task auditing at runtime.
1094         *
1095         * 2. The {set,clear}_task_syscall_work() ops likely have zero effect
1096         * on these internal kernel tasks, but they probably don't hurt either.
1097         */
1098        return audit_alloc(tsk);
1099}
1100
1101static inline void audit_free_context(struct audit_context *context)
1102{
1103        /* resetting is extra work, but it is likely just noise */
1104        audit_reset_context(context);
1105        free_tree_refs(context);
1106        kfree(context->filterkey);
1107        kfree(context);
1108}
1109
1110static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1111                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
1112                                 u32 sid, char *comm)
1113{
1114        struct audit_buffer *ab;
1115        char *ctx = NULL;
1116        u32 len;
1117        int rc = 0;
1118
1119        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1120        if (!ab)
1121                return rc;
1122
1123        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1124                         from_kuid(&init_user_ns, auid),
1125                         from_kuid(&init_user_ns, uid), sessionid);
1126        if (sid) {
1127                if (security_secid_to_secctx(sid, &ctx, &len)) {
1128                        audit_log_format(ab, " obj=(none)");
1129                        rc = 1;
1130                } else {
1131                        audit_log_format(ab, " obj=%s", ctx);
1132                        security_release_secctx(ctx, len);
1133                }
1134        }
1135        audit_log_format(ab, " ocomm=");
1136        audit_log_untrustedstring(ab, comm);
1137        audit_log_end(ab);
1138
1139        return rc;
1140}
1141
1142static void audit_log_execve_info(struct audit_context *context,
1143                                  struct audit_buffer **ab)
1144{
1145        long len_max;
1146        long len_rem;
1147        long len_full;
1148        long len_buf;
1149        long len_abuf = 0;
1150        long len_tmp;
1151        bool require_data;
1152        bool encode;
1153        unsigned int iter;
1154        unsigned int arg;
1155        char *buf_head;
1156        char *buf;
1157        const char __user *p = (const char __user *)current->mm->arg_start;
1158
1159        /* NOTE: this buffer needs to be large enough to hold all the non-arg
1160         *       data we put in the audit record for this argument (see the
1161         *       code below) ... at this point in time 96 is plenty */
1162        char abuf[96];
1163
1164        /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1165         *       current value of 7500 is not as important as the fact that it
1166         *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1167         *       room if we go over a little bit in the logging below */
1168        WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1169        len_max = MAX_EXECVE_AUDIT_LEN;
1170
1171        /* scratch buffer to hold the userspace args */
1172        buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1173        if (!buf_head) {
1174                audit_panic("out of memory for argv string");
1175                return;
1176        }
1177        buf = buf_head;
1178
1179        audit_log_format(*ab, "argc=%d", context->execve.argc);
1180
1181        len_rem = len_max;
1182        len_buf = 0;
1183        len_full = 0;
1184        require_data = true;
1185        encode = false;
1186        iter = 0;
1187        arg = 0;
1188        do {
1189                /* NOTE: we don't ever want to trust this value for anything
1190                 *       serious, but the audit record format insists we
1191                 *       provide an argument length for really long arguments,
1192                 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1193                 *       to use strncpy_from_user() to obtain this value for
1194                 *       recording in the log, although we don't use it
1195                 *       anywhere here to avoid a double-fetch problem */
1196                if (len_full == 0)
1197                        len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1198
1199                /* read more data from userspace */
1200                if (require_data) {
1201                        /* can we make more room in the buffer? */
1202                        if (buf != buf_head) {
1203                                memmove(buf_head, buf, len_buf);
1204                                buf = buf_head;
1205                        }
1206
1207                        /* fetch as much as we can of the argument */
1208                        len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1209                                                    len_max - len_buf);
1210                        if (len_tmp == -EFAULT) {
1211                                /* unable to copy from userspace */
1212                                send_sig(SIGKILL, current, 0);
1213                                goto out;
1214                        } else if (len_tmp == (len_max - len_buf)) {
1215                                /* buffer is not large enough */
1216                                require_data = true;
1217                                /* NOTE: if we are going to span multiple
1218                                 *       buffers force the encoding so we stand
1219                                 *       a chance at a sane len_full value and
1220                                 *       consistent record encoding */
1221                                encode = true;
1222                                len_full = len_full * 2;
1223                                p += len_tmp;
1224                        } else {
1225                                require_data = false;
1226                                if (!encode)
1227                                        encode = audit_string_contains_control(
1228                                                                buf, len_tmp);
1229                                /* try to use a trusted value for len_full */
1230                                if (len_full < len_max)
1231                                        len_full = (encode ?
1232                                                    len_tmp * 2 : len_tmp);
1233                                p += len_tmp + 1;
1234                        }
1235                        len_buf += len_tmp;
1236                        buf_head[len_buf] = '\0';
1237
1238                        /* length of the buffer in the audit record? */
1239                        len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1240                }
1241
1242                /* write as much as we can to the audit log */
1243                if (len_buf >= 0) {
1244                        /* NOTE: some magic numbers here - basically if we
1245                         *       can't fit a reasonable amount of data into the
1246                         *       existing audit buffer, flush it and start with
1247                         *       a new buffer */
1248                        if ((sizeof(abuf) + 8) > len_rem) {
1249                                len_rem = len_max;
1250                                audit_log_end(*ab);
1251                                *ab = audit_log_start(context,
1252                                                      GFP_KERNEL, AUDIT_EXECVE);
1253                                if (!*ab)
1254                                        goto out;
1255                        }
1256
1257                        /* create the non-arg portion of the arg record */
1258                        len_tmp = 0;
1259                        if (require_data || (iter > 0) ||
1260                            ((len_abuf + sizeof(abuf)) > len_rem)) {
1261                                if (iter == 0) {
1262                                        len_tmp += snprintf(&abuf[len_tmp],
1263                                                        sizeof(abuf) - len_tmp,
1264                                                        " a%d_len=%lu",
1265                                                        arg, len_full);
1266                                }
1267                                len_tmp += snprintf(&abuf[len_tmp],
1268                                                    sizeof(abuf) - len_tmp,
1269                                                    " a%d[%d]=", arg, iter++);
1270                        } else
1271                                len_tmp += snprintf(&abuf[len_tmp],
1272                                                    sizeof(abuf) - len_tmp,
1273                                                    " a%d=", arg);
1274                        WARN_ON(len_tmp >= sizeof(abuf));
1275                        abuf[sizeof(abuf) - 1] = '\0';
1276
1277                        /* log the arg in the audit record */
1278                        audit_log_format(*ab, "%s", abuf);
1279                        len_rem -= len_tmp;
1280                        len_tmp = len_buf;
1281                        if (encode) {
1282                                if (len_abuf > len_rem)
1283                                        len_tmp = len_rem / 2; /* encoding */
1284                                audit_log_n_hex(*ab, buf, len_tmp);
1285                                len_rem -= len_tmp * 2;
1286                                len_abuf -= len_tmp * 2;
1287                        } else {
1288                                if (len_abuf > len_rem)
1289                                        len_tmp = len_rem - 2; /* quotes */
1290                                audit_log_n_string(*ab, buf, len_tmp);
1291                                len_rem -= len_tmp + 2;
1292                                /* don't subtract the "2" because we still need
1293                                 * to add quotes to the remaining string */
1294                                len_abuf -= len_tmp;
1295                        }
1296                        len_buf -= len_tmp;
1297                        buf += len_tmp;
1298                }
1299
1300                /* ready to move to the next argument? */
1301                if ((len_buf == 0) && !require_data) {
1302                        arg++;
1303                        iter = 0;
1304                        len_full = 0;
1305                        require_data = true;
1306                        encode = false;
1307                }
1308        } while (arg < context->execve.argc);
1309
1310        /* NOTE: the caller handles the final audit_log_end() call */
1311
1312out:
1313        kfree(buf_head);
1314}
1315
1316static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1317                          kernel_cap_t *cap)
1318{
1319        int i;
1320
1321        if (cap_isclear(*cap)) {
1322                audit_log_format(ab, " %s=0", prefix);
1323                return;
1324        }
1325        audit_log_format(ab, " %s=", prefix);
1326        CAP_FOR_EACH_U32(i)
1327                audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1328}
1329
1330static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1331{
1332        if (name->fcap_ver == -1) {
1333                audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1334                return;
1335        }
1336        audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1337        audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1338        audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1339                         name->fcap.fE, name->fcap_ver,
