1
2
3
4
5
6
7#include <linux/memblock.h>
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/dma-map-ops.h>
11#include <linux/scatterlist.h>
12#include <linux/pfn.h>
13#include <linux/vmalloc.h>
14#include <linux/set_memory.h>
15#include <linux/slab.h>
16#include "direct.h"
17
18
19
20
21
22
23unsigned int zone_dma_bits __ro_after_init = 24;
24
25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 phys_addr_t phys)
27{
28 if (force_dma_unencrypted(dev))
29 return phys_to_dma_unencrypted(dev, phys);
30 return phys_to_dma(dev, phys);
31}
32
33static inline struct page *dma_direct_to_page(struct device *dev,
34 dma_addr_t dma_addr)
35{
36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37}
38
39u64 dma_direct_get_required_mask(struct device *dev)
40{
41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 u64 max_dma = phys_to_dma_direct(dev, phys);
43
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45}
46
47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 u64 *phys_limit)
49{
50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52
53
54
55
56
57
58
59
60 *phys_limit = dma_to_phys(dev, dma_limit);
61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 return GFP_DMA;
63 if (*phys_limit <= DMA_BIT_MASK(32))
64 return GFP_DMA32;
65 return 0;
66}
67
68static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69{
70 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72 if (dma_addr == DMA_MAPPING_ERROR)
73 return false;
74 return dma_addr + size - 1 <=
75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76}
77
78static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
79{
80 if (!force_dma_unencrypted(dev))
81 return 0;
82 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
83}
84
85static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
86{
87 int ret;
88
89 if (!force_dma_unencrypted(dev))
90 return 0;
91 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
92 if (ret)
93 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
94 return ret;
95}
96
97static void __dma_direct_free_pages(struct device *dev, struct page *page,
98 size_t size)
99{
100 if (swiotlb_free(dev, page, size))
101 return;
102 dma_free_contiguous(dev, page, size);
103}
104
105static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
106{
107 struct page *page = swiotlb_alloc(dev, size);
108
109 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110 swiotlb_free(dev, page, size);
111 return NULL;
112 }
113
114 return page;
115}
116
117static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
118 gfp_t gfp, bool allow_highmem)
119{
120 int node = dev_to_node(dev);
121 struct page *page = NULL;
122 u64 phys_limit;
123
124 WARN_ON_ONCE(!PAGE_ALIGNED(size));
125
126 if (is_swiotlb_for_alloc(dev))
127 return dma_direct_alloc_swiotlb(dev, size);
128
129 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
130 &phys_limit);
131 page = dma_alloc_contiguous(dev, size, gfp);
132 if (page) {
133 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134 (!allow_highmem && PageHighMem(page))) {
135 dma_free_contiguous(dev, page, size);
136 page = NULL;
137 }
138 }
139again:
140 if (!page)
141 page = alloc_pages_node(node, gfp, get_order(size));
142 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143 dma_free_contiguous(dev, page, size);
144 page = NULL;
145
146 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147 phys_limit < DMA_BIT_MASK(64) &&
148 !(gfp & (GFP_DMA32 | GFP_DMA))) {
149 gfp |= GFP_DMA32;
150 goto again;
151 }
152
153 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155 goto again;
156 }
157 }
158
159 return page;
160}
161
162
163
164
165
166static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167{
168 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169}
170
171static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172 dma_addr_t *dma_handle, gfp_t gfp)
173{
174 struct page *page;
175 u64 phys_mask;
176 void *ret;
177
178 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179 return NULL;
180
181 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
182 &phys_mask);
183 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
184 if (!page)
185 return NULL;
186 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
187 return ret;
188}
189
190static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
191 dma_addr_t *dma_handle, gfp_t gfp)
192{
193 struct page *page;
194
195 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
196 if (!page)
197 return NULL;
198
199
200 if (!PageHighMem(page))
201 arch_dma_prep_coherent(page, size);
202
203
204 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
205 return page;
206}
207
208void *dma_direct_alloc(struct device *dev, size_t size,
209 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
210{
211 bool remap = false, set_uncached = false;
212 struct page *page;
213 void *ret;
214
215 size = PAGE_ALIGN(size);
216 if (attrs & DMA_ATTR_NO_WARN)
217 gfp |= __GFP_NOWARN;
218
219 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
