linux/kernel/dma/direct.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018-2020 Christoph Hellwig.
   4 *
   5 * DMA operations that map physical memory directly without using an IOMMU.
   6 */
   7#include <linux/memblock.h> /* for max_pfn */
   8#include <linux/export.h>
   9#include <linux/mm.h>
  10#include <linux/dma-map-ops.h>
  11#include <linux/scatterlist.h>
  12#include <linux/pfn.h>
  13#include <linux/vmalloc.h>
  14#include <linux/set_memory.h>
  15#include <linux/slab.h>
  16#include "direct.h"
  17
  18/*
  19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
  20 * it for entirely different regions. In that case the arch code needs to
  21 * override the variable below for dma-direct to work properly.
  22 */
  23unsigned int zone_dma_bits __ro_after_init = 24;
  24
  25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
  26                phys_addr_t phys)
  27{
  28        if (force_dma_unencrypted(dev))
  29                return phys_to_dma_unencrypted(dev, phys);
  30        return phys_to_dma(dev, phys);
  31}
  32
  33static inline struct page *dma_direct_to_page(struct device *dev,
  34                dma_addr_t dma_addr)
  35{
  36        return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
  37}
  38
  39u64 dma_direct_get_required_mask(struct device *dev)
  40{
  41        phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
  42        u64 max_dma = phys_to_dma_direct(dev, phys);
  43
  44        return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
  45}
  46
  47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
  48                                  u64 *phys_limit)
  49{
  50        u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
  51
  52        /*
  53         * Optimistically try the zone that the physical address mask falls
  54         * into first.  If that returns memory that isn't actually addressable
  55         * we will fallback to the next lower zone and try again.
  56         *
  57         * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
  58         * zones.
  59         */
  60        *phys_limit = dma_to_phys(dev, dma_limit);
  61        if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
  62                return GFP_DMA;
  63        if (*phys_limit <= DMA_BIT_MASK(32))
  64                return GFP_DMA32;
  65        return 0;
  66}
  67
  68static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
  69{
  70        dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
  71
  72        if (dma_addr == DMA_MAPPING_ERROR)
  73                return false;
  74        return dma_addr + size - 1 <=
  75                min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
  76}
  77
  78static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
  79{
  80        if (!force_dma_unencrypted(dev))
  81                return 0;
  82        return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
  83}
  84
  85static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
  86{
  87        int ret;
  88
  89        if (!force_dma_unencrypted(dev))
  90                return 0;
  91        ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
  92        if (ret)
  93                pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
  94        return ret;
  95}
  96
  97static void __dma_direct_free_pages(struct device *dev, struct page *page,
  98                                    size_t size)
  99{
 100        if (swiotlb_free(dev, page, size))
 101                return;
 102        dma_free_contiguous(dev, page, size);
 103}
 104
 105static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
 106{
 107        struct page *page = swiotlb_alloc(dev, size);
 108
 109        if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
 110                swiotlb_free(dev, page, size);
 111                return NULL;
 112        }
 113
 114        return page;
 115}
 116
 117static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
 118                gfp_t gfp, bool allow_highmem)
 119{
 120        int node = dev_to_node(dev);
 121        struct page *page = NULL;
 122        u64 phys_limit;
 123
 124        WARN_ON_ONCE(!PAGE_ALIGNED(size));
 125
 126        if (is_swiotlb_for_alloc(dev))
 127                return dma_direct_alloc_swiotlb(dev, size);
 128
 129        gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
 130                                           &phys_limit);
 131        page = dma_alloc_contiguous(dev, size, gfp);
 132        if (page) {
 133                if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
 134                    (!allow_highmem && PageHighMem(page))) {
 135                        dma_free_contiguous(dev, page, size);
 136                        page = NULL;
 137                }
 138        }
 139again:
 140        if (!page)
 141                page = alloc_pages_node(node, gfp, get_order(size));
 142        if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
 143                dma_free_contiguous(dev, page, size);
 144                page = NULL;
 145
 146                if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
 147                    phys_limit < DMA_BIT_MASK(64) &&
 148                    !(gfp & (GFP_DMA32 | GFP_DMA))) {
 149                        gfp |= GFP_DMA32;
 150                        goto again;
 151                }
 152
 153                if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
 154                        gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
 155                        goto again;
 156                }
 157        }
 158
 159        return page;
 160}
 161
 162/*
 163 * Check if a potentially blocking operations needs to dip into the atomic
 164 * pools for the given device/gfp.
