linux/kernel/time/timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/sched/nohz.h>
  43#include <linux/sched/debug.h>
  44#include <linux/slab.h>
  45#include <linux/compat.h>
  46#include <linux/random.h>
  47#include <linux/sysctl.h>
  48
  49#include <linux/uaccess.h>
  50#include <asm/unistd.h>
  51#include <asm/div64.h>
  52#include <asm/timex.h>
  53#include <asm/io.h>
  54
  55#include "tick-internal.h"
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/timer.h>
  59
  60__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  61
  62EXPORT_SYMBOL(jiffies_64);
  63
  64/*
  65 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  66 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  67 * level has a different granularity.
  68 *
  69 * The level granularity is:            LVL_CLK_DIV ^ lvl
  70 * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
  71 *
  72 * The array level of a newly armed timer depends on the relative expiry
  73 * time. The farther the expiry time is away the higher the array level and
  74 * therefor the granularity becomes.
  75 *
  76 * Contrary to the original timer wheel implementation, which aims for 'exact'
  77 * expiry of the timers, this implementation removes the need for recascading
  78 * the timers into the lower array levels. The previous 'classic' timer wheel
  79 * implementation of the kernel already violated the 'exact' expiry by adding
  80 * slack to the expiry time to provide batched expiration. The granularity
  81 * levels provide implicit batching.
  82 *
  83 * This is an optimization of the original timer wheel implementation for the
  84 * majority of the timer wheel use cases: timeouts. The vast majority of
  85 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  86 * the timeout expires it indicates that normal operation is disturbed, so it
  87 * does not matter much whether the timeout comes with a slight delay.
  88 *
  89 * The only exception to this are networking timers with a small expiry
  90 * time. They rely on the granularity. Those fit into the first wheel level,
  91 * which has HZ granularity.
  92 *
  93 * We don't have cascading anymore. timers with a expiry time above the
  94 * capacity of the last wheel level are force expired at the maximum timeout
  95 * value of the last wheel level. From data sampling we know that the maximum
  96 * value observed is 5 days (network connection tracking), so this should not
  97 * be an issue.
  98 *
  99 * The currently chosen array constants values are a good compromise between
 100 * array size and granularity.
 101 *
 102 * This results in the following granularity and range levels:
 103 *
 104 * HZ 1000 steps
 105 * Level Offset  Granularity            Range
 106 *  0      0         1 ms                0 ms -         63 ms
 107 *  1     64         8 ms               64 ms -        511 ms
 108 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 109 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 110 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 111 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 112 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 113 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 114 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 115 *
 116 * HZ  300
 117 * Level Offset  Granularity            Range
 118 *  0      0         3 ms                0 ms -        210 ms
 119 *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 120 *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 121 *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 122 *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 123 *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 124 *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 125 *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 126 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 127 *
 128 * HZ  250
 129 * Level Offset  Granularity            Range
 130 *  0      0         4 ms                0 ms -        255 ms
 131 *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 132 *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 133 *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 134 *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 135 *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 136 *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 137 *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 138 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 139 *
 140 * HZ  100
 141 * Level Offset  Granularity            Range
 142 *  0      0         10 ms               0 ms -        630 ms
 143 *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 144 *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 145 *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 146 *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 147 *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 148 *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 149 *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 150 */
 151
 152/* Clock divisor for the next level */
 153#define LVL_CLK_SHIFT   3
 154#define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
 155#define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
 156#define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
 157#define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
 158
 159/*
 160 * The time start value for each level to select the bucket at enqueue
 161 * time. We start from the last possible delta of the previous level
 162 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
 163 */
 164#define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 165
 166/* Size of each clock level */
 167#define LVL_BITS        6
 168#define LVL_SIZE        (1UL << LVL_BITS)
 169#define LVL_MASK        (LVL_SIZE - 1)
 170#define LVL_OFFS(n)     ((n) * LVL_SIZE)
 171
 172/* Level depth */
 173#if HZ > 100
 174# define LVL_DEPTH      9
 175# else
 176# define LVL_DEPTH      8
 177#endif
 178
 179/* The cutoff (max. capacity of the wheel) */
 180#define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
 181#define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 182
 183/*
 184 * The resulting wheel size. If NOHZ is configured we allocate two
 185 * wheels so we have a separate storage for the deferrable timers.
 186 */
 187#define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
 188
 189#ifdef CONFIG_NO_HZ_COMMON
 190# define NR_BASES       2
 191# define BASE_STD       0
 192# define BASE_DEF       1
 193#else
 194# define NR_BASES       1
 195# define BASE_STD       0
 196# define BASE_DEF       0
 197#endif
 198
 199struct timer_base {
 200        raw_spinlock_t          lock;
 201        struct timer_list       *running_timer;
 202#ifdef CONFIG_PREEMPT_RT
 203        spinlock_t              expiry_lock;
 204        atomic_t                timer_waiters;
 205#endif
 206        unsigned long           clk;
 207        unsigned long           next_expiry;
 208        unsigned int            cpu;
 209        bool                    next_expiry_recalc;
 210        bool                    is_idle;
 211        bool                    timers_pending;
 212        DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 213        struct hlist_head       vectors[WHEEL_SIZE];
 214} ____cacheline_aligned;
 215
 216static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 217
 218#ifdef CONFIG_NO_HZ_COMMON
 219
 220static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 221static DEFINE_MUTEX(timer_keys_mutex);
 222
 223static void timer_update_keys(struct work_struct *work);
 224static DECLARE_WORK(timer_update_work, timer_update_keys);
 225
 226#ifdef CONFIG_SMP
 227static unsigned int sysctl_timer_migration = 1;
 228
 229DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 230
 231static void timers_update_migration(void)
 232{
 233        if (sysctl_timer_migration && tick_nohz_active)
 234                static_branch_enable(&timers_migration_enabled);
 235        else
 236                static_branch_disable(&timers_migration_enabled);
 237}
 238
 239#ifdef CONFIG_SYSCTL
 240static int timer_migration_handler(struct ctl_table *table, int write,
 241                            void *buffer, size_t *lenp, loff_t *ppos)
 242{
 243        int ret;
 244
 245        mutex_lock(&timer_keys_mutex);
 246        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 247        if (!ret && write)
 248                timers_update_migration();
 249        mutex_unlock(&timer_keys_mutex);
 250        return ret;
 251}
 252
 253static struct ctl_table timer_sysctl[] = {
 254        {
 255                .procname       = "timer_migration",
 256                .data           = &sysctl_timer_migration,
 257                .maxlen         = sizeof(unsigned int),
 258                .mode           = 0644,
 259                .proc_handler   = timer_migration_handler,
 260                .extra1         = SYSCTL_ZERO,
 261                .extra2         = SYSCTL_ONE,
 262        },
 263        {}
 264};
 265
 266static int __init timer_sysctl_init(void)
 267{
 268        register_sysctl("kernel", timer_sysctl);
 269        return 0;
 270}
 271device_initcall(timer_sysctl_init);
 272#endif /* CONFIG_SYSCTL */
 273#else /* CONFIG_SMP */
 274static inline void timers_update_migration(void) { }
 275#endif /* !CONFIG_SMP */
 276
 277static void timer_update_keys(struct work_struct *work)
 278{
 279        mutex_lock(&timer_keys_mutex);
 280        timers_update_migration();
 281        static_branch_enable(&timers_nohz_active);
 282        mutex_unlock(&timer_keys_mutex);
 283}
 284
 285void timers_update_nohz(void)
 286{
 287        schedule_work(&timer_update_work);
 288}
 289
 290static inline bool is_timers_nohz_active(void)
 291{
 292        return static_branch_unlikely(&timers_nohz_active);
 293}
 294#else
 295static inline bool is_timers_nohz_active(void) { return false; }
 296#endif /* NO_HZ_COMMON */
 297
 298static unsigned long round_jiffies_common(unsigned long j, int cpu,
 299                bool force_up)
 300{
 301        int rem;
 302        unsigned long original = j;
 303
 304        /*
 305         * We don't want all cpus firing their timers at once hitting the
 306         * same lock or cachelines, so we skew each extra cpu with an extra
 307         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 308         * already did this.
 309         * The skew is done by adding 3*cpunr, then round, then subtract this
 310         * extra offset again.
 311         */
 312        j += cpu * 3;
 313
 314        rem = j % HZ;
 315
 316        /*
 317         * If the target jiffie is just after a whole second (which can happen
 318         * due to delays of the timer irq, long irq off times etc etc) then
 319         * we should round down to the whole second, not up. Use 1/4th second
 320         * as cutoff for this rounding as an extreme upper bound for this.
