linux/mm/hugetlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
  33#include <linux/migrate.h>
  34#include <linux/nospec.h>
  35#include <linux/delayacct.h>
  36
  37#include <asm/page.h>
  38#include <asm/pgalloc.h>
  39#include <asm/tlb.h>
  40
  41#include <linux/io.h>
  42#include <linux/hugetlb.h>
  43#include <linux/hugetlb_cgroup.h>
  44#include <linux/node.h>
  45#include <linux/page_owner.h>
  46#include "internal.h"
  47#include "hugetlb_vmemmap.h"
  48
  49int hugetlb_max_hstate __read_mostly;
  50unsigned int default_hstate_idx;
  51struct hstate hstates[HUGE_MAX_HSTATE];
  52
  53#ifdef CONFIG_CMA
  54static struct cma *hugetlb_cma[MAX_NUMNODES];
  55static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
  56static bool hugetlb_cma_page(struct page *page, unsigned int order)
  57{
  58        return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
  59                                1 << order);
  60}
  61#else
  62static bool hugetlb_cma_page(struct page *page, unsigned int order)
  63{
  64        return false;
  65}
  66#endif
  67static unsigned long hugetlb_cma_size __initdata;
  68
  69/*
  70 * Minimum page order among possible hugepage sizes, set to a proper value
  71 * at boot time.
  72 */
  73static unsigned int minimum_order __read_mostly = UINT_MAX;
  74
  75__initdata LIST_HEAD(huge_boot_pages);
  76
  77/* for command line parsing */
  78static struct hstate * __initdata parsed_hstate;
  79static unsigned long __initdata default_hstate_max_huge_pages;
  80static bool __initdata parsed_valid_hugepagesz = true;
  81static bool __initdata parsed_default_hugepagesz;
  82static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
  83
  84/*
  85 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  86 * free_huge_pages, and surplus_huge_pages.
  87 */
  88DEFINE_SPINLOCK(hugetlb_lock);
  89
  90/*
  91 * Serializes faults on the same logical page.  This is used to
  92 * prevent spurious OOMs when the hugepage pool is fully utilized.
  93 */
  94static int num_fault_mutexes;
  95struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  96
  97/* Forward declaration */
  98static int hugetlb_acct_memory(struct hstate *h, long delta);
  99
 100static inline bool subpool_is_free(struct hugepage_subpool *spool)
 101{
 102        if (spool->count)
 103                return false;
 104        if (spool->max_hpages != -1)
 105                return spool->used_hpages == 0;
 106        if (spool->min_hpages != -1)
 107                return spool->rsv_hpages == spool->min_hpages;
 108
 109        return true;
 110}
 111
 112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
 113                                                unsigned long irq_flags)
 114{
 115        spin_unlock_irqrestore(&spool->lock, irq_flags);
 116
 117        /* If no pages are used, and no other handles to the subpool
 118         * remain, give up any reservations based on minimum size and
 119         * free the subpool */
 120        if (subpool_is_free(spool)) {
 121                if (spool->min_hpages != -1)
 122                        hugetlb_acct_memory(spool->hstate,
 123                                                -spool->min_hpages);
 124                kfree(spool);
 125        }
 126}
 127
 128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 129                                                long min_hpages)
 130{
 131        struct hugepage_subpool *spool;
 132
 133        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 134        if (!spool)
 135                return NULL;
 136
 137        spin_lock_init(&spool->lock);
 138        spool->count = 1;
 139        spool->max_hpages = max_hpages;
 140        spool->hstate = h;
 141        spool->min_hpages = min_hpages;
 142
 143        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 144                kfree(spool);
 145                return NULL;
 146        }
 147        spool->rsv_hpages = min_hpages;
 148
 149        return spool;
 150}
 151
 152void hugepage_put_subpool(struct hugepage_subpool *spool)
 153{
 154        unsigned long flags;
 155
 156        spin_lock_irqsave(&spool->lock, flags);
 157        BUG_ON(!spool->count);
 158        spool->count--;
 159        unlock_or_release_subpool(spool, flags);
 160}
 161
 162/*
 163 * Subpool accounting for allocating and reserving pages.
 164 * Return -ENOMEM if there are not enough resources to satisfy the
 165 * request.  Otherwise, return the number of pages by which the
 166 * global pools must be adjusted (upward).  The returned value may
 167 * only be different than the passed value (delta) in the case where
 168 * a subpool minimum size must be maintained.
 169 */
 170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 171                                      long delta)
 172{
 173        long ret = delta;
 174
 175        if (!spool)
 176                return ret;
 177
 178        spin_lock_irq(&spool->lock);
 179
 180        if (spool->max_hpages != -1) {          /* maximum size accounting */
 181                if ((spool->used_hpages + delta) <= spool->max_hpages)
 182                        spool->used_hpages += delta;
 183                else {
 184                        ret = -ENOMEM;
 185                        goto unlock_ret;
 186                }
 187        }
 188
 189        /* minimum size accounting */
 190        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 191                if (delta > spool->rsv_hpages) {
 192                        /*
 193                         * Asking for more reserves than those already taken on
 194                         * behalf of subpool.  Return difference.
 195                         */
 196                        ret = delta - spool->rsv_hpages;
 197                        spool->rsv_hpages = 0;
 198                } else {
 199                        ret = 0;        /* reserves already accounted for */
 200                        spool->rsv_hpages -= delta;
 201                }
 202        }
 203
 204unlock_ret:
 205        spin_unlock_irq(&spool->lock);
 206        return ret;
 207}
 208
 209/*
 210 * Subpool accounting for freeing and unreserving pages.
 211 * Return the number of global page reservations that must be dropped.
 212 * The return value may only be different than the passed value (delta)
 213 * in the case where a subpool minimum size must be maintained.
 214 */
 215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 216                                       long delta)
 217{
 218        long ret = delta;
 219        unsigned long flags;
 220
 221        if (!spool)
 222                return delta;
 223
 224        spin_lock_irqsave(&spool->lock, flags);
 225
 226        if (spool->max_hpages != -1)            /* maximum size accounting */
 227                spool->used_hpages -= delta;
 228
 229         /* minimum size accounting */
 230        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 231                if (spool->rsv_hpages + delta <= spool->min_hpages)
 232                        ret = 0;
 233                else
 234                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 235
 236                spool->rsv_hpages += delta;
 237                if (spool->rsv_hpages > spool->min_hpages)
 238                        spool->rsv_hpages = spool->min_hpages;
 239        }
 240
 241        /*
 242         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 243         * quota reference, free it now.
 244         */
 245        unlock_or_release_subpool(spool, flags);
 246
 247        return ret;
 248}
 249
 250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 251{
 252        return HUGETLBFS_SB(inode->i_sb)->spool;
 253}
 254
 255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 256{
 257        return subpool_inode(file_inode(vma->vm_file));
 258}
 259
 260/* Helper that removes a struct file_region from the resv_map cache and returns
 261 * it for use.
 262 */
 263static struct file_region *
 264get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 265{
 266        struct file_region *nrg = NULL;
 267
 268        VM_BUG_ON(resv->region_cache_count <= 0);
 269
 270        resv->region_cache_count--;
 271        nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 272        list_del(&nrg->link);
 273
 274        nrg->from = from;
 275        nrg->to = to;
 276
 277        return nrg;
 278}
 279
 280static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 281                                              struct file_region *rg)
 282{
 283#ifdef CONFIG_CGROUP_HUGETLB
 284        nrg->reservation_counter = rg->reservation_counter;
 285        nrg->css = rg->css;
 286        if (rg->css)
 287                css_get(rg->css);
 288#endif
 289}
 290
 291/* Helper that records hugetlb_cgroup uncharge info. */
 292static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 293                                                struct hstate *h,
 294                                                struct resv_map *resv,
 295                                                struct file_region *nrg)
 296{
 297#ifdef CONFIG_CGROUP_HUGETLB
 298        if (h_cg) {
 299                nrg->reservation_counter =
 300                        &h_cg->rsvd_hugepage[hstate_index(h)];
 301                nrg->css = &h_cg->css;
 302                /*
 303                 * The caller will hold exactly one h_cg->css reference for the
 304                 * whole contiguous reservation region. But this area might be
 305                 * scattered when there are already some file_regions reside in
 306                 * it. As a result, many file_regions may share only one css
 307                 * reference. In order to ensure that one file_region must hold
 308                 * exactly one h_cg->css reference, we should do css_get for
 309                 * each file_region and leave the reference held by caller
 310                 * untouched.
 311                 */
 312                css_get(&h_cg->css);
 313                if (!resv->pages_per_hpage)
 314                        resv->pages_per_hpage = pages_per_huge_page(h);
 315                /* pages_per_hpage should be the same for all entries in
 316                 * a resv_map.
 317                 */
 318                VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 319        } else {
 320                nrg->reservation_counter = NULL;
 321                nrg->css = NULL;
 322        }
 323#endif
 324}
 325
 326static void put_uncharge_info(struct file_region *rg)
 327{
 328#ifdef CONFIG_CGROUP_HUGETLB
 329        if (rg->css)
 330                css_put(rg->css);
 331#endif
 332}
 333
 334static bool has_same_uncharge_info(struct file_region *rg,
 335                                   struct file_region *org)
 336{
 337#ifdef CONFIG_CGROUP_HUGETLB
 338        return rg->reservation_counter == org->reservation_counter &&
 339               rg->css == org->css;
 340
 341#else
 342        return true;
 343#endif
 344}
 345
 346static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 347{
 348        struct file_region *nrg = NULL, *prg = NULL;
 349
 350        prg = list_prev_entry(rg, link);
 351        if (&prg->link != &resv->regions && prg->to == rg->from &&
 352            has_same_uncharge_info(prg, rg)) {
 353                prg->to = rg->to;
 354
 355                list_del(&rg->link);
 356                put_uncharge_info(rg);
 357                kfree(rg);
 358
 359                rg = prg;
 360        }
 361
 362        nrg = list_next_entry(rg, link);
 363        if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 364            has_same_uncharge_info(nrg, rg)) {
 365                nrg->from = rg->from;
 366
 367                list_del(&rg->link);
 368                put_uncharge_info(rg);
 369                kfree(rg);
 370        }
 371}
 372
 373static inline long
 374hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
 375                     long to, struct hstate *h, struct hugetlb_cgroup *cg,
 376                     long *regions_needed)
 377{
 378        struct file_region *nrg;
 379
 380        if (!regions_needed) {
 381                nrg = get_file_region_entry_from_cache(map, from, to);
 382                record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
 383                list_add(&nrg->link, rg);
 384                coalesce_file_region(map, nrg);
 385        } else
 386                *regions_needed += 1;
 387
 388        return to - from;
 389}
 390
 391/*
 392 * Must be called with resv->lock held.
 393 *
 394 * Calling this with regions_needed != NULL will count the number of pages
 395 * to be added but will not modify the linked list. And regions_needed will
 396 * indicate the number of file_regions needed in the cache to carry out to add
 397 * the regions for this range.
 398 */
 399static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 400                                     struct hugetlb_cgroup *h_cg,
 401                                     struct hstate *h, long *regions_needed)
 402{
 403        long add = 0;
 404        struct list_head *head = &resv->regions;
 405        long last_accounted_offset = f;
 406        struct file_region *iter, *trg = NULL;
 407        struct list_head *rg = NULL;
 408
 409        if (regions_needed)
 410                *regions_needed = 0;
 411
 412        /* In this loop, we essentially handle an entry for the range
 413         * [last_accounted_offset, iter->from), at every iteration, with some
 414         * bounds checking.
 415         */
 416        list_for_each_entry_safe(iter, trg, head, link) {
 417                /* Skip irrelevant regions that start before our range. */
 418                if (iter->from < f) {
 419                        /* If this region ends after the last accounted offset,
 420                         * then we need to update last_accounted_offset.
 421                         */
 422                        if (iter->to > last_accounted_offset)
 423                                last_accounted_offset = iter->to;
 424                        continue;
 425                }
 426
 427                /* When we find a region that starts beyond our range, we've
 428                 * finished.
 429                 */
 430                if (iter->from >= t) {
 431                        rg = iter->link.prev;
 432                        break;
 433                }
 434
 435                /* Add an entry for last_accounted_offset -> iter->from, and
 436                 * update last_accounted_offset.
 437                 */
 438                if (iter->from > last_accounted_offset)
 439                        add += hugetlb_resv_map_add(resv, iter->link.prev,
 440                                                    last_accounted_offset,
 441                                                    iter->from, h, h_cg,
 442                                                    regions_needed);
 443
 444                last_accounted_offset = iter->to;
 445        }
 446
 447        /* Handle the case where our range extends beyond
 448         * last_accounted_offset.
 449         */
 450        if (!rg)
 451                rg = head->prev;
 452        if (last_accounted_offset < t)
 453                add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
 454                                            t, h, h_cg, regions_needed);
 455
 456        return add;
 457}
 458
 459/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 460 */
 461static int allocate_file_region_entries(struct resv_map *resv,
 462                                        int regions_needed)
 463        __must_hold(&resv->lock)
 464{
 465        struct list_head allocated_regions;
 466        int to_allocate = 0, i = 0;
 467        struct file_region *trg = NULL, *rg = NULL;
 468
 469        VM_BUG_ON(regions_needed < 0);
 470
 471        INIT_LIST_HEAD(&allocated_regions);
 472
 473        /*
 474         * Check for sufficient descriptors in the cache to accommodate
 475         * the number of in progress add operations plus regions_needed.
 476         *
 477         * This is a while loop because when we drop the lock, some other call
 478         * to region_add or region_del may have consumed some region_entries,
 479         * so we keep looping here until we finally have enough entries for
 480         * (adds_in_progress + regions_needed).
 481         */
 482        while (resv->region_cache_count <
 483               (resv->adds_in_progress + regions_needed)) {
 484                to_allocate = resv->adds_in_progress + regions_needed -
 485                              resv->region_cache_count;
 486
 487                /* At this point, we should have enough entries in the cache
 488                 * for all the existing adds_in_progress. We should only be
 489                 * needing to allocate for regions_needed.
 490                 */
 491                VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 492
 493                spin_unlock(&resv->lock);
 494                for (i = 0; i < to_allocate; i++) {
 495                        trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 496                        if (!trg)
 497                                goto out_of_memory;
 498                        list_add(&trg->link, &allocated_regions);
 499                }
 500
 501                spin_lock(&resv->lock);
 502
 503                list_splice(&allocated_regions, &resv->region_cache);
 504                resv->region_cache_count += to_allocate;
 505        }
 506
 507        return 0;
 508
 509out_of_memory:
 510        list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 511                list_del(&rg->link);
 512                kfree(rg);
 513        }
 514        return -ENOMEM;
 515}
 516
 517/*
 518 * Add the huge page range represented by [f, t) to the reserve
 519 * map.  Regions will be taken from the cache to fill in this range.
 520 * Sufficient regions should exist in the cache due to the previous
 521 * call to region_chg with the same range, but in some cases the cache will not
 522 * have sufficient entries due to races with other code doing region_add or
 523 * region_del.  The extra needed entries will be allocated.
 524 *
 525 * regions_needed is the out value provided by a previous call to region_chg.
 526 *
 527 * Return the number of new huge pages added to the map.  This number is greater
 528 * than or equal to zero.  If file_region entries needed to be allocated for
 529 * this operation and we were not able to allocate, it returns -ENOMEM.
 530 * region_add of regions of length 1 never allocate file_regions and cannot
 531 * fail; region_chg will always allocate at least 1 entry and a region_add for
 532 * 1 page will only require at most 1 entry.
 533 */
 534static long region_add(struct resv_map *resv, long f, long t,
 535                       long in_regions_needed, struct hstate *h,
 536                       struct hugetlb_cgroup *h_cg)
 537{
 538        long add = 0, actual_regions_needed = 0;
 539
 540        spin_lock(&resv->lock);
 541retry:
 542
 543        /* Count how many regions are actually needed to execute this add. */
 544        add_reservation_in_range(resv, f, t, NULL, NULL,
 545                                 &actual_regions_needed);
 546
 547        /*
 548         * Check for sufficient descriptors in the cache to accommodate
 549         * this add operation. Note that actual_regions_needed may be greater
 550         * than in_regions_needed, as the resv_map may have been modified since
 551         * the region_chg call. In this case, we need to make sure that we
 552         * allocate extra entries, such that we have enough for all the
 553         * existing adds_in_progress, plus the excess needed for this
 554         * operation.
 555         */
 556        if (actual_regions_needed > in_regions_needed &&
 557            resv->region_cache_count <
 558                    resv->adds_in_progress +
 559                            (actual_regions_needed - in_regions_needed)) {
 560                /* region_add operation of range 1 should never need to
 561                 * allocate file_region entries.