220 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
221 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
222
223 if (!dev_is_dma_coherent(dev)) {
224
225
226
227
228 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
229 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
230 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
231 !is_swiotlb_for_alloc(dev))
232 return arch_dma_alloc(dev, size, dma_handle, gfp,
233 attrs);
234
235
236
237
238
239 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
240 return dma_alloc_from_global_coherent(dev, size,
241 dma_handle);
242
243
244
245
246
247
248 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
249 if (remap) {
250 if (dma_direct_use_pool(dev, gfp))
251 return dma_direct_alloc_from_pool(dev, size,
252 dma_handle, gfp);
253 } else {
254 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
255 return NULL;
256 set_uncached = true;
257 }
258 }
259
260
261
262
263
264 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
265 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
266
267
268 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
269 if (!page)
270 return NULL;
271
272
273
274
275
276
277 if (PageHighMem(page)) {
278 remap = true;
279 set_uncached = false;
280 }
281
282 if (remap) {
283 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
284
285 if (force_dma_unencrypted(dev))
286 prot = pgprot_decrypted(prot);
287
288
289 arch_dma_prep_coherent(page, size);
290
291
292 ret = dma_common_contiguous_remap(page, size, prot,
293 __builtin_return_address(0));
294 if (!ret)
295 goto out_free_pages;
296 } else {
297 ret = page_address(page);
298 if (dma_set_decrypted(dev, ret, size))
299 goto out_free_pages;
300 }
301
302 memset(ret, 0, size);
303
304 if (set_uncached) {
305 arch_dma_prep_coherent(page, size);
306 ret = arch_dma_set_uncached(ret, size);
307 if (IS_ERR(ret))
308 goto out_encrypt_pages;
309 }
310
311 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
312 return ret;
313
314out_encrypt_pages:
315 if (dma_set_encrypted(dev, page_address(page), size))
316 return NULL;
317out_free_pages:
318 __dma_direct_free_pages(dev, page, size);
319 return NULL;
320}
321
322void dma_direct_free(struct device *dev, size_t size,
323 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
324{
325 unsigned int page_order = get_order(size);
326
327 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
328 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
329
330 dma_free_contiguous(dev, cpu_addr, size);
331 return;
332 }
333
334 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
335 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
336 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
337 !dev_is_dma_coherent(dev) &&
338 !is_swiotlb_for_alloc(dev)) {
339 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
340 return;
341 }
342
343 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
344 !dev_is_dma_coherent(dev)) {
345 if (!dma_release_from_global_coherent(page_order, cpu_addr))
346 WARN_ON_ONCE(1);
347 return;
348 }
349
350
351 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
352 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
353 return;
354
355 if (is_vmalloc_addr(cpu_addr)) {
356 vunmap(cpu_addr);
357 } else {
358 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
359 arch_dma_clear_uncached(cpu_addr, size);
360 if (dma_set_encrypted(dev, cpu_addr, size))
361 return;
362 }
363
364 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
365}
366
367struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
368 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
369{
370 struct page *page;
371 void *ret;
372
373 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
374 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
375
376 page = __dma_direct_alloc_pages(dev, size, gfp, false);
377 if (!page)
378 return NULL;
379
380 ret = page_address(page);
381 if (dma_set_decrypted(dev, ret, size))
382 goto out_free_pages;
383 memset(ret, 0, size);
384 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
385 return page;
386out_free_pages:
387 __dma_direct_free_pages(dev, page, size);
388 return NULL;
389}
390
391void dma_direct_free_pages(struct device *dev, size_t size,
392 struct page *page, dma_addr_t dma_addr,
393 enum dma_data_direction dir)
394{
395 void *vaddr = page_address(page);
396
397
398 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
399 dma_free_from_pool(dev, vaddr, size))
400 return;
401
402 if (dma_set_encrypted(dev, vaddr, size))
403 return;
404 __dma_direct_free_pages(dev, page, size);
405}
406
407#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
408 defined(CONFIG_SWIOTLB)
409void dma_direct_sync_sg_for_device(struct device *dev,
410 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
411{
412 struct scatterlist *sg;
413 int i;
414
415 for_each_sg(sgl, sg, nents, i) {
416 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
417
418 if (unlikely(is_swiotlb_buffer(dev, paddr)))