 321         * But never round down if @force_up is set.
 322         */
 323        if (rem < HZ/4 && !force_up) /* round down */
 324                j = j - rem;
 325        else /* round up */
 326                j = j - rem + HZ;
 327
 328        /* now that we have rounded, subtract the extra skew again */
 329        j -= cpu * 3;
 330
 331        /*
 332         * Make sure j is still in the future. Otherwise return the
 333         * unmodified value.
 334         */
 335        return time_is_after_jiffies(j) ? j : original;
 336}
 337
 338/**
 339 * __round_jiffies - function to round jiffies to a full second
 340 * @j: the time in (absolute) jiffies that should be rounded
 341 * @cpu: the processor number on which the timeout will happen
 342 *
 343 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 344 * up or down to (approximately) full seconds. This is useful for timers
 345 * for which the exact time they fire does not matter too much, as long as
 346 * they fire approximately every X seconds.
 347 *
 348 * By rounding these timers to whole seconds, all such timers will fire
 349 * at the same time, rather than at various times spread out. The goal
 350 * of this is to have the CPU wake up less, which saves power.
 351 *
 352 * The exact rounding is skewed for each processor to avoid all
 353 * processors firing at the exact same time, which could lead
 354 * to lock contention or spurious cache line bouncing.
 355 *
 356 * The return value is the rounded version of the @j parameter.
 357 */
 358unsigned long __round_jiffies(unsigned long j, int cpu)
 359{
 360        return round_jiffies_common(j, cpu, false);
 361}
 362EXPORT_SYMBOL_GPL(__round_jiffies);
 363
 364/**
 365 * __round_jiffies_relative - function to round jiffies to a full second
 366 * @j: the time in (relative) jiffies that should be rounded
 367 * @cpu: the processor number on which the timeout will happen
 368 *
 369 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 370 * up or down to (approximately) full seconds. This is useful for timers
 371 * for which the exact time they fire does not matter too much, as long as
 372 * they fire approximately every X seconds.
 373 *
 374 * By rounding these timers to whole seconds, all such timers will fire
 375 * at the same time, rather than at various times spread out. The goal
 376 * of this is to have the CPU wake up less, which saves power.
 377 *
 378 * The exact rounding is skewed for each processor to avoid all
 379 * processors firing at the exact same time, which could lead
 380 * to lock contention or spurious cache line bouncing.
 381 *
 382 * The return value is the rounded version of the @j parameter.
 383 */
 384unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 385{
 386        unsigned long j0 = jiffies;
 387
 388        /* Use j0 because jiffies might change while we run */
 389        return round_jiffies_common(j + j0, cpu, false) - j0;
 390}
 391EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 392
 393/**
 394 * round_jiffies - function to round jiffies to a full second
 395 * @j: the time in (absolute) jiffies that should be rounded
 396 *
 397 * round_jiffies() rounds an absolute time in the future (in jiffies)
 398 * up or down to (approximately) full seconds. This is useful for timers
 399 * for which the exact time they fire does not matter too much, as long as
 400 * they fire approximately every X seconds.
 401 *
 402 * By rounding these timers to whole seconds, all such timers will fire
 403 * at the same time, rather than at various times spread out. The goal
 404 * of this is to have the CPU wake up less, which saves power.
 405 *
 406 * The return value is the rounded version of the @j parameter.
 407 */
 408unsigned long round_jiffies(unsigned long j)
 409{
 410        return round_jiffies_common(j, raw_smp_processor_id(), false);
 411}
 412EXPORT_SYMBOL_GPL(round_jiffies);
 413
 414/**
 415 * round_jiffies_relative - function to round jiffies to a full second
 416 * @j: the time in (relative) jiffies that should be rounded
 417 *
 418 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 419 * up or down to (approximately) full seconds. This is useful for timers
 420 * for which the exact time they fire does not matter too much, as long as
 421 * they fire approximately every X seconds.
 422 *
 423 * By rounding these timers to whole seconds, all such timers will fire
 424 * at the same time, rather than at various times spread out. The goal
 425 * of this is to have the CPU wake up less, which saves power.
 426 *
 427 * The return value is the rounded version of the @j parameter.
 428 */
 429unsigned long round_jiffies_relative(unsigned long j)
 430{
 431        return __round_jiffies_relative(j, raw_smp_processor_id());
 432}
 433EXPORT_SYMBOL_GPL(round_jiffies_relative);
 434
 435/**
 436 * __round_jiffies_up - function to round jiffies up to a full second
 437 * @j: the time in (absolute) jiffies that should be rounded
 438 * @cpu: the processor number on which the timeout will happen
 439 *
 440 * This is the same as __round_jiffies() except that it will never
 441 * round down.  This is useful for timeouts for which the exact time
 442 * of firing does not matter too much, as long as they don't fire too
 443 * early.
 444 */
 445unsigned long __round_jiffies_up(unsigned long j, int cpu)
 446{
 447        return round_jiffies_common(j, cpu, true);
 448}
 449EXPORT_SYMBOL_GPL(__round_jiffies_up);
 450
 451/**
 452 * __round_jiffies_up_relative - function to round jiffies up to a full second
 453 * @j: the time in (relative) jiffies that should be rounded
 454 * @cpu: the processor number on which the timeout will happen
 455 *
 456 * This is the same as __round_jiffies_relative() except that it will never
 457 * round down.  This is useful for timeouts for which the exact time
 458 * of firing does not matter too much, as long as they don't fire too
 459 * early.
 460 */
 461unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 462{
 463        unsigned long j0 = jiffies;
 464
 465        /* Use j0 because jiffies might change while we run */
 466        return round_jiffies_common(j + j0, cpu, true) - j0;
 467}
 468EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 469
 470/**
 471 * round_jiffies_up - function to round jiffies up to a full second
 472 * @j: the time in (absolute) jiffies that should be rounded
 473 *
 474 * This is the same as round_jiffies() except that it will never
 475 * round down.  This is useful for timeouts for which the exact time
 476 * of firing does not matter too much, as long as they don't fire too
 477 * early.
 478 */
 479unsigned long round_jiffies_up(unsigned long j)
 480{
 481        return round_jiffies_common(j, raw_smp_processor_id(), true);
 482}
 483EXPORT_SYMBOL_GPL(round_jiffies_up);
 484
 485/**
 486 * round_jiffies_up_relative - function to round jiffies up to a full second
 487 * @j: the time in (relative) jiffies that should be rounded
 488 *
 489 * This is the same as round_jiffies_relative() except that it will never
 490 * round down.  This is useful for timeouts for which the exact time
 491 * of firing does not matter too much, as long as they don't fire too
 492 * early.
 493 */
 494unsigned long round_jiffies_up_relative(unsigned long j)
 495{
 496        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 497}
 498EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 499
 500
 501static inline unsigned int timer_get_idx(struct timer_list *timer)
 502{
 503        return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 504}
 505
 506static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 507{
 508        timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 509                        idx << TIMER_ARRAYSHIFT;
 510}
 511
 512/*
 513 * Helper function to calculate the array index for a given expiry
 514 * time.
 515 */
 516static inline unsigned calc_index(unsigned long expires, unsigned lvl,
 517                                  unsigned long *bucket_expiry)
 518{
 519
 520        /*
 521         * The timer wheel has to guarantee that a timer does not fire
 522         * early. Early expiry can happen due to:
 523         * - Timer is armed at the edge of a tick
 524         * - Truncation of the expiry time in the outer wheel levels
 525         *
 526         * Round up with level granularity to prevent this.
 527         */
 528        expires = (expires >> LVL_SHIFT(lvl)) + 1;
 529        *bucket_expiry = expires << LVL_SHIFT(lvl);
 530        return LVL_OFFS(lvl) + (expires & LVL_MASK);
 531}
 532
 533static int calc_wheel_index(unsigned long expires, unsigned long clk,
 534                            unsigned long *bucket_expiry)
 535{
 536        unsigned long delta = expires - clk;
 537        unsigned int idx;
 538
 539        if (delta < LVL_START(1)) {
 540                idx = calc_index(expires, 0, bucket_expiry);
 541        } else if (delta < LVL_START(2)) {
 542                idx = calc_index(expires, 1, bucket_expiry);
 543        } else if (delta < LVL_START(3)) {
 544                idx = calc_index(expires, 2, bucket_expiry);
 545        } else if (delta < LVL_START(4)) {
 546                idx = calc_index(expires, 3, bucket_expiry);
 547        } else if (delta < LVL_START(5)) {
 548                idx = calc_index(expires, 4, bucket_expiry);
 549        } else if (delta < LVL_START(6)) {
 550                idx = calc_index(expires, 5, bucket_expiry);
 551        } else if (delta < LVL_START(7)) {
 552                idx = calc_index(expires, 6, bucket_expiry);
 553        } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 554                idx = calc_index(expires, 7, bucket_expiry);
 555        } else if ((long) delta < 0) {
 556                idx = clk & LVL_MASK;
 557                *bucket_expiry = clk;
 558        } else {
 559                /*
 560                 * Force expire obscene large timeouts to expire at the
 561                 * capacity limit of the wheel.
