linux/kernel/rcu/srcutree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Sleepable Read-Copy Update mechanism for mutual exclusion.
   4 *
   5 * Copyright (C) IBM Corporation, 2006
   6 * Copyright (C) Fujitsu, 2012
   7 *
   8 * Authors: Paul McKenney <paulmck@linux.ibm.com>
   9 *         Lai Jiangshan <laijs@cn.fujitsu.com>
  10 *
  11 * For detailed explanation of Read-Copy Update mechanism see -
  12 *              Documentation/RCU/ *.txt
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "rcu: " fmt
  17
  18#include <linux/export.h>
  19#include <linux/mutex.h>
  20#include <linux/percpu.h>
  21#include <linux/preempt.h>
  22#include <linux/rcupdate_wait.h>
  23#include <linux/sched.h>
  24#include <linux/smp.h>
  25#include <linux/delay.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/srcu.h>
  29
  30#include "rcu.h"
  31#include "rcu_segcblist.h"
  32
  33/* Holdoff in nanoseconds for auto-expediting. */
  34#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
  35static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
  36module_param(exp_holdoff, ulong, 0444);
  37
  38/* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
  39static ulong counter_wrap_check = (ULONG_MAX >> 2);
  40module_param(counter_wrap_check, ulong, 0444);
  41
  42/*
  43 * Control conversion to SRCU_SIZE_BIG:
  44 *    0: Don't convert at all.
  45 *    1: Convert at init_srcu_struct() time.
  46 *    2: Convert when rcutorture invokes srcu_torture_stats_print().
  47 *    3: Decide at boot time based on system shape (default).
  48 * 0x1x: Convert when excessive contention encountered.
  49 */
  50#define SRCU_SIZING_NONE        0
  51#define SRCU_SIZING_INIT        1
  52#define SRCU_SIZING_TORTURE     2
  53#define SRCU_SIZING_AUTO        3
  54#define SRCU_SIZING_CONTEND     0x10
  55#define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
  56#define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
  57#define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
  58#define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
  59#define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
  60static int convert_to_big = SRCU_SIZING_AUTO;
  61module_param(convert_to_big, int, 0444);
  62
  63/* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
  64static int big_cpu_lim __read_mostly = 128;
  65module_param(big_cpu_lim, int, 0444);
  66
  67/* Contention events per jiffy to initiate transition to big. */
  68static int small_contention_lim __read_mostly = 100;
  69module_param(small_contention_lim, int, 0444);
  70
  71/* Early-boot callback-management, so early that no lock is required! */
  72static LIST_HEAD(srcu_boot_list);
  73static bool __read_mostly srcu_init_done;
  74
  75static void srcu_invoke_callbacks(struct work_struct *work);
  76static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
  77static void process_srcu(struct work_struct *work);
  78static void srcu_delay_timer(struct timer_list *t);
  79
  80/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
  81#define spin_lock_rcu_node(p)                                                   \
  82do {                                                                            \
  83        spin_lock(&ACCESS_PRIVATE(p, lock));                                    \
  84        smp_mb__after_unlock_lock();                                            \
  85} while (0)
  86
  87#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
  88
  89#define spin_lock_irq_rcu_node(p)                                               \
  90do {                                                                            \
  91        spin_lock_irq(&ACCESS_PRIVATE(p, lock));                                \
  92        smp_mb__after_unlock_lock();                                            \
  93} while (0)
  94
  95#define spin_unlock_irq_rcu_node(p)                                             \
  96        spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
  97
  98#define spin_lock_irqsave_rcu_node(p, flags)                                    \
  99do {                                                                            \
 100        spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);                     \
 101        smp_mb__after_unlock_lock();                                            \
 102} while (0)
 103
 104#define spin_trylock_irqsave_rcu_node(p, flags)                                 \
 105({                                                                              \
 106        bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
 107                                                                                \
 108        if (___locked)                                                          \
 109                smp_mb__after_unlock_lock();                                    \
 110        ___locked;                                                              \
 111})
 112
 113#define spin_unlock_irqrestore_rcu_node(p, flags)                               \
 114        spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)                 \
 115
 116/*
 117 * Initialize SRCU per-CPU data.  Note that statically allocated
 118 * srcu_struct structures might already have srcu_read_lock() and
 119 * srcu_read_unlock() running against them.  So if the is_static parameter
 120 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
 121 */
 122static void init_srcu_struct_data(struct srcu_struct *ssp)
 123{
 124        int cpu;
 125        struct srcu_data *sdp;
 126
 127        /*
 128         * Initialize the per-CPU srcu_data array, which feeds into the
 129         * leaves of the srcu_node tree.
 130         */
 131        WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
 132                     ARRAY_SIZE(sdp->srcu_unlock_count));
 133        for_each_possible_cpu(cpu) {
 134                sdp = per_cpu_ptr(ssp->sda, cpu);
 135                spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
 136                rcu_segcblist_init(&sdp->srcu_cblist);
 137                sdp->srcu_cblist_invoking = false;
 138                sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
 139                sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
 140                sdp->mynode = NULL;
 141                sdp->cpu = cpu;
 142                INIT_WORK(&sdp->work, srcu_invoke_callbacks);
 143                timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
 144                sdp->ssp = ssp;
 145        }
 146}
 147
 148/* Invalid seq state, used during snp node initialization */
 149#define SRCU_SNP_INIT_SEQ               0x2
 150
 151/*
 152 * Check whether sequence number corresponding to snp node,
 153 * is invalid.
 154 */
 155static inline bool srcu_invl_snp_seq(unsigned long s)
 156{
 157        return rcu_seq_state(s) == SRCU_SNP_INIT_SEQ;
 158}
 159
 160/*
 161 * Allocated and initialize SRCU combining tree.  Returns @true if
 162 * allocation succeeded and @false otherwise.
 163 */
 164static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
 165{
 166        int cpu;
 167        int i;
 168        int level = 0;
 169        int levelspread[RCU_NUM_LVLS];
 170        struct srcu_data *sdp;
 171        struct srcu_node *snp;
 172        struct srcu_node *snp_first;
 173
 174        /* Initialize geometry if it has not already been initialized. */
 175        rcu_init_geometry();
 176        ssp->node = kcalloc(rcu_num_nodes, sizeof(*ssp->node), gfp_flags);
 177        if (!ssp->node)
 178                return false;
 179
 180        /* Work out the overall tree geometry. */
 181        ssp->level[0] = &ssp->node[0];
 182        for (i = 1; i < rcu_num_lvls; i++)
 183                ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
 184        rcu_init_levelspread(levelspread, num_rcu_lvl);
 185
 186        /* Each pass through this loop initializes one srcu_node structure. */
 187        srcu_for_each_node_breadth_first(ssp, snp) {
 188                spin_lock_init(&ACCESS_PRIVATE(snp, lock));
 189                WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
 190                             ARRAY_SIZE(snp->srcu_data_have_cbs));
 191                for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
 192                        snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
 193                        snp->srcu_data_have_cbs[i] = 0;
 194                }
 195                snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
 196                snp->grplo = -1;
 197                snp->grphi = -1;
 198                if (snp == &ssp->node[0]) {
 199                        /* Root node, special case. */
 200                        snp->srcu_parent = NULL;
 201                        continue;
 202                }
 203
 204                /* Non-root node. */
 205                if (snp == ssp->level[level + 1])
 206                        level++;
 207                snp->srcu_parent = ssp->level[level - 1] +
 208                                   (snp - ssp->level[level]) /
 209                                   levelspread[level - 1];
 210        }
 211
 212        /*
 213         * Initialize the per-CPU srcu_data array, which feeds into the
 214         * leaves of the srcu_node tree.
 215         */
 216        level = rcu_num_lvls - 1;
 217        snp_first = ssp->level[level];
 218        for_each_possible_cpu(cpu) {
 219                sdp = per_cpu_ptr(ssp->sda, cpu);
 220                sdp->mynode = &snp_first[cpu / levelspread[level]];
 221                for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
 222                        if (snp->grplo < 0)
 223                                snp->grplo = cpu;
 224                        snp->grphi = cpu;
 225                }
 226                sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
 227        }
 228        smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
 229        return true;
 230}
 231
 232/*
 233 * Initialize non-compile-time initialized fields, including the
 234 * associated srcu_node and srcu_data structures.  The is_static parameter
 235 * tells us that ->sda has already been wired up to srcu_data.
