linux/kernel/cgroup/cgroup-v1.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include "cgroup-internal.h"
   3
   4#include <linux/ctype.h>
   5#include <linux/kmod.h>
   6#include <linux/sort.h>
   7#include <linux/delay.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/sched/task.h>
  11#include <linux/magic.h>
  12#include <linux/slab.h>
  13#include <linux/vmalloc.h>
  14#include <linux/delayacct.h>
  15#include <linux/pid_namespace.h>
  16#include <linux/cgroupstats.h>
  17#include <linux/fs_parser.h>
  18
  19#include <trace/events/cgroup.h>
  20
  21/*
  22 * pidlists linger the following amount before being destroyed.  The goal
  23 * is avoiding frequent destruction in the middle of consecutive read calls
  24 * Expiring in the middle is a performance problem not a correctness one.
  25 * 1 sec should be enough.
  26 */
  27#define CGROUP_PIDLIST_DESTROY_DELAY    HZ
  28
  29/* Controllers blocked by the commandline in v1 */
  30static u16 cgroup_no_v1_mask;
  31
  32/* disable named v1 mounts */
  33static bool cgroup_no_v1_named;
  34
  35/*
  36 * pidlist destructions need to be flushed on cgroup destruction.  Use a
  37 * separate workqueue as flush domain.
  38 */
  39static struct workqueue_struct *cgroup_pidlist_destroy_wq;
  40
  41/* protects cgroup_subsys->release_agent_path */
  42static DEFINE_SPINLOCK(release_agent_path_lock);
  43
  44bool cgroup1_ssid_disabled(int ssid)
  45{
  46        return cgroup_no_v1_mask & (1 << ssid);
  47}
  48
  49/**
  50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  51 * @from: attach to all cgroups of a given task
  52 * @tsk: the task to be attached
  53 *
  54 * Return: %0 on success or a negative errno code on failure
  55 */
  56int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  57{
  58        struct cgroup_root *root;
  59        int retval = 0;
  60
  61        mutex_lock(&cgroup_mutex);
  62        percpu_down_write(&cgroup_threadgroup_rwsem);
  63        for_each_root(root) {
  64                struct cgroup *from_cgrp;
  65
  66                spin_lock_irq(&css_set_lock);
  67                from_cgrp = task_cgroup_from_root(from, root);
  68                spin_unlock_irq(&css_set_lock);
  69
  70                retval = cgroup_attach_task(from_cgrp, tsk, false);
  71                if (retval)
  72                        break;
  73        }
  74        percpu_up_write(&cgroup_threadgroup_rwsem);
  75        mutex_unlock(&cgroup_mutex);
  76
  77        return retval;
  78}
  79EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  80
  81/**
  82 * cgroup_transfer_tasks - move tasks from one cgroup to another
  83 * @to: cgroup to which the tasks will be moved
  84 * @from: cgroup in which the tasks currently reside
  85 *
  86 * Locking rules between cgroup_post_fork() and the migration path
  87 * guarantee that, if a task is forking while being migrated, the new child
  88 * is guaranteed to be either visible in the source cgroup after the
  89 * parent's migration is complete or put into the target cgroup.  No task
  90 * can slip out of migration through forking.
  91 *
  92 * Return: %0 on success or a negative errno code on failure
  93 */
  94int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  95{
  96        DEFINE_CGROUP_MGCTX(mgctx);
  97        struct cgrp_cset_link *link;
  98        struct css_task_iter it;
  99        struct task_struct *task;
 100        int ret;
 101
 102        if (cgroup_on_dfl(to))
 103                return -EINVAL;
 104
 105        ret = cgroup_migrate_vet_dst(to);
 106        if (ret)
 107                return ret;
 108
 109        mutex_lock(&cgroup_mutex);
 110
 111        percpu_down_write(&cgroup_threadgroup_rwsem);
 112
 113        /* all tasks in @from are being moved, all csets are source */
 114        spin_lock_irq(&css_set_lock);
 115        list_for_each_entry(link, &from->cset_links, cset_link)
 116                cgroup_migrate_add_src(link->cset, to, &mgctx);
 117        spin_unlock_irq(&css_set_lock);
 118
 119        ret = cgroup_migrate_prepare_dst(&mgctx);
 120        if (ret)
 121                goto out_err;
 122
 123        /*
 124         * Migrate tasks one-by-one until @from is empty.  This fails iff
 125         * ->can_attach() fails.
 126         */
 127        do {
 128                css_task_iter_start(&from->self, 0, &it);
 129
 130                do {
 131                        task = css_task_iter_next(&it);
 132                } while (task && (task->flags & PF_EXITING));
 133
 134                if (task)
 135                        get_task_struct(task);
 136                css_task_iter_end(&it);
 137
 138                if (task) {
 139                        ret = cgroup_migrate(task, false, &mgctx);
 140                        if (!ret)
 141                                TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
 142                        put_task_struct(task);
 143                }
 144        } while (task && !ret);
 145out_err:
 146        cgroup_migrate_finish(&mgctx);
 147        percpu_up_write(&cgroup_threadgroup_rwsem);
 148        mutex_unlock(&cgroup_mutex);
 149        return ret;
 150}
 151
 152/*
 153 * Stuff for reading the 'tasks'/'procs' files.