 562                 */
 563                if (delta >= WHEEL_TIMEOUT_CUTOFF)
 564                        expires = clk + WHEEL_TIMEOUT_MAX;
 565
 566                idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
 567        }
 568        return idx;
 569}
 570
 571static void
 572trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 573{
 574        if (!is_timers_nohz_active())
 575                return;
 576
 577        /*
 578         * TODO: This wants some optimizing similar to the code below, but we
 579         * will do that when we switch from push to pull for deferrable timers.
 580         */
 581        if (timer->flags & TIMER_DEFERRABLE) {
 582                if (tick_nohz_full_cpu(base->cpu))
 583                        wake_up_nohz_cpu(base->cpu);
 584                return;
 585        }
 586
 587        /*
 588         * We might have to IPI the remote CPU if the base is idle and the
 589         * timer is not deferrable. If the other CPU is on the way to idle
 590         * then it can't set base->is_idle as we hold the base lock:
 591         */
 592        if (base->is_idle)
 593                wake_up_nohz_cpu(base->cpu);
 594}
 595
 596/*
 597 * Enqueue the timer into the hash bucket, mark it pending in
 598 * the bitmap, store the index in the timer flags then wake up
 599 * the target CPU if needed.
 600 */
 601static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 602                          unsigned int idx, unsigned long bucket_expiry)
 603{
 604
 605        hlist_add_head(&timer->entry, base->vectors + idx);
 606        __set_bit(idx, base->pending_map);
 607        timer_set_idx(timer, idx);
 608
 609        trace_timer_start(timer, timer->expires, timer->flags);
 610
 611        /*
 612         * Check whether this is the new first expiring timer. The
 613         * effective expiry time of the timer is required here
 614         * (bucket_expiry) instead of timer->expires.
 615         */
 616        if (time_before(bucket_expiry, base->next_expiry)) {
 617                /*
 618                 * Set the next expiry time and kick the CPU so it
 619                 * can reevaluate the wheel:
 620                 */
 621                base->next_expiry = bucket_expiry;
 622                base->timers_pending = true;
 623                base->next_expiry_recalc = false;
 624                trigger_dyntick_cpu(base, timer);
 625        }
 626}
 627
 628static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
 629{
 630        unsigned long bucket_expiry;
 631        unsigned int idx;
 632
 633        idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
 634        enqueue_timer(base, timer, idx, bucket_expiry);
 635}
 636
 637#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 638
 639static const struct debug_obj_descr timer_debug_descr;
 640
 641struct timer_hint {
 642        void    (*function)(struct timer_list *t);
 643        long    offset;
 644};
 645
 646#define TIMER_HINT(fn, container, timr, hintfn)                 \
 647        {                                                       \
 648                .function = fn,                                 \
 649                .offset   = offsetof(container, hintfn) -       \
 650                            offsetof(container, timr)           \
 651        }
 652
 653static const struct timer_hint timer_hints[] = {
 654        TIMER_HINT(delayed_work_timer_fn,
 655                   struct delayed_work, timer, work.func),
 656        TIMER_HINT(kthread_delayed_work_timer_fn,
 657                   struct kthread_delayed_work, timer, work.func),
 658};
 659
 660static void *timer_debug_hint(void *addr)
 661{
 662        struct timer_list *timer = addr;
 663        int i;
 664
 665        for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
 666                if (timer_hints[i].function == timer->function) {
 667                        void (**fn)(void) = addr + timer_hints[i].offset;
 668
 669                        return *fn;
 670                }
 671        }
 672
 673        return timer->function;
 674}
 675
 676static bool timer_is_static_object(void *addr)
 677{
 678        struct timer_list *timer = addr;
 679
 680        return (timer->entry.pprev == NULL &&
 681                timer->entry.next == TIMER_ENTRY_STATIC);
 682}
 683
 684/*
 685 * fixup_init is called when:
 686 * - an active object is initialized
 687 */
 688static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 689{
 690        struct timer_list *timer = addr;
 691
 692        switch (state) {
 693        case ODEBUG_STATE_ACTIVE:
 694                del_timer_sync(timer);
 695                debug_object_init(timer, &timer_debug_descr);
 696                return true;
 697        default:
 698                return false;
 699        }
 700}
 701
 702/* Stub timer callback for improperly used timers. */
 703static void stub_timer(struct timer_list *unused)
 704{
 705        WARN_ON(1);
 706}
 707
 708/*
 709 * fixup_activate is called when:
 710 * - an active object is activated
 711 * - an unknown non-static object is activated
 712 */
 713static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 714{
 715        struct timer_list *timer = addr;
 716
 717        switch (state) {
 718        case ODEBUG_STATE_NOTAVAILABLE:
 719                timer_setup(timer, stub_timer, 0);
 720                return true;
 721
 722        case ODEBUG_STATE_ACTIVE:
 723                WARN_ON(1);
 724                fallthrough;
 725        default:
 726                return false;
 727        }
 728}
 729
 730/*
 731 * fixup_free is called when:
 732 * - an active object is freed
 733 */
 734static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 735{
 736        struct timer_list *timer = addr;
 737
 738        switch (state) {
 739        case ODEBUG_STATE_ACTIVE:
 740                del_timer_sync(timer);
 741                debug_object_free(timer, &timer_debug_descr);
 742                return true;
 743        default:
 744                return false;
 745        }
 746}
 747
 748/*
 749 * fixup_assert_init is called when:
 750 * - an untracked/uninit-ed object is found
 751 */
 752static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 753{
 754        struct timer_list *timer = addr;
 755
 756        switch (state) {
 757        case ODEBUG_STATE_NOTAVAILABLE:
 758                timer_setup(timer, stub_timer, 0);
 759                return true;
 760        default:
 761                return false;
 762        }
 763}
 764
 765static const struct debug_obj_descr timer_debug_descr = {
 766        .name                   = "timer_list",
 767        .debug_hint             = timer_debug_hint,
 768        .is_static_object       = timer_is_static_object,
 769        .fixup_init             = timer_fixup_init,
 770        .fixup_activate         = timer_fixup_activate,
 771        .fixup_free             = timer_fixup_free,
 772        .fixup_assert_init      = timer_fixup_assert_init,
 773};
 774
 775static inline void debug_timer_init(struct timer_list *timer)
 776{
 777        debug_object_init(timer, &timer_debug_descr);
 778}
 779
 780static inline void debug_timer_activate(struct timer_list *timer)
 781{
 782        debug_object_activate(timer, &timer_debug_descr);
 783}
 784
 785static inline void debug_timer_deactivate(struct timer_list *timer)
 786{
 787        debug_object_deactivate(timer, &timer_debug_descr);
 788}
 789
 790static inline void debug_timer_assert_init(struct timer_list *timer)
 791{
 792        debug_object_assert_init(timer, &timer_debug_descr);
 793}
 794
 795static void do_init_timer(struct timer_list *timer,
 796                          void (*func)(struct timer_list *),
 797                          unsigned int flags,
 798                          const char *name, struct lock_class_key *key);
 799
 800void init_timer_on_stack_key(struct timer_list *timer,
 801                             void (*func)(struct timer_list *),
 802                             unsigned int flags,
 803                             const char *name, struct lock_class_key *key)
 804{
 805        debug_object_init_on_stack(timer, &timer_debug_descr);
 806        do_init_timer(timer, func, flags, name, key);
 807}
 808EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 809
 810void destroy_timer_on_stack(struct timer_list *timer)
 811{
 812        debug_object_free(timer, &timer_debug_descr);
 813}
 814EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 815
 816#else
 817static inline void debug_timer_init(struct timer_list *timer) { }
 818static inline void debug_timer_activate(struct timer_list *timer) { }
 819static inline void debug_timer_deactivate(struct timer_list *timer) { }
 820static inline void debug_timer_assert_init(struct timer_list *timer) { }
 821#endif
 822
 823static inline void debug_init(struct timer_list *timer)
 824{
 825        debug_timer_init(timer);
 826        trace_timer_init(timer);
 827}
 828
 829static inline void debug_deactivate(struct timer_list *timer)
 830{
 831        debug_timer_deactivate(timer);
 832        trace_timer_cancel(timer);
 833}
 834
 835static inline void debug_assert_init(struct timer_list *timer)
 836{
 837        debug_timer_assert_init(timer);
 838}
 839
 840static void do_init_timer(struct timer_list *timer,
 841                          void (*func)(struct timer_list *),
 842                          unsigned int flags,
 843                          const char *name, struct lock_class_key *key)
 844{
 845        timer->entry.pprev = NULL;
 846        timer->function = func;
 847        if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
 848                flags &= TIMER_INIT_FLAGS;
 849        timer->flags = flags | raw_smp_processor_id();
 850        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 851}
 852
 853/**
 854 * init_timer_key - initialize a timer
 855 * @timer: the timer to be initialized
 856 * @func: timer callback function
 857 * @flags: timer flags
 858 * @name: name of the timer
 859 * @key: lockdep class key of the fake lock used for tracking timer
 860 *       sync lock dependencies
 861 *
 862 * init_timer_key() must be done to a timer prior calling *any* of the
 863 * other timer functions.