 236 */
 237static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
 238{
 239        ssp->srcu_size_state = SRCU_SIZE_SMALL;
 240        ssp->node = NULL;
 241        mutex_init(&ssp->srcu_cb_mutex);
 242        mutex_init(&ssp->srcu_gp_mutex);
 243        ssp->srcu_idx = 0;
 244        ssp->srcu_gp_seq = 0;
 245        ssp->srcu_barrier_seq = 0;
 246        mutex_init(&ssp->srcu_barrier_mutex);
 247        atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
 248        INIT_DELAYED_WORK(&ssp->work, process_srcu);
 249        ssp->sda_is_static = is_static;
 250        if (!is_static)
 251                ssp->sda = alloc_percpu(struct srcu_data);
 252        if (!ssp->sda)
 253                return -ENOMEM;
 254        init_srcu_struct_data(ssp);
 255        ssp->srcu_gp_seq_needed_exp = 0;
 256        ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 257        if (READ_ONCE(ssp->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
 258                if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) {
 259                        if (!ssp->sda_is_static) {
 260                                free_percpu(ssp->sda);
 261                                ssp->sda = NULL;
 262                                return -ENOMEM;
 263                        }
 264                } else {
 265                        WRITE_ONCE(ssp->srcu_size_state, SRCU_SIZE_BIG);
 266                }
 267        }
 268        smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
 269        return 0;
 270}
 271
 272#ifdef CONFIG_DEBUG_LOCK_ALLOC
 273
 274int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
 275                       struct lock_class_key *key)
 276{
 277        /* Don't re-initialize a lock while it is held. */
 278        debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
 279        lockdep_init_map(&ssp->dep_map, name, key, 0);
 280        spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
 281        return init_srcu_struct_fields(ssp, false);
 282}
 283EXPORT_SYMBOL_GPL(__init_srcu_struct);
 284
 285#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 286
 287/**
 288 * init_srcu_struct - initialize a sleep-RCU structure
 289 * @ssp: structure to initialize.
 290 *
 291 * Must invoke this on a given srcu_struct before passing that srcu_struct
 292 * to any other function.  Each srcu_struct represents a separate domain
 293 * of SRCU protection.
 294 */
 295int init_srcu_struct(struct srcu_struct *ssp)
 296{
 297        spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
 298        return init_srcu_struct_fields(ssp, false);
 299}
 300EXPORT_SYMBOL_GPL(init_srcu_struct);
 301
 302#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 303
 304/*
 305 * Initiate a transition to SRCU_SIZE_BIG with lock held.
 306 */
 307static void __srcu_transition_to_big(struct srcu_struct *ssp)
 308{
 309        lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
 310        smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_ALLOC);
 311}
 312
 313/*
 314 * Initiate an idempotent transition to SRCU_SIZE_BIG.
 315 */
 316static void srcu_transition_to_big(struct srcu_struct *ssp)
 317{
 318        unsigned long flags;
 319
 320        /* Double-checked locking on ->srcu_size-state. */
 321        if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL)
 322                return;
 323        spin_lock_irqsave_rcu_node(ssp, flags);
 324        if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL) {
 325                spin_unlock_irqrestore_rcu_node(ssp, flags);
 326                return;
 327        }
 328        __srcu_transition_to_big(ssp);
 329        spin_unlock_irqrestore_rcu_node(ssp, flags);
 330}
 331
 332/*
 333 * Check to see if the just-encountered contention event justifies
 334 * a transition to SRCU_SIZE_BIG.
 335 */
 336static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
 337{
 338        unsigned long j;
 339
 340        if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_size_state)
 341                return;
 342        j = jiffies;
 343        if (ssp->srcu_size_jiffies != j) {
 344                ssp->srcu_size_jiffies = j;
 345                ssp->srcu_n_lock_retries = 0;
 346        }
 347        if (++ssp->srcu_n_lock_retries <= small_contention_lim)
 348                return;
 349        __srcu_transition_to_big(ssp);
 350}
 351
 352/*
 353 * Acquire the specified srcu_data structure's ->lock, but check for
 354 * excessive contention, which results in initiation of a transition
 355 * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
 356 * parameter permits this.
 357 */
 358static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
 359{
 360        struct srcu_struct *ssp = sdp->ssp;
 361
 362        if (spin_trylock_irqsave_rcu_node(sdp, *flags))
 363                return;
 364        spin_lock_irqsave_rcu_node(ssp, *flags);
 365        spin_lock_irqsave_check_contention(ssp);
 366        spin_unlock_irqrestore_rcu_node(ssp, *flags);
 367        spin_lock_irqsave_rcu_node(sdp, *flags);
 368}
 369
 370/*
 371 * Acquire the specified srcu_struct structure's ->lock, but check for
 372 * excessive contention, which results in initiation of a transition
 373 * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
 374 * parameter permits this.
 375 */
 376static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
 377{
 378        if (spin_trylock_irqsave_rcu_node(ssp, *flags))
 379                return;
 380        spin_lock_irqsave_rcu_node(ssp, *flags);
 381        spin_lock_irqsave_check_contention(ssp);
 382}
 383
 384/*
 385 * First-use initialization of statically allocated srcu_struct
 386 * structure.  Wiring up the combining tree is more than can be
 387 * done with compile-time initialization, so this check is added
 388 * to each update-side SRCU primitive.  Use ssp->lock, which -is-
 389 * compile-time initialized, to resolve races involving multiple
 390 * CPUs trying to garner first-use privileges.
 391 */
 392static void check_init_srcu_struct(struct srcu_struct *ssp)
 393{
 394        unsigned long flags;
 395
 396        /* The smp_load_acquire() pairs with the smp_store_release(). */
 397        if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
 398                return; /* Already initialized. */
 399        spin_lock_irqsave_rcu_node(ssp, flags);
 400        if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
 401                spin_unlock_irqrestore_rcu_node(ssp, flags);
 402                return;
 403        }
 404        init_srcu_struct_fields(ssp, true);
 405        spin_unlock_irqrestore_rcu_node(ssp, flags);
 406}
 407
 408/*
 409 * Returns approximate total of the readers' ->srcu_lock_count[] values
 410 * for the rank of per-CPU counters specified by idx.
 411 */
 412static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
 413{
 414        int cpu;
 415        unsigned long sum = 0;
 416
 417        for_each_possible_cpu(cpu) {
 418                struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 419
 420                sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
 421        }
 422        return sum;
 423}
 424
 425/*
 426 * Returns approximate total of the readers' ->srcu_unlock_count[] values
 427 * for the rank of per-CPU counters specified by idx.
 428 */
 429static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
 430{
 431        int cpu;
 432        unsigned long sum = 0;
 433
 434        for_each_possible_cpu(cpu) {
 435                struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 436
 437                sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
 438        }
 439        return sum;
 440}
 441
 442/*
 443 * Return true if the number of pre-existing readers is determined to
 444 * be zero.
 445 */
 446static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
 447{
 448        unsigned long unlocks;
 449
 450        unlocks = srcu_readers_unlock_idx(ssp, idx);
 451
 452        /*
 453         * Make sure that a lock is always counted if the corresponding
 454         * unlock is counted. Needs to be a smp_mb() as the read side may
 455         * contain a read from a variable that is written to before the
 456         * synchronize_srcu() in the write side. In this case smp_mb()s
 457         * A and B act like the store buffering pattern.
 458         *
 459         * This smp_mb() also pairs with smp_mb() C to prevent accesses
 460         * after the synchronize_srcu() from being executed before the
 461         * grace period ends.
 462         */
 463        smp_mb(); /* A */
 464
 465        /*
 466         * If the locks are the same as the unlocks, then there must have
 467         * been no readers on this index at some time in between. This does
 468         * not mean that there are no more readers, as one could have read
 469         * the current index but not have incremented the lock counter yet.