1340                         from_kuid(&init_user_ns, name->fcap.rootid));
1341}
1342
1343static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1344{
1345        const struct audit_ntp_data *ntp = &context->time.ntp_data;
1346        const struct timespec64 *tk = &context->time.tk_injoffset;
1347        static const char * const ntp_name[] = {
1348                "offset",
1349                "freq",
1350                "status",
1351                "tai",
1352                "tick",
1353                "adjust",
1354        };
1355        int type;
1356
1357        if (context->type == AUDIT_TIME_ADJNTPVAL) {
1358                for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1359                        if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1360                                if (!*ab) {
1361                                        *ab = audit_log_start(context,
1362                                                        GFP_KERNEL,
1363                                                        AUDIT_TIME_ADJNTPVAL);
1364                                        if (!*ab)
1365                                                return;
1366                                }
1367                                audit_log_format(*ab, "op=%s old=%lli new=%lli",
1368                                                 ntp_name[type],
1369                                                 ntp->vals[type].oldval,
1370                                                 ntp->vals[type].newval);
1371                                audit_log_end(*ab);
1372                                *ab = NULL;
1373                        }
1374                }
1375        }
1376        if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1377                if (!*ab) {
1378                        *ab = audit_log_start(context, GFP_KERNEL,
1379                                              AUDIT_TIME_INJOFFSET);
1380                        if (!*ab)
1381                                return;
1382                }
1383                audit_log_format(*ab, "sec=%lli nsec=%li",
1384                                 (long long)tk->tv_sec, tk->tv_nsec);
1385                audit_log_end(*ab);
1386                *ab = NULL;
1387        }
1388}
1389
1390static void show_special(struct audit_context *context, int *call_panic)
1391{
1392        struct audit_buffer *ab;
1393        int i;
1394
1395        ab = audit_log_start(context, GFP_KERNEL, context->type);
1396        if (!ab)
1397                return;
1398
1399        switch (context->type) {
1400        case AUDIT_SOCKETCALL: {
1401                int nargs = context->socketcall.nargs;
1402
1403                audit_log_format(ab, "nargs=%d", nargs);
1404                for (i = 0; i < nargs; i++)
1405                        audit_log_format(ab, " a%d=%lx", i,
1406                                context->socketcall.args[i]);
1407                break; }
1408        case AUDIT_IPC: {
1409                u32 osid = context->ipc.osid;
1410
1411                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1412                                 from_kuid(&init_user_ns, context->ipc.uid),
1413                                 from_kgid(&init_user_ns, context->ipc.gid),
1414                                 context->ipc.mode);
1415                if (osid) {
1416                        char *ctx = NULL;
1417                        u32 len;
1418
1419                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1420                                audit_log_format(ab, " osid=%u", osid);
1421                                *call_panic = 1;
1422                        } else {
1423                                audit_log_format(ab, " obj=%s", ctx);
1424                                security_release_secctx(ctx, len);
1425                        }
1426                }
1427                if (context->ipc.has_perm) {
1428                        audit_log_end(ab);
1429                        ab = audit_log_start(context, GFP_KERNEL,
1430                                             AUDIT_IPC_SET_PERM);
1431                        if (unlikely(!ab))
1432                                return;
1433                        audit_log_format(ab,
1434                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1435                                context->ipc.qbytes,
1436                                context->ipc.perm_uid,
1437                                context->ipc.perm_gid,
1438                                context->ipc.perm_mode);
1439                }
1440                break; }
1441        case AUDIT_MQ_OPEN:
1442                audit_log_format(ab,
1443                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1444                        "mq_msgsize=%ld mq_curmsgs=%ld",
1445                        context->mq_open.oflag, context->mq_open.mode,
1446                        context->mq_open.attr.mq_flags,
1447                        context->mq_open.attr.mq_maxmsg,
1448                        context->mq_open.attr.mq_msgsize,
1449                        context->mq_open.attr.mq_curmsgs);
1450                break;
1451        case AUDIT_MQ_SENDRECV:
1452                audit_log_format(ab,
1453                        "mqdes=%d msg_len=%zd msg_prio=%u "
1454                        "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1455                        context->mq_sendrecv.mqdes,
1456                        context->mq_sendrecv.msg_len,
1457                        context->mq_sendrecv.msg_prio,
1458                        (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1459                        context->mq_sendrecv.abs_timeout.tv_nsec);
1460                break;
1461        case AUDIT_MQ_NOTIFY:
1462                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1463                                context->mq_notify.mqdes,
1464                                context->mq_notify.sigev_signo);
1465                break;
1466        case AUDIT_MQ_GETSETATTR: {
1467                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1468
1469                audit_log_format(ab,
1470                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1471                        "mq_curmsgs=%ld ",
1472                        context->mq_getsetattr.mqdes,
1473                        attr->mq_flags, attr->mq_maxmsg,
1474                        attr->mq_msgsize, attr->mq_curmsgs);
1475                break; }
1476        case AUDIT_CAPSET:
1477                audit_log_format(ab, "pid=%d", context->capset.pid);
1478                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1479                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1480                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1481                audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1482                break;
1483        case AUDIT_MMAP:
1484                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1485                                 context->mmap.flags);
1486                break;
1487        case AUDIT_OPENAT2:
1488                audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1489                                 context->openat2.flags,
1490                                 context->openat2.mode,
1491                                 context->openat2.resolve);
1492                break;
1493        case AUDIT_EXECVE:
1494                audit_log_execve_info(context, &ab);
1495                break;
1496        case AUDIT_KERN_MODULE:
1497                audit_log_format(ab, "name=");
1498                if (context->module.name) {
1499                        audit_log_untrustedstring(ab, context->module.name);
1500                } else
1501                        audit_log_format(ab, "(null)");
1502
1503                break;
1504        case AUDIT_TIME_ADJNTPVAL:
1505        case AUDIT_TIME_INJOFFSET:
1506                /* this call deviates from the rest, eating the buffer */
1507                audit_log_time(context, &ab);
1508                break;
1509        }
1510        audit_log_end(ab);
1511}
1512
1513static inline int audit_proctitle_rtrim(char *proctitle, int len)
1514{
1515        char *end = proctitle + len - 1;
1516
1517        while (end > proctitle && !isprint(*end))
1518                end--;
1519
1520        /* catch the case where proctitle is only 1 non-print character */
1521        len = end - proctitle + 1;
1522        len -= isprint(proctitle[len-1]) == 0;
1523        return len;
1524}
1525
1526/*
1527 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1528 * @context: audit_context for the task
1529 * @n: audit_names structure with reportable details
1530 * @path: optional path to report instead of audit_names->name
1531 * @record_num: record number to report when handling a list of names
1532 * @call_panic: optional pointer to int that will be updated if secid fails
1533 */
1534static void audit_log_name(struct audit_context *context, struct audit_names *n,
1535                    const struct path *path, int record_num, int *call_panic)
1536{
1537        struct audit_buffer *ab;
1538
1539        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1540        if (!ab)
1541                return;
1542
1543        audit_log_format(ab, "item=%d", record_num);
1544
1545        if (path)
1546                audit_log_d_path(ab, " name=", path);
1547        else if (n->name) {
1548                switch (n->name_len) {
1549                case AUDIT_NAME_FULL:
1550                        /* log the full path */
1551                        audit_log_format(ab, " name=");
1552                        audit_log_untrustedstring(ab, n->name->name);
1553                        break;
1554                case 0:
1555                        /* name was specified as a relative path and the
1556                         * directory component is the cwd
1557                         */
1558                        if (context->pwd.dentry && context->pwd.mnt)
1559                                audit_log_d_path(ab, " name=", &context->pwd);
1560                        else
1561                                audit_log_format(ab, " name=(null)");
1562                        break;
1563                default:
1564                        /* log the name's directory component */
1565                        audit_log_format(ab, " name=");
1566                        audit_log_n_untrustedstring(ab, n->name->name,
1567                                                    n->name_len);
1568                }
1569        } else
1570                audit_log_format(ab, " name=(null)");
1571
1572        if (n->ino != AUDIT_INO_UNSET)
1573                audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1574                                 n->ino,
1575                                 MAJOR(n->dev),
1576                                 MINOR(n->dev),
1577                                 n->mode,
1578                                 from_kuid(&init_user_ns, n->uid),
1579                                 from_kgid(&init_user_ns, n->gid),
1580                                 MAJOR(n->rdev),
1581                                 MINOR(n->rdev));
1582        if (n->osid != 0) {
1583                char *ctx = NULL;
1584                u32 len;
1585
1586                if (security_secid_to_secctx(
1587                        n->osid, &ctx, &len)) {
1588                        audit_log_format(ab, " osid=%u", n->osid);
1589                        if (call_panic)
1590                                *call_panic = 2;
1591                } else {