 864 */
 865void init_timer_key(struct timer_list *timer,
 866                    void (*func)(struct timer_list *), unsigned int flags,
 867                    const char *name, struct lock_class_key *key)
 868{
 869        debug_init(timer);
 870        do_init_timer(timer, func, flags, name, key);
 871}
 872EXPORT_SYMBOL(init_timer_key);
 873
 874static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 875{
 876        struct hlist_node *entry = &timer->entry;
 877
 878        debug_deactivate(timer);
 879
 880        __hlist_del(entry);
 881        if (clear_pending)
 882                entry->pprev = NULL;
 883        entry->next = LIST_POISON2;
 884}
 885
 886static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 887                             bool clear_pending)
 888{
 889        unsigned idx = timer_get_idx(timer);
 890
 891        if (!timer_pending(timer))
 892                return 0;
 893
 894        if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
 895                __clear_bit(idx, base->pending_map);
 896                base->next_expiry_recalc = true;
 897        }
 898
 899        detach_timer(timer, clear_pending);
 900        return 1;
 901}
 902
 903static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 904{
 905        struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 906
 907        /*
 908         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 909         * to use the deferrable base.
 910         */
 911        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 912                base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 913        return base;
 914}
 915
 916static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 917{
 918        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 919
 920        /*
 921         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 922         * to use the deferrable base.
 923         */
 924        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 925                base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 926        return base;
 927}
 928
 929static inline struct timer_base *get_timer_base(u32 tflags)
 930{
 931        return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 932}
 933
 934static inline struct timer_base *
 935get_target_base(struct timer_base *base, unsigned tflags)
 936{
 937#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 938        if (static_branch_likely(&timers_migration_enabled) &&
 939            !(tflags & TIMER_PINNED))
 940                return get_timer_cpu_base(tflags, get_nohz_timer_target());
 941#endif
 942        return get_timer_this_cpu_base(tflags);
 943}
 944
 945static inline void forward_timer_base(struct timer_base *base)
 946{
 947        unsigned long jnow = READ_ONCE(jiffies);
 948
 949        /*
 950         * No need to forward if we are close enough below jiffies.
 951         * Also while executing timers, base->clk is 1 offset ahead
 952         * of jiffies to avoid endless requeuing to current jiffies.
 953         */
 954        if ((long)(jnow - base->clk) < 1)
 955                return;
 956
 957        /*
 958         * If the next expiry value is > jiffies, then we fast forward to
 959         * jiffies otherwise we forward to the next expiry value.
 960         */
 961        if (time_after(base->next_expiry, jnow)) {
 962                base->clk = jnow;
 963        } else {
 964                if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
 965                        return;
 966                base->clk = base->next_expiry;
 967        }
 968}
 969
 970
 971/*
 972 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 973 * that all timers which are tied to this base are locked, and the base itself
 974 * is locked too.
 975 *
 976 * So __run_timers/migrate_timers can safely modify all timers which could
 977 * be found in the base->vectors array.
 978 *
 979 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 980 * to wait until the migration is done.
 981 */
 982static struct timer_base *lock_timer_base(struct timer_list *timer,
 983                                          unsigned long *flags)
 984        __acquires(timer->base->lock)
 985{
 986        for (;;) {
 987                struct timer_base *base;
 988                u32 tf;
 989
 990                /*
 991                 * We need to use READ_ONCE() here, otherwise the compiler
 992                 * might re-read @tf between the check for TIMER_MIGRATING
 993                 * and spin_lock().
 994                 */
 995                tf = READ_ONCE(timer->flags);
 996
 997                if (!(tf & TIMER_MIGRATING)) {
 998                        base = get_timer_base(tf);
 999                        raw_spin_lock_irqsave(&base->lock, *flags);
1000                        if (timer->flags == tf)
1001                                return base;
1002                        raw_spin_unlock_irqrestore(&base->lock, *flags);
1003                }
1004                cpu_relax();
1005        }
1006}
1007
1008#define MOD_TIMER_PENDING_ONLY          0x01
1009#define MOD_TIMER_REDUCE                0x02
1010#define MOD_TIMER_NOTPENDING            0x04
1011
1012static inline int
1013__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1014{
1015        unsigned long clk = 0, flags, bucket_expiry;
1016        struct timer_base *base, *new_base;
1017        unsigned int idx = UINT_MAX;
1018        int ret = 0;
1019
1020        BUG_ON(!timer->function);
1021
1022        /*
1023         * This is a common optimization triggered by the networking code - if
1024         * the timer is re-modified to have the same timeout or ends up in the
1025         * same array bucket then just return:
1026         */
1027        if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1028                /*
1029                 * The downside of this optimization is that it can result in
1030                 * larger granularity than you would get from adding a new
1031                 * timer with this expiry.
1032                 */
1033                long diff = timer->expires - expires;
1034
1035                if (!diff)
1036                        return 1;
1037                if (options & MOD_TIMER_REDUCE && diff <= 0)
1038                        return 1;
1039
1040                /*
1041                 * We lock timer base and calculate the bucket index right
1042                 * here. If the timer ends up in the same bucket, then we
1043                 * just update the expiry time and avoid the whole
1044                 * dequeue/enqueue dance.
1045                 */
1046                base = lock_timer_base(timer, &flags);
1047                forward_timer_base(base);
1048
1049                if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1050                    time_before_eq(timer->expires, expires)) {
1051                        ret = 1;
1052                        goto out_unlock;
1053                }
1054
1055                clk = base->clk;
1056                idx = calc_wheel_index(expires, clk, &bucket_expiry);
1057
1058                /*
1059                 * Retrieve and compare the array index of the pending
1060                 * timer. If it matches set the expiry to the new value so a
1061                 * subsequent call will exit in the expires check above.
1062                 */
1063                if (idx == timer_get_idx(timer)) {
1064                        if (!(options & MOD_TIMER_REDUCE))
1065                                timer->expires = expires;
1066                        else if (time_after(timer->expires, expires))
1067                                timer->expires = expires;
1068                        ret = 1;
1069                        goto out_unlock;
1070                }
1071        } else {
1072                base = lock_timer_base(timer, &flags);
1073                forward_timer_base(base);
1074        }
1075
1076        ret = detach_if_pending(timer, base, false);
1077        if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1078                goto out_unlock;
1079
1080        new_base = get_target_base(base, timer->flags);
1081
1082        if (base != new_base) {
1083                /*
1084                 * We are trying to schedule the timer on the new base.
1085                 * However we can't change timer's base while it is running,
1086                 * otherwise del_timer_sync() can't detect that the timer's
1087                 * handler yet has not finished. This also guarantees that the
1088                 * timer is serialized wrt itself.