 470         *
 471         * So suppose that the updater is preempted here for so long
 472         * that more than ULONG_MAX non-nested readers come and go in
 473         * the meantime.  It turns out that this cannot result in overflow
 474         * because if a reader modifies its unlock count after we read it
 475         * above, then that reader's next load of ->srcu_idx is guaranteed
 476         * to get the new value, which will cause it to operate on the
 477         * other bank of counters, where it cannot contribute to the
 478         * overflow of these counters.  This means that there is a maximum
 479         * of 2*NR_CPUS increments, which cannot overflow given current
 480         * systems, especially not on 64-bit systems.
 481         *
 482         * OK, how about nesting?  This does impose a limit on nesting
 483         * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
 484         * especially on 64-bit systems.
 485         */
 486        return srcu_readers_lock_idx(ssp, idx) == unlocks;
 487}
 488
 489/**
 490 * srcu_readers_active - returns true if there are readers. and false
 491 *                       otherwise
 492 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
 493 *
 494 * Note that this is not an atomic primitive, and can therefore suffer
 495 * severe errors when invoked on an active srcu_struct.  That said, it
 496 * can be useful as an error check at cleanup time.
 497 */
 498static bool srcu_readers_active(struct srcu_struct *ssp)
 499{
 500        int cpu;
 501        unsigned long sum = 0;
 502
 503        for_each_possible_cpu(cpu) {
 504                struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 505
 506                sum += READ_ONCE(cpuc->srcu_lock_count[0]);
 507                sum += READ_ONCE(cpuc->srcu_lock_count[1]);
 508                sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
 509                sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
 510        }
 511        return sum;
 512}
 513
 514/*
 515 * We use an adaptive strategy for synchronize_srcu() and especially for
 516 * synchronize_srcu_expedited().  We spin for a fixed time period
 517 * (defined below, boot time configurable) to allow SRCU readers to exit
 518 * their read-side critical sections.  If there are still some readers
 519 * after one jiffy, we repeatedly block for one jiffy time periods.
 520 * The blocking time is increased as the grace-period age increases,
 521 * with max blocking time capped at 10 jiffies.
 522 */
 523#define SRCU_DEFAULT_RETRY_CHECK_DELAY          5
 524
 525static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
 526module_param(srcu_retry_check_delay, ulong, 0444);
 527
 528#define SRCU_INTERVAL           1               // Base delay if no expedited GPs pending.
 529#define SRCU_MAX_INTERVAL       10              // Maximum incremental delay from slow readers.
 530
 531#define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO       3UL     // Lowmark on default per-GP-phase
 532                                                        // no-delay instances.
 533#define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI       1000UL  // Highmark on default per-GP-phase
 534                                                        // no-delay instances.
 535
 536#define SRCU_UL_CLAMP_LO(val, low)      ((val) > (low) ? (val) : (low))
 537#define SRCU_UL_CLAMP_HI(val, high)     ((val) < (high) ? (val) : (high))
 538#define SRCU_UL_CLAMP(val, low, high)   SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
 539// per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
 540// one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
 541// called from process_srcu().
 542#define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \
 543        (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
 544
 545// Maximum per-GP-phase consecutive no-delay instances.
 546#define SRCU_DEFAULT_MAX_NODELAY_PHASE  \
 547        SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,  \
 548                      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,        \
 549                      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
 550
 551static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
 552module_param(srcu_max_nodelay_phase, ulong, 0444);
 553
 554// Maximum consecutive no-delay instances.
 555#define SRCU_DEFAULT_MAX_NODELAY        (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \
 556                                         SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
 557
 558static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
 559module_param(srcu_max_nodelay, ulong, 0444);
 560
 561/*
 562 * Return grace-period delay, zero if there are expedited grace
 563 * periods pending, SRCU_INTERVAL otherwise.
 564 */
 565static unsigned long srcu_get_delay(struct srcu_struct *ssp)
 566{
 567        unsigned long gpstart;
 568        unsigned long j;
 569        unsigned long jbase = SRCU_INTERVAL;
 570
 571        if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
 572                jbase = 0;
 573        if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))) {
 574                j = jiffies - 1;
 575                gpstart = READ_ONCE(ssp->srcu_gp_start);
 576                if (time_after(j, gpstart))
 577                        jbase += j - gpstart;
 578                if (!jbase) {
 579                        WRITE_ONCE(ssp->srcu_n_exp_nodelay, READ_ONCE(ssp->srcu_n_exp_nodelay) + 1);
 580                        if (READ_ONCE(ssp->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
 581                                jbase = 1;
 582                }
 583        }
 584        return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
 585}
 586
 587/**
 588 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
 589 * @ssp: structure to clean up.
 590 *
 591 * Must invoke this after you are finished using a given srcu_struct that
 592 * was initialized via init_srcu_struct(), else you leak memory.
 593 */
 594void cleanup_srcu_struct(struct srcu_struct *ssp)
 595{
 596        int cpu;
 597
 598        if (WARN_ON(!srcu_get_delay(ssp)))
 599                return; /* Just leak it! */
 600        if (WARN_ON(srcu_readers_active(ssp)))
 601                return; /* Just leak it! */
 602        flush_delayed_work(&ssp->work);
 603        for_each_possible_cpu(cpu) {
 604                struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
 605
 606                del_timer_sync(&sdp->delay_work);
 607                flush_work(&sdp->work);
 608                if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
 609                        return; /* Forgot srcu_barrier(), so just leak it! */
 610        }
 611        if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
 612            WARN_ON(rcu_seq_current(&ssp->srcu_gp_seq) != ssp->srcu_gp_seq_needed) ||
 613            WARN_ON(srcu_readers_active(ssp))) {
 614                pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
 615                        __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)),
 616                        rcu_seq_current(&ssp->srcu_gp_seq), ssp->srcu_gp_seq_needed);
 617                return; /* Caller forgot to stop doing call_srcu()? */
 618        }
 619        if (!ssp->sda_is_static) {
 620                free_percpu(ssp->sda);
 621                ssp->sda = NULL;
 622        }
 623        kfree(ssp->node);
 624        ssp->node = NULL;
 625        ssp->srcu_size_state = SRCU_SIZE_SMALL;
 626}
 627EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
 628
 629/*
 630 * Counts the new reader in the appropriate per-CPU element of the
 631 * srcu_struct.
 632 * Returns an index that must be passed to the matching srcu_read_unlock().
 633 */
 634int __srcu_read_lock(struct srcu_struct *ssp)
 635{
 636        int idx;
 637
 638        idx = READ_ONCE(ssp->srcu_idx) & 0x1;
 639        this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
 640        smp_mb(); /* B */  /* Avoid leaking the critical section. */
 641        return idx;
 642}
 643EXPORT_SYMBOL_GPL(__srcu_read_lock);
 644
 645/*
 646 * Removes the count for the old reader from the appropriate per-CPU
 647 * element of the srcu_struct.  Note that this may well be a different
 648 * CPU than that which was incremented by the corresponding srcu_read_lock().
 649 */
 650void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
 651{
 652        smp_mb(); /* C */  /* Avoid leaking the critical section. */
 653        this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
 654}
 655EXPORT_SYMBOL_GPL(__srcu_read_unlock);
 656
 657/*
 658 * Start an SRCU grace period.
 659 */
 660static void srcu_gp_start(struct srcu_struct *ssp)
 661{
 662        struct srcu_data *sdp;
 663        int state;
 664
 665        if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
 666                sdp = per_cpu_ptr(ssp->sda, 0);
 667        else
 668                sdp = this_cpu_ptr(ssp->sda);
 669        lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
 670        WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
 671        spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
 672        rcu_segcblist_advance(&sdp->srcu_cblist,
 673                              rcu_seq_current(&ssp->srcu_gp_seq));
 674        (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
 675                                       rcu_seq_snap(&ssp->srcu_gp_seq));
 676        spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
 677        WRITE_ONCE(ssp->srcu_gp_start, jiffies);
 678        WRITE_ONCE(ssp->srcu_n_exp_nodelay, 0);
 679        smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
 680        rcu_seq_start(&ssp->srcu_gp_seq);
 681        state = rcu_seq_state(ssp->srcu_gp_seq);
 682        WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
 683}
 684
 685
 686static void srcu_delay_timer(struct timer_list *t)
 687{
 688        struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
 689
 690        queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 691}
 692
 693static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
 694                                       unsigned long delay)
 695{
 696        if (!delay) {
 697                queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 698                return;
 699        }
 700
 701        timer_reduce(&sdp->delay_work, jiffies + delay);
 702}
 703
 704/*
 705 * Schedule callback invocation for the specified srcu_data structure,
 706 * if possible, on the corresponding CPU.