 562                 */
 563                VM_BUG_ON(t - f <= 1);
 564
 565                if (allocate_file_region_entries(
 566                            resv, actual_regions_needed - in_regions_needed)) {
 567                        return -ENOMEM;
 568                }
 569
 570                goto retry;
 571        }
 572
 573        add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 574
 575        resv->adds_in_progress -= in_regions_needed;
 576
 577        spin_unlock(&resv->lock);
 578        return add;
 579}
 580
 581/*
 582 * Examine the existing reserve map and determine how many
 583 * huge pages in the specified range [f, t) are NOT currently
 584 * represented.  This routine is called before a subsequent
 585 * call to region_add that will actually modify the reserve
 586 * map to add the specified range [f, t).  region_chg does
 587 * not change the number of huge pages represented by the
 588 * map.  A number of new file_region structures is added to the cache as a
 589 * placeholder, for the subsequent region_add call to use. At least 1
 590 * file_region structure is added.
 591 *
 592 * out_regions_needed is the number of regions added to the
 593 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 594 * to region_add or region_abort for proper accounting.
 595 *
 596 * Returns the number of huge pages that need to be added to the existing
 597 * reservation map for the range [f, t).  This number is greater or equal to
 598 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 599 * is needed and can not be allocated.
 600 */
 601static long region_chg(struct resv_map *resv, long f, long t,
 602                       long *out_regions_needed)
 603{
 604        long chg = 0;
 605
 606        spin_lock(&resv->lock);
 607
 608        /* Count how many hugepages in this range are NOT represented. */
 609        chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 610                                       out_regions_needed);
 611
 612        if (*out_regions_needed == 0)
 613                *out_regions_needed = 1;
 614
 615        if (allocate_file_region_entries(resv, *out_regions_needed))
 616                return -ENOMEM;
 617
 618        resv->adds_in_progress += *out_regions_needed;
 619
 620        spin_unlock(&resv->lock);
 621        return chg;
 622}
 623
 624/*
 625 * Abort the in progress add operation.  The adds_in_progress field
 626 * of the resv_map keeps track of the operations in progress between
 627 * calls to region_chg and region_add.  Operations are sometimes
 628 * aborted after the call to region_chg.  In such cases, region_abort
 629 * is called to decrement the adds_in_progress counter. regions_needed
 630 * is the value returned by the region_chg call, it is used to decrement
 631 * the adds_in_progress counter.
 632 *
 633 * NOTE: The range arguments [f, t) are not needed or used in this
 634 * routine.  They are kept to make reading the calling code easier as
 635 * arguments will match the associated region_chg call.
 636 */
 637static void region_abort(struct resv_map *resv, long f, long t,
 638                         long regions_needed)
 639{
 640        spin_lock(&resv->lock);
 641        VM_BUG_ON(!resv->region_cache_count);
 642        resv->adds_in_progress -= regions_needed;
 643        spin_unlock(&resv->lock);
 644}
 645
 646/*
 647 * Delete the specified range [f, t) from the reserve map.  If the
 648 * t parameter is LONG_MAX, this indicates that ALL regions after f
 649 * should be deleted.  Locate the regions which intersect [f, t)
 650 * and either trim, delete or split the existing regions.
 651 *
 652 * Returns the number of huge pages deleted from the reserve map.
 653 * In the normal case, the return value is zero or more.  In the
 654 * case where a region must be split, a new region descriptor must
 655 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 656 * NOTE: If the parameter t == LONG_MAX, then we will never split
 657 * a region and possibly return -ENOMEM.  Callers specifying
 658 * t == LONG_MAX do not need to check for -ENOMEM error.
 659 */
 660static long region_del(struct resv_map *resv, long f, long t)
 661{
 662        struct list_head *head = &resv->regions;
 663        struct file_region *rg, *trg;
 664        struct file_region *nrg = NULL;
 665        long del = 0;
 666
 667retry:
 668        spin_lock(&resv->lock);
 669        list_for_each_entry_safe(rg, trg, head, link) {
 670                /*
 671                 * Skip regions before the range to be deleted.  file_region
 672                 * ranges are normally of the form [from, to).  However, there
 673                 * may be a "placeholder" entry in the map which is of the form
 674                 * (from, to) with from == to.  Check for placeholder entries
 675                 * at the beginning of the range to be deleted.
 676                 */
 677                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 678                        continue;
 679
 680                if (rg->from >= t)
 681                        break;
 682
 683                if (f > rg->from && t < rg->to) { /* Must split region */
 684                        /*
 685                         * Check for an entry in the cache before dropping
 686                         * lock and attempting allocation.
 687                         */
 688                        if (!nrg &&
 689                            resv->region_cache_count > resv->adds_in_progress) {
 690                                nrg = list_first_entry(&resv->region_cache,
 691                                                        struct file_region,
 692                                                        link);
 693                                list_del(&nrg->link);
 694                                resv->region_cache_count--;
 695                        }
 696
 697                        if (!nrg) {
 698                                spin_unlock(&resv->lock);
 699                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 700                                if (!nrg)
 701                                        return -ENOMEM;
 702                                goto retry;
 703                        }
 704
 705                        del += t - f;
 706                        hugetlb_cgroup_uncharge_file_region(
 707                                resv, rg, t - f, false);
 708
 709                        /* New entry for end of split region */
 710                        nrg->from = t;
 711                        nrg->to = rg->to;
 712
 713                        copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 714
 715                        INIT_LIST_HEAD(&nrg->link);
 716
 717                        /* Original entry is trimmed */
 718                        rg->to = f;
 719
 720                        list_add(&nrg->link, &rg->link);
 721                        nrg = NULL;
 722                        break;
 723                }
 724
 725                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 726                        del += rg->to - rg->from;
 727                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 728                                                            rg->to - rg->from, true);
 729                        list_del(&rg->link);
 730                        kfree(rg);
 731                        continue;
 732                }
 733
 734                if (f <= rg->from) {    /* Trim beginning of region */
 735                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 736                                                            t - rg->from, false);
 737
 738                        del += t - rg->from;
 739                        rg->from = t;
 740                } else {                /* Trim end of region */
 741                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 742                                                            rg->to - f, false);
 743
 744                        del += rg->to - f;
 745                        rg->to = f;
 746                }
 747        }
 748
 749        spin_unlock(&resv->lock);
 750        kfree(nrg);
 751        return del;
 752}
 753
 754/*
 755 * A rare out of memory error was encountered which prevented removal of
 756 * the reserve map region for a page.  The huge page itself was free'ed
 757 * and removed from the page cache.  This routine will adjust the subpool
 758 * usage count, and the global reserve count if needed.  By incrementing
 759 * these counts, the reserve map entry which could not be deleted will
 760 * appear as a "reserved" entry instead of simply dangling with incorrect
 761 * counts.
 762 */
 763void hugetlb_fix_reserve_counts(struct inode *inode)
 764{
 765        struct hugepage_subpool *spool = subpool_inode(inode);
 766        long rsv_adjust;
 767        bool reserved = false;
 768
 769        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 770        if (rsv_adjust > 0) {
 771                struct hstate *h = hstate_inode(inode);
 772
 773                if (!hugetlb_acct_memory(h, 1))
 774                        reserved = true;
 775        } else if (!rsv_adjust) {
 776                reserved = true;
 777        }
 778
 779        if (!reserved)
 780                pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
 781}
 782
 783/*
 784 * Count and return the number of huge pages in the reserve map
 785 * that intersect with the range [f, t).
 786 */
 787static long region_count(struct resv_map *resv, long f, long t)
 788{
 789        struct list_head *head = &resv->regions;
 790        struct file_region *rg;
 791        long chg = 0;
 792
 793        spin_lock(&resv->lock);
 794        /* Locate each segment we overlap with, and count that overlap. */
 795        list_for_each_entry(rg, head, link) {
 796                long seg_from;
 797                long seg_to;
 798
 799                if (rg->to <= f)
 800                        continue;
 801                if (rg->from >= t)
 802                        break;
 803
 804                seg_from = max(rg->from, f);
 805                seg_to = min(rg->to, t);
 806
 807                chg += seg_to - seg_from;
 808        }
 809        spin_unlock(&resv->lock);
 810
 811        return chg;
 812}
 813
 814/*
 815 * Convert the address within this vma to the page offset within
 816 * the mapping, in pagecache page units; huge pages here.
 817 */
 818static pgoff_t vma_hugecache_offset(struct hstate *h,
 819                        struct vm_area_struct *vma, unsigned long address)
 820{
 821        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 822                        (vma->vm_pgoff >> huge_page_order(h));
 823}
 824
 825pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 826                                     unsigned long address)
 827{
 828        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 829}
 830EXPORT_SYMBOL_GPL(linear_hugepage_index);
 831
 832/*
 833 * Return the size of the pages allocated when backing a VMA. In the majority
 834 * cases this will be same size as used by the page table entries.
 835 */
 836unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 837{
 838        if (vma->vm_ops && vma->vm_ops->pagesize)
 839                return vma->vm_ops->pagesize(vma);
 840        return PAGE_SIZE;
 841}
 842EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 843
 844/*
 845 * Return the page size being used by the MMU to back a VMA. In the majority
 846 * of cases, the page size used by the kernel matches the MMU size. On
 847 * architectures where it differs, an architecture-specific 'strong'
 848 * version of this symbol is required.
 849 */
 850__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 851{
 852        return vma_kernel_pagesize(vma);
 853}
 854
 855/*
 856 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 857 * bits of the reservation map pointer, which are always clear due to
 858 * alignment.
 859 */
 860#define HPAGE_RESV_OWNER    (1UL << 0)
 861#define HPAGE_RESV_UNMAPPED (1UL << 1)
 862#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 863
 864/*
 865 * These helpers are used to track how many pages are reserved for
 866 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 867 * is guaranteed to have their future faults succeed.
 868 *
 869 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 870 * the reserve counters are updated with the hugetlb_lock held. It is safe
 871 * to reset the VMA at fork() time as it is not in use yet and there is no
 872 * chance of the global counters getting corrupted as a result of the values.
 873 *
 874 * The private mapping reservation is represented in a subtly different
 875 * manner to a shared mapping.  A shared mapping has a region map associated
 876 * with the underlying file, this region map represents the backing file
 877 * pages which have ever had a reservation assigned which this persists even
 878 * after the page is instantiated.  A private mapping has a region map
 879 * associated with the original mmap which is attached to all VMAs which
 880 * reference it, this region map represents those offsets which have consumed
 881 * reservation ie. where pages have been instantiated.
 882 */
 883static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 884{
 885        return (unsigned long)vma->vm_private_data;
 886}
 887
 888static void set_vma_private_data(struct vm_area_struct *vma,
 889                                                        unsigned long value)
 890{
 891        vma->vm_private_data = (void *)value;
 892}
 893
 894static void
 895resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 896                                          struct hugetlb_cgroup *h_cg,
 897                                          struct hstate *h)
 898{
 899#ifdef CONFIG_CGROUP_HUGETLB
 900        if (!h_cg || !h) {
 901                resv_map->reservation_counter = NULL;
 902                resv_map->pages_per_hpage = 0;
 903                resv_map->css = NULL;
 904        } else {
 905                resv_map->reservation_counter =
 906                        &h_cg->rsvd_hugepage[hstate_index(h)];
 907                resv_map->pages_per_hpage = pages_per_huge_page(h);
 908                resv_map->css = &h_cg->css;
 909        }
 910#endif
 911}
 912
 913struct resv_map *resv_map_alloc(void)
 914{
 915        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 916        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 917
 918        if (!resv_map || !rg) {
 919                kfree(resv_map);
 920                kfree(rg);
 921                return NULL;
 922        }
 923
 924        kref_init(&resv_map->refs);
 925        spin_lock_init(&resv_map->lock);
 926        INIT_LIST_HEAD(&resv_map->regions);
 927
 928        resv_map->adds_in_progress = 0;
 929        /*
 930         * Initialize these to 0. On shared mappings, 0's here indicate these
 931         * fields don't do cgroup accounting. On private mappings, these will be
 932         * re-initialized to the proper values, to indicate that hugetlb cgroup
 933         * reservations are to be un-charged from here.
 934         */
 935        resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 936
 937        INIT_LIST_HEAD(&resv_map->region_cache);
 938        list_add(&rg->link, &resv_map->region_cache);
 939        resv_map->region_cache_count = 1;
 940
 941        return resv_map;
 942}
 943
 944void resv_map_release(struct kref *ref)
 945{
 946        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 947        struct list_head *head = &resv_map->region_cache;
 948        struct file_region *rg, *trg;
 949
 950        /* Clear out any active regions before we release the map. */
 951        region_del(resv_map, 0, LONG_MAX);
 952
 953        /* ... and any entries left in the cache */
 954        list_for_each_entry_safe(rg, trg, head, link) {
 955                list_del(&rg->link);
 956                kfree(rg);
 957        }
 958
 959        VM_BUG_ON(resv_map->adds_in_progress);
 960
 961        kfree(resv_map);
 962}
 963
 964static inline struct resv_map *inode_resv_map(struct inode *inode)
 965{
 966        /*
 967         * At inode evict time, i_mapping may not point to the original
 968         * address space within the inode.  This original address space
 969         * contains the pointer to the resv_map.  So, always use the
 970         * address space embedded within the inode.
 971         * The VERY common case is inode->mapping == &inode->i_data but,
 972         * this may not be true for device special inodes.
 973         */
 974        return (struct resv_map *)(&inode->i_data)->private_data;
 975}
 976
 977static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 978{
 979        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 980        if (vma->vm_flags & VM_MAYSHARE) {
 981                struct address_space *mapping = vma->vm_file->f_mapping;
 982                struct inode *inode = mapping->host;
 983
 984                return inode_resv_map(inode);
 985
 986        } else {
 987                return (struct resv_map *)(get_vma_private_data(vma) &
 988                                                        ~HPAGE_RESV_MASK);
 989        }
 990}
 991
 992static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 993{
 994        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 995        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 996
 997        set_vma_private_data(vma, (get_vma_private_data(vma) &
 998                                HPAGE_RESV_MASK) | (unsigned long)map);
 999}
1000
1001static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1002{
1003        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1004        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1005
1006        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1007}
1008
1009static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1010{
1011        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1012
1013        return (get_vma_private_data(vma) & flag) != 0;
1014}
1015
1016/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1017void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1018{
1019        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1020        if (!(vma->vm_flags & VM_MAYSHARE))
1021                vma->vm_private_data = (void *)0;
1022}
1023
1024/*
1025 * Reset and decrement one ref on hugepage private reservation.
1026 * Called with mm->mmap_sem writer semaphore held.
1027 * This function should be only used by move_vma() and operate on
1028 * same sized vma. It should never come here with last ref on the
1029 * reservation.
1030 */
1031void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1032{
1033        /*
1034         * Clear the old hugetlb private page reservation.
1035         * It has already been transferred to new_vma.
1036         *
1037         * During a mremap() operation of a hugetlb vma we call move_vma()
1038         * which copies vma into new_vma and unmaps vma. After the copy
1039         * operation both new_vma and vma share a reference to the resv_map
1040         * struct, and at that point vma is about to be unmapped. We don't
1041         * want to return the reservation to the pool at unmap of vma because
1042         * the reservation still lives on in new_vma, so simply decrement the
1043         * ref here and remove the resv_map reference from this vma.
1044         */
1045        struct resv_map *reservations = vma_resv_map(vma);
1046
1047        if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048                resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1049                kref_put(&reservations->refs, resv_map_release);
1050        }
1051
1052        reset_vma_resv_huge_pages(vma);
1053}
1054
1055/* Returns true if the VMA has associated reserve pages */
1056static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1057{
1058        if (vma->vm_flags & VM_NORESERVE) {
1059                /*
1060                 * This address is already reserved by other process(chg == 0),
1061                 * so, we should decrement reserved count. Without decrementing,
1062                 * reserve count remains after releasing inode, because this
1063                 * allocated page will go into page cache and is regarded as
1064                 * coming from reserved pool in releasing step.  Currently, we
1065                 * don't have any other solution to deal with this situation
1066                 * properly, so add work-around here.
1067                 */
1068                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1069                        return true;
1070                else
1071                        return false;
1072        }
1073
1074        /* Shared mappings always use reserves */
1075        if (vma->vm_flags & VM_MAYSHARE) {
1076                /*
1077                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1078                 * be a region map for all pages.  The only situation where
1079                 * there is no region map is if a hole was punched via
1080                 * fallocate.  In this case, there really are no reserves to
1081                 * use.  This situation is indicated if chg != 0.
1082                 */
1083                if (chg)
1084                        return false;
1085                else
1086                        return true;
1087        }
1088
1089        /*
1090         * Only the process that called mmap() has reserves for
1091         * private mappings.
1092         */
1093        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1094                /*
1095                 * Like the shared case above, a hole punch or truncate
1096                 * could have been performed on the private mapping.
1097                 * Examine the value of chg to determine if reserves
1098                 * actually exist or were previously consumed.