 154 *
 155 * Reading this file can return large amounts of data if a cgroup has
 156 * *lots* of attached tasks. So it may need several calls to read(),
 157 * but we cannot guarantee that the information we produce is correct
 158 * unless we produce it entirely atomically.
 159 *
 160 */
 161
 162/* which pidlist file are we talking about? */
 163enum cgroup_filetype {
 164        CGROUP_FILE_PROCS,
 165        CGROUP_FILE_TASKS,
 166};
 167
 168/*
 169 * A pidlist is a list of pids that virtually represents the contents of one
 170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 171 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 172 * to the cgroup.
 173 */
 174struct cgroup_pidlist {
 175        /*
 176         * used to find which pidlist is wanted. doesn't change as long as
 177         * this particular list stays in the list.
 178        */
 179        struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 180        /* array of xids */
 181        pid_t *list;
 182        /* how many elements the above list has */
 183        int length;
 184        /* each of these stored in a list by its cgroup */
 185        struct list_head links;
 186        /* pointer to the cgroup we belong to, for list removal purposes */
 187        struct cgroup *owner;
 188        /* for delayed destruction */
 189        struct delayed_work destroy_dwork;
 190};
 191
 192/*
 193 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 194 * should be left afterwards.
 195 */
 196void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 197{
 198        struct cgroup_pidlist *l, *tmp_l;
 199
 200        mutex_lock(&cgrp->pidlist_mutex);
 201        list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 202                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 203        mutex_unlock(&cgrp->pidlist_mutex);
 204
 205        flush_workqueue(cgroup_pidlist_destroy_wq);
 206        BUG_ON(!list_empty(&cgrp->pidlists));
 207}
 208
 209static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 210{
 211        struct delayed_work *dwork = to_delayed_work(work);
 212        struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 213                                                destroy_dwork);
 214        struct cgroup_pidlist *tofree = NULL;
 215
 216        mutex_lock(&l->owner->pidlist_mutex);
 217
 218        /*
 219         * Destroy iff we didn't get queued again.  The state won't change
 220         * as destroy_dwork can only be queued while locked.
 221         */
 222        if (!delayed_work_pending(dwork)) {
 223                list_del(&l->links);
 224                kvfree(l->list);
 225                put_pid_ns(l->key.ns);
 226                tofree = l;
 227        }
 228
 229        mutex_unlock(&l->owner->pidlist_mutex);
 230        kfree(tofree);
 231}
 232
 233/*
 234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 235 * Returns the number of unique elements.
 236 */
 237static int pidlist_uniq(pid_t *list, int length)
 238{
 239        int src, dest = 1;
 240
 241        /*
 242         * we presume the 0th element is unique, so i starts at 1. trivial
 243         * edge cases first; no work needs to be done for either
 244         */
 245        if (length == 0 || length == 1)
 246                return length;
 247        /* src and dest walk down the list; dest counts unique elements */
 248        for (src = 1; src < length; src++) {
 249                /* find next unique element */
 250                while (list[src] == list[src-1]) {
 251                        src++;
 252                        if (src == length)
 253                                goto after;
 254                }
 255                /* dest always points to where the next unique element goes */
 256                list[dest] = list[src];
 257                dest++;
 258        }
 259after:
 260        return dest;
 261}
 262
 263/*
 264 * The two pid files - task and cgroup.procs - guaranteed that the result
 265 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 266 * different per namespace, each namespace needs differently sorted list,
 267 * making it impossible to use, for example, single rbtree of member tasks
 268 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 269 * per open file is dangerous, so cgroup had to implement shared pool of
 270 * pidlists keyed by cgroup and namespace.
 271 */
 272static int cmppid(const void *a, const void *b)
 273{
 274        return *(pid_t *)a - *(pid_t *)b;
 275}
 276
 277static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 278                                                  enum cgroup_filetype type)
 279{
 280        struct cgroup_pidlist *l;
 281        /* don't need task_nsproxy() if we're looking at ourself */
 282        struct pid_namespace *ns = task_active_pid_ns(current);
 283
 284        lockdep_assert_held(&cgrp->pidlist_mutex);
 285
 286        list_for_each_entry(l, &cgrp->pidlists, links)
 287                if (l->key.type == type && l->key.ns == ns)
 288                        return l;
 289        return NULL;
 290}
 291
 292/*
 293 * find the appropriate pidlist for our purpose (given procs vs tasks)
 294 * returns with the lock on that pidlist already held, and takes care
 295 * of the use count, or returns NULL with no locks held if we're out of
 296 * memory.