419 swiotlb_sync_single_for_device(dev, paddr, sg->length,
420 dir);
421
422 if (!dev_is_dma_coherent(dev))
423 arch_sync_dma_for_device(paddr, sg->length,
424 dir);
425 }
426}
427#endif
428
429#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
430 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
431 defined(CONFIG_SWIOTLB)
432void dma_direct_sync_sg_for_cpu(struct device *dev,
433 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
434{
435 struct scatterlist *sg;
436 int i;
437
438 for_each_sg(sgl, sg, nents, i) {
439 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
440
441 if (!dev_is_dma_coherent(dev))
442 arch_sync_dma_for_cpu(paddr, sg->length, dir);
443
444 if (unlikely(is_swiotlb_buffer(dev, paddr)))
445 swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
446 dir);
447
448 if (dir == DMA_FROM_DEVICE)
449 arch_dma_mark_clean(paddr, sg->length);
450 }
451
452 if (!dev_is_dma_coherent(dev))
453 arch_sync_dma_for_cpu_all();
454}
455
456void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
457 int nents, enum dma_data_direction dir, unsigned long attrs)
458{
459 struct scatterlist *sg;
460 int i;
461
462 for_each_sg(sgl, sg, nents, i)
463 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
464 attrs);
465}
466#endif
467
468int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
469 enum dma_data_direction dir, unsigned long attrs)
470{
471 int i;
472 struct scatterlist *sg;
473
474 for_each_sg(sgl, sg, nents, i) {
475 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
476 sg->offset, sg->length, dir, attrs);
477 if (sg->dma_address == DMA_MAPPING_ERROR)
478 goto out_unmap;
479 sg_dma_len(sg) = sg->length;
480 }
481
482 return nents;
483
484out_unmap:
485 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
486 return -EIO;
487}
488
489dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
490 size_t size, enum dma_data_direction dir, unsigned long attrs)
491{
492 dma_addr_t dma_addr = paddr;
493
494 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
495 dev_err_once(dev,
496 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
497 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
498 WARN_ON_ONCE(1);
499 return DMA_MAPPING_ERROR;
500 }
501
502 return dma_addr;
503}
504
505int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
506 void *cpu_addr, dma_addr_t dma_addr, size_t size,
507 unsigned long attrs)
508{
509 struct page *page = dma_direct_to_page(dev, dma_addr);
510 int ret;
511
512 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
513 if (!ret)
514 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
515 return ret;
516}
517
518bool dma_direct_can_mmap(struct device *dev)
519{
520 return dev_is_dma_coherent(dev) ||
521 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
522}
523
524int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
525 void *cpu_addr, dma_addr_t dma_addr, size_t size,
526 unsigned long attrs)
527{
528 unsigned long user_count = vma_pages(vma);
529 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
530 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
531 int ret = -ENXIO;
532
533 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
534 if (force_dma_unencrypted(dev))
535 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
536
537 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
538 return ret;
539 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
540 return ret;
541
542 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
543 return -ENXIO;
544 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
545 user_count << PAGE_SHIFT, vma->vm_page_prot);
546}
547
548int dma_direct_supported(struct device *dev, u64 mask)
549{
550 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
551
552
553
554
555
556
557
558 if (mask >= DMA_BIT_MASK(32))
559 return 1;
560
561
562
563
564
565
566 if (IS_ENABLED(CONFIG_ZONE_DMA))
567 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
568 return mask >= phys_to_dma_unencrypted(dev, min_mask);
569}
570
571size_t dma_direct_max_mapping_size(struct device *dev)
572{
573
574 if (is_swiotlb_active(dev) &&
575 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
576 return swiotlb_max_mapping_size(dev);
577 return SIZE_MAX;
578}
579
580bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
581{
582 return !dev_is_dma_coherent(dev) ||
583 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
584}
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
603 dma_addr_t dma_start, u64 size)
604{
605 struct bus_dma_region *map;
606 u64 offset = (u64)cpu_start - (u64)dma_start;
607
608 if (dev->dma_range_map) {
609 dev_err(dev, "attempt to add DMA range to existing map\n");
610 return -EINVAL;
611 }
612
613 if (!offset)
614 return 0;
615
616 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
617 if (!map)
618 return -ENOMEM;
619 map[0].cpu_start = cpu_start;
620 map[0].dma_start = dma_start;
621 map[0].offset = offset;
622 map[0].size = size;
623 dev->dma_range_map = map;
624 return 0;
625}
626