 165 */
 166static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
 167{
 168        return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
 169}
 170
 171static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
 172                dma_addr_t *dma_handle, gfp_t gfp)
 173{
 174        struct page *page;
 175        u64 phys_mask;
 176        void *ret;
 177
 178        if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
 179                return NULL;
 180
 181        gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
 182                                           &phys_mask);
 183        page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
 184        if (!page)
 185                return NULL;
 186        *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
 187        return ret;
 188}
 189
 190static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
 191                dma_addr_t *dma_handle, gfp_t gfp)
 192{
 193        struct page *page;
 194
 195        page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
 196        if (!page)
 197                return NULL;
 198
 199        /* remove any dirty cache lines on the kernel alias */
 200        if (!PageHighMem(page))
 201                arch_dma_prep_coherent(page, size);
 202
 203        /* return the page pointer as the opaque cookie */
 204        *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
 205        return page;
 206}
 207
 208void *dma_direct_alloc(struct device *dev, size_t size,
 209                dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 210{
 211        bool remap = false, set_uncached = false;
 212        struct page *page;
 213        void *ret;
 214
 215        size = PAGE_ALIGN(size);
 216        if (attrs & DMA_ATTR_NO_WARN)
 217                gfp |= __GFP_NOWARN;
 218
 219        if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
 220            !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
 221                return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
 222
 223        if (!dev_is_dma_coherent(dev)) {
 224                /*
 225                 * Fallback to the arch handler if it exists.  This should
 226                 * eventually go away.
 227                 */
 228                if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
 229                    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 230                    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
 231                    !is_swiotlb_for_alloc(dev))
 232                        return arch_dma_alloc(dev, size, dma_handle, gfp,
 233                                              attrs);
 234
 235                /*
 236                 * If there is a global pool, always allocate from it for
 237                 * non-coherent devices.
 238                 */
 239                if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
 240                        return dma_alloc_from_global_coherent(dev, size,
 241                                        dma_handle);
 242
 243                /*
 244                 * Otherwise remap if the architecture is asking for it.  But
 245                 * given that remapping memory is a blocking operation we'll
 246                 * instead have to dip into the atomic pools.
 247                 */
 248                remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
 249                if (remap) {
 250                        if (dma_direct_use_pool(dev, gfp))
 251                                return dma_direct_alloc_from_pool(dev, size,
 252                                                dma_handle, gfp);
 253                } else {
 254                        if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
 255                                return NULL;
 256                        set_uncached = true;
 257                }
 258        }
 259
 260        /*
 261         * Decrypting memory may block, so allocate the memory from the atomic
 262         * pools if we can't block.
 263         */
 264        if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
 265                return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
 266
 267        /* we always manually zero the memory once we are done */
 268        page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
 269        if (!page)
 270                return NULL;
 271
 272        /*
 273         * dma_alloc_contiguous can return highmem pages depending on a
 274         * combination the cma= arguments and per-arch setup.  These need to be
 275         * remapped to return a kernel virtual address.
 276         */
 277        if (PageHighMem(page)) {
 278                remap = true;
 279                set_uncached = false;
 280        }
 281
 282        if (remap) {
 283                pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
 284
 285                if (force_dma_unencrypted(dev))
 286                        prot = pgprot_decrypted(prot);
 287
 288                /* remove any dirty cache lines on the kernel alias */
 289                arch_dma_prep_coherent(page, size);
 290
 291                /* create a coherent mapping */
 292                ret = dma_common_contiguous_remap(page, size, prot,
 293                                __builtin_return_address(0));
 294                if (!ret)
 295                        goto out_free_pages;
 296        } else {
 297                ret = page_address(page);
 298                if (dma_set_decrypted(dev, ret, size))
 299                        goto out_free_pages;
 300        }
 301
 302        memset(ret, 0, size);
 303
 304        if (set_uncached) {
 305                arch_dma_prep_coherent(page, size);
 306                ret = arch_dma_set_uncached(ret, size);
 307                if (IS_ERR(ret))
 308                        goto out_encrypt_pages;
 309        }
 310
 311        *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