 297 */
 298static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 299                                                enum cgroup_filetype type)
 300{
 301        struct cgroup_pidlist *l;
 302
 303        lockdep_assert_held(&cgrp->pidlist_mutex);
 304
 305        l = cgroup_pidlist_find(cgrp, type);
 306        if (l)
 307                return l;
 308
 309        /* entry not found; create a new one */
 310        l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 311        if (!l)
 312                return l;
 313
 314        INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 315        l->key.type = type;
 316        /* don't need task_nsproxy() if we're looking at ourself */
 317        l->key.ns = get_pid_ns(task_active_pid_ns(current));
 318        l->owner = cgrp;
 319        list_add(&l->links, &cgrp->pidlists);
 320        return l;
 321}
 322
 323/*
 324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 325 */
 326static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 327                              struct cgroup_pidlist **lp)
 328{
 329        pid_t *array;
 330        int length;
 331        int pid, n = 0; /* used for populating the array */
 332        struct css_task_iter it;
 333        struct task_struct *tsk;
 334        struct cgroup_pidlist *l;
 335
 336        lockdep_assert_held(&cgrp->pidlist_mutex);
 337
 338        /*
 339         * If cgroup gets more users after we read count, we won't have
 340         * enough space - tough.  This race is indistinguishable to the
 341         * caller from the case that the additional cgroup users didn't
 342         * show up until sometime later on.
 343         */
 344        length = cgroup_task_count(cgrp);
 345        array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
 346        if (!array)
 347                return -ENOMEM;
 348        /* now, populate the array */
 349        css_task_iter_start(&cgrp->self, 0, &it);
 350        while ((tsk = css_task_iter_next(&it))) {
 351                if (unlikely(n == length))
 352                        break;
 353                /* get tgid or pid for procs or tasks file respectively */
 354                if (type == CGROUP_FILE_PROCS)
 355                        pid = task_tgid_vnr(tsk);
 356                else
 357                        pid = task_pid_vnr(tsk);
 358                if (pid > 0) /* make sure to only use valid results */
 359                        array[n++] = pid;
 360        }
 361        css_task_iter_end(&it);
 362        length = n;
 363        /* now sort & (if procs) strip out duplicates */
 364        sort(array, length, sizeof(pid_t), cmppid, NULL);
 365        if (type == CGROUP_FILE_PROCS)
 366                length = pidlist_uniq(array, length);
 367
 368        l = cgroup_pidlist_find_create(cgrp, type);
 369        if (!l) {
 370                kvfree(array);
 371                return -ENOMEM;
 372        }
 373
 374        /* store array, freeing old if necessary */
 375        kvfree(l->list);
 376        l->list = array;
 377        l->length = length;
 378        *lp = l;
 379        return 0;
 380}
 381
 382/*
 383 * seq_file methods for the tasks/procs files. The seq_file position is the
 384 * next pid to display; the seq_file iterator is a pointer to the pid
 385 * in the cgroup->l->list array.
 386 */
 387
 388static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 389{
 390        /*
 391         * Initially we receive a position value that corresponds to
 392         * one more than the last pid shown (or 0 on the first call or
 393         * after a seek to the start). Use a binary-search to find the
 394         * next pid to display, if any
 395         */
 396        struct kernfs_open_file *of = s->private;
 397        struct cgroup_file_ctx *ctx = of->priv;
 398        struct cgroup *cgrp = seq_css(s)->cgroup;
 399        struct cgroup_pidlist *l;
 400        enum cgroup_filetype type = seq_cft(s)->private;
 401        int index = 0, pid = *pos;
 402        int *iter, ret;
 403
 404        mutex_lock(&cgrp->pidlist_mutex);
 405
 406        /*
 407         * !NULL @ctx->procs1.pidlist indicates that this isn't the first
 408         * start() after open. If the matching pidlist is around, we can use
 409         * that. Look for it. Note that @ctx->procs1.pidlist can't be used
 410         * directly. It could already have been destroyed.
 411         */
 412        if (ctx->procs1.pidlist)
 413                ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
 414
 415        /*
 416         * Either this is the first start() after open or the matching
 417         * pidlist has been destroyed inbetween.  Create a new one.
 418         */
 419        if (!ctx->procs1.pidlist) {
 420                ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
 421                if (ret)
 422                        return ERR_PTR(ret);
 423        }
 424        l = ctx->procs1.pidlist;
 425
 426        if (pid) {
 427                int end = l->length;
 428
 429                while (index < end) {
 430                        int mid = (index + end) / 2;
 431                        if (l->list[mid] == pid) {
 432                                index = mid;
 433                                break;
 434                        } else if (l->list[mid] <= pid)
 435                                index = mid + 1;
 436                        else
 437                                end = mid;
 438                }
 439        }
 440        /* If we're off the end of the array, we're done */
 441        if (index >= l->length)
 442                return NULL;
 443        /* Update the abstract position to be the actual pid that we found */
 444        iter = l->list + index;
 445        *pos = *iter;
 446        return iter;
 447}
 448
 449static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 450{
 451        struct kernfs_open_file *of = s->private;
 452        struct cgroup_file_ctx *ctx = of->priv;
 453        struct cgroup_pidlist *l = ctx->procs1.pidlist;
 454
 455        if (l)
 456                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 457                                 CGROUP_PIDLIST_DESTROY_DELAY);
 458        mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 459}
 460
 461static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 462{
 463        struct kernfs_open_file *of = s->private;
 464        struct cgroup_file_ctx *ctx = of->priv;
 465        struct cgroup_pidlist *l = ctx->procs1.pidlist;
 466        pid_t *p = v;
 467        pid_t *end = l->list + l->length;
 468        /*
 469         * Advance to the next pid in the array. If this goes off the
 470         * end, we're done
 471         */
 472        p++;
 473        if (p >= end) {
 474                (*pos)++;
 475                return NULL;
 476        } else {
 477                *pos = *p;
 478                return p;
 479        }
 480}
 481
 482static int cgroup_pidlist_show(struct seq_file *s, void *v)
 483{
 484        seq_printf(s, "%d\n", *(int *)v);
 485
 486        return 0;
 487}
 488
 489static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 490                                     char *buf, size_t nbytes, loff_t off,
 491                                     bool threadgroup)
 492{
 493        struct cgroup *cgrp;
 494        struct task_struct *task;
 495        const struct cred *cred, *tcred;
 496        ssize_t ret;
 497        bool locked;
 498
 499        cgrp = cgroup_kn_lock_live(of->kn, false);
 500        if (!cgrp)
 501                return -ENODEV;
 502
 503        task = cgroup_procs_write_start(buf, threadgroup, &locked);
 504        ret = PTR_ERR_OR_ZERO(task);
 505        if (ret)
 506                goto out_unlock;
 507
 508        /*
 509         * Even if we're attaching all tasks in the thread group, we only need
 510         * to check permissions on one of them. Check permissions using the
 511         * credentials from file open to protect against inherited fd attacks.