1592                        audit_log_format(ab, " obj=%s", ctx);
1593                        security_release_secctx(ctx, len);
1594                }
1595        }
1596
1597        /* log the audit_names record type */
1598        switch (n->type) {
1599        case AUDIT_TYPE_NORMAL:
1600                audit_log_format(ab, " nametype=NORMAL");
1601                break;
1602        case AUDIT_TYPE_PARENT:
1603                audit_log_format(ab, " nametype=PARENT");
1604                break;
1605        case AUDIT_TYPE_CHILD_DELETE:
1606                audit_log_format(ab, " nametype=DELETE");
1607                break;
1608        case AUDIT_TYPE_CHILD_CREATE:
1609                audit_log_format(ab, " nametype=CREATE");
1610                break;
1611        default:
1612                audit_log_format(ab, " nametype=UNKNOWN");
1613                break;
1614        }
1615
1616        audit_log_fcaps(ab, n);
1617        audit_log_end(ab);
1618}
1619
1620static void audit_log_proctitle(void)
1621{
1622        int res;
1623        char *buf;
1624        char *msg = "(null)";
1625        int len = strlen(msg);
1626        struct audit_context *context = audit_context();
1627        struct audit_buffer *ab;
1628
1629        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1630        if (!ab)
1631                return; /* audit_panic or being filtered */
1632
1633        audit_log_format(ab, "proctitle=");
1634
1635        /* Not  cached */
1636        if (!context->proctitle.value) {
1637                buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1638                if (!buf)
1639                        goto out;
1640                /* Historically called this from procfs naming */
1641                res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1642                if (res == 0) {
1643                        kfree(buf);
1644                        goto out;
1645                }
1646                res = audit_proctitle_rtrim(buf, res);
1647                if (res == 0) {
1648                        kfree(buf);
1649                        goto out;
1650                }
1651                context->proctitle.value = buf;
1652                context->proctitle.len = res;
1653        }
1654        msg = context->proctitle.value;
1655        len = context->proctitle.len;
1656out:
1657        audit_log_n_untrustedstring(ab, msg, len);
1658        audit_log_end(ab);
1659}
1660
1661/**
1662 * audit_log_uring - generate a AUDIT_URINGOP record
1663 * @ctx: the audit context
1664 */
1665static void audit_log_uring(struct audit_context *ctx)
1666{
1667        struct audit_buffer *ab;
1668        const struct cred *cred;
1669
1670        ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1671        if (!ab)
1672                return;
1673        cred = current_cred();
1674        audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1675        if (ctx->return_valid != AUDITSC_INVALID)
1676                audit_log_format(ab, " success=%s exit=%ld",
1677                                 (ctx->return_valid == AUDITSC_SUCCESS ?
1678                                  "yes" : "no"),
1679                                 ctx->return_code);
1680        audit_log_format(ab,
1681                         " items=%d"
1682                         " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1683                         " fsuid=%u egid=%u sgid=%u fsgid=%u",
1684                         ctx->name_count,
1685                         task_ppid_nr(current), task_tgid_nr(current),
1686                         from_kuid(&init_user_ns, cred->uid),
1687                         from_kgid(&init_user_ns, cred->gid),
1688                         from_kuid(&init_user_ns, cred->euid),
1689                         from_kuid(&init_user_ns, cred->suid),
1690                         from_kuid(&init_user_ns, cred->fsuid),
1691                         from_kgid(&init_user_ns, cred->egid),
1692                         from_kgid(&init_user_ns, cred->sgid),
1693                         from_kgid(&init_user_ns, cred->fsgid));
1694        audit_log_task_context(ab);
1695        audit_log_key(ab, ctx->filterkey);
1696        audit_log_end(ab);
1697}
1698
1699static void audit_log_exit(void)
1700{
1701        int i, call_panic = 0;
1702        struct audit_context *context = audit_context();
1703        struct audit_buffer *ab;
1704        struct audit_aux_data *aux;
1705        struct audit_names *n;
1706
1707        context->personality = current->personality;
1708
1709        switch (context->context) {
1710        case AUDIT_CTX_SYSCALL:
1711                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1712                if (!ab)
1713                        return;
1714                audit_log_format(ab, "arch=%x syscall=%d",
1715                                 context->arch, context->major);
1716                if (context->personality != PER_LINUX)
1717                        audit_log_format(ab, " per=%lx", context->personality);
1718                if (context->return_valid != AUDITSC_INVALID)
1719                        audit_log_format(ab, " success=%s exit=%ld",
1720                                         (context->return_valid == AUDITSC_SUCCESS ?
1721                                          "yes" : "no"),
1722                                         context->return_code);
1723                audit_log_format(ab,
1724                                 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1725                                 context->argv[0],
1726                                 context->argv[1],
1727                                 context->argv[2],
1728                                 context->argv[3],
1729                                 context->name_count);
1730                audit_log_task_info(ab);
1731                audit_log_key(ab, context->filterkey);
1732                audit_log_end(ab);
1733                break;
1734        case AUDIT_CTX_URING:
1735                audit_log_uring(context);
1736                break;
1737        default:
1738                BUG();
1739                break;
1740        }
1741
1742        for (aux = context->aux; aux; aux = aux->next) {
1743
1744                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1745                if (!ab)
1746                        continue; /* audit_panic has been called */
1747
1748                switch (aux->type) {
1749
1750                case AUDIT_BPRM_FCAPS: {
1751                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1752
1753                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1754                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1755                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1756                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1757                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1758                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1759                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1760                        audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1761                        audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1762                        audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1763                        audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1764                        audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1765                        audit_log_format(ab, " frootid=%d",
1766                                         from_kuid(&init_user_ns,
1767                                                   axs->fcap.rootid));
1768                        break; }
1769
1770                }
1771                audit_log_end(ab);
1772        }
1773
1774        if (context->type)
1775                show_special(context, &call_panic);
1776
1777        if (context->fds[0] >= 0) {
1778                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1779                if (ab) {
1780                        audit_log_format(ab, "fd0=%d fd1=%d",
1781                                        context->fds[0], context->fds[1]);
1782                        audit_log_end(ab);
1783                }
1784        }
1785
1786        if (context->sockaddr_len) {
1787                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1788                if (ab) {
1789                        audit_log_format(ab, "saddr=");
1790                        audit_log_n_hex(ab, (void *)context->sockaddr,
1791                                        context->sockaddr_len);
1792                        audit_log_end(ab);
1793                }
1794        }
1795
1796        for (aux = context->aux_pids; aux; aux = aux->next) {
1797                struct audit_aux_data_pids *axs = (void *)aux;
1798
1799                for (i = 0; i < axs->pid_count; i++)
1800                        if (audit_log_pid_context(context, axs->target_pid[i],
1801                                                  axs->target_auid[i],
1802                                                  axs->target_uid[i],
1803                                                  axs->target_sessionid[i],
1804                                                  axs->target_sid[i],
1805                                                  axs->target_comm[i]))
1806                                call_panic = 1;
1807        }
1808
1809        if (context->target_pid &&
1810            audit_log_pid_context(context, context->target_pid,
1811                                  context->target_auid, context->target_uid,
1812                                  context->target_sessionid,
1813                                  context->target_sid, context->target_comm))
1814                        call_panic = 1;
1815
1816        if (context->pwd.dentry && context->pwd.mnt) {
1817                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1818                if (ab) {
1819                        audit_log_d_path(ab, "cwd=", &context->pwd);
1820                        audit_log_end(ab);
1821                }
1822        }
1823
1824        i = 0;
1825        list_for_each_entry(n, &context->names_list, list) {
1826                if (n->hidden)
1827                        continue;
1828                audit_log_name(context, n, NULL, i++, &call_panic);
1829        }
1830
1831        if (context->context == AUDIT_CTX_SYSCALL)
1832                audit_log_proctitle();
1833
1834        /* Send end of event record to help user space know we are finished */
1835        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1836        if (ab)
1837                audit_log_end(ab);
1838        if (call_panic)
1839                audit_panic("error in audit_log_exit()");
1840}
1841
1842/**
1843 * __audit_free - free a per-task audit context
1844 * @tsk: task whose audit context block to free
1845 *
1846 * Called from copy_process, do_exit, and the io_uring code
1847 */
1848void __audit_free(struct task_struct *tsk)
1849{
1850        struct audit_context *context = tsk->audit_context;
1851
1852        if (!context)
1853                return;
1854
1855        /* this may generate CONFIG_CHANGE records */
1856        if (!list_empty(&context->killed_trees))
1857                audit_kill_trees(context);
1858
1859        /* We are called either by do_exit() or the fork() error handling code;
1860         * in the former case tsk == current and in the latter tsk is a
1861         * random task_struct that doesn't doesn't have any meaningful data we
1862         * need to log via audit_log_exit().
