linux/kernel/locking/rtmutex_api.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * rtmutex API
   4 */
   5#include <linux/spinlock.h>
   6#include <linux/export.h>
   7
   8#define RT_MUTEX_BUILD_MUTEX
   9#include "rtmutex.c"
  10
  11/*
  12 * Max number of times we'll walk the boosting chain:
  13 */
  14int max_lock_depth = 1024;
  15
  16/*
  17 * Debug aware fast / slowpath lock,trylock,unlock
  18 *
  19 * The atomic acquire/release ops are compiled away, when either the
  20 * architecture does not support cmpxchg or when debugging is enabled.
  21 */
  22static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
  23                                                  unsigned int state,
  24                                                  struct lockdep_map *nest_lock,
  25                                                  unsigned int subclass)
  26{
  27        int ret;
  28
  29        might_sleep();
  30        mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_);
  31        ret = __rt_mutex_lock(&lock->rtmutex, state);
  32        if (ret)
  33                mutex_release(&lock->dep_map, _RET_IP_);
  34        return ret;
  35}
  36
  37void rt_mutex_base_init(struct rt_mutex_base *rtb)
  38{
  39        __rt_mutex_base_init(rtb);
  40}
  41EXPORT_SYMBOL(rt_mutex_base_init);
  42
  43#ifdef CONFIG_DEBUG_LOCK_ALLOC
  44/**
  45 * rt_mutex_lock_nested - lock a rt_mutex
  46 *
  47 * @lock: the rt_mutex to be locked
  48 * @subclass: the lockdep subclass
  49 */
  50void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
  51{
  52        __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass);
  53}
  54EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
  55
  56void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock)
  57{
  58        __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0);
  59}
  60EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock);
  61
  62#else /* !CONFIG_DEBUG_LOCK_ALLOC */
  63
  64/**
  65 * rt_mutex_lock - lock a rt_mutex
  66 *
  67 * @lock: the rt_mutex to be locked
  68 */
  69void __sched rt_mutex_lock(struct rt_mutex *lock)
  70{
  71        __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0);
  72}
  73EXPORT_SYMBOL_GPL(rt_mutex_lock);
  74#endif
  75
  76/**
  77 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
  78 *
  79 * @lock:               the rt_mutex to be locked
  80 *
  81 * Returns:
  82 *  0           on success
  83 * -EINTR       when interrupted by a signal
  84 */
  85int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
  86{
  87        return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0);
  88}
  89EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
  90
  91/**
  92 * rt_mutex_lock_killable - lock a rt_mutex killable
  93 *
  94 * @lock:               the rt_mutex to be locked
  95 *
  96 * Returns:
  97 *  0           on success
  98 * -EINTR       when interrupted by a signal
  99 */
 100int __sched rt_mutex_lock_killable(struct rt_mutex *lock)
 101{
 102        return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0);
 103}
 104EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
 105
 106/**
 107 * rt_mutex_trylock - try to lock a rt_mutex
 108 *
 109 * @lock:       the rt_mutex to be locked
 110 *
 111 * This function can only be called in thread context. It's safe to call it
 112 * from atomic regions, but not from hard or soft interrupt context.
 113 *
 114 * Returns:
 115 *  1 on success
 116 *  0 on contention
 117 */
 118int __sched rt_mutex_trylock(struct rt_mutex *lock)
 119{
 120        int ret;
 121
 122        if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
 123                return 0;
 124
 125        ret = __rt_mutex_trylock(&lock->rtmutex);
 126        if (ret)
 127                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
 128
 129        return ret;
 130}
 131EXPORT_SYMBOL_GPL(rt_mutex_trylock);
 132
 133/**
 134 * rt_mutex_unlock - unlock a rt_mutex
 135 *
 136 * @lock: the rt_mutex to be unlocked
 137 */
 138void __sched rt_mutex_unlock(struct rt_mutex *lock)
 139{
 140        mutex_release(&lock->dep_map, _RET_IP_);
 141        __rt_mutex_unlock(&lock->rtmutex);
 142}
 143EXPORT_SYMBOL_GPL(rt_mutex_unlock);
 144
 145/*
 146 * Futex variants, must not use fastpath.
 147 */
 148int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
 149{
 150        return rt_mutex_slowtrylock(lock);
 151}
 152
 153int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
 154{
 155        return __rt_mutex_slowtrylock(lock);
 156}
 157
 158/**
 159 * __rt_mutex_futex_unlock - Futex variant, that since futex variants
 160 * do not use the fast-path, can be simple and will not need to retry.