 512         */
 513        cred = of->file->f_cred;
 514        tcred = get_task_cred(task);
 515        if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 516            !uid_eq(cred->euid, tcred->uid) &&
 517            !uid_eq(cred->euid, tcred->suid))
 518                ret = -EACCES;
 519        put_cred(tcred);
 520        if (ret)
 521                goto out_finish;
 522
 523        ret = cgroup_attach_task(cgrp, task, threadgroup);
 524
 525out_finish:
 526        cgroup_procs_write_finish(task, locked);
 527out_unlock:
 528        cgroup_kn_unlock(of->kn);
 529
 530        return ret ?: nbytes;
 531}
 532
 533static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 534                                   char *buf, size_t nbytes, loff_t off)
 535{
 536        return __cgroup1_procs_write(of, buf, nbytes, off, true);
 537}
 538
 539static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 540                                   char *buf, size_t nbytes, loff_t off)
 541{
 542        return __cgroup1_procs_write(of, buf, nbytes, off, false);
 543}
 544
 545static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 546                                          char *buf, size_t nbytes, loff_t off)
 547{
 548        struct cgroup *cgrp;
 549        struct cgroup_file_ctx *ctx;
 550
 551        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 552
 553        /*
 554         * Release agent gets called with all capabilities,
 555         * require capabilities to set release agent.
 556         */
 557        ctx = of->priv;
 558        if ((ctx->ns->user_ns != &init_user_ns) ||
 559            !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
 560                return -EPERM;
 561
 562        cgrp = cgroup_kn_lock_live(of->kn, false);
 563        if (!cgrp)
 564                return -ENODEV;
 565        spin_lock(&release_agent_path_lock);
 566        strlcpy(cgrp->root->release_agent_path, strstrip(buf),
 567                sizeof(cgrp->root->release_agent_path));
 568        spin_unlock(&release_agent_path_lock);
 569        cgroup_kn_unlock(of->kn);
 570        return nbytes;
 571}
 572
 573static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 574{
 575        struct cgroup *cgrp = seq_css(seq)->cgroup;
 576
 577        spin_lock(&release_agent_path_lock);
 578        seq_puts(seq, cgrp->root->release_agent_path);
 579        spin_unlock(&release_agent_path_lock);
 580        seq_putc(seq, '\n');
 581        return 0;
 582}
 583
 584static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 585{
 586        seq_puts(seq, "0\n");
 587        return 0;
 588}
 589
 590static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 591                                         struct cftype *cft)
 592{
 593        return notify_on_release(css->cgroup);
 594}
 595
 596static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 597                                          struct cftype *cft, u64 val)
 598{
 599        if (val)
 600                set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 601        else
 602                clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 603        return 0;
 604}
 605
 606static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 607                                      struct cftype *cft)
 608{
 609        return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 610}
 611
 612static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 613                                       struct cftype *cft, u64 val)
 614{
 615        if (val)
 616                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 617        else
 618                clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 619        return 0;
 620}
 621
 622/* cgroup core interface files for the legacy hierarchies */
 623struct cftype cgroup1_base_files[] = {
 624        {
 625                .name = "cgroup.procs",
 626                .seq_start = cgroup_pidlist_start,
 627                .seq_next = cgroup_pidlist_next,
 628                .seq_stop = cgroup_pidlist_stop,
 629                .seq_show = cgroup_pidlist_show,
 630                .private = CGROUP_FILE_PROCS,
 631                .write = cgroup1_procs_write,
 632        },
 633        {
 634                .name = "cgroup.clone_children",
 635                .read_u64 = cgroup_clone_children_read,
 636                .write_u64 = cgroup_clone_children_write,
 637        },
 638        {
 639                .name = "cgroup.sane_behavior",
 640                .flags = CFTYPE_ONLY_ON_ROOT,
 641                .seq_show = cgroup_sane_behavior_show,
 642        },
 643        {
 644                .name = "tasks",
 645                .seq_start = cgroup_pidlist_start,
 646                .seq_next = cgroup_pidlist_next,
 647                .seq_stop = cgroup_pidlist_stop,
 648                .seq_show = cgroup_pidlist_show,
 649                .private = CGROUP_FILE_TASKS,
 650                .write = cgroup1_tasks_write,
 651        },
 652        {
 653                .name = "notify_on_release",
 654                .read_u64 = cgroup_read_notify_on_release,
 655                .write_u64 = cgroup_write_notify_on_release,
 656        },
 657        {
 658                .name = "release_agent",
 659                .flags = CFTYPE_ONLY_ON_ROOT,
 660                .seq_show = cgroup_release_agent_show,
 661                .write = cgroup_release_agent_write,
 662                .max_write_len = PATH_MAX - 1,
 663        },
 664        { }     /* terminate */
 665};
 666
 667/* Display information about each subsystem and each hierarchy */
 668int proc_cgroupstats_show(struct seq_file *m, void *v)
 669{
 670        struct cgroup_subsys *ss;
 671        int i;
 672
 673        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 674        /*
 675         * Grab the subsystems state racily. No need to add avenue to
 676         * cgroup_mutex contention.