1863         */
1864        if (tsk == current && !context->dummy) {
1865                context->return_valid = AUDITSC_INVALID;
1866                context->return_code = 0;
1867                if (context->context == AUDIT_CTX_SYSCALL) {
1868                        audit_filter_syscall(tsk, context);
1869                        audit_filter_inodes(tsk, context);
1870                        if (context->current_state == AUDIT_STATE_RECORD)
1871                                audit_log_exit();
1872                } else if (context->context == AUDIT_CTX_URING) {
1873                        /* TODO: verify this case is real and valid */
1874                        audit_filter_uring(tsk, context);
1875                        audit_filter_inodes(tsk, context);
1876                        if (context->current_state == AUDIT_STATE_RECORD)
1877                                audit_log_uring(context);
1878                }
1879        }
1880
1881        audit_set_context(tsk, NULL);
1882        audit_free_context(context);
1883}
1884
1885/**
1886 * audit_return_fixup - fixup the return codes in the audit_context
1887 * @ctx: the audit_context
1888 * @success: true/false value to indicate if the operation succeeded or not
1889 * @code: operation return code
1890 *
1891 * We need to fixup the return code in the audit logs if the actual return
1892 * codes are later going to be fixed by the arch specific signal handlers.
1893 */
1894static void audit_return_fixup(struct audit_context *ctx,
1895                               int success, long code)
1896{
1897        /*
1898         * This is actually a test for:
1899         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1900         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1901         *
1902         * but is faster than a bunch of ||
1903         */
1904        if (unlikely(code <= -ERESTARTSYS) &&
1905            (code >= -ERESTART_RESTARTBLOCK) &&
1906            (code != -ENOIOCTLCMD))
1907                ctx->return_code = -EINTR;
1908        else
1909                ctx->return_code  = code;
1910        ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1911}
1912
1913/**
1914 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1915 * @op: the io_uring opcode
1916 *
1917 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1918 * operations.  This function should only ever be called from
1919 * audit_uring_entry() as we rely on the audit context checking present in that
1920 * function.
1921 */
1922void __audit_uring_entry(u8 op)
1923{
1924        struct audit_context *ctx = audit_context();
1925
1926        if (ctx->state == AUDIT_STATE_DISABLED)
1927                return;
1928
1929        /*
1930         * NOTE: It's possible that we can be called from the process' context
1931         *       before it returns to userspace, and before audit_syscall_exit()
1932         *       is called.  In this case there is not much to do, just record
1933         *       the io_uring details and return.
1934         */
1935        ctx->uring_op = op;
1936        if (ctx->context == AUDIT_CTX_SYSCALL)
1937                return;
1938
1939        ctx->dummy = !audit_n_rules;
1940        if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1941                ctx->prio = 0;
1942
1943        ctx->context = AUDIT_CTX_URING;
1944        ctx->current_state = ctx->state;
1945        ktime_get_coarse_real_ts64(&ctx->ctime);
1946}
1947
1948/**
1949 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1950 * @success: true/false value to indicate if the operation succeeded or not
1951 * @code: operation return code
1952 *
1953 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1954 * operations.  This function should only ever be called from
1955 * audit_uring_exit() as we rely on the audit context checking present in that
1956 * function.
1957 */
1958void __audit_uring_exit(int success, long code)
1959{
1960        struct audit_context *ctx = audit_context();
1961
1962        if (ctx->dummy) {
1963                if (ctx->context != AUDIT_CTX_URING)
1964                        return;
1965                goto out;
1966        }
1967
1968        if (ctx->context == AUDIT_CTX_SYSCALL) {
1969                /*
1970                 * NOTE: See the note in __audit_uring_entry() about the case
1971                 *       where we may be called from process context before we
1972                 *       return to userspace via audit_syscall_exit().  In this
1973                 *       case we simply emit a URINGOP record and bail, the
1974                 *       normal syscall exit handling will take care of
1975                 *       everything else.
1976                 *       It is also worth mentioning that when we are called,
1977                 *       the current process creds may differ from the creds
1978                 *       used during the normal syscall processing; keep that
1979                 *       in mind if/when we move the record generation code.
1980                 */
1981
1982                /*
1983                 * We need to filter on the syscall info here to decide if we
1984                 * should emit a URINGOP record.  I know it seems odd but this
1985                 * solves the problem where users have a filter to block *all*
1986                 * syscall records in the "exit" filter; we want to preserve
1987                 * the behavior here.
1988                 */
1989                audit_filter_syscall(current, ctx);
1990                if (ctx->current_state != AUDIT_STATE_RECORD)
1991                        audit_filter_uring(current, ctx);
1992                audit_filter_inodes(current, ctx);
1993                if (ctx->current_state != AUDIT_STATE_RECORD)
1994                        return;
1995
1996                audit_log_uring(ctx);
1997                return;
1998        }
1999
2000        /* this may generate CONFIG_CHANGE records */
2001        if (!list_empty(&ctx->killed_trees))
2002                audit_kill_trees(ctx);
2003
2004        /* run through both filters to ensure we set the filterkey properly */
2005        audit_filter_uring(current, ctx);
2006        audit_filter_inodes(current, ctx);
2007        if (ctx->current_state != AUDIT_STATE_RECORD)
2008                goto out;
2009        audit_return_fixup(ctx, success, code);
2010        audit_log_exit();
2011
2012out:
2013        audit_reset_context(ctx);
2014}
2015
2016/**
2017 * __audit_syscall_entry - fill in an audit record at syscall entry
2018 * @major: major syscall type (function)
2019 * @a1: additional syscall register 1
2020 * @a2: additional syscall register 2
2021 * @a3: additional syscall register 3
2022 * @a4: additional syscall register 4
2023 *
2024 * Fill in audit context at syscall entry.  This only happens if the
2025 * audit context was created when the task was created and the state or
2026 * filters demand the audit context be built.  If the state from the
2027 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2028 * then the record will be written at syscall exit time (otherwise, it
2029 * will only be written if another part of the kernel requests that it
2030 * be written).