 707 */
 708static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
 709{
 710        srcu_queue_delayed_work_on(sdp, delay);
 711}
 712
 713/*
 714 * Schedule callback invocation for all srcu_data structures associated
 715 * with the specified srcu_node structure that have callbacks for the
 716 * just-completed grace period, the one corresponding to idx.  If possible,
 717 * schedule this invocation on the corresponding CPUs.
 718 */
 719static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
 720                                  unsigned long mask, unsigned long delay)
 721{
 722        int cpu;
 723
 724        for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 725                if (!(mask & (1 << (cpu - snp->grplo))))
 726                        continue;
 727                srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
 728        }
 729}
 730
 731/*
 732 * Note the end of an SRCU grace period.  Initiates callback invocation
 733 * and starts a new grace period if needed.
 734 *
 735 * The ->srcu_cb_mutex acquisition does not protect any data, but
 736 * instead prevents more than one grace period from starting while we
 737 * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
 738 * array to have a finite number of elements.
 739 */
 740static void srcu_gp_end(struct srcu_struct *ssp)
 741{
 742        unsigned long cbdelay = 1;
 743        bool cbs;
 744        bool last_lvl;
 745        int cpu;
 746        unsigned long flags;
 747        unsigned long gpseq;
 748        int idx;
 749        unsigned long mask;
 750        struct srcu_data *sdp;
 751        unsigned long sgsne;
 752        struct srcu_node *snp;
 753        int ss_state;
 754
 755        /* Prevent more than one additional grace period. */
 756        mutex_lock(&ssp->srcu_cb_mutex);
 757
 758        /* End the current grace period. */
 759        spin_lock_irq_rcu_node(ssp);
 760        idx = rcu_seq_state(ssp->srcu_gp_seq);
 761        WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
 762        if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
 763                cbdelay = 0;
 764
 765        WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
 766        rcu_seq_end(&ssp->srcu_gp_seq);
 767        gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
 768        if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
 769                WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
 770        spin_unlock_irq_rcu_node(ssp);
 771        mutex_unlock(&ssp->srcu_gp_mutex);
 772        /* A new grace period can start at this point.  But only one. */
 773
 774        /* Initiate callback invocation as needed. */
 775        ss_state = smp_load_acquire(&ssp->srcu_size_state);
 776        if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
 777                srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, 0), cbdelay);
 778        } else {
 779                idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
 780                srcu_for_each_node_breadth_first(ssp, snp) {
 781                        spin_lock_irq_rcu_node(snp);
 782                        cbs = false;
 783                        last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
 784                        if (last_lvl)
 785                                cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
 786                        snp->srcu_have_cbs[idx] = gpseq;
 787                        rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
 788                        sgsne = snp->srcu_gp_seq_needed_exp;
 789                        if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
 790                                WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
 791                        if (ss_state < SRCU_SIZE_BIG)
 792                                mask = ~0;
 793                        else
 794                                mask = snp->srcu_data_have_cbs[idx];
 795                        snp->srcu_data_have_cbs[idx] = 0;
 796                        spin_unlock_irq_rcu_node(snp);
 797                        if (cbs)
 798                                srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
 799                }
 800        }
 801
 802        /* Occasionally prevent srcu_data counter wrap. */
 803        if (!(gpseq & counter_wrap_check))
 804                for_each_possible_cpu(cpu) {
 805                        sdp = per_cpu_ptr(ssp->sda, cpu);
 806                        spin_lock_irqsave_rcu_node(sdp, flags);
 807                        if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
 808                                sdp->srcu_gp_seq_needed = gpseq;
 809                        if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
 810                                sdp->srcu_gp_seq_needed_exp = gpseq;
 811                        spin_unlock_irqrestore_rcu_node(sdp, flags);
 812                }
 813
 814        /* Callback initiation done, allow grace periods after next. */
 815        mutex_unlock(&ssp->srcu_cb_mutex);
 816
 817        /* Start a new grace period if needed. */
 818        spin_lock_irq_rcu_node(ssp);
 819        gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
 820        if (!rcu_seq_state(gpseq) &&
 821            ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
 822                srcu_gp_start(ssp);
 823                spin_unlock_irq_rcu_node(ssp);
 824                srcu_reschedule(ssp, 0);
 825        } else {
 826                spin_unlock_irq_rcu_node(ssp);
 827        }
 828
 829        /* Transition to big if needed. */
 830        if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
 831                if (ss_state == SRCU_SIZE_ALLOC)
 832                        init_srcu_struct_nodes(ssp, GFP_KERNEL);
 833                else
 834                        smp_store_release(&ssp->srcu_size_state, ss_state + 1);
 835        }
 836}
 837
 838/*
 839 * Funnel-locking scheme to scalably mediate many concurrent expedited
 840 * grace-period requests.  This function is invoked for the first known
 841 * expedited request for a grace period that has already been requested,
 842 * but without expediting.  To start a completely new grace period,
 843 * whether expedited or not, use srcu_funnel_gp_start() instead.
 844 */
 845static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
 846                                  unsigned long s)
 847{
 848        unsigned long flags;
 849        unsigned long sgsne;
 850
 851        if (snp)
 852                for (; snp != NULL; snp = snp->srcu_parent) {
 853                        sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
 854                        if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
 855                            (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
 856                                return;
 857                        spin_lock_irqsave_rcu_node(snp, flags);
 858                        sgsne = snp->srcu_gp_seq_needed_exp;
 859                        if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
 860                                spin_unlock_irqrestore_rcu_node(snp, flags);
 861                                return;
 862                        }
 863                        WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 864                        spin_unlock_irqrestore_rcu_node(snp, flags);
 865                }
 866        spin_lock_irqsave_ssp_contention(ssp, &flags);
 867        if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
 868                WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
 869        spin_unlock_irqrestore_rcu_node(ssp, flags);
 870}
 871
 872/*
 873 * Funnel-locking scheme to scalably mediate many concurrent grace-period
 874 * requests.  The winner has to do the work of actually starting grace
 875 * period s.  Losers must either ensure that their desired grace-period
 876 * number is recorded on at least their leaf srcu_node structure, or they
 877 * must take steps to invoke their own callbacks.
 878 *
 879 * Note that this function also does the work of srcu_funnel_exp_start(),
 880 * in some cases by directly invoking it.
 881 */
 882static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
 883                                 unsigned long s, bool do_norm)
 884{
 885        unsigned long flags;
 886        int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
 887        unsigned long sgsne;
 888        struct srcu_node *snp;
 889        struct srcu_node *snp_leaf;
 890        unsigned long snp_seq;
 891
 892        /* Ensure that snp node tree is fully initialized before traversing it */
 893        if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
 894                snp_leaf = NULL;
 895        else
 896                snp_leaf = sdp->mynode;
 897
 898        if (snp_leaf)
 899                /* Each pass through the loop does one level of the srcu_node tree. */
 900                for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
 901                        if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != snp_leaf)
 902                                return; /* GP already done and CBs recorded. */
 903                        spin_lock_irqsave_rcu_node(snp, flags);
 904                        snp_seq = snp->srcu_have_cbs[idx];
 905                        if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
 906                                if (snp == snp_leaf && snp_seq == s)
 907                                        snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 908                                spin_unlock_irqrestore_rcu_node(snp, flags);
 909                                if (snp == snp_leaf && snp_seq != s) {
 910                                        srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
 911                                        return;
 912                                }
 913                                if (!do_norm)
 914                                        srcu_funnel_exp_start(ssp, snp, s);
 915                                return;
 916                        }
 917                        snp->srcu_have_cbs[idx] = s;
 918                        if (snp == snp_leaf)
 919                                snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 920                        sgsne = snp->srcu_gp_seq_needed_exp;
 921                        if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
 922                                WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 923                        spin_unlock_irqrestore_rcu_node(snp, flags);
 924                }
 925
 926        /* Top of tree, must ensure the grace period will be started. */
 927        spin_lock_irqsave_ssp_contention(ssp, &flags);
 928        if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
 929                /*
 930                 * Record need for grace period s.  Pair with load
 931                 * acquire setting up for initialization.