1099                 * Very Subtle - The value of chg comes from a previous
1100                 * call to vma_needs_reserves().  The reserve map for
1101                 * private mappings has different (opposite) semantics
1102                 * than that of shared mappings.  vma_needs_reserves()
1103                 * has already taken this difference in semantics into
1104                 * account.  Therefore, the meaning of chg is the same
1105                 * as in the shared case above.  Code could easily be
1106                 * combined, but keeping it separate draws attention to
1107                 * subtle differences.
1108                 */
1109                if (chg)
1110                        return false;
1111                else
1112                        return true;
1113        }
1114
1115        return false;
1116}
1117
1118static void enqueue_huge_page(struct hstate *h, struct page *page)
1119{
1120        int nid = page_to_nid(page);
1121
1122        lockdep_assert_held(&hugetlb_lock);
1123        VM_BUG_ON_PAGE(page_count(page), page);
1124
1125        list_move(&page->lru, &h->hugepage_freelists[nid]);
1126        h->free_huge_pages++;
1127        h->free_huge_pages_node[nid]++;
1128        SetHPageFreed(page);
1129}
1130
1131static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1132{
1133        struct page *page;
1134        bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1135
1136        lockdep_assert_held(&hugetlb_lock);
1137        list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1138                if (pin && !is_pinnable_page(page))
1139                        continue;
1140
1141                if (PageHWPoison(page))
1142                        continue;
1143
1144                list_move(&page->lru, &h->hugepage_activelist);
1145                set_page_refcounted(page);
1146                ClearHPageFreed(page);
1147                h->free_huge_pages--;
1148                h->free_huge_pages_node[nid]--;
1149                return page;
1150        }
1151
1152        return NULL;
1153}
1154
1155static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1156                nodemask_t *nmask)
1157{
1158        unsigned int cpuset_mems_cookie;
1159        struct zonelist *zonelist;
1160        struct zone *zone;
1161        struct zoneref *z;
1162        int node = NUMA_NO_NODE;
1163
1164        zonelist = node_zonelist(nid, gfp_mask);
1165
1166retry_cpuset:
1167        cpuset_mems_cookie = read_mems_allowed_begin();
1168        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1169                struct page *page;
1170
1171                if (!cpuset_zone_allowed(zone, gfp_mask))
1172                        continue;
1173                /*
1174                 * no need to ask again on the same node. Pool is node rather than
1175                 * zone aware
1176                 */
1177                if (zone_to_nid(zone) == node)
1178                        continue;
1179                node = zone_to_nid(zone);
1180
1181                page = dequeue_huge_page_node_exact(h, node);
1182                if (page)
1183                        return page;
1184        }
1185        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1186                goto retry_cpuset;
1187
1188        return NULL;
1189}
1190
1191static struct page *dequeue_huge_page_vma(struct hstate *h,
1192                                struct vm_area_struct *vma,
1193                                unsigned long address, int avoid_reserve,
1194                                long chg)
1195{
1196        struct page *page = NULL;
1197        struct mempolicy *mpol;
1198        gfp_t gfp_mask;
1199        nodemask_t *nodemask;
1200        int nid;
1201
1202        /*
1203         * A child process with MAP_PRIVATE mappings created by their parent
1204         * have no page reserves. This check ensures that reservations are
1205         * not "stolen". The child may still get SIGKILLed
1206         */
1207        if (!vma_has_reserves(vma, chg) &&
1208                        h->free_huge_pages - h->resv_huge_pages == 0)
1209                goto err;
1210
1211        /* If reserves cannot be used, ensure enough pages are in the pool */
1212        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1213                goto err;
1214
1215        gfp_mask = htlb_alloc_mask(h);
1216        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1217
1218        if (mpol_is_preferred_many(mpol)) {
1219                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220
1221                /* Fallback to all nodes if page==NULL */
1222                nodemask = NULL;
1223        }
1224
1225        if (!page)
1226                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1227
1228        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1229                SetHPageRestoreReserve(page);
1230                h->resv_huge_pages--;
1231        }
1232
1233        mpol_cond_put(mpol);
1234        return page;
1235
1236err:
1237        return NULL;
1238}
1239
1240/*
1241 * common helper functions for hstate_next_node_to_{alloc|free}.
1242 * We may have allocated or freed a huge page based on a different
1243 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1244 * be outside of *nodes_allowed.  Ensure that we use an allowed
1245 * node for alloc or free.
1246 */
1247static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1248{
1249        nid = next_node_in(nid, *nodes_allowed);
1250        VM_BUG_ON(nid >= MAX_NUMNODES);
1251
1252        return nid;
1253}
1254
1255static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1256{
1257        if (!node_isset(nid, *nodes_allowed))
1258                nid = next_node_allowed(nid, nodes_allowed);
1259        return nid;
1260}
1261
1262/*
1263 * returns the previously saved node ["this node"] from which to
1264 * allocate a persistent huge page for the pool and advance the
1265 * next node from which to allocate, handling wrap at end of node
1266 * mask.
1267 */
1268static int hstate_next_node_to_alloc(struct hstate *h,
1269                                        nodemask_t *nodes_allowed)
1270{
1271        int nid;
1272
1273        VM_BUG_ON(!nodes_allowed);
1274
1275        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1276        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1277
1278        return nid;
1279}
1280
1281/*
1282 * helper for remove_pool_huge_page() - return the previously saved
1283 * node ["this node"] from which to free a huge page.  Advance the
1284 * next node id whether or not we find a free huge page to free so
1285 * that the next attempt to free addresses the next node.
1286 */
1287static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1288{
1289        int nid;
1290
1291        VM_BUG_ON(!nodes_allowed);
1292
1293        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1294        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1295
1296        return nid;
1297}
1298
1299#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1300        for (nr_nodes = nodes_weight(*mask);                            \
1301                nr_nodes > 0 &&                                         \
1302                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1303                nr_nodes--)
1304
1305#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1306        for (nr_nodes = nodes_weight(*mask);                            \
1307                nr_nodes > 0 &&                                         \
1308                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1309                nr_nodes--)
1310
1311/* used to demote non-gigantic_huge pages as well */
1312static void __destroy_compound_gigantic_page(struct page *page,
1313                                        unsigned int order, bool demote)
1314{
1315        int i;
1316        int nr_pages = 1 << order;
1317        struct page *p = page + 1;
1318
1319        atomic_set(compound_mapcount_ptr(page), 0);
1320        atomic_set(compound_pincount_ptr(page), 0);
1321
1322        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1323                p->mapping = NULL;
1324                clear_compound_head(p);
1325                if (!demote)
1326                        set_page_refcounted(p);
1327        }
1328
1329        set_compound_order(page, 0);
1330#ifdef CONFIG_64BIT
1331        page[1].compound_nr = 0;
1332#endif
1333        __ClearPageHead(page);
1334}
1335
1336static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1337                                        unsigned int order)
1338{
1339        __destroy_compound_gigantic_page(page, order, true);
1340}
1341
1342#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1343static void destroy_compound_gigantic_page(struct page *page,
1344                                        unsigned int order)
1345{
1346        __destroy_compound_gigantic_page(page, order, false);
1347}
1348
1349static void free_gigantic_page(struct page *page, unsigned int order)
1350{
1351        /*
1352         * If the page isn't allocated using the cma allocator,
1353         * cma_release() returns false.
1354         */
1355#ifdef CONFIG_CMA
1356        if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1357                return;
1358#endif
1359
1360        free_contig_range(page_to_pfn(page), 1 << order);
1361}
1362
1363#ifdef CONFIG_CONTIG_ALLOC
1364static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1365                int nid, nodemask_t *nodemask)
1366{
1367        unsigned long nr_pages = pages_per_huge_page(h);
1368        if (nid == NUMA_NO_NODE)
1369                nid = numa_mem_id();
1370
1371#ifdef CONFIG_CMA
1372        {
1373                struct page *page;
1374                int node;
1375
1376                if (hugetlb_cma[nid]) {
1377                        page = cma_alloc(hugetlb_cma[nid], nr_pages,
1378                                        huge_page_order(h), true);
1379                        if (page)
1380                                return page;
1381                }
1382
1383                if (!(gfp_mask & __GFP_THISNODE)) {
1384                        for_each_node_mask(node, *nodemask) {
1385                                if (node == nid || !hugetlb_cma[node])
1386                                        continue;
1387
1388                                page = cma_alloc(hugetlb_cma[node], nr_pages,
1389                                                huge_page_order(h), true);
1390                                if (page)
1391                                        return page;
1392                        }
1393                }
1394        }
1395#endif
1396
1397        return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1398}
1399
1400#else /* !CONFIG_CONTIG_ALLOC */
1401static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1402                                        int nid, nodemask_t *nodemask)
1403{
1404        return NULL;
1405}
1406#endif /* CONFIG_CONTIG_ALLOC */
1407
1408#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1409static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1410                                        int nid, nodemask_t *nodemask)
1411{
1412        return NULL;
1413}
1414static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1415static inline void destroy_compound_gigantic_page(struct page *page,
1416                                                unsigned int order) { }
1417#endif
1418
1419/*
1420 * Remove hugetlb page from lists, and update dtor so that page appears
1421 * as just a compound page.
1422 *
1423 * A reference is held on the page, except in the case of demote.
1424 *
1425 * Must be called with hugetlb lock held.
1426 */
1427static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1428                                                        bool adjust_surplus,
1429                                                        bool demote)
1430{
1431        int nid = page_to_nid(page);
1432
1433        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1434        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1435
1436        lockdep_assert_held(&hugetlb_lock);
1437        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1438                return;
1439
1440        list_del(&page->lru);
1441
1442        if (HPageFreed(page)) {
1443                h->free_huge_pages--;
1444                h->free_huge_pages_node[nid]--;
1445        }
1446        if (adjust_surplus) {
1447                h->surplus_huge_pages--;
1448                h->surplus_huge_pages_node[nid]--;
1449        }
1450
1451        /*
1452         * Very subtle
1453         *
1454         * For non-gigantic pages set the destructor to the normal compound
1455         * page dtor.  This is needed in case someone takes an additional
1456         * temporary ref to the page, and freeing is delayed until they drop
1457         * their reference.
1458         *
1459         * For gigantic pages set the destructor to the null dtor.  This
1460         * destructor will never be called.  Before freeing the gigantic
1461         * page destroy_compound_gigantic_page will turn the compound page
1462         * into a simple group of pages.  After this the destructor does not
1463         * apply.
1464         *
1465         * This handles the case where more than one ref is held when and
1466         * after update_and_free_page is called.
1467         *
1468         * In the case of demote we do not ref count the page as it will soon
1469         * be turned into a page of smaller size.
1470         */
1471        if (!demote)
1472                set_page_refcounted(page);
1473        if (hstate_is_gigantic(h))
1474                set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1475        else
1476                set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1477
1478        h->nr_huge_pages--;
1479        h->nr_huge_pages_node[nid]--;
1480}
1481
1482static void remove_hugetlb_page(struct hstate *h, struct page *page,
1483                                                        bool adjust_surplus)
1484{
1485        __remove_hugetlb_page(h, page, adjust_surplus, false);
1486}
1487
1488static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1489                                                        bool adjust_surplus)
1490{
1491        __remove_hugetlb_page(h, page, adjust_surplus, true);
1492}
1493
1494static void add_hugetlb_page(struct hstate *h, struct page *page,
1495                             bool adjust_surplus)
1496{
1497        int zeroed;
1498        int nid = page_to_nid(page);
1499
1500        VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1501
1502        lockdep_assert_held(&hugetlb_lock);
1503
1504        INIT_LIST_HEAD(&page->lru);
1505        h->nr_huge_pages++;
1506        h->nr_huge_pages_node[nid]++;
1507
1508        if (adjust_surplus) {
1509                h->surplus_huge_pages++;
1510                h->surplus_huge_pages_node[nid]++;
1511        }
1512
1513        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514        set_page_private(page, 0);
1515        SetHPageVmemmapOptimized(page);
1516
1517        /*
1518         * This page is about to be managed by the hugetlb allocator and
1519         * should have no users.  Drop our reference, and check for others
1520         * just in case.
1521         */
1522        zeroed = put_page_testzero(page);
1523        if (!zeroed)
1524                /*
1525                 * It is VERY unlikely soneone else has taken a ref on
1526                 * the page.  In this case, we simply return as the
1527                 * hugetlb destructor (free_huge_page) will be called
1528                 * when this other ref is dropped.
1529                 */
1530                return;
1531
1532        arch_clear_hugepage_flags(page);
1533        enqueue_huge_page(h, page);
1534}
1535
1536static void __update_and_free_page(struct hstate *h, struct page *page)
1537{
1538        int i;
1539        struct page *subpage = page;
1540
1541        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1542                return;
1543
1544        if (hugetlb_vmemmap_alloc(h, page)) {
1545                spin_lock_irq(&hugetlb_lock);
1546                /*
1547                 * If we cannot allocate vmemmap pages, just refuse to free the
1548                 * page and put the page back on the hugetlb free list and treat
1549                 * as a surplus page.
1550                 */
1551                add_hugetlb_page(h, page, true);
1552                spin_unlock_irq(&hugetlb_lock);
1553                return;
1554        }
1555
1556        for (i = 0; i < pages_per_huge_page(h);
1557             i++, subpage = mem_map_next(subpage, page, i)) {
1558                subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1559                                1 << PG_referenced | 1 << PG_dirty |
1560                                1 << PG_active | 1 << PG_private |
1561                                1 << PG_writeback);
1562        }
1563
1564        /*
1565         * Non-gigantic pages demoted from CMA allocated gigantic pages
1566         * need to be given back to CMA in free_gigantic_page.
1567         */
1568        if (hstate_is_gigantic(h) ||
1569            hugetlb_cma_page(page, huge_page_order(h))) {
1570                destroy_compound_gigantic_page(page, huge_page_order(h));
1571                free_gigantic_page(page, huge_page_order(h));
1572        } else {
1573                __free_pages(page, huge_page_order(h));
1574        }
1575}
1576
1577/*
1578 * As update_and_free_page() can be called under any context, so we cannot
1579 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1580 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1581 * the vmemmap pages.
1582 *
1583 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1584 * freed and frees them one-by-one. As the page->mapping pointer is going
1585 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1586 * structure of a lockless linked list of huge pages to be freed.
1587 */
1588static LLIST_HEAD(hpage_freelist);
1589
1590static void free_hpage_workfn(struct work_struct *work)
1591{
1592        struct llist_node *node;
1593
1594        node = llist_del_all(&hpage_freelist);
1595
1596        while (node) {
1597                struct page *page;
1598                struct hstate *h;
1599
1600                page = container_of((struct address_space **)node,
1601                                     struct page, mapping);
1602                node = node->next;
1603                page->mapping = NULL;
1604                /*
1605                 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1606                 * is going to trigger because a previous call to
1607                 * remove_hugetlb_page() will set_compound_page_dtor(page,
1608                 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1609                 */
1610                h = size_to_hstate(page_size(page));
1611
1612                __update_and_free_page(h, page);
1613
1614                cond_resched();
1615        }
1616}
1617static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1618
1619static inline void flush_free_hpage_work(struct hstate *h)
1620{
1621        if (hugetlb_optimize_vmemmap_pages(h))
1622                flush_work(&free_hpage_work);
1623}
1624
1625static void update_and_free_page(struct hstate *h, struct page *page,
1626                                 bool atomic)
1627{
1628        if (!HPageVmemmapOptimized(page) || !atomic) {
1629                __update_and_free_page(h, page);
1630                return;
1631        }
1632
1633        /*
1634         * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1635         *
1636         * Only call schedule_work() if hpage_freelist is previously
1637         * empty. Otherwise, schedule_work() had been called but the workfn
1638         * hasn't retrieved the list yet.
1639         */
1640        if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1641                schedule_work(&free_hpage_work);
1642}
1643
1644static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1645{
1646        struct page *page, *t_page;
1647
1648        list_for_each_entry_safe(page, t_page, list, lru) {
1649                update_and_free_page(h, page, false);
1650                cond_resched();
1651        }
1652}
1653
1654struct hstate *size_to_hstate(unsigned long size)
1655{
1656        struct hstate *h;
1657
1658        for_each_hstate(h) {
1659                if (huge_page_size(h) == size)
1660                        return h;
1661        }
1662        return NULL;
1663}
1664
1665void free_huge_page(struct page *page)
1666{
1667        /*
1668         * Can't pass hstate in here because it is called from the
1669         * compound page destructor.