2031 */
2032void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2033                           unsigned long a3, unsigned long a4)
2034{
2035        struct audit_context *context = audit_context();
2036        enum audit_state     state;
2037
2038        if (!audit_enabled || !context)
2039                return;
2040
2041        WARN_ON(context->context != AUDIT_CTX_UNUSED);
2042        WARN_ON(context->name_count);
2043        if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2044                audit_panic("unrecoverable error in audit_syscall_entry()");
2045                return;
2046        }
2047
2048        state = context->state;
2049        if (state == AUDIT_STATE_DISABLED)
2050                return;
2051
2052        context->dummy = !audit_n_rules;
2053        if (!context->dummy && state == AUDIT_STATE_BUILD) {
2054                context->prio = 0;
2055                if (auditd_test_task(current))
2056                        return;
2057        }
2058
2059        context->arch       = syscall_get_arch(current);
2060        context->major      = major;
2061        context->argv[0]    = a1;
2062        context->argv[1]    = a2;
2063        context->argv[2]    = a3;
2064        context->argv[3]    = a4;
2065        context->context = AUDIT_CTX_SYSCALL;
2066        context->current_state  = state;
2067        ktime_get_coarse_real_ts64(&context->ctime);
2068}
2069
2070/**
2071 * __audit_syscall_exit - deallocate audit context after a system call
2072 * @success: success value of the syscall
2073 * @return_code: return value of the syscall
2074 *
2075 * Tear down after system call.  If the audit context has been marked as
2076 * auditable (either because of the AUDIT_STATE_RECORD state from
2077 * filtering, or because some other part of the kernel wrote an audit
2078 * message), then write out the syscall information.  In call cases,
2079 * free the names stored from getname().
2080 */
2081void __audit_syscall_exit(int success, long return_code)
2082{
2083        struct audit_context *context = audit_context();
2084
2085        if (!context || context->dummy ||
2086            context->context != AUDIT_CTX_SYSCALL)
2087                goto out;
2088
2089        /* this may generate CONFIG_CHANGE records */
2090        if (!list_empty(&context->killed_trees))
2091                audit_kill_trees(context);
2092
2093        /* run through both filters to ensure we set the filterkey properly */
2094        audit_filter_syscall(current, context);
2095        audit_filter_inodes(current, context);
2096        if (context->current_state < AUDIT_STATE_RECORD)
2097                goto out;
2098
2099        audit_return_fixup(context, success, return_code);
2100        audit_log_exit();
2101
2102out:
2103        audit_reset_context(context);
2104}
2105
2106static inline void handle_one(const struct inode *inode)
2107{
2108        struct audit_context *context;
2109        struct audit_tree_refs *p;
2110        struct audit_chunk *chunk;
2111        int count;
2112
2113        if (likely(!inode->i_fsnotify_marks))
2114                return;
2115        context = audit_context();
2116        p = context->trees;
2117        count = context->tree_count;
2118        rcu_read_lock();
2119        chunk = audit_tree_lookup(inode);
2120        rcu_read_unlock();
2121        if (!chunk)
2122                return;
2123        if (likely(put_tree_ref(context, chunk)))
2124                return;
2125        if (unlikely(!grow_tree_refs(context))) {
2126                pr_warn("out of memory, audit has lost a tree reference\n");
2127                audit_set_auditable(context);
2128                audit_put_chunk(chunk);
2129                unroll_tree_refs(context, p, count);
2130                return;
2131        }
2132        put_tree_ref(context, chunk);
2133}
2134
2135static void handle_path(const struct dentry *dentry)
2136{
2137        struct audit_context *context;
2138        struct audit_tree_refs *p;
2139        const struct dentry *d, *parent;
2140        struct audit_chunk *drop;
2141        unsigned long seq;
2142        int count;
2143
2144        context = audit_context();
2145        p = context->trees;
2146        count = context->tree_count;
2147retry:
2148        drop = NULL;
2149        d = dentry;
2150        rcu_read_lock();
2151        seq = read_seqbegin(&rename_lock);
2152        for(;;) {
2153                struct inode *inode = d_backing_inode(d);
2154
2155                if (inode && unlikely(inode->i_fsnotify_marks)) {
2156                        struct audit_chunk *chunk;
2157
2158                        chunk = audit_tree_lookup(inode);
2159                        if (chunk) {
2160                                if (unlikely(!put_tree_ref(context, chunk))) {
2161                                        drop = chunk;
2162                                        break;
2163                                }
2164                        }
2165                }
2166                parent = d->d_parent;
2167                if (parent == d)
2168                        break;
2169                d = parent;
2170        }
2171        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2172                rcu_read_unlock();
2173                if (!drop) {
2174                        /* just a race with rename */
2175                        unroll_tree_refs(context, p, count);
2176                        goto retry;
2177                }
2178                audit_put_chunk(drop);
2179                if (grow_tree_refs(context)) {
2180                        /* OK, got more space */
2181                        unroll_tree_refs(context, p, count);
2182                        goto retry;
2183                }
2184                /* too bad */
2185                pr_warn("out of memory, audit has lost a tree reference\n");
2186                unroll_tree_refs(context, p, count);
2187                audit_set_auditable(context);
2188                return;
2189        }
2190        rcu_read_unlock();
2191}
2192
2193static struct audit_names *audit_alloc_name(struct audit_context *context,
2194                                                unsigned char type)
2195{
2196        struct audit_names *aname;
2197
2198        if (context->name_count < AUDIT_NAMES) {
2199                aname = &context->preallocated_names[context->name_count];
2200                memset(aname, 0, sizeof(*aname));
2201        } else {
2202                aname = kzalloc(sizeof(*aname), GFP_NOFS);
2203                if (!aname)
2204                        return NULL;
2205                aname->should_free = true;
2206        }
2207
2208        aname->ino = AUDIT_INO_UNSET;
2209        aname->type = type;
2210        list_add_tail(&aname->list, &context->names_list);
2211
2212        context->name_count++;
2213        if (!context->pwd.dentry)
2214                get_fs_pwd(current->fs, &context->pwd);
2215        return aname;
2216}
2217
2218/**
2219 * __audit_reusename - fill out filename with info from existing entry
2220 * @uptr: userland ptr to pathname
2221 *
2222 * Search the audit_names list for the current audit context. If there is an
2223 * existing entry with a matching "uptr" then return the filename
2224 * associated with that audit_name. If not, return NULL.
2225 */
2226struct filename *
2227__audit_reusename(const __user char *uptr)
2228{
2229        struct audit_context *context = audit_context();
2230        struct audit_names *n;
2231
2232        list_for_each_entry(n, &context->names_list, list) {
2233                if (!n->name)
2234                        continue;
2235                if (n->name->uptr == uptr) {
2236                        n->name->refcnt++;
2237                        return n->name;
2238                }
2239        }
2240        return NULL;
2241}
2242
2243/**
2244 * __audit_getname - add a name to the list
2245 * @name: name to add
2246 *
2247 * Add a name to the list of audit names for this context.
2248 * Called from fs/namei.c:getname().