 161 *
 162 * @lock:       The rt_mutex to be unlocked
 163 * @wqh:        The wake queue head from which to get the next lock waiter
 164 */
 165bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
 166                                     struct rt_wake_q_head *wqh)
 167{
 168        lockdep_assert_held(&lock->wait_lock);
 169
 170        debug_rt_mutex_unlock(lock);
 171
 172        if (!rt_mutex_has_waiters(lock)) {
 173                lock->owner = NULL;
 174                return false; /* done */
 175        }
 176
 177        /*
 178         * We've already deboosted, mark_wakeup_next_waiter() will
 179         * retain preempt_disabled when we drop the wait_lock, to
 180         * avoid inversion prior to the wakeup.  preempt_disable()
 181         * therein pairs with rt_mutex_postunlock().
 182         */
 183        mark_wakeup_next_waiter(wqh, lock);
 184
 185        return true; /* call postunlock() */
 186}
 187
 188void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
 189{
 190        DEFINE_RT_WAKE_Q(wqh);
 191        unsigned long flags;
 192        bool postunlock;
 193
 194        raw_spin_lock_irqsave(&lock->wait_lock, flags);
 195        postunlock = __rt_mutex_futex_unlock(lock, &wqh);
 196        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 197
 198        if (postunlock)
 199                rt_mutex_postunlock(&wqh);
 200}
 201
 202/**
 203 * __rt_mutex_init - initialize the rt_mutex
 204 *
 205 * @lock:       The rt_mutex to be initialized
 206 * @name:       The lock name used for debugging
 207 * @key:        The lock class key used for debugging
 208 *
 209 * Initialize the rt_mutex to unlocked state.
 210 *
 211 * Initializing of a locked rt_mutex is not allowed
 212 */
 213void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
 214                             struct lock_class_key *key)
 215{
 216        debug_check_no_locks_freed((void *)lock, sizeof(*lock));
 217        __rt_mutex_base_init(&lock->rtmutex);
 218        lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
 219}
 220EXPORT_SYMBOL_GPL(__rt_mutex_init);
 221
 222/**
 223 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
 224 *                              proxy owner
 225 *
 226 * @lock:       the rt_mutex to be locked
 227 * @proxy_owner:the task to set as owner
 228 *
 229 * No locking. Caller has to do serializing itself
 230 *
 231 * Special API call for PI-futex support. This initializes the rtmutex and
 232 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
 233 * possible at this point because the pi_state which contains the rtmutex
 234 * is not yet visible to other tasks.
 235 */
 236void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
 237                                        struct task_struct *proxy_owner)
 238{
 239        static struct lock_class_key pi_futex_key;
 240
 241        __rt_mutex_base_init(lock);
 242        /*
 243         * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
 244         * and rtmutex based. That causes a lockdep false positive, because
 245         * some of the futex functions invoke spin_unlock(&hb->lock) with
 246         * the wait_lock of the rtmutex associated to the pi_futex held.
 247         * spin_unlock() in turn takes wait_lock of the rtmutex on which
 248         * the spinlock is based, which makes lockdep notice a lock
 249         * recursion. Give the futex/rtmutex wait_lock a separate key.
 250         */
 251        lockdep_set_class(&lock->wait_lock, &pi_futex_key);
 252        rt_mutex_set_owner(lock, proxy_owner);
 253}
 254
 255/**
 256 * rt_mutex_proxy_unlock - release a lock on behalf of owner
 257 *
 258 * @lock:       the rt_mutex to be locked
 259 *
 260 * No locking. Caller has to do serializing itself
 261 *
 262 * Special API call for PI-futex support. This just cleans up the rtmutex
 263 * (debugging) state. Concurrent operations on this rt_mutex are not
 264 * possible because it belongs to the pi_state which is about to be freed
 265 * and it is not longer visible to other tasks.
 266 */
 267void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
 268{
 269        debug_rt_mutex_proxy_unlock(lock);
 270        rt_mutex_set_owner(lock, NULL);
 271}
 272
 273/**
 274 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
 275 * @lock:               the rt_mutex to take
 276 * @waiter:             the pre-initialized rt_mutex_waiter
 277 * @task:               the task to prepare
 278 *
 279 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
 280 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
 281 *
 282 * NOTE: does _NOT_ remove the @waiter on failure; must either call
 283 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
 284 *
 285 * Returns:
 286 *  0 - task blocked on lock
 287 *  1 - acquired the lock for task, caller should wake it up
 288 * <0 - error
 289 *
 290 * Special API call for PI-futex support.