1670         */
1671        struct hstate *h = page_hstate(page);
1672        int nid = page_to_nid(page);
1673        struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1674        bool restore_reserve;
1675        unsigned long flags;
1676
1677        VM_BUG_ON_PAGE(page_count(page), page);
1678        VM_BUG_ON_PAGE(page_mapcount(page), page);
1679
1680        hugetlb_set_page_subpool(page, NULL);
1681        if (PageAnon(page))
1682                __ClearPageAnonExclusive(page);
1683        page->mapping = NULL;
1684        restore_reserve = HPageRestoreReserve(page);
1685        ClearHPageRestoreReserve(page);
1686
1687        /*
1688         * If HPageRestoreReserve was set on page, page allocation consumed a
1689         * reservation.  If the page was associated with a subpool, there
1690         * would have been a page reserved in the subpool before allocation
1691         * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1692         * reservation, do not call hugepage_subpool_put_pages() as this will
1693         * remove the reserved page from the subpool.
1694         */
1695        if (!restore_reserve) {
1696                /*
1697                 * A return code of zero implies that the subpool will be
1698                 * under its minimum size if the reservation is not restored
1699                 * after page is free.  Therefore, force restore_reserve
1700                 * operation.
1701                 */
1702                if (hugepage_subpool_put_pages(spool, 1) == 0)
1703                        restore_reserve = true;
1704        }
1705
1706        spin_lock_irqsave(&hugetlb_lock, flags);
1707        ClearHPageMigratable(page);
1708        hugetlb_cgroup_uncharge_page(hstate_index(h),
1709                                     pages_per_huge_page(h), page);
1710        hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1711                                          pages_per_huge_page(h), page);
1712        if (restore_reserve)
1713                h->resv_huge_pages++;
1714
1715        if (HPageTemporary(page)) {
1716                remove_hugetlb_page(h, page, false);
1717                spin_unlock_irqrestore(&hugetlb_lock, flags);
1718                update_and_free_page(h, page, true);
1719        } else if (h->surplus_huge_pages_node[nid]) {
1720                /* remove the page from active list */
1721                remove_hugetlb_page(h, page, true);
1722                spin_unlock_irqrestore(&hugetlb_lock, flags);
1723                update_and_free_page(h, page, true);
1724        } else {
1725                arch_clear_hugepage_flags(page);
1726                enqueue_huge_page(h, page);
1727                spin_unlock_irqrestore(&hugetlb_lock, flags);
1728        }
1729}
1730
1731/*
1732 * Must be called with the hugetlb lock held
1733 */
1734static void __prep_account_new_huge_page(struct hstate *h, int nid)
1735{
1736        lockdep_assert_held(&hugetlb_lock);
1737        h->nr_huge_pages++;
1738        h->nr_huge_pages_node[nid]++;
1739}
1740
1741static void __prep_new_huge_page(struct hstate *h, struct page *page)
1742{
1743        hugetlb_vmemmap_free(h, page);
1744        INIT_LIST_HEAD(&page->lru);
1745        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1746        hugetlb_set_page_subpool(page, NULL);
1747        set_hugetlb_cgroup(page, NULL);
1748        set_hugetlb_cgroup_rsvd(page, NULL);
1749}
1750
1751static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1752{
1753        __prep_new_huge_page(h, page);
1754        spin_lock_irq(&hugetlb_lock);
1755        __prep_account_new_huge_page(h, nid);
1756        spin_unlock_irq(&hugetlb_lock);
1757}
1758
1759static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1760                                                                bool demote)
1761{
1762        int i, j;
1763        int nr_pages = 1 << order;
1764        struct page *p = page + 1;
1765
1766        /* we rely on prep_new_huge_page to set the destructor */
1767        set_compound_order(page, order);
1768        __ClearPageReserved(page);
1769        __SetPageHead(page);
1770        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1771                /*
1772                 * For gigantic hugepages allocated through bootmem at
1773                 * boot, it's safer to be consistent with the not-gigantic
1774                 * hugepages and clear the PG_reserved bit from all tail pages
1775                 * too.  Otherwise drivers using get_user_pages() to access tail
1776                 * pages may get the reference counting wrong if they see
1777                 * PG_reserved set on a tail page (despite the head page not
1778                 * having PG_reserved set).  Enforcing this consistency between
1779                 * head and tail pages allows drivers to optimize away a check
1780                 * on the head page when they need know if put_page() is needed
1781                 * after get_user_pages().
1782                 */
1783                __ClearPageReserved(p);
1784                /*
1785                 * Subtle and very unlikely
1786                 *
1787                 * Gigantic 'page allocators' such as memblock or cma will
1788                 * return a set of pages with each page ref counted.  We need
1789                 * to turn this set of pages into a compound page with tail
1790                 * page ref counts set to zero.  Code such as speculative page
1791                 * cache adding could take a ref on a 'to be' tail page.
1792                 * We need to respect any increased ref count, and only set
1793                 * the ref count to zero if count is currently 1.  If count
1794                 * is not 1, we return an error.  An error return indicates
1795                 * the set of pages can not be converted to a gigantic page.
1796                 * The caller who allocated the pages should then discard the
1797                 * pages using the appropriate free interface.
1798                 *
1799                 * In the case of demote, the ref count will be zero.
1800                 */
1801                if (!demote) {
1802                        if (!page_ref_freeze(p, 1)) {
1803                                pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1804                                goto out_error;
1805                        }
1806                } else {
1807                        VM_BUG_ON_PAGE(page_count(p), p);
1808                }
1809                set_compound_head(p, page);
1810        }
1811        atomic_set(compound_mapcount_ptr(page), -1);
1812        atomic_set(compound_pincount_ptr(page), 0);
1813        return true;
1814
1815out_error:
1816        /* undo tail page modifications made above */
1817        p = page + 1;
1818        for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1819                clear_compound_head(p);
1820                set_page_refcounted(p);
1821        }
1822        /* need to clear PG_reserved on remaining tail pages  */
1823        for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1824                __ClearPageReserved(p);
1825        set_compound_order(page, 0);
1826#ifdef CONFIG_64BIT
1827        page[1].compound_nr = 0;
1828#endif
1829        __ClearPageHead(page);
1830        return false;
1831}
1832
1833static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1834{
1835        return __prep_compound_gigantic_page(page, order, false);
1836}
1837
1838static bool prep_compound_gigantic_page_for_demote(struct page *page,
1839                                                        unsigned int order)
1840{
1841        return __prep_compound_gigantic_page(page, order, true);
1842}
1843
1844/*
1845 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1846 * transparent huge pages.  See the PageTransHuge() documentation for more
1847 * details.
1848 */
1849int PageHuge(struct page *page)
1850{
1851        if (!PageCompound(page))
1852                return 0;
1853
1854        page = compound_head(page);
1855        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1856}
1857EXPORT_SYMBOL_GPL(PageHuge);
1858
1859/*
1860 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1861 * normal or transparent huge pages.
1862 */
1863int PageHeadHuge(struct page *page_head)
1864{
1865        if (!PageHead(page_head))
1866                return 0;
1867
1868        return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1869}
1870EXPORT_SYMBOL_GPL(PageHeadHuge);
1871
1872/*
1873 * Find and lock address space (mapping) in write mode.
1874 *
1875 * Upon entry, the page is locked which means that page_mapping() is
1876 * stable.  Due to locking order, we can only trylock_write.  If we can
1877 * not get the lock, simply return NULL to caller.
1878 */
1879struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1880{
1881        struct address_space *mapping = page_mapping(hpage);
1882
1883        if (!mapping)
1884                return mapping;
1885
1886        if (i_mmap_trylock_write(mapping))
1887                return mapping;
1888
1889        return NULL;
1890}
1891
1892pgoff_t hugetlb_basepage_index(struct page *page)
1893{
1894        struct page *page_head = compound_head(page);
1895        pgoff_t index = page_index(page_head);
1896        unsigned long compound_idx;
1897
1898        if (compound_order(page_head) >= MAX_ORDER)
1899                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1900        else
1901                compound_idx = page - page_head;
1902
1903        return (index << compound_order(page_head)) + compound_idx;
1904}
1905
1906static struct page *alloc_buddy_huge_page(struct hstate *h,
1907                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1908                nodemask_t *node_alloc_noretry)
1909{
1910        int order = huge_page_order(h);
1911        struct page *page;
1912        bool alloc_try_hard = true;
1913
1914        /*
1915         * By default we always try hard to allocate the page with
1916         * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1917         * a loop (to adjust global huge page counts) and previous allocation
1918         * failed, do not continue to try hard on the same node.  Use the
1919         * node_alloc_noretry bitmap to manage this state information.
1920         */
1921        if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1922                alloc_try_hard = false;
1923        gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1924        if (alloc_try_hard)
1925                gfp_mask |= __GFP_RETRY_MAYFAIL;
1926        if (nid == NUMA_NO_NODE)
1927                nid = numa_mem_id();
1928        page = __alloc_pages(gfp_mask, order, nid, nmask);
1929        if (page)
1930                __count_vm_event(HTLB_BUDDY_PGALLOC);
1931        else
1932                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1933
1934        /*
1935         * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1936         * indicates an overall state change.  Clear bit so that we resume
1937         * normal 'try hard' allocations.
1938         */
1939        if (node_alloc_noretry && page && !alloc_try_hard)
1940                node_clear(nid, *node_alloc_noretry);
1941
1942        /*
1943         * If we tried hard to get a page but failed, set bit so that
1944         * subsequent attempts will not try as hard until there is an
1945         * overall state change.
1946         */
1947        if (node_alloc_noretry && !page && alloc_try_hard)
1948                node_set(nid, *node_alloc_noretry);
1949
1950        return page;
1951}
1952
1953/*
1954 * Common helper to allocate a fresh hugetlb page. All specific allocators
1955 * should use this function to get new hugetlb pages
1956 */
1957static struct page *alloc_fresh_huge_page(struct hstate *h,
1958                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1959                nodemask_t *node_alloc_noretry)
1960{
1961        struct page *page;
1962        bool retry = false;
1963
1964retry:
1965        if (hstate_is_gigantic(h))
1966                page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1967        else
1968                page = alloc_buddy_huge_page(h, gfp_mask,
1969                                nid, nmask, node_alloc_noretry);
1970        if (!page)
1971                return NULL;
1972
1973        if (hstate_is_gigantic(h)) {
1974                if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1975                        /*
1976                         * Rare failure to convert pages to compound page.
1977                         * Free pages and try again - ONCE!
1978                         */
1979                        free_gigantic_page(page, huge_page_order(h));
1980                        if (!retry) {
1981                                retry = true;
1982                                goto retry;
1983                        }
1984                        return NULL;
1985                }
1986        }
1987        prep_new_huge_page(h, page, page_to_nid(page));
1988
1989        return page;
1990}
1991
1992/*
1993 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1994 * manner.
1995 */
1996static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1997                                nodemask_t *node_alloc_noretry)
1998{
1999        struct page *page;
2000        int nr_nodes, node;
2001        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2002
2003        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2004                page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2005                                                node_alloc_noretry);
2006                if (page)
2007                        break;
2008        }
2009
2010        if (!page)
2011                return 0;
2012
2013        put_page(page); /* free it into the hugepage allocator */
2014
2015        return 1;
2016}
2017
2018/*
2019 * Remove huge page from pool from next node to free.  Attempt to keep
2020 * persistent huge pages more or less balanced over allowed nodes.
2021 * This routine only 'removes' the hugetlb page.  The caller must make
2022 * an additional call to free the page to low level allocators.
2023 * Called with hugetlb_lock locked.
2024 */
2025static struct page *remove_pool_huge_page(struct hstate *h,
2026                                                nodemask_t *nodes_allowed,
2027                                                 bool acct_surplus)
2028{
2029        int nr_nodes, node;
2030        struct page *page = NULL;
2031
2032        lockdep_assert_held(&hugetlb_lock);
2033        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2034                /*
2035                 * If we're returning unused surplus pages, only examine
2036                 * nodes with surplus pages.
2037                 */
2038                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2039                    !list_empty(&h->hugepage_freelists[node])) {
2040                        page = list_entry(h->hugepage_freelists[node].next,
2041                                          struct page, lru);
2042                        remove_hugetlb_page(h, page, acct_surplus);
2043                        break;
2044                }
2045        }
2046
2047        return page;
2048}
2049
2050/*
2051 * Dissolve a given free hugepage into free buddy pages. This function does
2052 * nothing for in-use hugepages and non-hugepages.
2053 * This function returns values like below:
2054 *
2055 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2056 *           when the system is under memory pressure and the feature of
2057 *           freeing unused vmemmap pages associated with each hugetlb page
2058 *           is enabled.
2059 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2060 *           (allocated or reserved.)
2061 *       0:  successfully dissolved free hugepages or the page is not a
2062 *           hugepage (considered as already dissolved)
2063 */
2064int dissolve_free_huge_page(struct page *page)
2065{
2066        int rc = -EBUSY;
2067
2068retry:
2069        /* Not to disrupt normal path by vainly holding hugetlb_lock */
2070        if (!PageHuge(page))
2071                return 0;
2072
2073        spin_lock_irq(&hugetlb_lock);
2074        if (!PageHuge(page)) {
2075                rc = 0;
2076                goto out;
2077        }
2078
2079        if (!page_count(page)) {
2080                struct page *head = compound_head(page);
2081                struct hstate *h = page_hstate(head);
2082                if (h->free_huge_pages - h->resv_huge_pages == 0)
2083                        goto out;
2084
2085                /*
2086                 * We should make sure that the page is already on the free list
2087                 * when it is dissolved.
2088                 */
2089                if (unlikely(!HPageFreed(head))) {
2090                        spin_unlock_irq(&hugetlb_lock);
2091                        cond_resched();
2092
2093                        /*
2094                         * Theoretically, we should return -EBUSY when we
2095                         * encounter this race. In fact, we have a chance
2096                         * to successfully dissolve the page if we do a
2097                         * retry. Because the race window is quite small.
2098                         * If we seize this opportunity, it is an optimization
2099                         * for increasing the success rate of dissolving page.
2100                         */
2101                        goto retry;
2102                }
2103
2104                remove_hugetlb_page(h, head, false);
2105                h->max_huge_pages--;
2106                spin_unlock_irq(&hugetlb_lock);
2107
2108                /*
2109                 * Normally update_and_free_page will allocate required vmemmmap
2110                 * before freeing the page.  update_and_free_page will fail to
2111                 * free the page if it can not allocate required vmemmap.  We
2112                 * need to adjust max_huge_pages if the page is not freed.
2113                 * Attempt to allocate vmemmmap here so that we can take
2114                 * appropriate action on failure.
2115                 */
2116                rc = hugetlb_vmemmap_alloc(h, head);
2117                if (!rc) {
2118                        /*
2119                         * Move PageHWPoison flag from head page to the raw
2120                         * error page, which makes any subpages rather than
2121                         * the error page reusable.
2122                         */
2123                        if (PageHWPoison(head) && page != head) {
2124                                SetPageHWPoison(page);
2125                                ClearPageHWPoison(head);
2126                        }
2127                        update_and_free_page(h, head, false);
2128                } else {
2129                        spin_lock_irq(&hugetlb_lock);
2130                        add_hugetlb_page(h, head, false);
2131                        h->max_huge_pages++;
2132                        spin_unlock_irq(&hugetlb_lock);
2133                }
2134
2135                return rc;
2136        }
2137out:
2138        spin_unlock_irq(&hugetlb_lock);
2139        return rc;
2140}
2141
2142/*
2143 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2144 * make specified memory blocks removable from the system.
2145 * Note that this will dissolve a free gigantic hugepage completely, if any
2146 * part of it lies within the given range.
2147 * Also note that if dissolve_free_huge_page() returns with an error, all
2148 * free hugepages that were dissolved before that error are lost.
2149 */
2150int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2151{
2152        unsigned long pfn;
2153        struct page *page;
2154        int rc = 0;
2155
2156        if (!hugepages_supported())
2157                return rc;
2158
2159        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2160                page = pfn_to_page(pfn);
2161                rc = dissolve_free_huge_page(page);
2162                if (rc)
2163                        break;
2164        }
2165
2166        return rc;
2167}
2168
2169/*
2170 * Allocates a fresh surplus page from the page allocator.
2171 */
2172static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2173                int nid, nodemask_t *nmask, bool zero_ref)
2174{
2175        struct page *page = NULL;
2176        bool retry = false;
2177
2178        if (hstate_is_gigantic(h))
2179                return NULL;
2180
2181        spin_lock_irq(&hugetlb_lock);
2182        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2183                goto out_unlock;
2184        spin_unlock_irq(&hugetlb_lock);
2185
2186retry:
2187        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2188        if (!page)
2189                return NULL;
2190
2191        spin_lock_irq(&hugetlb_lock);
2192        /*
2193         * We could have raced with the pool size change.
2194         * Double check that and simply deallocate the new page
2195         * if we would end up overcommiting the surpluses. Abuse
2196         * temporary page to workaround the nasty free_huge_page
2197         * codeflow
2198         */
2199        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2200                SetHPageTemporary(page);
2201                spin_unlock_irq(&hugetlb_lock);
2202                put_page(page);
2203                return NULL;
2204        }
2205
2206        if (zero_ref) {
2207                /*
2208                 * Caller requires a page with zero ref count.