2249 */
2250void __audit_getname(struct filename *name)
2251{
2252        struct audit_context *context = audit_context();
2253        struct audit_names *n;
2254
2255        if (context->context == AUDIT_CTX_UNUSED)
2256                return;
2257
2258        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2259        if (!n)
2260                return;
2261
2262        n->name = name;
2263        n->name_len = AUDIT_NAME_FULL;
2264        name->aname = n;
2265        name->refcnt++;
2266}
2267
2268static inline int audit_copy_fcaps(struct audit_names *name,
2269                                   const struct dentry *dentry)
2270{
2271        struct cpu_vfs_cap_data caps;
2272        int rc;
2273
2274        if (!dentry)
2275                return 0;
2276
2277        rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2278        if (rc)
2279                return rc;
2280
2281        name->fcap.permitted = caps.permitted;
2282        name->fcap.inheritable = caps.inheritable;
2283        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2284        name->fcap.rootid = caps.rootid;
2285        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2286                                VFS_CAP_REVISION_SHIFT;
2287
2288        return 0;
2289}
2290
2291/* Copy inode data into an audit_names. */
2292static void audit_copy_inode(struct audit_names *name,
2293                             const struct dentry *dentry,
2294                             struct inode *inode, unsigned int flags)
2295{
2296        name->ino   = inode->i_ino;
2297        name->dev   = inode->i_sb->s_dev;
2298        name->mode  = inode->i_mode;
2299        name->uid   = inode->i_uid;
2300        name->gid   = inode->i_gid;
2301        name->rdev  = inode->i_rdev;
2302        security_inode_getsecid(inode, &name->osid);
2303        if (flags & AUDIT_INODE_NOEVAL) {
2304                name->fcap_ver = -1;
2305                return;
2306        }
2307        audit_copy_fcaps(name, dentry);
2308}
2309
2310/**
2311 * __audit_inode - store the inode and device from a lookup
2312 * @name: name being audited
2313 * @dentry: dentry being audited
2314 * @flags: attributes for this particular entry
2315 */
2316void __audit_inode(struct filename *name, const struct dentry *dentry,
2317                   unsigned int flags)
2318{
2319        struct audit_context *context = audit_context();
2320        struct inode *inode = d_backing_inode(dentry);
2321        struct audit_names *n;
2322        bool parent = flags & AUDIT_INODE_PARENT;
2323        struct audit_entry *e;
2324        struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2325        int i;
2326
2327        if (context->context == AUDIT_CTX_UNUSED)
2328                return;
2329
2330        rcu_read_lock();
2331        list_for_each_entry_rcu(e, list, list) {
2332                for (i = 0; i < e->rule.field_count; i++) {
2333                        struct audit_field *f = &e->rule.fields[i];
2334
2335                        if (f->type == AUDIT_FSTYPE
2336                            && audit_comparator(inode->i_sb->s_magic,
2337                                                f->op, f->val)
2338                            && e->rule.action == AUDIT_NEVER) {
2339                                rcu_read_unlock();
2340                                return;
2341                        }
2342                }
2343        }
2344        rcu_read_unlock();
2345
2346        if (!name)
2347                goto out_alloc;
2348
2349        /*
2350         * If we have a pointer to an audit_names entry already, then we can
2351         * just use it directly if the type is correct.
2352         */
2353        n = name->aname;
2354        if (n) {
2355                if (parent) {
2356                        if (n->type == AUDIT_TYPE_PARENT ||
2357                            n->type == AUDIT_TYPE_UNKNOWN)
2358                                goto out;
2359                } else {
2360                        if (n->type != AUDIT_TYPE_PARENT)
2361                                goto out;
2362                }
2363        }
2364
2365        list_for_each_entry_reverse(n, &context->names_list, list) {
2366                if (n->ino) {
2367                        /* valid inode number, use that for the comparison */
2368                        if (n->ino != inode->i_ino ||
2369                            n->dev != inode->i_sb->s_dev)
2370                                continue;
2371                } else if (n->name) {
2372                        /* inode number has not been set, check the name */
2373                        if (strcmp(n->name->name, name->name))
2374                                continue;
2375                } else
2376                        /* no inode and no name (?!) ... this is odd ... */
2377                        continue;
2378
2379                /* match the correct record type */
2380                if (parent) {
2381                        if (n->type == AUDIT_TYPE_PARENT ||
2382                            n->type == AUDIT_TYPE_UNKNOWN)
2383                                goto out;
2384                } else {
2385                        if (n->type != AUDIT_TYPE_PARENT)
2386                                goto out;
2387                }
2388        }
2389
2390out_alloc:
2391        /* unable to find an entry with both a matching name and type */
2392        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2393        if (!n)
2394                return;
2395        if (name) {
2396                n->name = name;
2397                name->refcnt++;
2398        }
2399
2400out:
2401        if (parent) {
2402                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2403                n->type = AUDIT_TYPE_PARENT;
2404                if (flags & AUDIT_INODE_HIDDEN)
2405                        n->hidden = true;
2406        } else {
2407                n->name_len = AUDIT_NAME_FULL;
2408                n->type = AUDIT_TYPE_NORMAL;
2409        }
2410        handle_path(dentry);
2411        audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2412}
2413
2414void __audit_file(const struct file *file)
2415{
2416        __audit_inode(NULL, file->f_path.dentry, 0);
2417}
2418
2419/**
2420 * __audit_inode_child - collect inode info for created/removed objects
2421 * @parent: inode of dentry parent
2422 * @dentry: dentry being audited
2423 * @type:   AUDIT_TYPE_* value that we're looking for
2424 *
2425 * For syscalls that create or remove filesystem objects, audit_inode
2426 * can only collect information for the filesystem object's parent.
2427 * This call updates the audit context with the child's information.
2428 * Syscalls that create a new filesystem object must be hooked after
2429 * the object is created.  Syscalls that remove a filesystem object
2430 * must be hooked prior, in order to capture the target inode during
2431 * unsuccessful attempts.
2432 */
2433void __audit_inode_child(struct inode *parent,
2434                         const struct dentry *dentry,
2435                         const unsigned char type)
2436{
2437        struct audit_context *context = audit_context();
2438        struct inode *inode = d_backing_inode(dentry);
2439        const struct qstr *dname = &dentry->d_name;
2440        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2441        struct audit_entry *e;
2442        struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2443        int i;
2444
2445        if (context->context == AUDIT_CTX_UNUSED)
2446                return;
2447
2448        rcu_read_lock();
2449        list_for_each_entry_rcu(e, list, list) {
2450                for (i = 0; i < e->rule.field_count; i++) {
2451                        struct audit_field *f = &e->rule.fields[i];
2452
2453                        if (f->type == AUDIT_FSTYPE
2454                            && audit_comparator(parent->i_sb->s_magic,
2455                                                f->op, f->val)
2456                            && e->rule.action == AUDIT_NEVER) {
2457                                rcu_read_unlock();
2458                                return;
2459                        }
2460                }
2461        }
2462        rcu_read_unlock();
2463
2464        if (inode)
2465                handle_one(inode);
2466
2467        /* look for a parent entry first */
2468        list_for_each_entry(n, &context->names_list, list) {
2469                if (!n->name ||
2470                    (n->type != AUDIT_TYPE_PARENT &&
2471                     n->type != AUDIT_TYPE_UNKNOWN))
2472                        continue;
2473
2474                if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2475                    !audit_compare_dname_path(dname,
2476                                              n->name->name, n->name_len)) {
2477                        if (n->type == AUDIT_TYPE_UNKNOWN)
2478                                n->type = AUDIT_TYPE_PARENT;
2479                        found_parent = n;
2480                        break;
2481                }
2482        }
2483
2484        /* is there a matching child entry? */
2485        list_for_each_entry(n, &context->names_list, list) {
2486                /* can only match entries that have a name */
2487                if (!n->name ||
2488                    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2489                        continue;
2490
2491                if (!strcmp(dname->name, n->name->name) ||
2492                    !audit_compare_dname_path(dname, n->name->name,
2493                                                found_parent ?
2494                                                found_parent->name_len :
2495                                                AUDIT_NAME_FULL)) {
2496                        if (n->type == AUDIT_TYPE_UNKNOWN)
2497                                n->type = type;
2498                        found_child = n;
2499                        break;
2500                }
2501        }
2502
2503        if (!found_parent) {
2504                /* create a new, "anonymous" parent record */
2505                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2506                if (!n)
2507                        return;
2508                audit_copy_inode(n, NULL, parent, 0);
2509        }
2510
2511        if (!found_child) {
2512                found_child = audit_alloc_name(context, type);
2513                if (!found_child)
2514                        return;
2515
2516                /* Re-use the name belonging to the slot for a matching parent
2517                 * directory. All names for this context are relinquished in
2518                 * audit_free_names() */
2519                if (found_parent) {
2520                        found_child->name = found_parent->name;
2521                        found_child->name_len = AUDIT_NAME_FULL;
2522                        found_child->name->refcnt++;
2523                }
2524        }
2525
2526        if (inode)
2527                audit_copy_inode(found_child, dentry, inode, 0);
2528        else
2529                found_child->ino = AUDIT_INO_UNSET;
2530}
2531EXPORT_SYMBOL_GPL(__audit_inode_child);
2532
2533/**
2534 * auditsc_get_stamp - get local copies of audit_context values
2535 * @ctx: audit_context for the task
2536 * @t: timespec64 to store time recorded in the audit_context
2537 * @serial: serial value that is recorded in the audit_context
2538 *
2539 * Also sets the context as auditable.