 932                 */
 933                smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
 934        }
 935        if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
 936                WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
 937
 938        /* If grace period not already done and none in progress, start it. */
 939        if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
 940            rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
 941                WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
 942                srcu_gp_start(ssp);
 943
 944                // And how can that list_add() in the "else" clause
 945                // possibly be safe for concurrent execution?  Well,
 946                // it isn't.  And it does not have to be.  After all, it
 947                // can only be executed during early boot when there is only
 948                // the one boot CPU running with interrupts still disabled.
 949                if (likely(srcu_init_done))
 950                        queue_delayed_work(rcu_gp_wq, &ssp->work,
 951                                           !!srcu_get_delay(ssp));
 952                else if (list_empty(&ssp->work.work.entry))
 953                        list_add(&ssp->work.work.entry, &srcu_boot_list);
 954        }
 955        spin_unlock_irqrestore_rcu_node(ssp, flags);
 956}
 957
 958/*
 959 * Wait until all readers counted by array index idx complete, but
 960 * loop an additional time if there is an expedited grace period pending.
 961 * The caller must ensure that ->srcu_idx is not changed while checking.
 962 */
 963static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
 964{
 965        unsigned long curdelay;
 966
 967        curdelay = !srcu_get_delay(ssp);
 968
 969        for (;;) {
 970                if (srcu_readers_active_idx_check(ssp, idx))
 971                        return true;
 972                if ((--trycount + curdelay) <= 0)
 973                        return false;
 974                udelay(srcu_retry_check_delay);
 975        }
 976}
 977
 978/*
 979 * Increment the ->srcu_idx counter so that future SRCU readers will
 980 * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
 981 * us to wait for pre-existing readers in a starvation-free manner.
 982 */
 983static void srcu_flip(struct srcu_struct *ssp)
 984{
 985        /*
 986         * Ensure that if this updater saw a given reader's increment
 987         * from __srcu_read_lock(), that reader was using an old value
 988         * of ->srcu_idx.  Also ensure that if a given reader sees the
 989         * new value of ->srcu_idx, this updater's earlier scans cannot
 990         * have seen that reader's increments (which is OK, because this
 991         * grace period need not wait on that reader).
 992         */
 993        smp_mb(); /* E */  /* Pairs with B and C. */
 994
 995        WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
 996
 997        /*
 998         * Ensure that if the updater misses an __srcu_read_unlock()
 999         * increment, that task's next __srcu_read_lock() will see the
1000         * above counter update.  Note that both this memory barrier
1001         * and the one in srcu_readers_active_idx_check() provide the
1002         * guarantee for __srcu_read_lock().
1003         */
1004        smp_mb(); /* D */  /* Pairs with C. */
1005}
1006
1007/*
1008 * If SRCU is likely idle, return true, otherwise return false.
1009 *
1010 * Note that it is OK for several current from-idle requests for a new
1011 * grace period from idle to specify expediting because they will all end
1012 * up requesting the same grace period anyhow.  So no loss.
1013 *
1014 * Note also that if any CPU (including the current one) is still invoking
1015 * callbacks, this function will nevertheless say "idle".  This is not
1016 * ideal, but the overhead of checking all CPUs' callback lists is even
1017 * less ideal, especially on large systems.  Furthermore, the wakeup
1018 * can happen before the callback is fully removed, so we have no choice
1019 * but to accept this type of error.
1020 *
1021 * This function is also subject to counter-wrap errors, but let's face
1022 * it, if this function was preempted for enough time for the counters
1023 * to wrap, it really doesn't matter whether or not we expedite the grace
1024 * period.  The extra overhead of a needlessly expedited grace period is
1025 * negligible when amortized over that time period, and the extra latency
1026 * of a needlessly non-expedited grace period is similarly negligible.
1027 */
1028static bool srcu_might_be_idle(struct srcu_struct *ssp)
1029{
1030        unsigned long curseq;
1031        unsigned long flags;
1032        struct srcu_data *sdp;
1033        unsigned long t;
1034        unsigned long tlast;
1035
1036        check_init_srcu_struct(ssp);
1037        /* If the local srcu_data structure has callbacks, not idle.  */
1038        sdp = raw_cpu_ptr(ssp->sda);
1039        spin_lock_irqsave_rcu_node(sdp, flags);
1040        if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1041                spin_unlock_irqrestore_rcu_node(sdp, flags);
1042                return false; /* Callbacks already present, so not idle. */
1043        }
1044        spin_unlock_irqrestore_rcu_node(sdp, flags);
1045
1046        /*
1047         * No local callbacks, so probabilistically probe global state.
1048         * Exact information would require acquiring locks, which would
1049         * kill scalability, hence the probabilistic nature of the probe.
1050         */
1051
1052        /* First, see if enough time has passed since the last GP. */
1053        t = ktime_get_mono_fast_ns();
1054        tlast = READ_ONCE(ssp->srcu_last_gp_end);
1055        if (exp_holdoff == 0 ||
1056            time_in_range_open(t, tlast, tlast + exp_holdoff))
1057                return false; /* Too soon after last GP. */
1058
1059        /* Next, check for probable idleness. */
1060        curseq = rcu_seq_current(&ssp->srcu_gp_seq);
1061        smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1062        if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
1063                return false; /* Grace period in progress, so not idle. */
1064        smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1065        if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
1066                return false; /* GP # changed, so not idle. */
1067        return true; /* With reasonable probability, idle! */
1068}
1069
1070/*
1071 * SRCU callback function to leak a callback.
1072 */
1073static void srcu_leak_callback(struct rcu_head *rhp)
1074{
1075}
1076
1077/*
1078 * Start an SRCU grace period, and also queue the callback if non-NULL.
1079 */
1080static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1081                                             struct rcu_head *rhp, bool do_norm)
1082{
1083        unsigned long flags;
1084        int idx;
1085        bool needexp = false;
1086        bool needgp = false;
1087        unsigned long s;
1088        struct srcu_data *sdp;
1089        struct srcu_node *sdp_mynode;
1090        int ss_state;
1091
1092        check_init_srcu_struct(ssp);
1093        idx = srcu_read_lock(ssp);
1094        ss_state = smp_load_acquire(&ssp->srcu_size_state);
1095        if (ss_state < SRCU_SIZE_WAIT_CALL)
1096                sdp = per_cpu_ptr(ssp->sda, 0);
1097        else
1098                sdp = raw_cpu_ptr(ssp->sda);
1099        spin_lock_irqsave_sdp_contention(sdp, &flags);
1100        if (rhp)
1101                rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1102        rcu_segcblist_advance(&sdp->srcu_cblist,
1103                              rcu_seq_current(&ssp->srcu_gp_seq));
1104        s = rcu_seq_snap(&ssp->srcu_gp_seq);
1105        (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
1106        if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1107                sdp->srcu_gp_seq_needed = s;
1108                needgp = true;
1109        }
1110        if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1111                sdp->srcu_gp_seq_needed_exp = s;
1112                needexp = true;
1113        }
1114        spin_unlock_irqrestore_rcu_node(sdp, flags);
1115
1116        /* Ensure that snp node tree is fully initialized before traversing it */
1117        if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1118                sdp_mynode = NULL;
1119        else
1120                sdp_mynode = sdp->mynode;
1121
1122        if (needgp)
1123                srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1124        else if (needexp)
1125                srcu_funnel_exp_start(ssp, sdp_mynode, s);
1126        srcu_read_unlock(ssp, idx);
1127        return s;
1128}
1129
1130/*
1131 * Enqueue an SRCU callback on the srcu_data structure associated with
1132 * the current CPU and the specified srcu_struct structure, initiating
1133 * grace-period processing if it is not already running.