2209                 * We will drop ref count here.  If someone else is holding
2210                 * a ref, the page will be freed when they drop it.  Abuse
2211                 * temporary page flag to accomplish this.
2212                 */
2213                SetHPageTemporary(page);
2214                if (!put_page_testzero(page)) {
2215                        /*
2216                         * Unexpected inflated ref count on freshly allocated
2217                         * huge.  Retry once.
2218                         */
2219                        pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2220                        spin_unlock_irq(&hugetlb_lock);
2221                        if (retry)
2222                                return NULL;
2223
2224                        retry = true;
2225                        goto retry;
2226                }
2227                ClearHPageTemporary(page);
2228        }
2229
2230        h->surplus_huge_pages++;
2231        h->surplus_huge_pages_node[page_to_nid(page)]++;
2232
2233out_unlock:
2234        spin_unlock_irq(&hugetlb_lock);
2235
2236        return page;
2237}
2238
2239static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2240                                     int nid, nodemask_t *nmask)
2241{
2242        struct page *page;
2243
2244        if (hstate_is_gigantic(h))
2245                return NULL;
2246
2247        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2248        if (!page)
2249                return NULL;
2250
2251        /*
2252         * We do not account these pages as surplus because they are only
2253         * temporary and will be released properly on the last reference
2254         */
2255        SetHPageTemporary(page);
2256
2257        return page;
2258}
2259
2260/*
2261 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2262 */
2263static
2264struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2265                struct vm_area_struct *vma, unsigned long addr)
2266{
2267        struct page *page = NULL;
2268        struct mempolicy *mpol;
2269        gfp_t gfp_mask = htlb_alloc_mask(h);
2270        int nid;
2271        nodemask_t *nodemask;
2272
2273        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2274        if (mpol_is_preferred_many(mpol)) {
2275                gfp_t gfp = gfp_mask | __GFP_NOWARN;
2276
2277                gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2278                page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2279
2280                /* Fallback to all nodes if page==NULL */
2281                nodemask = NULL;
2282        }
2283
2284        if (!page)
2285                page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2286        mpol_cond_put(mpol);
2287        return page;
2288}
2289
2290/* page migration callback function */
2291struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2292                nodemask_t *nmask, gfp_t gfp_mask)
2293{
2294        spin_lock_irq(&hugetlb_lock);
2295        if (h->free_huge_pages - h->resv_huge_pages > 0) {
2296                struct page *page;
2297
2298                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2299                if (page) {
2300                        spin_unlock_irq(&hugetlb_lock);
2301                        return page;
2302                }
2303        }
2304        spin_unlock_irq(&hugetlb_lock);
2305
2306        return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2307}
2308
2309/* mempolicy aware migration callback */
2310struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2311                unsigned long address)
2312{
2313        struct mempolicy *mpol;
2314        nodemask_t *nodemask;
2315        struct page *page;
2316        gfp_t gfp_mask;
2317        int node;
2318
2319        gfp_mask = htlb_alloc_mask(h);
2320        node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2321        page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2322        mpol_cond_put(mpol);
2323
2324        return page;
2325}
2326
2327/*
2328 * Increase the hugetlb pool such that it can accommodate a reservation
2329 * of size 'delta'.
2330 */
2331static int gather_surplus_pages(struct hstate *h, long delta)
2332        __must_hold(&hugetlb_lock)
2333{
2334        struct list_head surplus_list;
2335        struct page *page, *tmp;
2336        int ret;
2337        long i;
2338        long needed, allocated;
2339        bool alloc_ok = true;
2340
2341        lockdep_assert_held(&hugetlb_lock);
2342        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2343        if (needed <= 0) {
2344                h->resv_huge_pages += delta;
2345                return 0;
2346        }
2347
2348        allocated = 0;
2349        INIT_LIST_HEAD(&surplus_list);
2350
2351        ret = -ENOMEM;
2352retry:
2353        spin_unlock_irq(&hugetlb_lock);
2354        for (i = 0; i < needed; i++) {
2355                page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2356                                NUMA_NO_NODE, NULL, true);
2357                if (!page) {
2358                        alloc_ok = false;
2359                        break;
2360                }
2361                list_add(&page->lru, &surplus_list);
2362                cond_resched();
2363        }
2364        allocated += i;
2365
2366        /*
2367         * After retaking hugetlb_lock, we need to recalculate 'needed'
2368         * because either resv_huge_pages or free_huge_pages may have changed.
2369         */
2370        spin_lock_irq(&hugetlb_lock);
2371        needed = (h->resv_huge_pages + delta) -
2372                        (h->free_huge_pages + allocated);
2373        if (needed > 0) {
2374                if (alloc_ok)
2375                        goto retry;
2376                /*
2377                 * We were not able to allocate enough pages to
2378                 * satisfy the entire reservation so we free what
2379                 * we've allocated so far.
2380                 */
2381                goto free;
2382        }
2383        /*
2384         * The surplus_list now contains _at_least_ the number of extra pages
2385         * needed to accommodate the reservation.  Add the appropriate number
2386         * of pages to the hugetlb pool and free the extras back to the buddy
2387         * allocator.  Commit the entire reservation here to prevent another
2388         * process from stealing the pages as they are added to the pool but
2389         * before they are reserved.
2390         */
2391        needed += allocated;
2392        h->resv_huge_pages += delta;
2393        ret = 0;
2394
2395        /* Free the needed pages to the hugetlb pool */
2396        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2397                if ((--needed) < 0)
2398                        break;
2399                /* Add the page to the hugetlb allocator */
2400                enqueue_huge_page(h, page);
2401        }
2402free:
2403        spin_unlock_irq(&hugetlb_lock);
2404
2405        /*
2406         * Free unnecessary surplus pages to the buddy allocator.
2407         * Pages have no ref count, call free_huge_page directly.
2408         */
2409        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2410                free_huge_page(page);
2411        spin_lock_irq(&hugetlb_lock);
2412
2413        return ret;
2414}
2415
2416/*
2417 * This routine has two main purposes:
2418 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2419 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2420 *    to the associated reservation map.
2421 * 2) Free any unused surplus pages that may have been allocated to satisfy
2422 *    the reservation.  As many as unused_resv_pages may be freed.
2423 */
2424static void return_unused_surplus_pages(struct hstate *h,
2425                                        unsigned long unused_resv_pages)
2426{
2427        unsigned long nr_pages;
2428        struct page *page;
2429        LIST_HEAD(page_list);
2430
2431        lockdep_assert_held(&hugetlb_lock);
2432        /* Uncommit the reservation */
2433        h->resv_huge_pages -= unused_resv_pages;
2434
2435        /* Cannot return gigantic pages currently */
2436        if (hstate_is_gigantic(h))
2437                goto out;
2438
2439        /*
2440         * Part (or even all) of the reservation could have been backed
2441         * by pre-allocated pages. Only free surplus pages.
2442         */
2443        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2444
2445        /*
2446         * We want to release as many surplus pages as possible, spread
2447         * evenly across all nodes with memory. Iterate across these nodes
2448         * until we can no longer free unreserved surplus pages. This occurs
2449         * when the nodes with surplus pages have no free pages.
2450         * remove_pool_huge_page() will balance the freed pages across the
2451         * on-line nodes with memory and will handle the hstate accounting.
2452         */
2453        while (nr_pages--) {
2454                page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2455                if (!page)
2456                        goto out;
2457
2458                list_add(&page->lru, &page_list);
2459        }
2460
2461out:
2462        spin_unlock_irq(&hugetlb_lock);
2463        update_and_free_pages_bulk(h, &page_list);
2464        spin_lock_irq(&hugetlb_lock);
2465}
2466
2467
2468/*
2469 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2470 * are used by the huge page allocation routines to manage reservations.
2471 *
2472 * vma_needs_reservation is called to determine if the huge page at addr
2473 * within the vma has an associated reservation.  If a reservation is
2474 * needed, the value 1 is returned.  The caller is then responsible for
2475 * managing the global reservation and subpool usage counts.  After
2476 * the huge page has been allocated, vma_commit_reservation is called
2477 * to add the page to the reservation map.  If the page allocation fails,
2478 * the reservation must be ended instead of committed.  vma_end_reservation
2479 * is called in such cases.
2480 *
2481 * In the normal case, vma_commit_reservation returns the same value
2482 * as the preceding vma_needs_reservation call.  The only time this
2483 * is not the case is if a reserve map was changed between calls.  It
2484 * is the responsibility of the caller to notice the difference and
2485 * take appropriate action.
2486 *
2487 * vma_add_reservation is used in error paths where a reservation must
2488 * be restored when a newly allocated huge page must be freed.  It is
2489 * to be called after calling vma_needs_reservation to determine if a
2490 * reservation exists.
2491 *
2492 * vma_del_reservation is used in error paths where an entry in the reserve
2493 * map was created during huge page allocation and must be removed.  It is to
2494 * be called after calling vma_needs_reservation to determine if a reservation
2495 * exists.
2496 */
2497enum vma_resv_mode {
2498        VMA_NEEDS_RESV,
2499        VMA_COMMIT_RESV,
2500        VMA_END_RESV,
2501        VMA_ADD_RESV,
2502        VMA_DEL_RESV,
2503};
2504static long __vma_reservation_common(struct hstate *h,
2505                                struct vm_area_struct *vma, unsigned long addr,
2506                                enum vma_resv_mode mode)
2507{
2508        struct resv_map *resv;
2509        pgoff_t idx;
2510        long ret;
2511        long dummy_out_regions_needed;
2512
2513        resv = vma_resv_map(vma);
2514        if (!resv)
2515                return 1;
2516
2517        idx = vma_hugecache_offset(h, vma, addr);
2518        switch (mode) {
2519        case VMA_NEEDS_RESV:
2520                ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2521                /* We assume that vma_reservation_* routines always operate on
2522                 * 1 page, and that adding to resv map a 1 page entry can only
2523                 * ever require 1 region.
2524                 */
2525                VM_BUG_ON(dummy_out_regions_needed != 1);
2526                break;
2527        case VMA_COMMIT_RESV:
2528                ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2529                /* region_add calls of range 1 should never fail. */
2530                VM_BUG_ON(ret < 0);
2531                break;
2532        case VMA_END_RESV:
2533                region_abort(resv, idx, idx + 1, 1);
2534                ret = 0;
2535                break;
2536        case VMA_ADD_RESV:
2537                if (vma->vm_flags & VM_MAYSHARE) {
2538                        ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2539                        /* region_add calls of range 1 should never fail. */
2540                        VM_BUG_ON(ret < 0);
2541                } else {
2542                        region_abort(resv, idx, idx + 1, 1);
2543                        ret = region_del(resv, idx, idx + 1);
2544                }
2545                break;
2546        case VMA_DEL_RESV:
2547                if (vma->vm_flags & VM_MAYSHARE) {
2548                        region_abort(resv, idx, idx + 1, 1);
2549                        ret = region_del(resv, idx, idx + 1);
2550                } else {
2551                        ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2552                        /* region_add calls of range 1 should never fail. */
2553                        VM_BUG_ON(ret < 0);
2554                }
2555                break;
2556        default:
2557                BUG();
2558        }
2559
2560        if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2561                return ret;
2562        /*
2563         * We know private mapping must have HPAGE_RESV_OWNER set.
2564         *
2565         * In most cases, reserves always exist for private mappings.
2566         * However, a file associated with mapping could have been
2567         * hole punched or truncated after reserves were consumed.
2568         * As subsequent fault on such a range will not use reserves.
2569         * Subtle - The reserve map for private mappings has the
2570         * opposite meaning than that of shared mappings.  If NO
2571         * entry is in the reserve map, it means a reservation exists.
2572         * If an entry exists in the reserve map, it means the
2573         * reservation has already been consumed.  As a result, the
2574         * return value of this routine is the opposite of the
2575         * value returned from reserve map manipulation routines above.
2576         */
2577        if (ret > 0)
2578                return 0;
2579        if (ret == 0)
2580                return 1;
2581        return ret;
2582}
2583
2584static long vma_needs_reservation(struct hstate *h,
2585                        struct vm_area_struct *vma, unsigned long addr)
2586{
2587        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2588}
2589
2590static long vma_commit_reservation(struct hstate *h,
2591                        struct vm_area_struct *vma, unsigned long addr)
2592{
2593        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2594}
2595
2596static void vma_end_reservation(struct hstate *h,
2597                        struct vm_area_struct *vma, unsigned long addr)
2598{
2599        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2600}
2601
2602static long vma_add_reservation(struct hstate *h,
2603                        struct vm_area_struct *vma, unsigned long addr)
2604{
2605        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2606}
2607
2608static long vma_del_reservation(struct hstate *h,
2609                        struct vm_area_struct *vma, unsigned long addr)
2610{
2611        return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2612}
2613
2614/*
2615 * This routine is called to restore reservation information on error paths.
2616 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2617 * the hugetlb mutex should remain held when calling this routine.
2618 *
2619 * It handles two specific cases:
2620 * 1) A reservation was in place and the page consumed the reservation.
2621 *    HPageRestoreReserve is set in the page.
2622 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2623 *    not set.  However, alloc_huge_page always updates the reserve map.
2624 *
2625 * In case 1, free_huge_page later in the error path will increment the
2626 * global reserve count.  But, free_huge_page does not have enough context
2627 * to adjust the reservation map.  This case deals primarily with private
2628 * mappings.  Adjust the reserve map here to be consistent with global
2629 * reserve count adjustments to be made by free_huge_page.  Make sure the
2630 * reserve map indicates there is a reservation present.
2631 *
2632 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2633 */
2634void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2635                        unsigned long address, struct page *page)
2636{
2637        long rc = vma_needs_reservation(h, vma, address);
2638
2639        if (HPageRestoreReserve(page)) {
2640                if (unlikely(rc < 0))
2641                        /*
2642                         * Rare out of memory condition in reserve map
2643                         * manipulation.  Clear HPageRestoreReserve so that
2644                         * global reserve count will not be incremented
2645                         * by free_huge_page.  This will make it appear
2646                         * as though the reservation for this page was
2647                         * consumed.  This may prevent the task from
2648                         * faulting in the page at a later time.  This
2649                         * is better than inconsistent global huge page
2650                         * accounting of reserve counts.
2651                         */
2652                        ClearHPageRestoreReserve(page);
2653                else if (rc)
2654                        (void)vma_add_reservation(h, vma, address);
2655                else
2656                        vma_end_reservation(h, vma, address);
2657        } else {
2658                if (!rc) {
2659                        /*
2660                         * This indicates there is an entry in the reserve map
2661                         * not added by alloc_huge_page.  We know it was added
2662                         * before the alloc_huge_page call, otherwise
2663                         * HPageRestoreReserve would be set on the page.
2664                         * Remove the entry so that a subsequent allocation
2665                         * does not consume a reservation.
2666                         */
2667                        rc = vma_del_reservation(h, vma, address);
2668                        if (rc < 0)
2669                                /*
2670                                 * VERY rare out of memory condition.  Since
2671                                 * we can not delete the entry, set
2672                                 * HPageRestoreReserve so that the reserve
2673                                 * count will be incremented when the page
2674                                 * is freed.  This reserve will be consumed
2675                                 * on a subsequent allocation.
2676                                 */
2677                                SetHPageRestoreReserve(page);
2678                } else if (rc < 0) {
2679                        /*
2680                         * Rare out of memory condition from
2681                         * vma_needs_reservation call.  Memory allocation is
2682                         * only attempted if a new entry is needed.  Therefore,
2683                         * this implies there is not an entry in the
2684                         * reserve map.
2685                         *
2686                         * For shared mappings, no entry in the map indicates
2687                         * no reservation.  We are done.
2688                         */
2689                        if (!(vma->vm_flags & VM_MAYSHARE))
2690                                /*
2691                                 * For private mappings, no entry indicates
2692                                 * a reservation is present.  Since we can
2693                                 * not add an entry, set SetHPageRestoreReserve
2694                                 * on the page so reserve count will be
2695                                 * incremented when freed.  This reserve will
2696                                 * be consumed on a subsequent allocation.
2697                                 */
2698                                SetHPageRestoreReserve(page);
2699                } else
2700                        /*
2701                         * No reservation present, do nothing
2702                         */
2703                         vma_end_reservation(h, vma, address);
2704        }
2705}
2706
2707/*
2708 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2709 * @h: struct hstate old page belongs to
2710 * @old_page: Old page to dissolve
2711 * @list: List to isolate the page in case we need to
2712 * Returns 0 on success, otherwise negated error.
2713 */
2714static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2715                                        struct list_head *list)
2716{
2717        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2718        int nid = page_to_nid(old_page);
2719        bool alloc_retry = false;
2720        struct page *new_page;
2721        int ret = 0;
2722
2723        /*
2724         * Before dissolving the page, we need to allocate a new one for the
2725         * pool to remain stable.  Here, we allocate the page and 'prep' it
2726         * by doing everything but actually updating counters and adding to
2727         * the pool.  This simplifies and let us do most of the processing
2728         * under the lock.