 677         */
 678
 679        for_each_subsys(ss, i)
 680                seq_printf(m, "%s\t%d\t%d\t%d\n",
 681                           ss->legacy_name, ss->root->hierarchy_id,
 682                           atomic_read(&ss->root->nr_cgrps),
 683                           cgroup_ssid_enabled(i));
 684
 685        return 0;
 686}
 687
 688/**
 689 * cgroupstats_build - build and fill cgroupstats
 690 * @stats: cgroupstats to fill information into
 691 * @dentry: A dentry entry belonging to the cgroup for which stats have
 692 * been requested.
 693 *
 694 * Build and fill cgroupstats so that taskstats can export it to user
 695 * space.
 696 *
 697 * Return: %0 on success or a negative errno code on failure
 698 */
 699int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 700{
 701        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 702        struct cgroup *cgrp;
 703        struct css_task_iter it;
 704        struct task_struct *tsk;
 705
 706        /* it should be kernfs_node belonging to cgroupfs and is a directory */
 707        if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 708            kernfs_type(kn) != KERNFS_DIR)
 709                return -EINVAL;
 710
 711        /*
 712         * We aren't being called from kernfs and there's no guarantee on
 713         * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 714         * @kn->priv is RCU safe.  Let's do the RCU dancing.
 715         */
 716        rcu_read_lock();
 717        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 718        if (!cgrp || !cgroup_tryget(cgrp)) {
 719                rcu_read_unlock();
 720                return -ENOENT;
 721        }
 722        rcu_read_unlock();
 723
 724        css_task_iter_start(&cgrp->self, 0, &it);
 725        while ((tsk = css_task_iter_next(&it))) {
 726                switch (READ_ONCE(tsk->__state)) {
 727                case TASK_RUNNING:
 728                        stats->nr_running++;
 729                        break;
 730                case TASK_INTERRUPTIBLE:
 731                        stats->nr_sleeping++;
 732                        break;
 733                case TASK_UNINTERRUPTIBLE:
 734                        stats->nr_uninterruptible++;
 735                        break;
 736                case TASK_STOPPED:
 737                        stats->nr_stopped++;
 738                        break;
 739                default:
 740                        if (tsk->in_iowait)
 741                                stats->nr_io_wait++;
 742                        break;
 743                }
 744        }
 745        css_task_iter_end(&it);
 746
 747        cgroup_put(cgrp);
 748        return 0;
 749}
 750
 751void cgroup1_check_for_release(struct cgroup *cgrp)
 752{
 753        if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 754            !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 755                schedule_work(&cgrp->release_agent_work);
 756}
 757
 758/*
 759 * Notify userspace when a cgroup is released, by running the
 760 * configured release agent with the name of the cgroup (path
 761 * relative to the root of cgroup file system) as the argument.
 762 *
 763 * Most likely, this user command will try to rmdir this cgroup.
 764 *
 765 * This races with the possibility that some other task will be
 766 * attached to this cgroup before it is removed, or that some other
 767 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 768 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 769 * unused, and this cgroup will be reprieved from its death sentence,
 770 * to continue to serve a useful existence.  Next time it's released,
 771 * we will get notified again, if it still has 'notify_on_release' set.
 772 *
 773 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 774 * means only wait until the task is successfully execve()'d.  The
 775 * separate release agent task is forked by call_usermodehelper(),
 776 * then control in this thread returns here, without waiting for the
 777 * release agent task.  We don't bother to wait because the caller of
 778 * this routine has no use for the exit status of the release agent
 779 * task, so no sense holding our caller up for that.
 780 */
 781void cgroup1_release_agent(struct work_struct *work)
 782{
 783        struct cgroup *cgrp =
 784                container_of(work, struct cgroup, release_agent_work);
 785        char *pathbuf, *agentbuf;
 786        char *argv[3], *envp[3];
 787        int ret;
 788
 789        /* snoop agent path and exit early if empty */
 790        if (!cgrp->root->release_agent_path[0])
 791                return;
 792
 793        /* prepare argument buffers */
 794        pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 795        agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 796        if (!pathbuf || !agentbuf)
 797                goto out_free;
 798
 799        spin_lock(&release_agent_path_lock);
 800        strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
 801        spin_unlock(&release_agent_path_lock);
 802        if (!agentbuf[0])
 803                goto out_free;
 804
 805        ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 806        if (ret < 0 || ret >= PATH_MAX)
 807                goto out_free;
 808
 809        argv[0] = agentbuf;
 810        argv[1] = pathbuf;
 811        argv[2] = NULL;
 812
 813        /* minimal command environment */
 814        envp[0] = "HOME=/";
 815        envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 816        envp[2] = NULL;
 817
 818        call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 819out_free:
 820        kfree(agentbuf);
 821        kfree(pathbuf);
 822}
 823
 824/*
 825 * cgroup_rename - Only allow simple rename of directories in place.