 291 */
 292int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
 293                                        struct rt_mutex_waiter *waiter,
 294                                        struct task_struct *task)
 295{
 296        int ret;
 297
 298        lockdep_assert_held(&lock->wait_lock);
 299
 300        if (try_to_take_rt_mutex(lock, task, NULL))
 301                return 1;
 302
 303        /* We enforce deadlock detection for futexes */
 304        ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
 305                                      RT_MUTEX_FULL_CHAINWALK);
 306
 307        if (ret && !rt_mutex_owner(lock)) {
 308                /*
 309                 * Reset the return value. We might have
 310                 * returned with -EDEADLK and the owner
 311                 * released the lock while we were walking the
 312                 * pi chain.  Let the waiter sort it out.
 313                 */
 314                ret = 0;
 315        }
 316
 317        return ret;
 318}
 319
 320/**
 321 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
 322 * @lock:               the rt_mutex to take
 323 * @waiter:             the pre-initialized rt_mutex_waiter
 324 * @task:               the task to prepare
 325 *
 326 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
 327 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
 328 *
 329 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
 330 * on failure.
 331 *
 332 * Returns:
 333 *  0 - task blocked on lock
 334 *  1 - acquired the lock for task, caller should wake it up
 335 * <0 - error
 336 *
 337 * Special API call for PI-futex support.
 338 */
 339int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
 340                                      struct rt_mutex_waiter *waiter,
 341                                      struct task_struct *task)
 342{
 343        int ret;
 344
 345        raw_spin_lock_irq(&lock->wait_lock);
 346        ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
 347        if (unlikely(ret))
 348                remove_waiter(lock, waiter);
 349        raw_spin_unlock_irq(&lock->wait_lock);
 350
 351        return ret;
 352}
 353
 354/**
 355 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
 356 * @lock:               the rt_mutex we were woken on
 357 * @to:                 the timeout, null if none. hrtimer should already have
 358 *                      been started.
 359 * @waiter:             the pre-initialized rt_mutex_waiter
 360 *
 361 * Wait for the lock acquisition started on our behalf by
 362 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
 363 * rt_mutex_cleanup_proxy_lock().
 364 *
 365 * Returns:
 366 *  0 - success
 367 * <0 - error, one of -EINTR, -ETIMEDOUT
 368 *
 369 * Special API call for PI-futex support
 370 */
 371int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
 372                                     struct hrtimer_sleeper *to,
 373                                     struct rt_mutex_waiter *waiter)
 374{
 375        int ret;
 376
 377        raw_spin_lock_irq(&lock->wait_lock);
 378        /* sleep on the mutex */
 379        set_current_state(TASK_INTERRUPTIBLE);
 380        ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
 381        /*
 382         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
 383         * have to fix that up.
 384         */
 385        fixup_rt_mutex_waiters(lock);
 386        raw_spin_unlock_irq(&lock->wait_lock);
 387
 388        return ret;
 389}
 390
 391/**
 392 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
 393 * @lock:               the rt_mutex we were woken on
 394 * @waiter:             the pre-initialized rt_mutex_waiter
 395 *
 396 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
 397 * rt_mutex_wait_proxy_lock().
 398 *
 399 * Unless we acquired the lock; we're still enqueued on the wait-list and can
 400 * in fact still be granted ownership until we're removed. Therefore we can
 401 * find we are in fact the owner and must disregard the
 402 * rt_mutex_wait_proxy_lock() failure.
 403 *
 404 * Returns:
 405 *  true  - did the cleanup, we done.
 406 *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
 407 *          caller should disregards its return value.
 408 *
 409 * Special API call for PI-futex support
 410 */
 411bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
 412                                         struct rt_mutex_waiter *waiter)
 413{
 414        bool cleanup = false;
 415
 416        raw_spin_lock_irq(&lock->wait_lock);
 417        /*
 418         * Do an unconditional try-lock, this deals with the lock stealing
 419         * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
 420         * sets a NULL owner.
 421         *
 422         * We're not interested in the return value, because the subsequent
 423         * test on rt_mutex_owner() will infer that. If the trylock succeeded,
 424         * we will own the lock and it will have removed the waiter. If we
 425         * failed the trylock, we're still not owner and we need to remove
 426         * ourselves.
 427         */
 428        try_to_take_rt_mutex(lock, current, waiter);
 429        /*
 430         * Unless we're the owner; we're still enqueued on the wait_list.
 431         * So check if we became owner, if not, take us off the wait_list.
 432         */
 433        if (rt_mutex_owner(lock) != current) {
 434                remove_waiter(lock, waiter);
 435                cleanup = true;
 436        }
 437        /*
 438         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
 439         * have to fix that up.