2729         */
2730alloc_retry:
2731        new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2732        if (!new_page)
2733                return -ENOMEM;
2734        /*
2735         * If all goes well, this page will be directly added to the free
2736         * list in the pool.  For this the ref count needs to be zero.
2737         * Attempt to drop now, and retry once if needed.  It is VERY
2738         * unlikely there is another ref on the page.
2739         *
2740         * If someone else has a reference to the page, it will be freed
2741         * when they drop their ref.  Abuse temporary page flag to accomplish
2742         * this.  Retry once if there is an inflated ref count.
2743         */
2744        SetHPageTemporary(new_page);
2745        if (!put_page_testzero(new_page)) {
2746                if (alloc_retry)
2747                        return -EBUSY;
2748
2749                alloc_retry = true;
2750                goto alloc_retry;
2751        }
2752        ClearHPageTemporary(new_page);
2753
2754        __prep_new_huge_page(h, new_page);
2755
2756retry:
2757        spin_lock_irq(&hugetlb_lock);
2758        if (!PageHuge(old_page)) {
2759                /*
2760                 * Freed from under us. Drop new_page too.
2761                 */
2762                goto free_new;
2763        } else if (page_count(old_page)) {
2764                /*
2765                 * Someone has grabbed the page, try to isolate it here.
2766                 * Fail with -EBUSY if not possible.
2767                 */
2768                spin_unlock_irq(&hugetlb_lock);
2769                if (!isolate_huge_page(old_page, list))
2770                        ret = -EBUSY;
2771                spin_lock_irq(&hugetlb_lock);
2772                goto free_new;
2773        } else if (!HPageFreed(old_page)) {
2774                /*
2775                 * Page's refcount is 0 but it has not been enqueued in the
2776                 * freelist yet. Race window is small, so we can succeed here if
2777                 * we retry.
2778                 */
2779                spin_unlock_irq(&hugetlb_lock);
2780                cond_resched();
2781                goto retry;
2782        } else {
2783                /*
2784                 * Ok, old_page is still a genuine free hugepage. Remove it from
2785                 * the freelist and decrease the counters. These will be
2786                 * incremented again when calling __prep_account_new_huge_page()
2787                 * and enqueue_huge_page() for new_page. The counters will remain
2788                 * stable since this happens under the lock.
2789                 */
2790                remove_hugetlb_page(h, old_page, false);
2791
2792                /*
2793                 * Ref count on new page is already zero as it was dropped
2794                 * earlier.  It can be directly added to the pool free list.
2795                 */
2796                __prep_account_new_huge_page(h, nid);
2797                enqueue_huge_page(h, new_page);
2798
2799                /*
2800                 * Pages have been replaced, we can safely free the old one.
2801                 */
2802                spin_unlock_irq(&hugetlb_lock);
2803                update_and_free_page(h, old_page, false);
2804        }
2805
2806        return ret;
2807
2808free_new:
2809        spin_unlock_irq(&hugetlb_lock);
2810        /* Page has a zero ref count, but needs a ref to be freed */
2811        set_page_refcounted(new_page);
2812        update_and_free_page(h, new_page, false);
2813
2814        return ret;
2815}
2816
2817int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2818{
2819        struct hstate *h;
2820        struct page *head;
2821        int ret = -EBUSY;
2822
2823        /*
2824         * The page might have been dissolved from under our feet, so make sure
2825         * to carefully check the state under the lock.
2826         * Return success when racing as if we dissolved the page ourselves.
2827         */
2828        spin_lock_irq(&hugetlb_lock);
2829        if (PageHuge(page)) {
2830                head = compound_head(page);
2831                h = page_hstate(head);
2832        } else {
2833                spin_unlock_irq(&hugetlb_lock);
2834                return 0;
2835        }
2836        spin_unlock_irq(&hugetlb_lock);
2837
2838        /*
2839         * Fence off gigantic pages as there is a cyclic dependency between
2840         * alloc_contig_range and them. Return -ENOMEM as this has the effect
2841         * of bailing out right away without further retrying.
2842         */
2843        if (hstate_is_gigantic(h))
2844                return -ENOMEM;
2845
2846        if (page_count(head) && isolate_huge_page(head, list))
2847                ret = 0;
2848        else if (!page_count(head))
2849                ret = alloc_and_dissolve_huge_page(h, head, list);
2850
2851        return ret;
2852}
2853
2854struct page *alloc_huge_page(struct vm_area_struct *vma,
2855                                    unsigned long addr, int avoid_reserve)
2856{
2857        struct hugepage_subpool *spool = subpool_vma(vma);
2858        struct hstate *h = hstate_vma(vma);
2859        struct page *page;
2860        long map_chg, map_commit;
2861        long gbl_chg;
2862        int ret, idx;
2863        struct hugetlb_cgroup *h_cg;
2864        bool deferred_reserve;
2865
2866        idx = hstate_index(h);
2867        /*
2868         * Examine the region/reserve map to determine if the process
2869         * has a reservation for the page to be allocated.  A return
2870         * code of zero indicates a reservation exists (no change).
2871         */
2872        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2873        if (map_chg < 0)
2874                return ERR_PTR(-ENOMEM);
2875
2876        /*
2877         * Processes that did not create the mapping will have no
2878         * reserves as indicated by the region/reserve map. Check
2879         * that the allocation will not exceed the subpool limit.
2880         * Allocations for MAP_NORESERVE mappings also need to be
2881         * checked against any subpool limit.
2882         */
2883        if (map_chg || avoid_reserve) {
2884                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2885                if (gbl_chg < 0) {
2886                        vma_end_reservation(h, vma, addr);
2887                        return ERR_PTR(-ENOSPC);
2888                }
2889
2890                /*
2891                 * Even though there was no reservation in the region/reserve
2892                 * map, there could be reservations associated with the
2893                 * subpool that can be used.  This would be indicated if the
2894                 * return value of hugepage_subpool_get_pages() is zero.
2895                 * However, if avoid_reserve is specified we still avoid even
2896                 * the subpool reservations.
2897                 */
2898                if (avoid_reserve)
2899                        gbl_chg = 1;
2900        }
2901
2902        /* If this allocation is not consuming a reservation, charge it now.
2903         */
2904        deferred_reserve = map_chg || avoid_reserve;
2905        if (deferred_reserve) {
2906                ret = hugetlb_cgroup_charge_cgroup_rsvd(
2907                        idx, pages_per_huge_page(h), &h_cg);
2908                if (ret)
2909                        goto out_subpool_put;
2910        }
2911
2912        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2913        if (ret)
2914                goto out_uncharge_cgroup_reservation;
2915
2916        spin_lock_irq(&hugetlb_lock);
2917        /*
2918         * glb_chg is passed to indicate whether or not a page must be taken
2919         * from the global free pool (global change).  gbl_chg == 0 indicates
2920         * a reservation exists for the allocation.
2921         */
2922        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2923        if (!page) {
2924                spin_unlock_irq(&hugetlb_lock);
2925                page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2926                if (!page)
2927                        goto out_uncharge_cgroup;
2928                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2929                        SetHPageRestoreReserve(page);
2930                        h->resv_huge_pages--;
2931                }
2932                spin_lock_irq(&hugetlb_lock);
2933                list_add(&page->lru, &h->hugepage_activelist);
2934                /* Fall through */
2935        }
2936        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2937        /* If allocation is not consuming a reservation, also store the
2938         * hugetlb_cgroup pointer on the page.
2939         */
2940        if (deferred_reserve) {
2941                hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2942                                                  h_cg, page);
2943        }
2944
2945        spin_unlock_irq(&hugetlb_lock);
2946
2947        hugetlb_set_page_subpool(page, spool);
2948
2949        map_commit = vma_commit_reservation(h, vma, addr);
2950        if (unlikely(map_chg > map_commit)) {
2951                /*
2952                 * The page was added to the reservation map between
2953                 * vma_needs_reservation and vma_commit_reservation.
2954                 * This indicates a race with hugetlb_reserve_pages.
2955                 * Adjust for the subpool count incremented above AND
2956                 * in hugetlb_reserve_pages for the same page.  Also,
2957                 * the reservation count added in hugetlb_reserve_pages
2958                 * no longer applies.
2959                 */
2960                long rsv_adjust;
2961
2962                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2963                hugetlb_acct_memory(h, -rsv_adjust);
2964                if (deferred_reserve)
2965                        hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2966                                        pages_per_huge_page(h), page);
2967        }
2968        return page;
2969
2970out_uncharge_cgroup:
2971        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2972out_uncharge_cgroup_reservation:
2973        if (deferred_reserve)
2974                hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2975                                                    h_cg);
2976out_subpool_put:
2977        if (map_chg || avoid_reserve)
2978                hugepage_subpool_put_pages(spool, 1);
2979        vma_end_reservation(h, vma, addr);
2980        return ERR_PTR(-ENOSPC);
2981}
2982
2983int alloc_bootmem_huge_page(struct hstate *h, int nid)
2984        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2985int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2986{
2987        struct huge_bootmem_page *m = NULL; /* initialize for clang */
2988        int nr_nodes, node;
2989
2990        /* do node specific alloc */
2991        if (nid != NUMA_NO_NODE) {
2992                m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2993                                0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2994                if (!m)
2995                        return 0;
2996                goto found;
2997        }
2998        /* allocate from next node when distributing huge pages */
2999        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3000                m = memblock_alloc_try_nid_raw(
3001                                huge_page_size(h), huge_page_size(h),
3002                                0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3003                /*
3004                 * Use the beginning of the huge page to store the
3005                 * huge_bootmem_page struct (until gather_bootmem
3006                 * puts them into the mem_map).
3007                 */
3008                if (!m)
3009                        return 0;
3010                goto found;
3011        }
3012
3013found:
3014        /* Put them into a private list first because mem_map is not up yet */
3015        INIT_LIST_HEAD(&m->list);
3016        list_add(&m->list, &huge_boot_pages);
3017        m->hstate = h;
3018        return 1;
3019}
3020
3021/*
3022 * Put bootmem huge pages into the standard lists after mem_map is up.
3023 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3024 */
3025static void __init gather_bootmem_prealloc(void)
3026{
3027        struct huge_bootmem_page *m;
3028
3029        list_for_each_entry(m, &huge_boot_pages, list) {
3030                struct page *page = virt_to_page(m);
3031                struct hstate *h = m->hstate;
3032
3033                VM_BUG_ON(!hstate_is_gigantic(h));
3034                WARN_ON(page_count(page) != 1);
3035                if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3036                        WARN_ON(PageReserved(page));
3037                        prep_new_huge_page(h, page, page_to_nid(page));
3038                        put_page(page); /* add to the hugepage allocator */
3039                } else {
3040                        /* VERY unlikely inflated ref count on a tail page */
3041                        free_gigantic_page(page, huge_page_order(h));
3042                }
3043
3044                /*
3045                 * We need to restore the 'stolen' pages to totalram_pages
3046                 * in order to fix confusing memory reports from free(1) and
3047                 * other side-effects, like CommitLimit going negative.
3048                 */
3049                adjust_managed_page_count(page, pages_per_huge_page(h));
3050                cond_resched();
3051        }
3052}
3053static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3054{
3055        unsigned long i;
3056        char buf[32];
3057
3058        for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3059                if (hstate_is_gigantic(h)) {
3060                        if (!alloc_bootmem_huge_page(h, nid))
3061                                break;
3062                } else {
3063                        struct page *page;
3064                        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3065
3066                        page = alloc_fresh_huge_page(h, gfp_mask, nid,
3067                                        &node_states[N_MEMORY], NULL);
3068                        if (!page)
3069                                break;
3070                        put_page(page); /* free it into the hugepage allocator */
3071                }
3072                cond_resched();
3073        }
3074        if (i == h->max_huge_pages_node[nid])
3075                return;
3076
3077        string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3078        pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3079                h->max_huge_pages_node[nid], buf, nid, i);
3080        h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3081        h->max_huge_pages_node[nid] = i;
3082}
3083
3084static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3085{
3086        unsigned long i;
3087        nodemask_t *node_alloc_noretry;
3088        bool node_specific_alloc = false;
3089
3090        /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3091        if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3092                pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3093                return;
3094        }
3095
3096        /* do node specific alloc */
3097        for_each_online_node(i) {
3098                if (h->max_huge_pages_node[i] > 0) {
3099                        hugetlb_hstate_alloc_pages_onenode(h, i);
3100                        node_specific_alloc = true;
3101                }
3102        }
3103
3104        if (node_specific_alloc)
3105                return;
3106
3107        /* below will do all node balanced alloc */
3108        if (!hstate_is_gigantic(h)) {
3109                /*
3110                 * Bit mask controlling how hard we retry per-node allocations.
3111                 * Ignore errors as lower level routines can deal with
3112                 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3113                 * time, we are likely in bigger trouble.
3114                 */
3115                node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3116                                                GFP_KERNEL);
3117        } else {
3118                /* allocations done at boot time */
3119                node_alloc_noretry = NULL;
3120        }
3121
3122        /* bit mask controlling how hard we retry per-node allocations */
3123        if (node_alloc_noretry)
3124                nodes_clear(*node_alloc_noretry);
3125
3126        for (i = 0; i < h->max_huge_pages; ++i) {
3127                if (hstate_is_gigantic(h)) {
3128                        if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3129                                break;
3130                } else if (!alloc_pool_huge_page(h,
3131                                         &node_states[N_MEMORY],
3132                                         node_alloc_noretry))
3133                        break;
3134                cond_resched();
3135        }
3136        if (i < h->max_huge_pages) {
3137                char buf[32];
3138
3139                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3140                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3141                        h->max_huge_pages, buf, i);
3142                h->max_huge_pages = i;
3143        }
3144        kfree(node_alloc_noretry);
3145}
3146
3147static void __init hugetlb_init_hstates(void)
3148{
3149        struct hstate *h, *h2;
3150
3151        for_each_hstate(h) {
3152                if (minimum_order > huge_page_order(h))
3153                        minimum_order = huge_page_order(h);
3154
3155                /* oversize hugepages were init'ed in early boot */
3156                if (!hstate_is_gigantic(h))
3157                        hugetlb_hstate_alloc_pages(h);
3158
3159                /*
3160                 * Set demote order for each hstate.  Note that
3161                 * h->demote_order is initially 0.
3162                 * - We can not demote gigantic pages if runtime freeing
3163                 *   is not supported, so skip this.
3164                 * - If CMA allocation is possible, we can not demote
3165                 *   HUGETLB_PAGE_ORDER or smaller size pages.
3166                 */
3167                if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3168                        continue;
3169                if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3170                        continue;
3171                for_each_hstate(h2) {
3172                        if (h2 == h)
3173                                continue;
3174                        if (h2->order < h->order &&
3175                            h2->order > h->demote_order)
3176                                h->demote_order = h2->order;
3177                }
3178        }
3179        VM_BUG_ON(minimum_order == UINT_MAX);
3180}
3181
3182static void __init report_hugepages(void)
3183{
3184        struct hstate *h;
3185
3186        for_each_hstate(h) {
3187                char buf[32];
3188
3189                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3190                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3191                        buf, h->free_huge_pages);
3192        }
3193}
3194
3195#ifdef CONFIG_HIGHMEM
3196static void try_to_free_low(struct hstate *h, unsigned long count,
3197                                                nodemask_t *nodes_allowed)
3198{
3199        int i;
3200        LIST_HEAD(page_list);
3201
3202        lockdep_assert_held(&hugetlb_lock);
3203        if (hstate_is_gigantic(h))
3204                return;
3205
3206        /*
3207         * Collect pages to be freed on a list, and free after dropping lock
3208         */
3209        for_each_node_mask(i, *nodes_allowed) {
3210                struct page *page, *next;
3211                struct list_head *freel = &h->hugepage_freelists[i];
3212                list_for_each_entry_safe(page, next, freel, lru) {
3213                        if (count >= h->nr_huge_pages)
3214                                goto out;
3215                        if (PageHighMem(page))
3216                                continue;
3217                        remove_hugetlb_page(h, page, false);
3218                        list_add(&page->lru, &page_list);
3219                }
3220        }
3221
3222out:
3223        spin_unlock_irq(&hugetlb_lock);
3224        update_and_free_pages_bulk(h, &page_list);
3225        spin_lock_irq(&hugetlb_lock);
3226}
3227#else
3228static inline void try_to_free_low(struct hstate *h, unsigned long count,
3229                                                nodemask_t *nodes_allowed)
3230{
3231}
3232#endif
3233
3234/*
3235 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3236 * balanced by operating on them in a round-robin fashion.
3237 * Returns 1 if an adjustment was made.