1134 *
1135 * Note that all CPUs must agree that the grace period extended beyond
1136 * all pre-existing SRCU read-side critical section.  On systems with
1137 * more than one CPU, this means that when "func()" is invoked, each CPU
1138 * is guaranteed to have executed a full memory barrier since the end of
1139 * its last corresponding SRCU read-side critical section whose beginning
1140 * preceded the call to call_srcu().  It also means that each CPU executing
1141 * an SRCU read-side critical section that continues beyond the start of
1142 * "func()" must have executed a memory barrier after the call_srcu()
1143 * but before the beginning of that SRCU read-side critical section.
1144 * Note that these guarantees include CPUs that are offline, idle, or
1145 * executing in user mode, as well as CPUs that are executing in the kernel.
1146 *
1147 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1148 * resulting SRCU callback function "func()", then both CPU A and CPU
1149 * B are guaranteed to execute a full memory barrier during the time
1150 * interval between the call to call_srcu() and the invocation of "func()".
1151 * This guarantee applies even if CPU A and CPU B are the same CPU (but
1152 * again only if the system has more than one CPU).
1153 *
1154 * Of course, these guarantees apply only for invocations of call_srcu(),
1155 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1156 * srcu_struct structure.
1157 */
1158static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1159                        rcu_callback_t func, bool do_norm)
1160{
1161        if (debug_rcu_head_queue(rhp)) {
1162                /* Probable double call_srcu(), so leak the callback. */
1163                WRITE_ONCE(rhp->func, srcu_leak_callback);
1164                WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1165                return;
1166        }
1167        rhp->func = func;
1168        (void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1169}
1170
1171/**
1172 * call_srcu() - Queue a callback for invocation after an SRCU grace period
1173 * @ssp: srcu_struct in queue the callback
1174 * @rhp: structure to be used for queueing the SRCU callback.
1175 * @func: function to be invoked after the SRCU grace period
1176 *
1177 * The callback function will be invoked some time after a full SRCU
1178 * grace period elapses, in other words after all pre-existing SRCU
1179 * read-side critical sections have completed.  However, the callback
1180 * function might well execute concurrently with other SRCU read-side
1181 * critical sections that started after call_srcu() was invoked.  SRCU
1182 * read-side critical sections are delimited by srcu_read_lock() and
1183 * srcu_read_unlock(), and may be nested.
1184 *
1185 * The callback will be invoked from process context, but must nevertheless
1186 * be fast and must not block.
1187 */
1188void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1189               rcu_callback_t func)
1190{
1191        __call_srcu(ssp, rhp, func, true);
1192}
1193EXPORT_SYMBOL_GPL(call_srcu);
1194
1195/*
1196 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1197 */
1198static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1199{
1200        struct rcu_synchronize rcu;
1201
1202        RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1203                         lock_is_held(&rcu_bh_lock_map) ||
1204                         lock_is_held(&rcu_lock_map) ||
1205                         lock_is_held(&rcu_sched_lock_map),
1206                         "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1207
1208        if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1209                return;
1210        might_sleep();
1211        check_init_srcu_struct(ssp);
1212        init_completion(&rcu.completion);
1213        init_rcu_head_on_stack(&rcu.head);
1214        __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1215        wait_for_completion(&rcu.completion);
1216        destroy_rcu_head_on_stack(&rcu.head);
1217
1218        /*
1219         * Make sure that later code is ordered after the SRCU grace
1220         * period.  This pairs with the spin_lock_irq_rcu_node()
1221         * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1222         * because the current CPU might have been totally uninvolved with
1223         * (and thus unordered against) that grace period.
1224         */
1225        smp_mb();
1226}
1227
1228/**
1229 * synchronize_srcu_expedited - Brute-force SRCU grace period
1230 * @ssp: srcu_struct with which to synchronize.
1231 *
1232 * Wait for an SRCU grace period to elapse, but be more aggressive about
1233 * spinning rather than blocking when waiting.
1234 *
1235 * Note that synchronize_srcu_expedited() has the same deadlock and
1236 * memory-ordering properties as does synchronize_srcu().
1237 */
1238void synchronize_srcu_expedited(struct srcu_struct *ssp)
1239{
1240        __synchronize_srcu(ssp, rcu_gp_is_normal());
1241}
1242EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1243
1244/**
1245 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1246 * @ssp: srcu_struct with which to synchronize.
1247 *
1248 * Wait for the count to drain to zero of both indexes. To avoid the
1249 * possible starvation of synchronize_srcu(), it waits for the count of
1250 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1251 * and then flip the srcu_idx and wait for the count of the other index.
1252 *
1253 * Can block; must be called from process context.
1254 *
1255 * Note that it is illegal to call synchronize_srcu() from the corresponding
1256 * SRCU read-side critical section; doing so will result in deadlock.
1257 * However, it is perfectly legal to call synchronize_srcu() on one
1258 * srcu_struct from some other srcu_struct's read-side critical section,
1259 * as long as the resulting graph of srcu_structs is acyclic.
1260 *
1261 * There are memory-ordering constraints implied by synchronize_srcu().
1262 * On systems with more than one CPU, when synchronize_srcu() returns,
1263 * each CPU is guaranteed to have executed a full memory barrier since
1264 * the end of its last corresponding SRCU read-side critical section
1265 * whose beginning preceded the call to synchronize_srcu().  In addition,
1266 * each CPU having an SRCU read-side critical section that extends beyond
1267 * the return from synchronize_srcu() is guaranteed to have executed a
1268 * full memory barrier after the beginning of synchronize_srcu() and before
1269 * the beginning of that SRCU read-side critical section.  Note that these
1270 * guarantees include CPUs that are offline, idle, or executing in user mode,
1271 * as well as CPUs that are executing in the kernel.
1272 *
1273 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1274 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1275 * to have executed a full memory barrier during the execution of
1276 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1277 * are the same CPU, but again only if the system has more than one CPU.
1278 *
1279 * Of course, these memory-ordering guarantees apply only when
1280 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1281 * passed the same srcu_struct structure.
1282 *
1283 * Implementation of these memory-ordering guarantees is similar to
1284 * that of synchronize_rcu().
1285 *
1286 * If SRCU is likely idle, expedite the first request.  This semantic
1287 * was provided by Classic SRCU, and is relied upon by its users, so TREE
1288 * SRCU must also provide it.  Note that detecting idleness is heuristic
1289 * and subject to both false positives and negatives.
1290 */
1291void synchronize_srcu(struct srcu_struct *ssp)
1292{
1293        if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1294                synchronize_srcu_expedited(ssp);
1295        else
1296                __synchronize_srcu(ssp, true);
1297}
1298EXPORT_SYMBOL_GPL(synchronize_srcu);
1299
1300/**
1301 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1302 * @ssp: srcu_struct to provide cookie for.
1303 *
1304 * This function returns a cookie that can be passed to
1305 * poll_state_synchronize_srcu(), which will return true if a full grace
1306 * period has elapsed in the meantime.  It is the caller's responsibility
1307 * to make sure that grace period happens, for example, by invoking
1308 * call_srcu() after return from get_state_synchronize_srcu().
1309 */
1310unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1311{
1312        // Any prior manipulation of SRCU-protected data must happen
1313        // before the load from ->srcu_gp_seq.
1314        smp_mb();
1315        return rcu_seq_snap(&ssp->srcu_gp_seq);
1316}
1317EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1318
1319/**
1320 * start_poll_synchronize_srcu - Provide cookie and start grace period
1321 * @ssp: srcu_struct to provide cookie for.
1322 *
1323 * This function returns a cookie that can be passed to
1324 * poll_state_synchronize_srcu(), which will return true if a full grace
1325 * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1326 * this function also ensures that any needed SRCU grace period will be
1327 * started.  This convenience does come at a cost in terms of CPU overhead.
1328 */
1329unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1330{
1331        return srcu_gp_start_if_needed(ssp, NULL, true);
1332}
1333EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1334
1335/**
1336 * poll_state_synchronize_srcu - Has cookie's grace period ended?
1337 * @ssp: srcu_struct to provide cookie for.
1338 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1339 *
1340 * This function takes the cookie that was returned from either
1341 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1342 * returns @true if an SRCU grace period elapsed since the time that the
1343 * cookie was created.