2540 */
2541int auditsc_get_stamp(struct audit_context *ctx,
2542                       struct timespec64 *t, unsigned int *serial)
2543{
2544        if (ctx->context == AUDIT_CTX_UNUSED)
2545                return 0;
2546        if (!ctx->serial)
2547                ctx->serial = audit_serial();
2548        t->tv_sec  = ctx->ctime.tv_sec;
2549        t->tv_nsec = ctx->ctime.tv_nsec;
2550        *serial    = ctx->serial;
2551        if (!ctx->prio) {
2552                ctx->prio = 1;
2553                ctx->current_state = AUDIT_STATE_RECORD;
2554        }
2555        return 1;
2556}
2557
2558/**
2559 * __audit_mq_open - record audit data for a POSIX MQ open
2560 * @oflag: open flag
2561 * @mode: mode bits
2562 * @attr: queue attributes
2563 *
2564 */
2565void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2566{
2567        struct audit_context *context = audit_context();
2568
2569        if (attr)
2570                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2571        else
2572                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2573
2574        context->mq_open.oflag = oflag;
2575        context->mq_open.mode = mode;
2576
2577        context->type = AUDIT_MQ_OPEN;
2578}
2579
2580/**
2581 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2582 * @mqdes: MQ descriptor
2583 * @msg_len: Message length
2584 * @msg_prio: Message priority
2585 * @abs_timeout: Message timeout in absolute time
2586 *
2587 */
2588void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2589                        const struct timespec64 *abs_timeout)
2590{
2591        struct audit_context *context = audit_context();
2592        struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2593
2594        if (abs_timeout)
2595                memcpy(p, abs_timeout, sizeof(*p));
2596        else
2597                memset(p, 0, sizeof(*p));
2598
2599        context->mq_sendrecv.mqdes = mqdes;
2600        context->mq_sendrecv.msg_len = msg_len;
2601        context->mq_sendrecv.msg_prio = msg_prio;
2602
2603        context->type = AUDIT_MQ_SENDRECV;
2604}
2605
2606/**
2607 * __audit_mq_notify - record audit data for a POSIX MQ notify
2608 * @mqdes: MQ descriptor
2609 * @notification: Notification event
2610 *
2611 */
2612
2613void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2614{
2615        struct audit_context *context = audit_context();
2616
2617        if (notification)
2618                context->mq_notify.sigev_signo = notification->sigev_signo;
2619        else
2620                context->mq_notify.sigev_signo = 0;
2621
2622        context->mq_notify.mqdes = mqdes;
2623        context->type = AUDIT_MQ_NOTIFY;
2624}
2625
2626/**
2627 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2628 * @mqdes: MQ descriptor
2629 * @mqstat: MQ flags
2630 *
2631 */
2632void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2633{
2634        struct audit_context *context = audit_context();
2635
2636        context->mq_getsetattr.mqdes = mqdes;
2637        context->mq_getsetattr.mqstat = *mqstat;
2638        context->type = AUDIT_MQ_GETSETATTR;
2639}
2640
2641/**
2642 * __audit_ipc_obj - record audit data for ipc object
2643 * @ipcp: ipc permissions
2644 *
2645 */
2646void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2647{
2648        struct audit_context *context = audit_context();
2649
2650        context->ipc.uid = ipcp->uid;
2651        context->ipc.gid = ipcp->gid;
2652        context->ipc.mode = ipcp->mode;
2653        context->ipc.has_perm = 0;
2654        security_ipc_getsecid(ipcp, &context->ipc.osid);
2655        context->type = AUDIT_IPC;
2656}
2657
2658/**
2659 * __audit_ipc_set_perm - record audit data for new ipc permissions
2660 * @qbytes: msgq bytes
2661 * @uid: msgq user id
2662 * @gid: msgq group id
2663 * @mode: msgq mode (permissions)
2664 *
2665 * Called only after audit_ipc_obj().
2666 */
2667void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2668{
2669        struct audit_context *context = audit_context();
2670
2671        context->ipc.qbytes = qbytes;
2672        context->ipc.perm_uid = uid;
2673        context->ipc.perm_gid = gid;
2674        context->ipc.perm_mode = mode;
2675        context->ipc.has_perm = 1;
2676}
2677
2678void __audit_bprm(struct linux_binprm *bprm)
2679{
2680        struct audit_context *context = audit_context();
2681
2682        context->type = AUDIT_EXECVE;
2683        context->execve.argc = bprm->argc;
2684}
2685
2686
2687/**
2688 * __audit_socketcall - record audit data for sys_socketcall
2689 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2690 * @args: args array
2691 *
2692 */
2693int __audit_socketcall(int nargs, unsigned long *args)
2694{
2695        struct audit_context *context = audit_context();
2696
2697        if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2698                return -EINVAL;
2699        context->type = AUDIT_SOCKETCALL;
2700        context->socketcall.nargs = nargs;
2701        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2702        return 0;
2703}
2704
2705/**
2706 * __audit_fd_pair - record audit data for pipe and socketpair
2707 * @fd1: the first file descriptor
2708 * @fd2: the second file descriptor
2709 *
2710 */
2711void __audit_fd_pair(int fd1, int fd2)
2712{
2713        struct audit_context *context = audit_context();
2714
2715        context->fds[0] = fd1;
2716        context->fds[1] = fd2;
2717}
2718
2719/**
2720 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2721 * @len: data length in user space
2722 * @a: data address in kernel space
2723 *
2724 * Returns 0 for success or NULL context or < 0 on error.
2725 */
2726int __audit_sockaddr(int len, void *a)
2727{
2728        struct audit_context *context = audit_context();
2729
2730        if (!context->sockaddr) {
2731                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2732
2733                if (!p)
2734                        return -ENOMEM;
2735                context->sockaddr = p;
2736        }
2737
2738        context->sockaddr_len = len;
2739        memcpy(context->sockaddr, a, len);
2740        return 0;
2741}
2742
2743void __audit_ptrace(struct task_struct *t)
2744{
2745        struct audit_context *context = audit_context();
2746
2747        context->target_pid = task_tgid_nr(t);
2748        context->target_auid = audit_get_loginuid(t);
2749        context->target_uid = task_uid(t);
2750        context->target_sessionid = audit_get_sessionid(t);
2751        security_task_getsecid_obj(t, &context->target_sid);
2752        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2753}
2754
2755/**
2756 * audit_signal_info_syscall - record signal info for syscalls
2757 * @t: task being signaled
2758 *
2759 * If the audit subsystem is being terminated, record the task (pid)
2760 * and uid that is doing that.