3238 */
3239static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3240                                int delta)
3241{
3242        int nr_nodes, node;
3243
3244        lockdep_assert_held(&hugetlb_lock);
3245        VM_BUG_ON(delta != -1 && delta != 1);
3246
3247        if (delta < 0) {
3248                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3249                        if (h->surplus_huge_pages_node[node])
3250                                goto found;
3251                }
3252        } else {
3253                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3254                        if (h->surplus_huge_pages_node[node] <
3255                                        h->nr_huge_pages_node[node])
3256                                goto found;
3257                }
3258        }
3259        return 0;
3260
3261found:
3262        h->surplus_huge_pages += delta;
3263        h->surplus_huge_pages_node[node] += delta;
3264        return 1;
3265}
3266
3267#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3268static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3269                              nodemask_t *nodes_allowed)
3270{
3271        unsigned long min_count, ret;
3272        struct page *page;
3273        LIST_HEAD(page_list);
3274        NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3275
3276        /*
3277         * Bit mask controlling how hard we retry per-node allocations.
3278         * If we can not allocate the bit mask, do not attempt to allocate
3279         * the requested huge pages.
3280         */
3281        if (node_alloc_noretry)
3282                nodes_clear(*node_alloc_noretry);
3283        else
3284                return -ENOMEM;
3285
3286        /*
3287         * resize_lock mutex prevents concurrent adjustments to number of
3288         * pages in hstate via the proc/sysfs interfaces.
3289         */
3290        mutex_lock(&h->resize_lock);
3291        flush_free_hpage_work(h);
3292        spin_lock_irq(&hugetlb_lock);
3293
3294        /*
3295         * Check for a node specific request.
3296         * Changing node specific huge page count may require a corresponding
3297         * change to the global count.  In any case, the passed node mask
3298         * (nodes_allowed) will restrict alloc/free to the specified node.
3299         */
3300        if (nid != NUMA_NO_NODE) {
3301                unsigned long old_count = count;
3302
3303                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3304                /*
3305                 * User may have specified a large count value which caused the
3306                 * above calculation to overflow.  In this case, they wanted
3307                 * to allocate as many huge pages as possible.  Set count to
3308                 * largest possible value to align with their intention.
3309                 */
3310                if (count < old_count)
3311                        count = ULONG_MAX;
3312        }
3313
3314        /*
3315         * Gigantic pages runtime allocation depend on the capability for large
3316         * page range allocation.
3317         * If the system does not provide this feature, return an error when
3318         * the user tries to allocate gigantic pages but let the user free the
3319         * boottime allocated gigantic pages.
3320         */
3321        if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3322                if (count > persistent_huge_pages(h)) {
3323                        spin_unlock_irq(&hugetlb_lock);
3324                        mutex_unlock(&h->resize_lock);
3325                        NODEMASK_FREE(node_alloc_noretry);
3326                        return -EINVAL;
3327                }
3328                /* Fall through to decrease pool */
3329        }
3330
3331        /*
3332         * Increase the pool size
3333         * First take pages out of surplus state.  Then make up the
3334         * remaining difference by allocating fresh huge pages.
3335         *
3336         * We might race with alloc_surplus_huge_page() here and be unable
3337         * to convert a surplus huge page to a normal huge page. That is
3338         * not critical, though, it just means the overall size of the
3339         * pool might be one hugepage larger than it needs to be, but
3340         * within all the constraints specified by the sysctls.
3341         */
3342        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3343                if (!adjust_pool_surplus(h, nodes_allowed, -1))
3344                        break;
3345        }
3346
3347        while (count > persistent_huge_pages(h)) {
3348                /*
3349                 * If this allocation races such that we no longer need the
3350                 * page, free_huge_page will handle it by freeing the page
3351                 * and reducing the surplus.
3352                 */
3353                spin_unlock_irq(&hugetlb_lock);
3354
3355                /* yield cpu to avoid soft lockup */
3356                cond_resched();
3357
3358                ret = alloc_pool_huge_page(h, nodes_allowed,
3359                                                node_alloc_noretry);
3360                spin_lock_irq(&hugetlb_lock);
3361                if (!ret)
3362                        goto out;
3363
3364                /* Bail for signals. Probably ctrl-c from user */
3365                if (signal_pending(current))
3366                        goto out;
3367        }
3368
3369        /*
3370         * Decrease the pool size
3371         * First return free pages to the buddy allocator (being careful
3372         * to keep enough around to satisfy reservations).  Then place
3373         * pages into surplus state as needed so the pool will shrink
3374         * to the desired size as pages become free.
3375         *
3376         * By placing pages into the surplus state independent of the
3377         * overcommit value, we are allowing the surplus pool size to
3378         * exceed overcommit. There are few sane options here. Since
3379         * alloc_surplus_huge_page() is checking the global counter,
3380         * though, we'll note that we're not allowed to exceed surplus
3381         * and won't grow the pool anywhere else. Not until one of the
3382         * sysctls are changed, or the surplus pages go out of use.
3383         */
3384        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3385        min_count = max(count, min_count);
3386        try_to_free_low(h, min_count, nodes_allowed);
3387
3388        /*
3389         * Collect pages to be removed on list without dropping lock
3390         */
3391        while (min_count < persistent_huge_pages(h)) {
3392                page = remove_pool_huge_page(h, nodes_allowed, 0);
3393                if (!page)
3394                        break;
3395
3396                list_add(&page->lru, &page_list);
3397        }
3398        /* free the pages after dropping lock */
3399        spin_unlock_irq(&hugetlb_lock);
3400        update_and_free_pages_bulk(h, &page_list);
3401        flush_free_hpage_work(h);
3402        spin_lock_irq(&hugetlb_lock);
3403
3404        while (count < persistent_huge_pages(h)) {
3405                if (!adjust_pool_surplus(h, nodes_allowed, 1))
3406                        break;
3407        }
3408out:
3409        h->max_huge_pages = persistent_huge_pages(h);
3410        spin_unlock_irq(&hugetlb_lock);
3411        mutex_unlock(&h->resize_lock);
3412
3413        NODEMASK_FREE(node_alloc_noretry);
3414
3415        return 0;
3416}
3417
3418static int demote_free_huge_page(struct hstate *h, struct page *page)
3419{
3420        int i, nid = page_to_nid(page);
3421        struct hstate *target_hstate;
3422        int rc = 0;
3423
3424        target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3425
3426        remove_hugetlb_page_for_demote(h, page, false);
3427        spin_unlock_irq(&hugetlb_lock);
3428
3429        rc = hugetlb_vmemmap_alloc(h, page);
3430        if (rc) {
3431                /* Allocation of vmemmmap failed, we can not demote page */
3432                spin_lock_irq(&hugetlb_lock);
3433                set_page_refcounted(page);
3434                add_hugetlb_page(h, page, false);
3435                return rc;
3436        }
3437
3438        /*
3439         * Use destroy_compound_hugetlb_page_for_demote for all huge page
3440         * sizes as it will not ref count pages.
3441         */
3442        destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3443
3444        /*
3445         * Taking target hstate mutex synchronizes with set_max_huge_pages.
3446         * Without the mutex, pages added to target hstate could be marked
3447         * as surplus.
3448         *
3449         * Note that we already hold h->resize_lock.  To prevent deadlock,
3450         * use the convention of always taking larger size hstate mutex first.
3451         */
3452        mutex_lock(&target_hstate->resize_lock);
3453        for (i = 0; i < pages_per_huge_page(h);
3454                                i += pages_per_huge_page(target_hstate)) {
3455                if (hstate_is_gigantic(target_hstate))
3456                        prep_compound_gigantic_page_for_demote(page + i,
3457                                                        target_hstate->order);
3458                else
3459                        prep_compound_page(page + i, target_hstate->order);
3460                set_page_private(page + i, 0);
3461                set_page_refcounted(page + i);
3462                prep_new_huge_page(target_hstate, page + i, nid);
3463                put_page(page + i);
3464        }
3465        mutex_unlock(&target_hstate->resize_lock);
3466
3467        spin_lock_irq(&hugetlb_lock);
3468
3469        /*
3470         * Not absolutely necessary, but for consistency update max_huge_pages
3471         * based on pool changes for the demoted page.
3472         */
3473        h->max_huge_pages--;
3474        target_hstate->max_huge_pages += pages_per_huge_page(h);
3475
3476        return rc;
3477}
3478
3479static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3480        __must_hold(&hugetlb_lock)
3481{
3482        int nr_nodes, node;
3483        struct page *page;
3484
3485        lockdep_assert_held(&hugetlb_lock);
3486
3487        /* We should never get here if no demote order */
3488        if (!h->demote_order) {
3489                pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3490                return -EINVAL;         /* internal error */
3491        }
3492
3493        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3494                list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3495                        if (PageHWPoison(page))
3496                                continue;
3497
3498                        return demote_free_huge_page(h, page);
3499                }
3500        }
3501
3502        /*
3503         * Only way to get here is if all pages on free lists are poisoned.
3504         * Return -EBUSY so that caller will not retry.
3505         */
3506        return -EBUSY;
3507}
3508
3509#define HSTATE_ATTR_RO(_name) \
3510        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3511
3512#define HSTATE_ATTR_WO(_name) \
3513        static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3514
3515#define HSTATE_ATTR(_name) \
3516        static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3517
3518static struct kobject *hugepages_kobj;
3519static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3520
3521static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3522
3523static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3524{
3525        int i;
3526
3527        for (i = 0; i < HUGE_MAX_HSTATE; i++)
3528                if (hstate_kobjs[i] == kobj) {
3529                        if (nidp)
3530                                *nidp = NUMA_NO_NODE;
3531                        return &hstates[i];
3532                }
3533
3534        return kobj_to_node_hstate(kobj, nidp);
3535}
3536
3537static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3538                                        struct kobj_attribute *attr, char *buf)
3539{
3540        struct hstate *h;
3541        unsigned long nr_huge_pages;
3542        int nid;
3543
3544        h = kobj_to_hstate(kobj, &nid);
3545        if (nid == NUMA_NO_NODE)
3546                nr_huge_pages = h->nr_huge_pages;
3547        else
3548                nr_huge_pages = h->nr_huge_pages_node[nid];
3549
3550        return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3551}
3552
3553static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3554                                           struct hstate *h, int nid,
3555                                           unsigned long count, size_t len)
3556{
3557        int err;
3558        nodemask_t nodes_allowed, *n_mask;
3559
3560        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3561                return -EINVAL;
3562
3563        if (nid == NUMA_NO_NODE) {
3564                /*
3565                 * global hstate attribute
3566                 */
3567                if (!(obey_mempolicy &&
3568                                init_nodemask_of_mempolicy(&nodes_allowed)))
3569                        n_mask = &node_states[N_MEMORY];
3570                else
3571                        n_mask = &nodes_allowed;
3572        } else {
3573                /*
3574                 * Node specific request.  count adjustment happens in
3575                 * set_max_huge_pages() after acquiring hugetlb_lock.
3576                 */
3577                init_nodemask_of_node(&nodes_allowed, nid);
3578                n_mask = &nodes_allowed;
3579        }
3580
3581        err = set_max_huge_pages(h, count, nid, n_mask);
3582
3583        return err ? err : len;
3584}
3585
3586static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3587                                         struct kobject *kobj, const char *buf,
3588                                         size_t len)
3589{
3590        struct hstate *h;
3591        unsigned long count;
3592        int nid;
3593        int err;
3594
3595        err = kstrtoul(buf, 10, &count);
3596        if (err)
3597                return err;
3598
3599        h = kobj_to_hstate(kobj, &nid);
3600        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3601}
3602
3603static ssize_t nr_hugepages_show(struct kobject *kobj,
3604                                       struct kobj_attribute *attr, char *buf)
3605{
3606        return nr_hugepages_show_common(kobj, attr, buf);
3607}
3608
3609static ssize_t nr_hugepages_store(struct kobject *kobj,
3610               struct kobj_attribute *attr, const char *buf, size_t len)
3611{
3612        return nr_hugepages_store_common(false, kobj, buf, len);
3613}
3614HSTATE_ATTR(nr_hugepages);
3615
3616#ifdef CONFIG_NUMA
3617
3618/*
3619 * hstate attribute for optionally mempolicy-based constraint on persistent
3620 * huge page alloc/free.
3621 */
3622static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3623                                           struct kobj_attribute *attr,
3624                                           char *buf)
3625{
3626        return nr_hugepages_show_common(kobj, attr, buf);
3627}
3628
3629static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3630               struct kobj_attribute *attr, const char *buf, size_t len)
3631{
3632        return nr_hugepages_store_common(true, kobj, buf, len);
3633}
3634HSTATE_ATTR(nr_hugepages_mempolicy);
3635#endif
3636
3637
3638static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3639                                        struct kobj_attribute *attr, char *buf)
3640{
3641        struct hstate *h = kobj_to_hstate(kobj, NULL);
3642        return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3643}
3644
3645static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3646                struct kobj_attribute *attr, const char *buf, size_t count)
3647{
3648        int err;
3649        unsigned long input;
3650        struct hstate *h = kobj_to_hstate(kobj, NULL);
3651
3652        if (hstate_is_gigantic(h))
3653                return -EINVAL;
3654
3655        err = kstrtoul(buf, 10, &input);
3656        if (err)
3657                return err;
3658
3659        spin_lock_irq(&hugetlb_lock);
3660        h->nr_overcommit_huge_pages = input;
3661        spin_unlock_irq(&hugetlb_lock);
3662
3663        return count;
3664}
3665HSTATE_ATTR(nr_overcommit_hugepages);
3666
3667static ssize_t free_hugepages_show(struct kobject *kobj,
3668                                        struct kobj_attribute *attr, char *buf)
3669{
3670        struct hstate *h;
3671        unsigned long free_huge_pages;
3672        int nid;
3673
3674        h = kobj_to_hstate(kobj, &nid);
3675        if (nid == NUMA_NO_NODE)
3676                free_huge_pages = h->free_huge_pages;
3677        else
3678                free_huge_pages = h->free_huge_pages_node[nid];
3679
3680        return sysfs_emit(buf, "%lu\n", free_huge_pages);
3681}
3682HSTATE_ATTR_RO(free_hugepages);
3683
3684static ssize_t resv_hugepages_show(struct kobject *kobj,
3685                                        struct kobj_attribute *attr, char *buf)
3686{
3687        struct hstate *h = kobj_to_hstate(kobj, NULL);
3688        return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3689}
3690HSTATE_ATTR_RO(resv_hugepages);
3691
3692static ssize_t surplus_hugepages_show(struct kobject *kobj,
3693                                        struct kobj_attribute *attr, char *buf)
3694{
3695        struct hstate *h;
3696        unsigned long surplus_huge_pages;
3697        int nid;
3698
3699        h = kobj_to_hstate(kobj, &nid);
3700        if (nid == NUMA_NO_NODE)
3701                surplus_huge_pages = h->surplus_huge_pages;
3702        else
3703                surplus_huge_pages = h->surplus_huge_pages_node[nid];
3704
3705        return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3706}
3707HSTATE_ATTR_RO(surplus_hugepages);
3708
3709static ssize_t demote_store(struct kobject *kobj,
3710               struct kobj_attribute *attr, const char *buf, size_t len)
3711{
3712        unsigned long nr_demote;
3713        unsigned long nr_available;
3714        nodemask_t nodes_allowed, *n_mask;
3715        struct hstate *h;
3716        int err = 0;
3717        int nid;
3718
3719        err = kstrtoul(buf, 10, &nr_demote);
3720        if (err)
3721                return err;
3722        h = kobj_to_hstate(kobj, &nid);
3723
3724        if (nid != NUMA_NO_NODE) {
3725                init_nodemask_of_node(&nodes_allowed, nid);
3726                n_mask = &nodes_allowed;
3727        } else {
3728                n_mask = &node_states[N_MEMORY];
3729        }
3730
3731        /* Synchronize with other sysfs operations modifying huge pages */
3732        mutex_lock(&h->resize_lock);
3733        spin_lock_irq(&hugetlb_lock);
3734
3735        while (nr_demote) {
3736                /*
3737                 * Check for available pages to demote each time thorough the
3738                 * loop as demote_pool_huge_page will drop hugetlb_lock.