1089                 */
1090                if (likely(base->running_timer != timer)) {
1091                        /* See the comment in lock_timer_base() */
1092                        timer->flags |= TIMER_MIGRATING;
1093
1094                        raw_spin_unlock(&base->lock);
1095                        base = new_base;
1096                        raw_spin_lock(&base->lock);
1097                        WRITE_ONCE(timer->flags,
1098                                   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1099                        forward_timer_base(base);
1100                }
1101        }
1102
1103        debug_timer_activate(timer);
1104
1105        timer->expires = expires;
1106        /*
1107         * If 'idx' was calculated above and the base time did not advance
1108         * between calculating 'idx' and possibly switching the base, only
1109         * enqueue_timer() is required. Otherwise we need to (re)calculate
1110         * the wheel index via internal_add_timer().
1111         */
1112        if (idx != UINT_MAX && clk == base->clk)
1113                enqueue_timer(base, timer, idx, bucket_expiry);
1114        else
1115                internal_add_timer(base, timer);
1116
1117out_unlock:
1118        raw_spin_unlock_irqrestore(&base->lock, flags);
1119
1120        return ret;
1121}
1122
1123/**
1124 * mod_timer_pending - modify a pending timer's timeout
1125 * @timer: the pending timer to be modified
1126 * @expires: new timeout in jiffies
1127 *
1128 * mod_timer_pending() is the same for pending timers as mod_timer(),
1129 * but will not re-activate and modify already deleted timers.
1130 *
1131 * It is useful for unserialized use of timers.
1132 */
1133int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1134{
1135        return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1136}
1137EXPORT_SYMBOL(mod_timer_pending);
1138
1139/**
1140 * mod_timer - modify a timer's timeout
1141 * @timer: the timer to be modified
1142 * @expires: new timeout in jiffies
1143 *
1144 * mod_timer() is a more efficient way to update the expire field of an
1145 * active timer (if the timer is inactive it will be activated)
1146 *
1147 * mod_timer(timer, expires) is equivalent to:
1148 *
1149 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1150 *
1151 * Note that if there are multiple unserialized concurrent users of the
1152 * same timer, then mod_timer() is the only safe way to modify the timeout,
1153 * since add_timer() cannot modify an already running timer.
1154 *
1155 * The function returns whether it has modified a pending timer or not.
1156 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1157 * active timer returns 1.)
1158 */
1159int mod_timer(struct timer_list *timer, unsigned long expires)
1160{
1161        return __mod_timer(timer, expires, 0);
1162}
1163EXPORT_SYMBOL(mod_timer);
1164
1165/**
1166 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1167 * @timer:      The timer to be modified
1168 * @expires:    New timeout in jiffies
1169 *
1170 * timer_reduce() is very similar to mod_timer(), except that it will only
1171 * modify a running timer if that would reduce the expiration time (it will
1172 * start a timer that isn't running).
1173 */
1174int timer_reduce(struct timer_list *timer, unsigned long expires)
1175{
1176        return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1177}
1178EXPORT_SYMBOL(timer_reduce);
1179
1180/**
1181 * add_timer - start a timer
1182 * @timer: the timer to be added
1183 *
1184 * The kernel will do a ->function(@timer) callback from the
1185 * timer interrupt at the ->expires point in the future. The
1186 * current time is 'jiffies'.
1187 *
1188 * The timer's ->expires, ->function fields must be set prior calling this
1189 * function.
1190 *
1191 * Timers with an ->expires field in the past will be executed in the next
1192 * timer tick.
1193 */
1194void add_timer(struct timer_list *timer)
1195{
1196        BUG_ON(timer_pending(timer));
1197        __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1198}
1199EXPORT_SYMBOL(add_timer);
1200
1201/**
1202 * add_timer_on - start a timer on a particular CPU
1203 * @timer: the timer to be added
1204 * @cpu: the CPU to start it on
1205 *
1206 * This is not very scalable on SMP. Double adds are not possible.
1207 */
1208void add_timer_on(struct timer_list *timer, int cpu)
1209{
1210        struct timer_base *new_base, *base;
1211        unsigned long flags;
1212
1213        BUG_ON(timer_pending(timer) || !timer->function);
1214
1215        new_base = get_timer_cpu_base(timer->flags, cpu);
1216
1217        /*
1218         * If @timer was on a different CPU, it should be migrated with the
1219         * old base locked to prevent other operations proceeding with the
1220         * wrong base locked.  See lock_timer_base().
1221         */
1222        base = lock_timer_base(timer, &flags);
1223        if (base != new_base) {
1224                timer->flags |= TIMER_MIGRATING;
1225
1226                raw_spin_unlock(&base->lock);
1227                base = new_base;
1228                raw_spin_lock(&base->lock);
1229                WRITE_ONCE(timer->flags,
1230                           (timer->flags & ~TIMER_BASEMASK) | cpu);
1231        }
1232        forward_timer_base(base);
1233
1234        debug_timer_activate(timer);
1235        internal_add_timer(base, timer);
1236        raw_spin_unlock_irqrestore(&base->lock, flags);
1237}
1238EXPORT_SYMBOL_GPL(add_timer_on);
1239
1240/**
1241 * del_timer - deactivate a timer.
1242 * @timer: the timer to be deactivated
1243 *
1244 * del_timer() deactivates a timer - this works on both active and inactive
1245 * timers.
1246 *
1247 * The function returns whether it has deactivated a pending timer or not.
1248 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1249 * active timer returns 1.)
1250 */
1251int del_timer(struct timer_list *timer)
1252{
1253        struct timer_base *base;
1254        unsigned long flags;
1255        int ret = 0;
1256
1257        debug_assert_init(timer);
1258
1259        if (timer_pending(timer)) {
1260                base = lock_timer_base(timer, &flags);
1261                ret = detach_if_pending(timer, base, true);
1262                raw_spin_unlock_irqrestore(&base->lock, flags);
1263        }
1264
1265        return ret;
1266}
1267EXPORT_SYMBOL(del_timer);
1268
1269/**
1270 * try_to_del_timer_sync - Try to deactivate a timer
1271 * @timer: timer to delete
1272 *
1273 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1274 * exit the timer is not queued and the handler is not running on any CPU.
1275 */
1276int try_to_del_timer_sync(struct timer_list *timer)
1277{
1278        struct timer_base *base;
1279        unsigned long flags;
1280        int ret = -1;
1281
1282        debug_assert_init(timer);
1283
1284        base = lock_timer_base(timer, &flags);
1285
1286        if (base->running_timer != timer)
1287                ret = detach_if_pending(timer, base, true);
1288
1289        raw_spin_unlock_irqrestore(&base->lock, flags);
1290
1291        return ret;
1292}
1293EXPORT_SYMBOL(try_to_del_timer_sync);
1294
1295#ifdef CONFIG_PREEMPT_RT
1296static __init void timer_base_init_expiry_lock(struct timer_base *base)
1297{
1298        spin_lock_init(&base->expiry_lock);
1299}
1300
1301static inline void timer_base_lock_expiry(struct timer_base *base)
1302{
1303        spin_lock(&base->expiry_lock);
1304}
1305
1306static inline void timer_base_unlock_expiry(struct timer_base *base)
1307{
1308        spin_unlock(&base->expiry_lock);
1309}
1310
1311/*
1312 * The counterpart to del_timer_wait_running().
1313 *
1314 * If there is a waiter for base->expiry_lock, then it was waiting for the
1315 * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1316 * the waiter to acquire the lock and make progress.
1317 */
1318static void timer_sync_wait_running(struct timer_base *base)
1319{
1320        if (atomic_read(&base->timer_waiters)) {
1321                raw_spin_unlock_irq(&base->lock);
1322                spin_unlock(&base->expiry_lock);
1323                spin_lock(&base->expiry_lock);
1324                raw_spin_lock_irq(&base->lock);
1325        }
1326}
1327
1328/*
1329 * This function is called on PREEMPT_RT kernels when the fast path
1330 * deletion of a timer failed because the timer callback function was
1331 * running.
1332 *
1333 * This prevents priority inversion, if the softirq thread on a remote CPU
1334 * got preempted, and it prevents a life lock when the task which tries to
1335 * delete a timer preempted the softirq thread running the timer callback
1336 * function.
1337 */
1338static void del_timer_wait_running(struct timer_list *timer)
1339{
1340        u32 tf;
1341
1342        tf = READ_ONCE(timer->flags);
1343        if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1344                struct timer_base *base = get_timer_base(tf);
1345
1346                /*
1347                 * Mark the base as contended and grab the expiry lock,
1348                 * which is held by the softirq across the timer
1349                 * callback. Drop the lock immediately so the softirq can
1350                 * expire the next timer. In theory the timer could already
1351                 * be running again, but that's more than unlikely and just
1352                 * causes another wait loop.