2761 */
2762int audit_signal_info_syscall(struct task_struct *t)
2763{
2764        struct audit_aux_data_pids *axp;
2765        struct audit_context *ctx = audit_context();
2766        kuid_t t_uid = task_uid(t);
2767
2768        if (!audit_signals || audit_dummy_context())
2769                return 0;
2770
2771        /* optimize the common case by putting first signal recipient directly
2772         * in audit_context */
2773        if (!ctx->target_pid) {
2774                ctx->target_pid = task_tgid_nr(t);
2775                ctx->target_auid = audit_get_loginuid(t);
2776                ctx->target_uid = t_uid;
2777                ctx->target_sessionid = audit_get_sessionid(t);
2778                security_task_getsecid_obj(t, &ctx->target_sid);
2779                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2780                return 0;
2781        }
2782
2783        axp = (void *)ctx->aux_pids;
2784        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2785                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2786                if (!axp)
2787                        return -ENOMEM;
2788
2789                axp->d.type = AUDIT_OBJ_PID;
2790                axp->d.next = ctx->aux_pids;
2791                ctx->aux_pids = (void *)axp;
2792        }
2793        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2794
2795        axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2796        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2797        axp->target_uid[axp->pid_count] = t_uid;
2798        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2799        security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2800        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2801        axp->pid_count++;
2802
2803        return 0;
2804}
2805
2806/**
2807 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2808 * @bprm: pointer to the bprm being processed
2809 * @new: the proposed new credentials
2810 * @old: the old credentials
2811 *
2812 * Simply check if the proc already has the caps given by the file and if not
2813 * store the priv escalation info for later auditing at the end of the syscall
2814 *
2815 * -Eric
2816 */
2817int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2818                           const struct cred *new, const struct cred *old)
2819{
2820        struct audit_aux_data_bprm_fcaps *ax;
2821        struct audit_context *context = audit_context();
2822        struct cpu_vfs_cap_data vcaps;
2823
2824        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2825        if (!ax)
2826                return -ENOMEM;
2827
2828        ax->d.type = AUDIT_BPRM_FCAPS;
2829        ax->d.next = context->aux;
2830        context->aux = (void *)ax;
2831
2832        get_vfs_caps_from_disk(&init_user_ns,
2833                               bprm->file->f_path.dentry, &vcaps);
2834
2835        ax->fcap.permitted = vcaps.permitted;
2836        ax->fcap.inheritable = vcaps.inheritable;
2837        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2838        ax->fcap.rootid = vcaps.rootid;
2839        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2840
2841        ax->old_pcap.permitted   = old->cap_permitted;
2842        ax->old_pcap.inheritable = old->cap_inheritable;
2843        ax->old_pcap.effective   = old->cap_effective;
2844        ax->old_pcap.ambient     = old->cap_ambient;
2845
2846        ax->new_pcap.permitted   = new->cap_permitted;
2847        ax->new_pcap.inheritable = new->cap_inheritable;
2848        ax->new_pcap.effective   = new->cap_effective;
2849        ax->new_pcap.ambient     = new->cap_ambient;
2850        return 0;
2851}
2852
2853/**
2854 * __audit_log_capset - store information about the arguments to the capset syscall
2855 * @new: the new credentials
2856 * @old: the old (current) credentials
2857 *
2858 * Record the arguments userspace sent to sys_capset for later printing by the
2859 * audit system if applicable
2860 */
2861void __audit_log_capset(const struct cred *new, const struct cred *old)
2862{
2863        struct audit_context *context = audit_context();
2864
2865        context->capset.pid = task_tgid_nr(current);
2866        context->capset.cap.effective   = new->cap_effective;
2867        context->capset.cap.inheritable = new->cap_effective;
2868        context->capset.cap.permitted   = new->cap_permitted;
2869        context->capset.cap.ambient     = new->cap_ambient;
2870        context->type = AUDIT_CAPSET;
2871}
2872
2873void __audit_mmap_fd(int fd, int flags)
2874{
2875        struct audit_context *context = audit_context();
2876
2877        context->mmap.fd = fd;
2878        context->mmap.flags = flags;
2879        context->type = AUDIT_MMAP;
2880}
2881
2882void __audit_openat2_how(struct open_how *how)
2883{
2884        struct audit_context *context = audit_context();
2885
2886        context->openat2.flags = how->flags;
2887        context->openat2.mode = how->mode;
2888        context->openat2.resolve = how->resolve;
2889        context->type = AUDIT_OPENAT2;
2890}
2891
2892void __audit_log_kern_module(char *name)
2893{
2894        struct audit_context *context = audit_context();
2895
2896        context->module.name = kstrdup(name, GFP_KERNEL);
2897        if (!context->module.name)
2898                audit_log_lost("out of memory in __audit_log_kern_module");
2899        context->type = AUDIT_KERN_MODULE;
2900}
2901
2902void __audit_fanotify(unsigned int response)
2903{
2904        audit_log(audit_context(), GFP_KERNEL,
2905                AUDIT_FANOTIFY, "resp=%u", response);
2906}
2907
2908void __audit_tk_injoffset(struct timespec64 offset)
2909{
2910        struct audit_context *context = audit_context();
2911
2912        /* only set type if not already set by NTP */
2913        if (!context->type)
2914                context->type = AUDIT_TIME_INJOFFSET;
2915        memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2916}
2917
2918void __audit_ntp_log(const struct audit_ntp_data *ad)
2919{
2920        struct audit_context *context = audit_context();
2921        int type;
2922
2923        for (type = 0; type < AUDIT_NTP_NVALS; type++)
2924                if (ad->vals[type].newval != ad->vals[type].oldval) {
2925                        /* unconditionally set type, overwriting TK */
2926                        context->type = AUDIT_TIME_ADJNTPVAL;
2927                        memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2928                        break;
2929                }
2930}
2931
2932void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2933                       enum audit_nfcfgop op, gfp_t gfp)
2934{
2935        struct audit_buffer *ab;
2936        char comm[sizeof(current->comm)];
2937
2938        ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2939        if (!ab)
2940                return;
2941        audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2942                         name, af, nentries, audit_nfcfgs[op].s);
2943
2944        audit_log_format(ab, " pid=%u", task_pid_nr(current));
2945        audit_log_task_context(ab); /* subj= */
2946        audit_log_format(ab, " comm=");
2947        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2948        audit_log_end(ab);
2949}
2950EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2951
2952static void audit_log_task(struct audit_buffer *ab)
2953{
2954        kuid_t auid, uid;
2955        kgid_t gid;
2956        unsigned int sessionid;
2957        char comm[sizeof(current->comm)];
2958
2959        auid = audit_get_loginuid(current);
2960        sessionid = audit_get_sessionid(current);
2961        current_uid_gid(&uid, &gid);
2962
2963        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2964                         from_kuid(&init_user_ns, auid),
2965                         from_kuid(&init_user_ns, uid),
2966                         from_kgid(&init_user_ns, gid),
2967                         sessionid);
2968        audit_log_task_context(ab);
2969        audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2970        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2971        audit_log_d_path_exe(ab, current->mm);
2972}
2973
2974/**
2975 * audit_core_dumps - record information about processes that end abnormally
2976 * @signr: signal value
2977 *
2978 * If a process ends with a core dump, something fishy is going on and we
2979 * should record the event for investigation.
2980 */
2981void audit_core_dumps(long signr)
2982{
2983        struct audit_buffer *ab;
2984
2985        if (!audit_enabled)
2986                return;
2987
2988        if (signr == SIGQUIT)   /* don't care for those */
2989                return;
2990
2991        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2992        if (unlikely(!ab))
2993                return;
2994        audit_log_task(ab);
2995        audit_log_format(ab, " sig=%ld res=1", signr);
2996        audit_log_end(ab);
2997}
2998
2999/**
3000 * audit_seccomp - record information about a seccomp action
3001 * @syscall: syscall number
3002 * @signr: signal value
3003 * @code: the seccomp action
3004 *
3005 * Record the information associated with a seccomp action. Event filtering for
3006 * seccomp actions that are not to be logged is done in seccomp_log().
3007 * Therefore, this function forces auditing independent of the audit_enabled
3008 * and dummy context state because seccomp actions should be logged even when
3009 * audit is not in use.
3010 */
3011void audit_seccomp(unsigned long syscall, long signr, int code)
3012{
3013        struct audit_buffer *ab;
3014
3015        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3016        if (unlikely(!ab))
3017                return;
3018        audit_log_task(ab);
3019        audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3020                         signr, syscall_get_arch(current), syscall,
3021                         in_compat_syscall(), KSTK_EIP(current), code);
3022        audit_log_end(ab);
3023}
3024
3025void audit_seccomp_actions_logged(const char *names, const char *old_names,
3026                                  int res)
3027{
3028        struct audit_buffer *ab;
3029
3030        if (!audit_enabled)
3031                return;
3032
3033        ab = audit_log_start(audit_context(), GFP_KERNEL,
3034                             AUDIT_CONFIG_CHANGE);
3035        if (unlikely(!ab))
3036                return;
3037
3038        audit_log_format(ab,
3039                         "op=seccomp-logging actions=%s old-actions=%s res=%d",
3040                         names, old_names, res);
3041        audit_log_end(ab);
3042}
3043
3044struct list_head *audit_killed_trees(void)
3045{
3046        struct audit_context *ctx = audit_context();
3047        if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3048                return NULL;
3049        return &ctx->killed_trees;
3050}
3051