1344 *
1345 * Because cookies are finite in size, wrapping/overflow is possible.
1346 * This is more pronounced on 32-bit systems where cookies are 32 bits,
1347 * where in theory wrapping could happen in about 14 hours assuming
1348 * 25-microsecond expedited SRCU grace periods.  However, a more likely
1349 * overflow lower bound is on the order of 24 days in the case of
1350 * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1351 * system requires geologic timespans, as in more than seven million years
1352 * even for expedited SRCU grace periods.
1353 *
1354 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1355 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1356 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1357 * few minutes.  If this proves to be a problem, this counter will be
1358 * expanded to the same size as for Tree SRCU.
1359 */
1360bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1361{
1362        if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie))
1363                return false;
1364        // Ensure that the end of the SRCU grace period happens before
1365        // any subsequent code that the caller might execute.
1366        smp_mb(); // ^^^
1367        return true;
1368}
1369EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1370
1371/*
1372 * Callback function for srcu_barrier() use.
1373 */
1374static void srcu_barrier_cb(struct rcu_head *rhp)
1375{
1376        struct srcu_data *sdp;
1377        struct srcu_struct *ssp;
1378
1379        sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1380        ssp = sdp->ssp;
1381        if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1382                complete(&ssp->srcu_barrier_completion);
1383}
1384
1385/*
1386 * Enqueue an srcu_barrier() callback on the specified srcu_data
1387 * structure's ->cblist.  but only if that ->cblist already has at least one
1388 * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1389 * it must have already registered the need for a future grace period,
1390 * so all we need do is enqueue a callback that will use the same grace
1391 * period as the last callback already in the queue.
1392 */
1393static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1394{
1395        spin_lock_irq_rcu_node(sdp);
1396        atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1397        sdp->srcu_barrier_head.func = srcu_barrier_cb;
1398        debug_rcu_head_queue(&sdp->srcu_barrier_head);
1399        if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1400                                   &sdp->srcu_barrier_head)) {
1401                debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1402                atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1403        }
1404        spin_unlock_irq_rcu_node(sdp);
1405}
1406
1407/**
1408 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1409 * @ssp: srcu_struct on which to wait for in-flight callbacks.
1410 */
1411void srcu_barrier(struct srcu_struct *ssp)
1412{
1413        int cpu;
1414        int idx;
1415        unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1416
1417        check_init_srcu_struct(ssp);
1418        mutex_lock(&ssp->srcu_barrier_mutex);
1419        if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1420                smp_mb(); /* Force ordering following return. */
1421                mutex_unlock(&ssp->srcu_barrier_mutex);
1422                return; /* Someone else did our work for us. */
1423        }
1424        rcu_seq_start(&ssp->srcu_barrier_seq);
1425        init_completion(&ssp->srcu_barrier_completion);
1426
1427        /* Initial count prevents reaching zero until all CBs are posted. */
1428        atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1429
1430        idx = srcu_read_lock(ssp);
1431        if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1432                srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, 0));
1433        else
1434                for_each_possible_cpu(cpu)
1435                        srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1436        srcu_read_unlock(ssp, idx);
1437
1438        /* Remove the initial count, at which point reaching zero can happen. */
1439        if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1440                complete(&ssp->srcu_barrier_completion);
1441        wait_for_completion(&ssp->srcu_barrier_completion);
1442
1443        rcu_seq_end(&ssp->srcu_barrier_seq);
1444        mutex_unlock(&ssp->srcu_barrier_mutex);
1445}
1446EXPORT_SYMBOL_GPL(srcu_barrier);
1447
1448/**
1449 * srcu_batches_completed - return batches completed.
1450 * @ssp: srcu_struct on which to report batch completion.
1451 *
1452 * Report the number of batches, correlated with, but not necessarily
1453 * precisely the same as, the number of grace periods that have elapsed.
1454 */
1455unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1456{
1457        return READ_ONCE(ssp->srcu_idx);
1458}
1459EXPORT_SYMBOL_GPL(srcu_batches_completed);
1460
1461/*
1462 * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1463 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1464 * completed in that state.
1465 */
1466static void srcu_advance_state(struct srcu_struct *ssp)
1467{
1468        int idx;
1469
1470        mutex_lock(&ssp->srcu_gp_mutex);
1471
1472        /*
1473         * Because readers might be delayed for an extended period after
1474         * fetching ->srcu_idx for their index, at any point in time there
1475         * might well be readers using both idx=0 and idx=1.  We therefore
1476         * need to wait for readers to clear from both index values before
1477         * invoking a callback.
1478         *
1479         * The load-acquire ensures that we see the accesses performed
1480         * by the prior grace period.
1481         */
1482        idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1483        if (idx == SRCU_STATE_IDLE) {
1484                spin_lock_irq_rcu_node(ssp);
1485                if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1486                        WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1487                        spin_unlock_irq_rcu_node(ssp);
1488                        mutex_unlock(&ssp->srcu_gp_mutex);
1489                        return;
1490                }
1491                idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1492                if (idx == SRCU_STATE_IDLE)
1493                        srcu_gp_start(ssp);
1494                spin_unlock_irq_rcu_node(ssp);
1495                if (idx != SRCU_STATE_IDLE) {
1496                        mutex_unlock(&ssp->srcu_gp_mutex);
1497                        return; /* Someone else started the grace period. */
1498                }
1499        }
1500
1501        if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1502                idx = 1 ^ (ssp->srcu_idx & 1);
1503                if (!try_check_zero(ssp, idx, 1)) {
1504                        mutex_unlock(&ssp->srcu_gp_mutex);
1505                        return; /* readers present, retry later. */
1506                }
1507                srcu_flip(ssp);
1508                spin_lock_irq_rcu_node(ssp);
1509                rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1510                ssp->srcu_n_exp_nodelay = 0;
1511                spin_unlock_irq_rcu_node(ssp);
1512        }
1513
1514        if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1515
1516                /*
1517                 * SRCU read-side critical sections are normally short,
1518                 * so check at least twice in quick succession after a flip.
1519                 */
1520                idx = 1 ^ (ssp->srcu_idx & 1);
1521                if (!try_check_zero(ssp, idx, 2)) {
1522                        mutex_unlock(&ssp->srcu_gp_mutex);
1523                        return; /* readers present, retry later. */
1524                }
1525                ssp->srcu_n_exp_nodelay = 0;
1526                srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1527        }
1528}
1529
1530/*
1531 * Invoke a limited number of SRCU callbacks that have passed through
1532 * their grace period.  If there are more to do, SRCU will reschedule
1533 * the workqueue.  Note that needed memory barriers have been executed
1534 * in this task's context by srcu_readers_active_idx_check().
1535 */
1536static void srcu_invoke_callbacks(struct work_struct *work)
1537{
1538        long len;
1539        bool more;
1540        struct rcu_cblist ready_cbs;
1541        struct rcu_head *rhp;
1542        struct srcu_data *sdp;
1543        struct srcu_struct *ssp;
1544
1545        sdp = container_of(work, struct srcu_data, work);
1546
1547        ssp = sdp->ssp;
1548        rcu_cblist_init(&ready_cbs);
1549        spin_lock_irq_rcu_node(sdp);
1550        rcu_segcblist_advance(&sdp->srcu_cblist,
1551                              rcu_seq_current(&ssp->srcu_gp_seq));
1552        if (sdp->srcu_cblist_invoking ||
1553            !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1554                spin_unlock_irq_rcu_node(sdp);
1555                return;  /* Someone else on the job or nothing to do. */
1556        }
1557
1558        /* We are on the job!  Extract and invoke ready callbacks. */
1559        sdp->srcu_cblist_invoking = true;
1560        rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1561        len = ready_cbs.len;
1562        spin_unlock_irq_rcu_node(sdp);
1563        rhp = rcu_cblist_dequeue(&ready_cbs);
1564        for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1565                debug_rcu_head_unqueue(rhp);
1566                local_bh_disable();
1567                rhp->func(rhp);
1568                local_bh_enable();
1569        }
1570        WARN_ON_ONCE(ready_cbs.len);
1571
1572        /*
1573         * Update counts, accelerate new callbacks, and if needed,
1574         * schedule another round of callback invocation.