 312        return ret;
 313
 314out_encrypt_pages:
 315        if (dma_set_encrypted(dev, page_address(page), size))
 316                return NULL;
 317out_free_pages:
 318        __dma_direct_free_pages(dev, page, size);
 319        return NULL;
 320}
 321
 322void dma_direct_free(struct device *dev, size_t size,
 323                void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
 324{
 325        unsigned int page_order = get_order(size);
 326
 327        if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
 328            !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
 329                /* cpu_addr is a struct page cookie, not a kernel address */
 330                dma_free_contiguous(dev, cpu_addr, size);
 331                return;
 332        }
 333
 334        if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
 335            !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 336            !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
 337            !dev_is_dma_coherent(dev) &&
 338            !is_swiotlb_for_alloc(dev)) {
 339                arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
 340                return;
 341        }
 342
 343        if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
 344            !dev_is_dma_coherent(dev)) {
 345                if (!dma_release_from_global_coherent(page_order, cpu_addr))
 346                        WARN_ON_ONCE(1);
 347                return;
 348        }
 349
 350        /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
 351        if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
 352            dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
 353                return;
 354
 355        if (is_vmalloc_addr(cpu_addr)) {
 356                vunmap(cpu_addr);
 357        } else {
 358                if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
 359                        arch_dma_clear_uncached(cpu_addr, size);
 360                if (dma_set_encrypted(dev, cpu_addr, size))
 361                        return;
 362        }
 363
 364        __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
 365}
 366
 367struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
 368                dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
 369{
 370        struct page *page;
 371        void *ret;
 372
 373        if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
 374                return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
 375
 376        page = __dma_direct_alloc_pages(dev, size, gfp, false);
 377        if (!page)
 378                return NULL;
 379
 380        ret = page_address(page);
 381        if (dma_set_decrypted(dev, ret, size))
 382                goto out_free_pages;
 383        memset(ret, 0, size);
 384        *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
 385        return page;
 386out_free_pages:
 387        __dma_direct_free_pages(dev, page, size);
 388        return NULL;
 389}
 390
 391void dma_direct_free_pages(struct device *dev, size_t size,
 392                struct page *page, dma_addr_t dma_addr,
 393                enum dma_data_direction dir)
 394{
 395        void *vaddr = page_address(page);
 396
 397        /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
 398        if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
 399            dma_free_from_pool(dev, vaddr, size))
 400                return;
 401
 402        if (dma_set_encrypted(dev, vaddr, size))
 403                return;
 404        __dma_direct_free_pages(dev, page, size);
 405}
 406
 407#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
 408    defined(CONFIG_SWIOTLB)
 409void dma_direct_sync_sg_for_device(struct device *dev,
 410                struct scatterlist *sgl, int nents, enum dma_data_direction dir)
 411{
 412        struct scatterlist *sg;
 413        int i;
 414
 415        for_each_sg(sgl, sg, nents, i) {
 416                phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
 417
 418                if (unlikely(is_swiotlb_buffer(dev, paddr)))
 419                        swiotlb_sync_single_for_device(dev, paddr, sg->length,
 420                                                       dir);
 421
 422                if (!dev_is_dma_coherent(dev))
 423                        arch_sync_dma_for_device(paddr, sg->length,
 424                                        dir);
 425        }
 426}
 427#endif
 428
 429#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
 430    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
 431    defined(CONFIG_SWIOTLB)
 432void dma_direct_sync_sg_for_cpu(struct device *dev,
 433                struct scatterlist *sgl, int nents, enum dma_data_direction dir)
 434{
 435        struct scatterlist *sg;
 436        int i;
 437
 438        for_each_sg(sgl, sg, nents, i) {
 439                phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
 440
 441                if (!dev_is_dma_coherent(dev))
 442                        arch_sync_dma_for_cpu(paddr, sg->length, dir);
 443
 444                if (unlikely(is_swiotlb_buffer(dev, paddr)))
 445                        swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
 446                                                    dir);
 447
 448                if (dir == DMA_FROM_DEVICE)
 449                        arch_dma_mark_clean(paddr, sg->length);
 450        }
 451
 452        if (!dev_is_dma_coherent(dev))
 453                arch_sync_dma_for_cpu_all();
 454}
 455
 456void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
 457                int nents, enum dma_data_direction dir, unsigned long attrs)
 458{
 459        struct scatterlist *sg;
 460        int i;
 461
 462        for_each_sg(sgl, sg, nents, i)
 463                dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
 464                             attrs);
 465}
 466#endif
 467
 468int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