 826 */
 827static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 828                          const char *new_name_str)
 829{
 830        struct cgroup *cgrp = kn->priv;
 831        int ret;
 832
 833        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
 834        if (strchr(new_name_str, '\n'))
 835                return -EINVAL;
 836
 837        if (kernfs_type(kn) != KERNFS_DIR)
 838                return -ENOTDIR;
 839        if (kn->parent != new_parent)
 840                return -EIO;
 841
 842        /*
 843         * We're gonna grab cgroup_mutex which nests outside kernfs
 844         * active_ref.  kernfs_rename() doesn't require active_ref
 845         * protection.  Break them before grabbing cgroup_mutex.
 846         */
 847        kernfs_break_active_protection(new_parent);
 848        kernfs_break_active_protection(kn);
 849
 850        mutex_lock(&cgroup_mutex);
 851
 852        ret = kernfs_rename(kn, new_parent, new_name_str);
 853        if (!ret)
 854                TRACE_CGROUP_PATH(rename, cgrp);
 855
 856        mutex_unlock(&cgroup_mutex);
 857
 858        kernfs_unbreak_active_protection(kn);
 859        kernfs_unbreak_active_protection(new_parent);
 860        return ret;
 861}
 862
 863static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 864{
 865        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 866        struct cgroup_subsys *ss;
 867        int ssid;
 868
 869        for_each_subsys(ss, ssid)
 870                if (root->subsys_mask & (1 << ssid))
 871                        seq_show_option(seq, ss->legacy_name, NULL);
 872        if (root->flags & CGRP_ROOT_NOPREFIX)
 873                seq_puts(seq, ",noprefix");
 874        if (root->flags & CGRP_ROOT_XATTR)
 875                seq_puts(seq, ",xattr");
 876        if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 877                seq_puts(seq, ",cpuset_v2_mode");
 878
 879        spin_lock(&release_agent_path_lock);
 880        if (strlen(root->release_agent_path))
 881                seq_show_option(seq, "release_agent",
 882                                root->release_agent_path);
 883        spin_unlock(&release_agent_path_lock);
 884
 885        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 886                seq_puts(seq, ",clone_children");
 887        if (strlen(root->name))
 888                seq_show_option(seq, "name", root->name);
 889        return 0;
 890}
 891
 892enum cgroup1_param {
 893        Opt_all,
 894        Opt_clone_children,
 895        Opt_cpuset_v2_mode,
 896        Opt_name,
 897        Opt_none,
 898        Opt_noprefix,
 899        Opt_release_agent,
 900        Opt_xattr,
 901};
 902
 903const struct fs_parameter_spec cgroup1_fs_parameters[] = {
 904        fsparam_flag  ("all",           Opt_all),
 905        fsparam_flag  ("clone_children", Opt_clone_children),
 906        fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 907        fsparam_string("name",          Opt_name),
 908        fsparam_flag  ("none",          Opt_none),
 909        fsparam_flag  ("noprefix",      Opt_noprefix),
 910        fsparam_string("release_agent", Opt_release_agent),
 911        fsparam_flag  ("xattr",         Opt_xattr),
 912        {}
 913};
 914
 915int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
 916{
 917        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 918        struct cgroup_subsys *ss;
 919        struct fs_parse_result result;
 920        int opt, i;
 921
 922        opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
 923        if (opt == -ENOPARAM) {
 924                int ret;
 925
 926                ret = vfs_parse_fs_param_source(fc, param);
 927                if (ret != -ENOPARAM)
 928                        return ret;
 929                for_each_subsys(ss, i) {
 930                        if (strcmp(param->key, ss->legacy_name))
 931                                continue;
 932                        if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
 933                                return invalfc(fc, "Disabled controller '%s'",
 934                                               param->key);
 935                        ctx->subsys_mask |= (1 << i);
 936                        return 0;
 937                }
 938                return invalfc(fc, "Unknown subsys name '%s'", param->key);
 939        }
 940        if (opt < 0)
 941                return opt;
 942
 943        switch (opt) {
 944        case Opt_none:
 945                /* Explicitly have no subsystems */
 946                ctx->none = true;
 947                break;
 948        case Opt_all:
 949                ctx->all_ss = true;
 950                break;
 951        case Opt_noprefix:
 952                ctx->flags |= CGRP_ROOT_NOPREFIX;
 953                break;
 954        case Opt_clone_children:
 955                ctx->cpuset_clone_children = true;
 956                break;
 957        case Opt_cpuset_v2_mode:
 958                ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 959                break;
 960        case Opt_xattr:
 961                ctx->flags |= CGRP_ROOT_XATTR;
 962                break;
 963        case Opt_release_agent:
 964                /* Specifying two release agents is forbidden */
 965                if (ctx->release_agent)
 966                        return invalfc(fc, "release_agent respecified");
 967                /*
 968                 * Release agent gets called with all capabilities,
 969                 * require capabilities to set release agent.