1575         */
1576        spin_lock_irq_rcu_node(sdp);
1577        rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1578        (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1579                                       rcu_seq_snap(&ssp->srcu_gp_seq));
1580        sdp->srcu_cblist_invoking = false;
1581        more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1582        spin_unlock_irq_rcu_node(sdp);
1583        if (more)
1584                srcu_schedule_cbs_sdp(sdp, 0);
1585}
1586
1587/*
1588 * Finished one round of SRCU grace period.  Start another if there are
1589 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1590 */
1591static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1592{
1593        bool pushgp = true;
1594
1595        spin_lock_irq_rcu_node(ssp);
1596        if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1597                if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1598                        /* All requests fulfilled, time to go idle. */
1599                        pushgp = false;
1600                }
1601        } else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1602                /* Outstanding request and no GP.  Start one. */
1603                srcu_gp_start(ssp);
1604        }
1605        spin_unlock_irq_rcu_node(ssp);
1606
1607        if (pushgp)
1608                queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1609}
1610
1611/*
1612 * This is the work-queue function that handles SRCU grace periods.
1613 */
1614static void process_srcu(struct work_struct *work)
1615{
1616        unsigned long curdelay;
1617        unsigned long j;
1618        struct srcu_struct *ssp;
1619
1620        ssp = container_of(work, struct srcu_struct, work.work);
1621
1622        srcu_advance_state(ssp);
1623        curdelay = srcu_get_delay(ssp);
1624        if (curdelay) {
1625                WRITE_ONCE(ssp->reschedule_count, 0);
1626        } else {
1627                j = jiffies;
1628                if (READ_ONCE(ssp->reschedule_jiffies) == j) {
1629                        WRITE_ONCE(ssp->reschedule_count, READ_ONCE(ssp->reschedule_count) + 1);
1630                        if (READ_ONCE(ssp->reschedule_count) > srcu_max_nodelay)
1631                                curdelay = 1;
1632                } else {
1633                        WRITE_ONCE(ssp->reschedule_count, 1);
1634                        WRITE_ONCE(ssp->reschedule_jiffies, j);
1635                }
1636        }
1637        srcu_reschedule(ssp, curdelay);
1638}
1639
1640void srcutorture_get_gp_data(enum rcutorture_type test_type,
1641                             struct srcu_struct *ssp, int *flags,
1642                             unsigned long *gp_seq)
1643{
1644        if (test_type != SRCU_FLAVOR)
1645                return;
1646        *flags = 0;
1647        *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1648}
1649EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1650
1651static const char * const srcu_size_state_name[] = {
1652        "SRCU_SIZE_SMALL",
1653        "SRCU_SIZE_ALLOC",
1654        "SRCU_SIZE_WAIT_BARRIER",
1655        "SRCU_SIZE_WAIT_CALL",
1656        "SRCU_SIZE_WAIT_CBS1",
1657        "SRCU_SIZE_WAIT_CBS2",
1658        "SRCU_SIZE_WAIT_CBS3",
1659        "SRCU_SIZE_WAIT_CBS4",
1660        "SRCU_SIZE_BIG",
1661        "SRCU_SIZE_???",
1662};
1663
1664void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1665{
1666        int cpu;
1667        int idx;
1668        unsigned long s0 = 0, s1 = 0;
1669        int ss_state = READ_ONCE(ssp->srcu_size_state);
1670        int ss_state_idx = ss_state;
1671
1672        idx = ssp->srcu_idx & 0x1;
1673        if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1674                ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1675        pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1676                 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), ss_state,
1677                 srcu_size_state_name[ss_state_idx]);
1678        if (!ssp->sda) {
1679                // Called after cleanup_srcu_struct(), perhaps.
1680                pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1681        } else {
1682                pr_cont(" per-CPU(idx=%d):", idx);
1683                for_each_possible_cpu(cpu) {
1684                        unsigned long l0, l1;
1685                        unsigned long u0, u1;
1686                        long c0, c1;
1687                        struct srcu_data *sdp;
1688
1689                        sdp = per_cpu_ptr(ssp->sda, cpu);
1690                        u0 = data_race(sdp->srcu_unlock_count[!idx]);
1691                        u1 = data_race(sdp->srcu_unlock_count[idx]);
1692
1693                        /*
1694                         * Make sure that a lock is always counted if the corresponding
1695                         * unlock is counted.
1696                         */
1697                        smp_rmb();
1698
1699                        l0 = data_race(sdp->srcu_lock_count[!idx]);
1700                        l1 = data_race(sdp->srcu_lock_count[idx]);
1701
1702                        c0 = l0 - u0;
1703                        c1 = l1 - u1;
1704                        pr_cont(" %d(%ld,%ld %c)",
1705                                cpu, c0, c1,
1706                                "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1707                        s0 += c0;
1708                        s1 += c1;
1709                }
1710                pr_cont(" T(%ld,%ld)\n", s0, s1);
1711        }
1712        if (SRCU_SIZING_IS_TORTURE())
1713                srcu_transition_to_big(ssp);
1714}
1715EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1716
1717static int __init srcu_bootup_announce(void)
1718{
1719        pr_info("Hierarchical SRCU implementation.\n");
1720        if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1721                pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1722        if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1723                pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1724        if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1725                pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1726        pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1727        return 0;
1728}
1729early_initcall(srcu_bootup_announce);
1730
1731void __init srcu_init(void)
1732{
1733        struct srcu_struct *ssp;
1734
1735        /* Decide on srcu_struct-size strategy. */
1736        if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1737                if (nr_cpu_ids >= big_cpu_lim) {
1738                        convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1739                        pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1740                } else {
1741                        convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1742                        pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1743                }
1744        }
1745
1746        /*
1747         * Once that is set, call_srcu() can follow the normal path and
1748         * queue delayed work. This must follow RCU workqueues creation
1749         * and timers initialization.
1750         */
1751        srcu_init_done = true;
1752        while (!list_empty(&srcu_boot_list)) {
1753                ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1754                                      work.work.entry);
1755                list_del_init(&ssp->work.work.entry);
1756                if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && ssp->srcu_size_state == SRCU_SIZE_SMALL)
1757                        ssp->srcu_size_state = SRCU_SIZE_ALLOC;
1758                queue_work(rcu_gp_wq, &ssp->work.work);
1759        }
1760}
1761
1762#ifdef CONFIG_MODULES
1763
1764/* Initialize any global-scope srcu_struct structures used by this module. */
1765static int srcu_module_coming(struct module *mod)
1766{
1767        int i;
1768        struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1769        int ret;
1770
1771        for (i = 0; i < mod->num_srcu_structs; i++) {
1772                ret = init_srcu_struct(*(sspp++));
1773                if (WARN_ON_ONCE(ret))
1774                        return ret;
1775        }
1776        return 0;
1777}
1778
1779/* Clean up any global-scope srcu_struct structures used by this module. */
1780static void srcu_module_going(struct module *mod)
1781{
1782        int i;
1783        struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1784
1785        for (i = 0; i < mod->num_srcu_structs; i++)
1786                cleanup_srcu_struct(*(sspp++));
1787}
1788
1789/* Handle one module, either coming or going. */
1790static int srcu_module_notify(struct notifier_block *self,
1791                              unsigned long val, void *data)
1792{
1793        struct module *mod = data;
1794        int ret = 0;
1795
1796        switch (val) {
1797        case MODULE_STATE_COMING:
1798                ret = srcu_module_coming(mod);
1799                break;
1800        case MODULE_STATE_GOING:
1801                srcu_module_going(mod);
1802                break;
1803        default:
1804                break;
1805        }
1806        return ret;
1807}
1808
1809static struct notifier_block srcu_module_nb = {
1810        .notifier_call = srcu_module_notify,
1811        .priority = 0,
1812};
1813
1814static __init int init_srcu_module_notifier(void)
1815{
1816        int ret;
1817
1818        ret = register_module_notifier(&srcu_module_nb);
1819        if (ret)
1820                pr_warn("Failed to register srcu module notifier\n");
1821        return ret;
1822}
1823late_initcall(init_srcu_module_notifier);
1824
1825#endif /* #ifdef CONFIG_MODULES */
1826