1353                 */
1354                atomic_inc(&base->timer_waiters);
1355                spin_lock_bh(&base->expiry_lock);
1356                atomic_dec(&base->timer_waiters);
1357                spin_unlock_bh(&base->expiry_lock);
1358        }
1359}
1360#else
1361static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1362static inline void timer_base_lock_expiry(struct timer_base *base) { }
1363static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1364static inline void timer_sync_wait_running(struct timer_base *base) { }
1365static inline void del_timer_wait_running(struct timer_list *timer) { }
1366#endif
1367
1368#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1369/**
1370 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1371 * @timer: the timer to be deactivated
1372 *
1373 * This function only differs from del_timer() on SMP: besides deactivating
1374 * the timer it also makes sure the handler has finished executing on other
1375 * CPUs.
1376 *
1377 * Synchronization rules: Callers must prevent restarting of the timer,
1378 * otherwise this function is meaningless. It must not be called from
1379 * interrupt contexts unless the timer is an irqsafe one. The caller must
1380 * not hold locks which would prevent completion of the timer's
1381 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1382 * timer is not queued and the handler is not running on any CPU.
1383 *
1384 * Note: For !irqsafe timers, you must not hold locks that are held in
1385 *   interrupt context while calling this function. Even if the lock has
1386 *   nothing to do with the timer in question.  Here's why::
1387 *
1388 *    CPU0                             CPU1
1389 *    ----                             ----
1390 *                                     <SOFTIRQ>
1391 *                                       call_timer_fn();
1392 *                                       base->running_timer = mytimer;
1393 *    spin_lock_irq(somelock);
1394 *                                     <IRQ>
1395 *                                        spin_lock(somelock);
1396 *    del_timer_sync(mytimer);
1397 *    while (base->running_timer == mytimer);
1398 *
1399 * Now del_timer_sync() will never return and never release somelock.
1400 * The interrupt on the other CPU is waiting to grab somelock but
1401 * it has interrupted the softirq that CPU0 is waiting to finish.
1402 *
1403 * The function returns whether it has deactivated a pending timer or not.
1404 */
1405int del_timer_sync(struct timer_list *timer)
1406{
1407        int ret;
1408
1409#ifdef CONFIG_LOCKDEP
1410        unsigned long flags;
1411
1412        /*
1413         * If lockdep gives a backtrace here, please reference
1414         * the synchronization rules above.
1415         */
1416        local_irq_save(flags);
1417        lock_map_acquire(&timer->lockdep_map);
1418        lock_map_release(&timer->lockdep_map);
1419        local_irq_restore(flags);
1420#endif
1421        /*
1422         * don't use it in hardirq context, because it
1423         * could lead to deadlock.
1424         */
1425        WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1426
1427        /*
1428         * Must be able to sleep on PREEMPT_RT because of the slowpath in
1429         * del_timer_wait_running().
1430         */
1431        if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1432                lockdep_assert_preemption_enabled();
1433
1434        do {
1435                ret = try_to_del_timer_sync(timer);
1436
1437                if (unlikely(ret < 0)) {
1438                        del_timer_wait_running(timer);
1439                        cpu_relax();
1440                }
1441        } while (ret < 0);
1442
1443        return ret;
1444}
1445EXPORT_SYMBOL(del_timer_sync);
1446#endif
1447
1448static void call_timer_fn(struct timer_list *timer,
1449                          void (*fn)(struct timer_list *),
1450                          unsigned long baseclk)
1451{
1452        int count = preempt_count();
1453
1454#ifdef CONFIG_LOCKDEP
1455        /*
1456         * It is permissible to free the timer from inside the
1457         * function that is called from it, this we need to take into
1458         * account for lockdep too. To avoid bogus "held lock freed"
1459         * warnings as well as problems when looking into
1460         * timer->lockdep_map, make a copy and use that here.
1461         */
1462        struct lockdep_map lockdep_map;
1463
1464        lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1465#endif
1466        /*
1467         * Couple the lock chain with the lock chain at
1468         * del_timer_sync() by acquiring the lock_map around the fn()
1469         * call here and in del_timer_sync().
1470         */
1471        lock_map_acquire(&lockdep_map);
1472
1473        trace_timer_expire_entry(timer, baseclk);
1474        fn(timer);
1475        trace_timer_expire_exit(timer);
1476
1477        lock_map_release(&lockdep_map);
1478
1479        if (count != preempt_count()) {
1480                WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1481                          fn, count, preempt_count());
1482                /*
1483                 * Restore the preempt count. That gives us a decent
1484                 * chance to survive and extract information. If the
1485                 * callback kept a lock held, bad luck, but not worse
1486                 * than the BUG() we had.
1487                 */
1488                preempt_count_set(count);
1489        }
1490}
1491
1492static void expire_timers(struct timer_base *base, struct hlist_head *head)
1493{
1494        /*
1495         * This value is required only for tracing. base->clk was
1496         * incremented directly before expire_timers was called. But expiry
1497         * is related to the old base->clk value.
1498         */
1499        unsigned long baseclk = base->clk - 1;
1500
1501        while (!hlist_empty(head)) {
1502                struct timer_list *timer;
1503                void (*fn)(struct timer_list *);
1504
1505                timer = hlist_entry(head->first, struct timer_list, entry);
1506
1507                base->running_timer = timer;
1508                detach_timer(timer, true);
1509
1510                fn = timer->function;
1511
1512                if (timer->flags & TIMER_IRQSAFE) {
1513                        raw_spin_unlock(&base->lock);
1514                        call_timer_fn(timer, fn, baseclk);
1515                        raw_spin_lock(&base->lock);
1516                        base->running_timer = NULL;
1517                } else {
1518                        raw_spin_unlock_irq(&base->lock);
1519                        call_timer_fn(timer, fn, baseclk);
1520                        raw_spin_lock_irq(&base->lock);
1521                        base->running_timer = NULL;
1522                        timer_sync_wait_running(base);
1523                }
1524        }
1525}
1526
1527static int collect_expired_timers(struct timer_base *base,
1528                                  struct hlist_head *heads)
1529{
1530        unsigned long clk = base->clk = base->next_expiry;
1531        struct hlist_head *vec;
1532        int i, levels = 0;
1533        unsigned int idx;
1534
1535        for (i = 0; i < LVL_DEPTH; i++) {
1536                idx = (clk & LVL_MASK) + i * LVL_SIZE;
1537
1538                if (__test_and_clear_bit(idx, base->pending_map)) {
1539                        vec = base->vectors + idx;
1540                        hlist_move_list(vec, heads++);
1541                        levels++;
1542                }
1543                /* Is it time to look at the next level? */
1544                if (clk & LVL_CLK_MASK)
1545                        break;
1546                /* Shift clock for the next level granularity */
1547                clk >>= LVL_CLK_SHIFT;
1548        }
1549        return levels;
1550}
1551
1552/*
1553 * Find the next pending bucket of a level. Search from level start (@offset)
1554 * + @clk upwards and if nothing there, search from start of the level
1555 * (@offset) up to @offset + clk.
1556 */
1557static int next_pending_bucket(struct timer_base *base, unsigned offset,
1558                               unsigned clk)
1559{
1560        unsigned pos, start = offset + clk;
1561        unsigned end = offset + LVL_SIZE;
1562
1563        pos = find_next_bit(base->pending_map, end, start);
1564        if (pos < end)
1565                return pos - start;
1566
1567        pos = find_next_bit(base->pending_map, start, offset);
1568        return pos < start ? pos + LVL_SIZE - start : -1;
1569}
1570
1571/*
1572 * Search the first expiring timer in the various clock levels. Caller must
1573 * hold base->lock.
1574 */
1575static unsigned long __next_timer_interrupt(struct timer_base *base)
1576{
1577        unsigned long clk, next, adj;
1578        unsigned lvl, offset = 0;
1579
1580        next = base->clk + NEXT_TIMER_MAX_DELTA;
1581        clk = base->clk;
1582        for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1583                int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1584                unsigned long lvl_clk = clk & LVL_CLK_MASK;
1585
1586                if (pos >= 0) {
1587                        unsigned long tmp = clk + (unsigned long) pos;
1588
1589                        tmp <<= LVL_SHIFT(lvl);
1590                        if (time_before(tmp, next))
1591                                next = tmp;
1592
1593                        /*
1594                         * If the next expiration happens before we reach
1595                         * the next level, no need to check further.