 970                 */
 971                if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
 972                        return invalfc(fc, "Setting release_agent not allowed");
 973                ctx->release_agent = param->string;
 974                param->string = NULL;
 975                break;
 976        case Opt_name:
 977                /* blocked by boot param? */
 978                if (cgroup_no_v1_named)
 979                        return -ENOENT;
 980                /* Can't specify an empty name */
 981                if (!param->size)
 982                        return invalfc(fc, "Empty name");
 983                if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
 984                        return invalfc(fc, "Name too long");
 985                /* Must match [\w.-]+ */
 986                for (i = 0; i < param->size; i++) {
 987                        char c = param->string[i];
 988                        if (isalnum(c))
 989                                continue;
 990                        if ((c == '.') || (c == '-') || (c == '_'))
 991                                continue;
 992                        return invalfc(fc, "Invalid name");
 993                }
 994                /* Specifying two names is forbidden */
 995                if (ctx->name)
 996                        return invalfc(fc, "name respecified");
 997                ctx->name = param->string;
 998                param->string = NULL;
 999                break;
1000        }
1001        return 0;
1002}
1003
1004static int check_cgroupfs_options(struct fs_context *fc)
1005{
1006        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1007        u16 mask = U16_MAX;
1008        u16 enabled = 0;
1009        struct cgroup_subsys *ss;
1010        int i;
1011
1012#ifdef CONFIG_CPUSETS
1013        mask = ~((u16)1 << cpuset_cgrp_id);
1014#endif
1015        for_each_subsys(ss, i)
1016                if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1017                        enabled |= 1 << i;
1018
1019        ctx->subsys_mask &= enabled;
1020
1021        /*
1022         * In absence of 'none', 'name=' and subsystem name options,
1023         * let's default to 'all'.
1024         */
1025        if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1026                ctx->all_ss = true;
1027
1028        if (ctx->all_ss) {
1029                /* Mutually exclusive option 'all' + subsystem name */
1030                if (ctx->subsys_mask)
1031                        return invalfc(fc, "subsys name conflicts with all");
1032                /* 'all' => select all the subsystems */
1033                ctx->subsys_mask = enabled;
1034        }
1035
1036        /*
1037         * We either have to specify by name or by subsystems. (So all
1038         * empty hierarchies must have a name).
1039         */
1040        if (!ctx->subsys_mask && !ctx->name)
1041                return invalfc(fc, "Need name or subsystem set");
1042
1043        /*
1044         * Option noprefix was introduced just for backward compatibility
1045         * with the old cpuset, so we allow noprefix only if mounting just
1046         * the cpuset subsystem.
1047         */
1048        if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1049                return invalfc(fc, "noprefix used incorrectly");
1050
1051        /* Can't specify "none" and some subsystems */
1052        if (ctx->subsys_mask && ctx->none)
1053                return invalfc(fc, "none used incorrectly");
1054
1055        return 0;
1056}
1057
1058int cgroup1_reconfigure(struct fs_context *fc)
1059{
1060        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1061        struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1062        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1063        int ret = 0;
1064        u16 added_mask, removed_mask;
1065
1066        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1067
1068        /* See what subsystems are wanted */
1069        ret = check_cgroupfs_options(fc);
1070        if (ret)
1071                goto out_unlock;
1072
1073        if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1074                pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1075                        task_tgid_nr(current), current->comm);
1076
1077        added_mask = ctx->subsys_mask & ~root->subsys_mask;
1078        removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1079
1080        /* Don't allow flags or name to change at remount */
1081        if ((ctx->flags ^ root->flags) ||
1082            (ctx->name && strcmp(ctx->name, root->name))) {
1083                errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1084                       ctx->flags, ctx->name ?: "", root->flags, root->name);
1085                ret = -EINVAL;
1086                goto out_unlock;
1087        }
1088
1089        /* remounting is not allowed for populated hierarchies */
1090        if (!list_empty(&root->cgrp.self.children)) {
1091                ret = -EBUSY;
1092                goto out_unlock;
1093        }
1094
1095        ret = rebind_subsystems(root, added_mask);
1096        if (ret)
1097                goto out_unlock;
1098
1099        WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1100
1101        if (ctx->release_agent) {
1102                spin_lock(&release_agent_path_lock);
1103                strcpy(root->release_agent_path, ctx->release_agent);
1104                spin_unlock(&release_agent_path_lock);
1105        }
1106
1107        trace_cgroup_remount(root);
1108
1109 out_unlock:
1110        mutex_unlock(&cgroup_mutex);
1111        return ret;
1112}
1113
1114struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1115        .rename                 = cgroup1_rename,
1116        .show_options           = cgroup1_show_options,
1117        .mkdir                  = cgroup_mkdir,
1118        .rmdir                  = cgroup_rmdir,
1119        .show_path              = cgroup_show_path,
1120};
1121
1122/*
1123 * The guts of cgroup1 mount - find or create cgroup_root to use.