 469                enum dma_data_direction dir, unsigned long attrs)
 470{
 471        int i;
 472        struct scatterlist *sg;
 473
 474        for_each_sg(sgl, sg, nents, i) {
 475                sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
 476                                sg->offset, sg->length, dir, attrs);
 477                if (sg->dma_address == DMA_MAPPING_ERROR)
 478                        goto out_unmap;
 479                sg_dma_len(sg) = sg->length;
 480        }
 481
 482        return nents;
 483
 484out_unmap:
 485        dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
 486        return -EIO;
 487}
 488
 489dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
 490                size_t size, enum dma_data_direction dir, unsigned long attrs)
 491{
 492        dma_addr_t dma_addr = paddr;
 493
 494        if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
 495                dev_err_once(dev,
 496                             "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
 497                             &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
 498                WARN_ON_ONCE(1);
 499                return DMA_MAPPING_ERROR;
 500        }
 501
 502        return dma_addr;
 503}
 504
 505int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
 506                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 507                unsigned long attrs)
 508{
 509        struct page *page = dma_direct_to_page(dev, dma_addr);
 510        int ret;
 511
 512        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 513        if (!ret)
 514                sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 515        return ret;
 516}
 517
 518bool dma_direct_can_mmap(struct device *dev)
 519{
 520        return dev_is_dma_coherent(dev) ||
 521                IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
 522}
 523
 524int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
 525                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 526                unsigned long attrs)
 527{
 528        unsigned long user_count = vma_pages(vma);
 529        unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 530        unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
 531        int ret = -ENXIO;
 532
 533        vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
 534        if (force_dma_unencrypted(dev))
 535                vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
 536
 537        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 538                return ret;
 539        if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
 540                return ret;
 541
 542        if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
 543                return -ENXIO;
 544        return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
 545                        user_count << PAGE_SHIFT, vma->vm_page_prot);
 546}
 547
 548int dma_direct_supported(struct device *dev, u64 mask)
 549{
 550        u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
 551
 552        /*
 553         * Because 32-bit DMA masks are so common we expect every architecture
 554         * to be able to satisfy them - either by not supporting more physical
 555         * memory, or by providing a ZONE_DMA32.  If neither is the case, the
 556         * architecture needs to use an IOMMU instead of the direct mapping.
 557         */
 558        if (mask >= DMA_BIT_MASK(32))
 559                return 1;
 560
 561        /*
 562         * This check needs to be against the actual bit mask value, so use
 563         * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
 564         * part of the check.
 565         */
 566        if (IS_ENABLED(CONFIG_ZONE_DMA))
 567                min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
 568        return mask >= phys_to_dma_unencrypted(dev, min_mask);
 569}
 570
 571size_t dma_direct_max_mapping_size(struct device *dev)
 572{
 573        /* If SWIOTLB is active, use its maximum mapping size */
 574        if (is_swiotlb_active(dev) &&
 575            (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
 576                return swiotlb_max_mapping_size(dev);
 577        return SIZE_MAX;
 578}
 579
 580bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
 581{
 582        return !dev_is_dma_coherent(dev) ||
 583               is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
 584}
 585
 586/**
 587 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
 588 * @dev:        device pointer; needed to "own" the alloced memory.
 589 * @cpu_start:  beginning of memory region covered by this offset.
 590 * @dma_start:  beginning of DMA/PCI region covered by this offset.
 591 * @size:       size of the region.
 592 *
 593 * This is for the simple case of a uniform offset which cannot
 594 * be discovered by "dma-ranges".
 595 *
 596 * It returns -ENOMEM if out of memory, -EINVAL if a map
 597 * already exists, 0 otherwise.
 598 *
 599 * Note: any call to this from a driver is a bug.  The mapping needs
 600 * to be described by the device tree or other firmware interfaces.
 601 */
 602int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
 603                         dma_addr_t dma_start, u64 size)
 604{
 605        struct bus_dma_region *map;
 606        u64 offset = (u64)cpu_start - (u64)dma_start;
 607
 608        if (dev->dma_range_map) {
 609                dev_err(dev, "attempt to add DMA range to existing map\n");
 610                return -EINVAL;
 611        }
 612
 613        if (!offset)
 614                return 0;
 615
 616        map = kcalloc(2, sizeof(*map), GFP_KERNEL);
 617        if (!map)
 618                return -ENOMEM;
 619        map[0].cpu_start = cpu_start;
 620        map[0].dma_start = dma_start;
 621        map[0].offset = offset;
 622        map[0].size = size;
 623        dev->dma_range_map = map;
 624        return 0;
 625}
 626