 440         */
 441        fixup_rt_mutex_waiters(lock);
 442
 443        raw_spin_unlock_irq(&lock->wait_lock);
 444
 445        return cleanup;
 446}
 447
 448/*
 449 * Recheck the pi chain, in case we got a priority setting
 450 *
 451 * Called from sched_setscheduler
 452 */
 453void __sched rt_mutex_adjust_pi(struct task_struct *task)
 454{
 455        struct rt_mutex_waiter *waiter;
 456        struct rt_mutex_base *next_lock;
 457        unsigned long flags;
 458
 459        raw_spin_lock_irqsave(&task->pi_lock, flags);
 460
 461        waiter = task->pi_blocked_on;
 462        if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
 463                raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 464                return;
 465        }
 466        next_lock = waiter->lock;
 467        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 468
 469        /* gets dropped in rt_mutex_adjust_prio_chain()! */
 470        get_task_struct(task);
 471
 472        rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
 473                                   next_lock, NULL, task);
 474}
 475
 476/*
 477 * Performs the wakeup of the top-waiter and re-enables preemption.
 478 */
 479void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
 480{
 481        rt_mutex_wake_up_q(wqh);
 482}
 483
 484#ifdef CONFIG_DEBUG_RT_MUTEXES
 485void rt_mutex_debug_task_free(struct task_struct *task)
 486{
 487        DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
 488        DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
 489}
 490#endif
 491
 492#ifdef CONFIG_PREEMPT_RT
 493/* Mutexes */
 494void __mutex_rt_init(struct mutex *mutex, const char *name,
 495                     struct lock_class_key *key)
 496{
 497        debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
 498        lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
 499}
 500EXPORT_SYMBOL(__mutex_rt_init);
 501
 502static __always_inline int __mutex_lock_common(struct mutex *lock,
 503                                               unsigned int state,
 504                                               unsigned int subclass,
 505                                               struct lockdep_map *nest_lock,
 506                                               unsigned long ip)
 507{
 508        int ret;
 509
 510        might_sleep();
 511        mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 512        ret = __rt_mutex_lock(&lock->rtmutex, state);
 513        if (ret)
 514                mutex_release(&lock->dep_map, ip);
 515        else
 516                lock_acquired(&lock->dep_map, ip);
 517        return ret;
 518}
 519
 520#ifdef CONFIG_DEBUG_LOCK_ALLOC
 521void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
 522{
 523        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
 524}
 525EXPORT_SYMBOL_GPL(mutex_lock_nested);
 526
 527void __sched _mutex_lock_nest_lock(struct mutex *lock,
 528                                   struct lockdep_map *nest_lock)
 529{
 530        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
 531}
 532EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
 533
 534int __sched mutex_lock_interruptible_nested(struct mutex *lock,
 535                                            unsigned int subclass)
 536{
 537        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
 538}
 539EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
 540
 541int __sched mutex_lock_killable_nested(struct mutex *lock,
 542                                            unsigned int subclass)
 543{
 544        return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
 545}
 546EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
 547
 548void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
 549{
 550        int token;
 551
 552        might_sleep();
 553
 554        token = io_schedule_prepare();
 555        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
 556        io_schedule_finish(token);
 557}
 558EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
 559
 560#else /* CONFIG_DEBUG_LOCK_ALLOC */
 561
 562void __sched mutex_lock(struct mutex *lock)
 563{
 564        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
 565}
 566EXPORT_SYMBOL(mutex_lock);
 567
 568int __sched mutex_lock_interruptible(struct mutex *lock)
 569{
 570        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
 571}
 572EXPORT_SYMBOL(mutex_lock_interruptible);
 573
 574int __sched mutex_lock_killable(struct mutex *lock)
 575{
 576        return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
 577}
 578EXPORT_SYMBOL(mutex_lock_killable);
 579
 580void __sched mutex_lock_io(struct mutex *lock)
 581{
 582        int token = io_schedule_prepare();
 583
 584        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
 585        io_schedule_finish(token);
 586}
 587EXPORT_SYMBOL(mutex_lock_io);
 588#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
 589
 590int __sched mutex_trylock(struct mutex *lock)
 591{
 592        int ret;
 593
 594        if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
 595                return 0;
 596
 597        ret = __rt_mutex_trylock(&lock->rtmutex);
 598        if (ret)
 599                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
 600
 601        return ret;
 602}
 603EXPORT_SYMBOL(mutex_trylock);
 604
 605void __sched mutex_unlock(struct mutex *lock)
 606{
 607        mutex_release(&lock->dep_map, _RET_IP_);
 608        __rt_mutex_unlock(&lock->rtmutex);
 609}
 610EXPORT_SYMBOL(mutex_unlock);
 611
 612#endif /* CONFIG_PREEMPT_RT */
 613