1596                         */
1597                        if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1598                                break;
1599                }
1600                /*
1601                 * Clock for the next level. If the current level clock lower
1602                 * bits are zero, we look at the next level as is. If not we
1603                 * need to advance it by one because that's going to be the
1604                 * next expiring bucket in that level. base->clk is the next
1605                 * expiring jiffie. So in case of:
1606                 *
1607                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1608                 *  0    0    0    0    0    0
1609                 *
1610                 * we have to look at all levels @index 0. With
1611                 *
1612                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1613                 *  0    0    0    0    0    2
1614                 *
1615                 * LVL0 has the next expiring bucket @index 2. The upper
1616                 * levels have the next expiring bucket @index 1.
1617                 *
1618                 * In case that the propagation wraps the next level the same
1619                 * rules apply:
1620                 *
1621                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1622                 *  0    0    0    0    F    2
1623                 *
1624                 * So after looking at LVL0 we get:
1625                 *
1626                 * LVL5 LVL4 LVL3 LVL2 LVL1
1627                 *  0    0    0    1    0
1628                 *
1629                 * So no propagation from LVL1 to LVL2 because that happened
1630                 * with the add already, but then we need to propagate further
1631                 * from LVL2 to LVL3.
1632                 *
1633                 * So the simple check whether the lower bits of the current
1634                 * level are 0 or not is sufficient for all cases.
1635                 */
1636                adj = lvl_clk ? 1 : 0;
1637                clk >>= LVL_CLK_SHIFT;
1638                clk += adj;
1639        }
1640
1641        base->next_expiry_recalc = false;
1642        base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1643
1644        return next;
1645}
1646
1647#ifdef CONFIG_NO_HZ_COMMON
1648/*
1649 * Check, if the next hrtimer event is before the next timer wheel
1650 * event:
1651 */
1652static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1653{
1654        u64 nextevt = hrtimer_get_next_event();
1655
1656        /*
1657         * If high resolution timers are enabled
1658         * hrtimer_get_next_event() returns KTIME_MAX.
1659         */
1660        if (expires <= nextevt)
1661                return expires;
1662
1663        /*
1664         * If the next timer is already expired, return the tick base
1665         * time so the tick is fired immediately.
1666         */
1667        if (nextevt <= basem)
1668                return basem;
1669
1670        /*
1671         * Round up to the next jiffie. High resolution timers are
1672         * off, so the hrtimers are expired in the tick and we need to
1673         * make sure that this tick really expires the timer to avoid
1674         * a ping pong of the nohz stop code.
1675         *
1676         * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1677         */
1678        return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1679}
1680
1681/**
1682 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1683 * @basej:      base time jiffies
1684 * @basem:      base time clock monotonic
1685 *
1686 * Returns the tick aligned clock monotonic time of the next pending
1687 * timer or KTIME_MAX if no timer is pending.
1688 */
1689u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1690{
1691        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1692        u64 expires = KTIME_MAX;
1693        unsigned long nextevt;
1694
1695        /*
1696         * Pretend that there is no timer pending if the cpu is offline.
1697         * Possible pending timers will be migrated later to an active cpu.
1698         */
1699        if (cpu_is_offline(smp_processor_id()))
1700                return expires;
1701
1702        raw_spin_lock(&base->lock);
1703        if (base->next_expiry_recalc)
1704                base->next_expiry = __next_timer_interrupt(base);
1705        nextevt = base->next_expiry;
1706
1707        /*
1708         * We have a fresh next event. Check whether we can forward the
1709         * base. We can only do that when @basej is past base->clk
1710         * otherwise we might rewind base->clk.
1711         */
1712        if (time_after(basej, base->clk)) {
1713                if (time_after(nextevt, basej))
1714                        base->clk = basej;
1715                else if (time_after(nextevt, base->clk))
1716                        base->clk = nextevt;
1717        }
1718
1719        if (time_before_eq(nextevt, basej)) {
1720                expires = basem;
1721                base->is_idle = false;
1722        } else {
1723                if (base->timers_pending)
1724                        expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1725                /*
1726                 * If we expect to sleep more than a tick, mark the base idle.
1727                 * Also the tick is stopped so any added timer must forward
1728                 * the base clk itself to keep granularity small. This idle
1729                 * logic is only maintained for the BASE_STD base, deferrable
1730                 * timers may still see large granularity skew (by design).
1731                 */
1732                if ((expires - basem) > TICK_NSEC)
1733                        base->is_idle = true;
1734        }
1735        raw_spin_unlock(&base->lock);
1736
1737        return cmp_next_hrtimer_event(basem, expires);
1738}
1739
1740/**
1741 * timer_clear_idle - Clear the idle state of the timer base
1742 *
1743 * Called with interrupts disabled
1744 */
1745void timer_clear_idle(void)
1746{
1747        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1748
1749        /*
1750         * We do this unlocked. The worst outcome is a remote enqueue sending
1751         * a pointless IPI, but taking the lock would just make the window for
1752         * sending the IPI a few instructions smaller for the cost of taking
1753         * the lock in the exit from idle path.
1754         */
1755        base->is_idle = false;
1756}
1757#endif
1758
1759/**
1760 * __run_timers - run all expired timers (if any) on this CPU.
1761 * @base: the timer vector to be processed.
1762 */
1763static inline void __run_timers(struct timer_base *base)
1764{
1765        struct hlist_head heads[LVL_DEPTH];
1766        int levels;
1767
1768        if (time_before(jiffies, base->next_expiry))
1769                return;
1770
1771        timer_base_lock_expiry(base);
1772        raw_spin_lock_irq(&base->lock);
1773
1774        while (time_after_eq(jiffies, base->clk) &&
1775               time_after_eq(jiffies, base->next_expiry)) {
1776                levels = collect_expired_timers(base, heads);
1777                /*
1778                 * The two possible reasons for not finding any expired
1779                 * timer at this clk are that all matching timers have been
1780                 * dequeued or no timer has been queued since
1781                 * base::next_expiry was set to base::clk +
1782                 * NEXT_TIMER_MAX_DELTA.
1783                 */
1784                WARN_ON_ONCE(!levels && !base->next_expiry_recalc
1785                             && base->timers_pending);
1786                base->clk++;
1787                base->next_expiry = __next_timer_interrupt(base);
1788
1789                while (levels--)
1790                        expire_timers(base, heads + levels);
1791        }
1792        raw_spin_unlock_irq(&base->lock);
1793        timer_base_unlock_expiry(base);
1794}
1795
1796/*
1797 * This function runs timers and the timer-tq in bottom half context.
1798 */
1799static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1800{
1801        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1802
1803        __run_timers(base);
1804        if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1805                __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1806}
1807
1808/*
1809 * Called by the local, per-CPU timer interrupt on SMP.
1810 */
1811static void run_local_timers(void)
1812{
1813        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1814
1815        hrtimer_run_queues();
1816        /* Raise the softirq only if required. */
1817        if (time_before(jiffies, base->next_expiry)) {
1818                if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1819                        return;
1820                /* CPU is awake, so check the deferrable base. */
1821                base++;
1822                if (time_before(jiffies, base->next_expiry))
1823                        return;
1824        }
1825        raise_softirq(TIMER_SOFTIRQ);
1826}
1827
1828/*
1829 * Called from the timer interrupt handler to charge one tick to the current
1830 * process.  user_tick is 1 if the tick is user time, 0 for system.
1831 */
1832void update_process_times(int user_tick)
1833{
1834        struct task_struct *p = current;
1835
1836        /* Note: this timer irq context must be accounted for as well. */
1837        account_process_tick(p, user_tick);
1838        run_local_timers();
1839        rcu_sched_clock_irq(user_tick);
1840#ifdef CONFIG_IRQ_WORK
1841        if (in_irq())
1842                irq_work_tick();
1843#endif
1844        scheduler_tick();
1845        if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1846                run_posix_cpu_timers();
1847}
1848
1849/*
1850 * Since schedule_timeout()'s timer is defined on the stack, it must store
1851 * the target task on the stack as well.
1852 */
1853struct process_timer {
1854        struct timer_list timer;
1855        struct task_struct *task;
1856};
1857
1858static void process_timeout(struct timer_list *t)
1859{
1860        struct process_timer *timeout = from_timer(timeout, t, timer);
1861
1862        wake_up_process(timeout->task);
1863}
1864
1865/**
1866 * schedule_timeout - sleep until timeout
1867 * @timeout: timeout value in jiffies
1868 *
1869 * Make the current task sleep until @timeout jiffies have elapsed.