1124 * Called with cgroup_mutex held; returns 0 on success, -E... on
1125 * error and positive - in case when the candidate is busy dying.
1126 * On success it stashes a reference to cgroup_root into given
1127 * cgroup_fs_context; that reference is *NOT* counting towards the
1128 * cgroup_root refcount.
1129 */
1130static int cgroup1_root_to_use(struct fs_context *fc)
1131{
1132        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1133        struct cgroup_root *root;
1134        struct cgroup_subsys *ss;
1135        int i, ret;
1136
1137        /* First find the desired set of subsystems */
1138        ret = check_cgroupfs_options(fc);
1139        if (ret)
1140                return ret;
1141
1142        /*
1143         * Destruction of cgroup root is asynchronous, so subsystems may
1144         * still be dying after the previous unmount.  Let's drain the
1145         * dying subsystems.  We just need to ensure that the ones
1146         * unmounted previously finish dying and don't care about new ones
1147         * starting.  Testing ref liveliness is good enough.
1148         */
1149        for_each_subsys(ss, i) {
1150                if (!(ctx->subsys_mask & (1 << i)) ||
1151                    ss->root == &cgrp_dfl_root)
1152                        continue;
1153
1154                if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1155                        return 1;       /* restart */
1156                cgroup_put(&ss->root->cgrp);
1157        }
1158
1159        for_each_root(root) {
1160                bool name_match = false;
1161
1162                if (root == &cgrp_dfl_root)
1163                        continue;
1164
1165                /*
1166                 * If we asked for a name then it must match.  Also, if
1167                 * name matches but sybsys_mask doesn't, we should fail.
1168                 * Remember whether name matched.
1169                 */
1170                if (ctx->name) {
1171                        if (strcmp(ctx->name, root->name))
1172                                continue;
1173                        name_match = true;
1174                }
1175
1176                /*
1177                 * If we asked for subsystems (or explicitly for no
1178                 * subsystems) then they must match.
1179                 */
1180                if ((ctx->subsys_mask || ctx->none) &&
1181                    (ctx->subsys_mask != root->subsys_mask)) {
1182                        if (!name_match)
1183                                continue;
1184                        return -EBUSY;
1185                }
1186
1187                if (root->flags ^ ctx->flags)
1188                        pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1189
1190                ctx->root = root;
1191                return 0;
1192        }
1193
1194        /*
1195         * No such thing, create a new one.  name= matching without subsys
1196         * specification is allowed for already existing hierarchies but we
1197         * can't create new one without subsys specification.
1198         */
1199        if (!ctx->subsys_mask && !ctx->none)
1200                return invalfc(fc, "No subsys list or none specified");
1201
1202        /* Hierarchies may only be created in the initial cgroup namespace. */
1203        if (ctx->ns != &init_cgroup_ns)
1204                return -EPERM;
1205
1206        root = kzalloc(sizeof(*root), GFP_KERNEL);
1207        if (!root)
1208                return -ENOMEM;
1209
1210        ctx->root = root;
1211        init_cgroup_root(ctx);
1212
1213        ret = cgroup_setup_root(root, ctx->subsys_mask);
1214        if (ret)
1215                cgroup_free_root(root);
1216        return ret;
1217}
1218
1219int cgroup1_get_tree(struct fs_context *fc)
1220{
1221        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1222        int ret;
1223
1224        /* Check if the caller has permission to mount. */
1225        if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1226                return -EPERM;
1227
1228        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1229
1230        ret = cgroup1_root_to_use(fc);
1231        if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1232                ret = 1;        /* restart */
1233
1234        mutex_unlock(&cgroup_mutex);
1235
1236        if (!ret)
1237                ret = cgroup_do_get_tree(fc);
1238
1239        if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1240                fc_drop_locked(fc);
1241                ret = 1;
1242        }
1243
1244        if (unlikely(ret > 0)) {
1245                msleep(10);
1246                return restart_syscall();
1247        }
1248        return ret;
1249}
1250
1251static int __init cgroup1_wq_init(void)
1252{
1253        /*
1254         * Used to destroy pidlists and separate to serve as flush domain.
1255         * Cap @max_active to 1 too.
1256         */
1257        cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1258                                                    0, 1);
1259        BUG_ON(!cgroup_pidlist_destroy_wq);
1260        return 0;
1261}
1262core_initcall(cgroup1_wq_init);
1263
1264static int __init cgroup_no_v1(char *str)
1265{
1266        struct cgroup_subsys *ss;
1267        char *token;
1268        int i;
1269
1270        while ((token = strsep(&str, ",")) != NULL) {
1271                if (!*token)
1272                        continue;
1273
1274                if (!strcmp(token, "all")) {
1275                        cgroup_no_v1_mask = U16_MAX;
1276                        continue;
1277                }
1278
1279                if (!strcmp(token, "named")) {
1280                        cgroup_no_v1_named = true;
1281                        continue;
1282                }
1283
1284                for_each_subsys(ss, i) {
1285                        if (strcmp(token, ss->name) &&
1286                            strcmp(token, ss->legacy_name))
1287                                continue;
1288
1289                        cgroup_no_v1_mask |= 1 << i;
1290                }
1291        }
1292        return 1;
1293}
1294__setup("cgroup_no_v1=", cgroup_no_v1);
1295