1870 * The function behavior depends on the current task state
1871 * (see also set_current_state() description):
1872 *
1873 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1874 * at all. That happens because sched_submit_work() does nothing for
1875 * tasks in %TASK_RUNNING state.
1876 *
1877 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1878 * pass before the routine returns unless the current task is explicitly
1879 * woken up, (e.g. by wake_up_process()).
1880 *
1881 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1882 * delivered to the current task or the current task is explicitly woken
1883 * up.
1884 *
1885 * The current task state is guaranteed to be %TASK_RUNNING when this
1886 * routine returns.
1887 *
1888 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1889 * the CPU away without a bound on the timeout. In this case the return
1890 * value will be %MAX_SCHEDULE_TIMEOUT.
1891 *
1892 * Returns 0 when the timer has expired otherwise the remaining time in
1893 * jiffies will be returned. In all cases the return value is guaranteed
1894 * to be non-negative.
1895 */
1896signed long __sched schedule_timeout(signed long timeout)
1897{
1898        struct process_timer timer;
1899        unsigned long expire;
1900
1901        switch (timeout)
1902        {
1903        case MAX_SCHEDULE_TIMEOUT:
1904                /*
1905                 * These two special cases are useful to be comfortable
1906                 * in the caller. Nothing more. We could take
1907                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1908                 * but I' d like to return a valid offset (>=0) to allow
1909                 * the caller to do everything it want with the retval.
1910                 */
1911                schedule();
1912                goto out;
1913        default:
1914                /*
1915                 * Another bit of PARANOID. Note that the retval will be
1916                 * 0 since no piece of kernel is supposed to do a check
1917                 * for a negative retval of schedule_timeout() (since it
1918                 * should never happens anyway). You just have the printk()
1919                 * that will tell you if something is gone wrong and where.
1920                 */
1921                if (timeout < 0) {
1922                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1923                                "value %lx\n", timeout);
1924                        dump_stack();
1925                        __set_current_state(TASK_RUNNING);
1926                        goto out;
1927                }
1928        }
1929
1930        expire = timeout + jiffies;
1931
1932        timer.task = current;
1933        timer_setup_on_stack(&timer.timer, process_timeout, 0);
1934        __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1935        schedule();
1936        del_singleshot_timer_sync(&timer.timer);
1937
1938        /* Remove the timer from the object tracker */
1939        destroy_timer_on_stack(&timer.timer);
1940
1941        timeout = expire - jiffies;
1942
1943 out:
1944        return timeout < 0 ? 0 : timeout;
1945}
1946EXPORT_SYMBOL(schedule_timeout);
1947
1948/*
1949 * We can use __set_current_state() here because schedule_timeout() calls
1950 * schedule() unconditionally.
1951 */
1952signed long __sched schedule_timeout_interruptible(signed long timeout)
1953{
1954        __set_current_state(TASK_INTERRUPTIBLE);
1955        return schedule_timeout(timeout);
1956}
1957EXPORT_SYMBOL(schedule_timeout_interruptible);
1958
1959signed long __sched schedule_timeout_killable(signed long timeout)
1960{
1961        __set_current_state(TASK_KILLABLE);
1962        return schedule_timeout(timeout);
1963}
1964EXPORT_SYMBOL(schedule_timeout_killable);
1965
1966signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1967{
1968        __set_current_state(TASK_UNINTERRUPTIBLE);
1969        return schedule_timeout(timeout);
1970}
1971EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1972
1973/*
1974 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1975 * to load average.
1976 */
1977signed long __sched schedule_timeout_idle(signed long timeout)
1978{
1979        __set_current_state(TASK_IDLE);
1980        return schedule_timeout(timeout);
1981}
1982EXPORT_SYMBOL(schedule_timeout_idle);
1983
1984#ifdef CONFIG_HOTPLUG_CPU
1985static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1986{
1987        struct timer_list *timer;
1988        int cpu = new_base->cpu;
1989
1990        while (!hlist_empty(head)) {
1991                timer = hlist_entry(head->first, struct timer_list, entry);
1992                detach_timer(timer, false);
1993                timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1994                internal_add_timer(new_base, timer);
1995        }
1996}
1997
1998int timers_prepare_cpu(unsigned int cpu)
1999{
2000        struct timer_base *base;
2001        int b;
2002
2003        for (b = 0; b < NR_BASES; b++) {
2004                base = per_cpu_ptr(&timer_bases[b], cpu);
2005                base->clk = jiffies;
2006                base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2007                base->next_expiry_recalc = false;
2008                base->timers_pending = false;
2009                base->is_idle = false;
2010        }
2011        return 0;
2012}
2013
2014int timers_dead_cpu(unsigned int cpu)
2015{
2016        struct timer_base *old_base;
2017        struct timer_base *new_base;
2018        int b, i;
2019
2020        BUG_ON(cpu_online(cpu));
2021
2022        for (b = 0; b < NR_BASES; b++) {
2023                old_base = per_cpu_ptr(&timer_bases[b], cpu);
2024                new_base = get_cpu_ptr(&timer_bases[b]);
2025                /*
2026                 * The caller is globally serialized and nobody else
2027                 * takes two locks at once, deadlock is not possible.
2028                 */
2029                raw_spin_lock_irq(&new_base->lock);
2030                raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2031
2032                /*
2033                 * The current CPUs base clock might be stale. Update it
2034                 * before moving the timers over.
2035                 */
2036                forward_timer_base(new_base);
2037
2038                BUG_ON(old_base->running_timer);
2039
2040                for (i = 0; i < WHEEL_SIZE; i++)
2041                        migrate_timer_list(new_base, old_base->vectors + i);
2042
2043                raw_spin_unlock(&old_base->lock);
2044                raw_spin_unlock_irq(&new_base->lock);
2045                put_cpu_ptr(&timer_bases);
2046        }
2047        return 0;
2048}
2049
2050#endif /* CONFIG_HOTPLUG_CPU */
2051
2052static void __init init_timer_cpu(int cpu)
2053{
2054        struct timer_base *base;
2055        int i;
2056
2057        for (i = 0; i < NR_BASES; i++) {
2058                base = per_cpu_ptr(&timer_bases[i], cpu);
2059                base->cpu = cpu;
2060                raw_spin_lock_init(&base->lock);
2061                base->clk = jiffies;
2062                base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2063                timer_base_init_expiry_lock(base);
2064        }
2065}
2066
2067static void __init init_timer_cpus(void)
2068{
2069        int cpu;
2070
2071        for_each_possible_cpu(cpu)
2072                init_timer_cpu(cpu);
2073}
2074
2075void __init init_timers(void)
2076{
2077        init_timer_cpus();
2078        posix_cputimers_init_work();
2079        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2080}
2081
2082/**
2083 * msleep - sleep safely even with waitqueue interruptions
2084 * @msecs: Time in milliseconds to sleep for
2085 */
2086void msleep(unsigned int msecs)
2087{
2088        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2089
2090        while (timeout)
2091                timeout = schedule_timeout_uninterruptible(timeout);
2092}
2093
2094EXPORT_SYMBOL(msleep);
2095
2096/**
2097 * msleep_interruptible - sleep waiting for signals
2098 * @msecs: Time in milliseconds to sleep for
2099 */
2100unsigned long msleep_interruptible(unsigned int msecs)
2101{
2102        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2103
2104        while (timeout && !signal_pending(current))
2105                timeout = schedule_timeout_interruptible(timeout);
2106        return jiffies_to_msecs(timeout);
2107}
2108
2109EXPORT_SYMBOL(msleep_interruptible);
2110
2111/**
2112 * usleep_range_state - Sleep for an approximate time in a given state
2113 * @min:        Minimum time in usecs to sleep
2114 * @max:        Maximum time in usecs to sleep
2115 * @state:      State of the current task that will be while sleeping
2116 *
2117 * In non-atomic context where the exact wakeup time is flexible, use
2118 * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2119 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2120 * power usage by allowing hrtimers to take advantage of an already-
2121 * scheduled interrupt instead of scheduling a new one just for this sleep.
2122 */
2123void __sched usleep_range_state(unsigned long min, unsigned long max,
2124                                unsigned int state)
2125{
2126        ktime_t exp = ktime_add_us(ktime_get(), min);
2127        u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2128
2129        for (;;) {
2130                __set_current_state(state);
2131                /* Do not return before the requested sleep time has elapsed */
2132                if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2133                        break;
2134        }
2135}
2136EXPORT_SYMBOL(usleep_range_state);
2137