3739                 */
3740                if (nid != NUMA_NO_NODE)
3741                        nr_available = h->free_huge_pages_node[nid];
3742                else
3743                        nr_available = h->free_huge_pages;
3744                nr_available -= h->resv_huge_pages;
3745                if (!nr_available)
3746                        break;
3747
3748                err = demote_pool_huge_page(h, n_mask);
3749                if (err)
3750                        break;
3751
3752                nr_demote--;
3753        }
3754
3755        spin_unlock_irq(&hugetlb_lock);
3756        mutex_unlock(&h->resize_lock);
3757
3758        if (err)
3759                return err;
3760        return len;
3761}
3762HSTATE_ATTR_WO(demote);
3763
3764static ssize_t demote_size_show(struct kobject *kobj,
3765                                        struct kobj_attribute *attr, char *buf)
3766{
3767        int nid;
3768        struct hstate *h = kobj_to_hstate(kobj, &nid);
3769        unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3770
3771        return sysfs_emit(buf, "%lukB\n", demote_size);
3772}
3773
3774static ssize_t demote_size_store(struct kobject *kobj,
3775                                        struct kobj_attribute *attr,
3776                                        const char *buf, size_t count)
3777{
3778        struct hstate *h, *demote_hstate;
3779        unsigned long demote_size;
3780        unsigned int demote_order;
3781        int nid;
3782
3783        demote_size = (unsigned long)memparse(buf, NULL);
3784
3785        demote_hstate = size_to_hstate(demote_size);
3786        if (!demote_hstate)
3787                return -EINVAL;
3788        demote_order = demote_hstate->order;
3789        if (demote_order < HUGETLB_PAGE_ORDER)
3790                return -EINVAL;
3791
3792        /* demote order must be smaller than hstate order */
3793        h = kobj_to_hstate(kobj, &nid);
3794        if (demote_order >= h->order)
3795                return -EINVAL;
3796
3797        /* resize_lock synchronizes access to demote size and writes */
3798        mutex_lock(&h->resize_lock);
3799        h->demote_order = demote_order;
3800        mutex_unlock(&h->resize_lock);
3801
3802        return count;
3803}
3804HSTATE_ATTR(demote_size);
3805
3806static struct attribute *hstate_attrs[] = {
3807        &nr_hugepages_attr.attr,
3808        &nr_overcommit_hugepages_attr.attr,
3809        &free_hugepages_attr.attr,
3810        &resv_hugepages_attr.attr,
3811        &surplus_hugepages_attr.attr,
3812#ifdef CONFIG_NUMA
3813        &nr_hugepages_mempolicy_attr.attr,
3814#endif
3815        NULL,
3816};
3817
3818static const struct attribute_group hstate_attr_group = {
3819        .attrs = hstate_attrs,
3820};
3821
3822static struct attribute *hstate_demote_attrs[] = {
3823        &demote_size_attr.attr,
3824        &demote_attr.attr,
3825        NULL,
3826};
3827
3828static const struct attribute_group hstate_demote_attr_group = {
3829        .attrs = hstate_demote_attrs,
3830};
3831
3832static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3833                                    struct kobject **hstate_kobjs,
3834                                    const struct attribute_group *hstate_attr_group)
3835{
3836        int retval;
3837        int hi = hstate_index(h);
3838
3839        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3840        if (!hstate_kobjs[hi])
3841                return -ENOMEM;
3842
3843        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3844        if (retval) {
3845                kobject_put(hstate_kobjs[hi]);
3846                hstate_kobjs[hi] = NULL;
3847        }
3848
3849        if (h->demote_order) {
3850                if (sysfs_create_group(hstate_kobjs[hi],
3851                                        &hstate_demote_attr_group))
3852                        pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3853        }
3854
3855        return retval;
3856}
3857
3858static void __init hugetlb_sysfs_init(void)
3859{
3860        struct hstate *h;
3861        int err;
3862
3863        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3864        if (!hugepages_kobj)
3865                return;
3866
3867        for_each_hstate(h) {
3868                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3869                                         hstate_kobjs, &hstate_attr_group);
3870                if (err)
3871                        pr_err("HugeTLB: Unable to add hstate %s", h->name);
3872        }
3873}
3874
3875#ifdef CONFIG_NUMA
3876
3877/*
3878 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3879 * with node devices in node_devices[] using a parallel array.  The array
3880 * index of a node device or _hstate == node id.
3881 * This is here to avoid any static dependency of the node device driver, in
3882 * the base kernel, on the hugetlb module.
3883 */
3884struct node_hstate {
3885        struct kobject          *hugepages_kobj;
3886        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3887};
3888static struct node_hstate node_hstates[MAX_NUMNODES];
3889
3890/*
3891 * A subset of global hstate attributes for node devices
3892 */
3893static struct attribute *per_node_hstate_attrs[] = {
3894        &nr_hugepages_attr.attr,
3895        &free_hugepages_attr.attr,
3896        &surplus_hugepages_attr.attr,
3897        NULL,
3898};
3899
3900static const struct attribute_group per_node_hstate_attr_group = {
3901        .attrs = per_node_hstate_attrs,
3902};
3903
3904/*
3905 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3906 * Returns node id via non-NULL nidp.
3907 */
3908static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3909{
3910        int nid;
3911
3912        for (nid = 0; nid < nr_node_ids; nid++) {
3913                struct node_hstate *nhs = &node_hstates[nid];
3914                int i;
3915                for (i = 0; i < HUGE_MAX_HSTATE; i++)
3916                        if (nhs->hstate_kobjs[i] == kobj) {
3917                                if (nidp)
3918                                        *nidp = nid;
3919                                return &hstates[i];
3920                        }
3921        }
3922
3923        BUG();
3924        return NULL;
3925}
3926
3927/*
3928 * Unregister hstate attributes from a single node device.
3929 * No-op if no hstate attributes attached.
3930 */
3931static void hugetlb_unregister_node(struct node *node)
3932{
3933        struct hstate *h;
3934        struct node_hstate *nhs = &node_hstates[node->dev.id];
3935
3936        if (!nhs->hugepages_kobj)
3937                return;         /* no hstate attributes */
3938
3939        for_each_hstate(h) {
3940                int idx = hstate_index(h);
3941                if (nhs->hstate_kobjs[idx]) {
3942                        kobject_put(nhs->hstate_kobjs[idx]);
3943                        nhs->hstate_kobjs[idx] = NULL;
3944                }
3945        }
3946
3947        kobject_put(nhs->hugepages_kobj);
3948        nhs->hugepages_kobj = NULL;
3949}
3950
3951
3952/*
3953 * Register hstate attributes for a single node device.
3954 * No-op if attributes already registered.
3955 */
3956static void hugetlb_register_node(struct node *node)
3957{
3958        struct hstate *h;
3959        struct node_hstate *nhs = &node_hstates[node->dev.id];
3960        int err;
3961
3962        if (nhs->hugepages_kobj)
3963                return;         /* already allocated */
3964
3965        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3966                                                        &node->dev.kobj);
3967        if (!nhs->hugepages_kobj)
3968                return;
3969
3970        for_each_hstate(h) {
3971                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3972                                                nhs->hstate_kobjs,
3973                                                &per_node_hstate_attr_group);
3974                if (err) {
3975                        pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3976                                h->name, node->dev.id);
3977                        hugetlb_unregister_node(node);
3978                        break;
3979                }
3980        }
3981}
3982
3983/*
3984 * hugetlb init time:  register hstate attributes for all registered node
3985 * devices of nodes that have memory.  All on-line nodes should have
3986 * registered their associated device by this time.
3987 */
3988static void __init hugetlb_register_all_nodes(void)
3989{
3990        int nid;
3991
3992        for_each_node_state(nid, N_MEMORY) {
3993                struct node *node = node_devices[nid];
3994                if (node->dev.id == nid)
3995                        hugetlb_register_node(node);
3996        }
3997
3998        /*
3999         * Let the node device driver know we're here so it can
4000         * [un]register hstate attributes on node hotplug.
4001         */
4002        register_hugetlbfs_with_node(hugetlb_register_node,
4003                                     hugetlb_unregister_node);
4004}
4005#else   /* !CONFIG_NUMA */
4006
4007static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4008{
4009        BUG();
4010        if (nidp)
4011                *nidp = -1;
4012        return NULL;
4013}
4014
4015static void hugetlb_register_all_nodes(void) { }
4016
4017#endif
4018
4019static int __init hugetlb_init(void)
4020{
4021        int i;
4022
4023        BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4024                        __NR_HPAGEFLAGS);
4025
4026        if (!hugepages_supported()) {
4027                if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4028                        pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4029                return 0;
4030        }
4031
4032        /*
4033         * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4034         * architectures depend on setup being done here.
4035         */
4036        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4037        if (!parsed_default_hugepagesz) {
4038                /*
4039                 * If we did not parse a default huge page size, set
4040                 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4041                 * number of huge pages for this default size was implicitly
4042                 * specified, set that here as well.
4043                 * Note that the implicit setting will overwrite an explicit
4044                 * setting.  A warning will be printed in this case.
4045                 */
4046                default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4047                if (default_hstate_max_huge_pages) {
4048                        if (default_hstate.max_huge_pages) {
4049                                char buf[32];
4050
4051                                string_get_size(huge_page_size(&default_hstate),
4052                                        1, STRING_UNITS_2, buf, 32);
4053                                pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4054                                        default_hstate.max_huge_pages, buf);
4055                                pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4056                                        default_hstate_max_huge_pages);
4057                        }
4058                        default_hstate.max_huge_pages =
4059                                default_hstate_max_huge_pages;
4060
4061                        for_each_online_node(i)
4062                                default_hstate.max_huge_pages_node[i] =
4063                                        default_hugepages_in_node[i];
4064                }
4065        }
4066
4067        hugetlb_cma_check();
4068        hugetlb_init_hstates();
4069        gather_bootmem_prealloc();
4070        report_hugepages();
4071
4072        hugetlb_sysfs_init();
4073        hugetlb_register_all_nodes();
4074        hugetlb_cgroup_file_init();
4075
4076#ifdef CONFIG_SMP
4077        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4078#else
4079        num_fault_mutexes = 1;
4080#endif
4081        hugetlb_fault_mutex_table =
4082                kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4083                              GFP_KERNEL);
4084        BUG_ON(!hugetlb_fault_mutex_table);
4085
4086        for (i = 0; i < num_fault_mutexes; i++)
4087                mutex_init(&hugetlb_fault_mutex_table[i]);
4088        return 0;
4089}
4090subsys_initcall(hugetlb_init);
4091
4092/* Overwritten by architectures with more huge page sizes */
4093bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4094{
4095        return size == HPAGE_SIZE;
4096}
4097
4098void __init hugetlb_add_hstate(unsigned int order)
4099{
4100        struct hstate *h;
4101        unsigned long i;
4102
4103        if (size_to_hstate(PAGE_SIZE << order)) {
4104                return;
4105        }
4106        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4107        BUG_ON(order == 0);
4108        h = &hstates[hugetlb_max_hstate++];
4109        mutex_init(&h->resize_lock);
4110        h->order = order;
4111        h->mask = ~(huge_page_size(h) - 1);
4112        for (i = 0; i < MAX_NUMNODES; ++i)
4113                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4114        INIT_LIST_HEAD(&h->hugepage_activelist);
4115        h->next_nid_to_alloc = first_memory_node;
4116        h->next_nid_to_free = first_memory_node;
4117        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4118                                        huge_page_size(h)/1024);
4119        hugetlb_vmemmap_init(h);
4120
4121        parsed_hstate = h;
4122}
4123
4124bool __init __weak hugetlb_node_alloc_supported(void)
4125{
4126        return true;
4127}
4128
4129static void __init hugepages_clear_pages_in_node(void)
4130{
4131        if (!hugetlb_max_hstate) {
4132                default_hstate_max_huge_pages = 0;
4133                memset(default_hugepages_in_node, 0,
4134                        MAX_NUMNODES * sizeof(unsigned int));
4135        } else {
4136                parsed_hstate->max_huge_pages = 0;
4137                memset(parsed_hstate->max_huge_pages_node, 0,
4138                        MAX_NUMNODES * sizeof(unsigned int));
4139        }
4140}
4141
4142/*
4143 * hugepages command line processing
4144 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4145 * specification.  If not, ignore the hugepages value.  hugepages can also
4146 * be the first huge page command line  option in which case it implicitly
4147 * specifies the number of huge pages for the default size.
4148 */
4149static int __init hugepages_setup(char *s)
4150{
4151        unsigned long *mhp;
4152        static unsigned long *last_mhp;
4153        int node = NUMA_NO_NODE;
4154        int count;
4155        unsigned long tmp;
4156        char *p = s;
4157
4158        if (!parsed_valid_hugepagesz) {
4159                pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4160                parsed_valid_hugepagesz = true;
4161                return 1;
4162        }
4163
4164        /*
4165         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4166         * yet, so this hugepages= parameter goes to the "default hstate".
4167         * Otherwise, it goes with the previously parsed hugepagesz or
4168         * default_hugepagesz.
4169         */
4170        else if (!hugetlb_max_hstate)
4171                mhp = &default_hstate_max_huge_pages;
4172        else
4173                mhp = &parsed_hstate->max_huge_pages;
4174
4175        if (mhp == last_mhp) {
4176                pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4177                return 1;
4178        }
4179
4180        while (*p) {
4181                count = 0;
4182                if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4183                        goto invalid;
4184                /* Parameter is node format */
4185                if (p[count] == ':') {
4186                        if (!hugetlb_node_alloc_supported()) {
4187                                pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4188                                return 1;
4189                        }
4190                        if (tmp >= MAX_NUMNODES || !node_online(tmp))
4191                                goto invalid;
4192                        node = array_index_nospec(tmp, MAX_NUMNODES);
4193                        p += count + 1;
4194                        /* Parse hugepages */
4195                        if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4196                                goto invalid;
4197                        if (!hugetlb_max_hstate)
4198                                default_hugepages_in_node[node] = tmp;
4199                        else
4200                                parsed_hstate->max_huge_pages_node[node] = tmp;
4201                        *mhp += tmp;
4202                        /* Go to parse next node*/
4203                        if (p[count] == ',')
4204                                p += count + 1;
4205                        else
4206                                break;
4207                } else {
4208                        if (p != s)
4209                                goto invalid;
4210                        *mhp = tmp;
4211                        break;
4212                }
4213        }
4214
4215        /*
4216         * Global state is always initialized later in hugetlb_init.
4217         * But we need to allocate gigantic hstates here early to still
4218         * use the bootmem allocator.
4219         */
4220        if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4221                hugetlb_hstate_alloc_pages(parsed_hstate);
4222
4223        last_mhp = mhp;
4224
4225        return 1;
4226
4227invalid:
4228        pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4229        hugepages_clear_pages_in_node();
4230        return 1;
4231}
4232__setup("hugepages=", hugepages_setup);
4233
4234/*
4235 * hugepagesz command line processing
4236 * A specific huge page size can only be specified once with hugepagesz.
4237 * hugepagesz is followed by hugepages on the command line.  The global
4238 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4239 * hugepagesz argument was valid.
4240 */
4241static int __init hugepagesz_setup(char *s)
4242{
4243        unsigned long size;
4244        struct hstate *h;
4245
4246        parsed_valid_hugepagesz = false;
4247        size = (unsigned long)memparse(s, NULL);
4248
4249        if (!arch_hugetlb_valid_size(size)) {
4250                pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4251                return 1;
4252        }
4253
4254        h = size_to_hstate(size);
4255        if (h) {
4256                /*
4257                 * hstate for this size already exists.  This is normally
4258                 * an error, but is allowed if the existing hstate is the
4259                 * default hstate.  More specifically, it is only allowed if
4260                 * the number of huge pages for the default hstate was not
4261                 * previously specified.
4262                 */
4263                if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4264                    default_hstate.max_huge_pages) {
4265                        pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4266                        return 1;
4267                }
4268
4269                /*
4270                 * No need to call hugetlb_add_hstate() as hstate already
4271                 * exists.  But, do set parsed_hstate so that a following
4272                 * hugepages= parameter will be applied to this hstate.
4273                 */
4274                parsed_hstate = h;
4275                parsed_valid_hugepagesz = true;
4276                return 1;
4277        }
4278
4279        hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4280        parsed_valid_hugepagesz = true;
4281        return 1;
4282}
4283__setup("hugepagesz=", hugepagesz_setup);
4284
4285/*
4286 * default_hugepagesz command line input
4287 * Only one instance of default_hugepagesz allowed on command line.
4288 */
4289static int __init default_hugepagesz_setup(char *s)
4290{
4291        unsigned long size;
4292        int i;
4293
4294        parsed_valid_hugepagesz = false;
4295        if (parsed_default_hugepagesz) {
4296                pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4297                return 1;
4298        }
4299
4300        size = (unsigned long)memparse(s, NULL);
4301
4302        if (!arch_hugetlb_valid_size(size)) {
4303                pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4304                return 1;
4305        }
4306
4307        hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4308        parsed_valid_hugepagesz = true;
4309        parsed_default_hugepagesz = true;
4310        default_hstate_idx = hstate_index(size_to_hstate(size));
4311
4312        /*
4313         * The number of default huge pages (for this size) could have been
4314         * specified as the first hugetlb parameter: hugepages=X.  If so,
4315         * then default_hstate_max_huge_pages is set.  If the default huge
4316         * page size is gigantic (>= MAX_ORDER), then the pages must be
4317         * allocated here from bootmem allocator.
4318         */
4319        if (default_hstate_max_huge_pages) {
4320                default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4321                for_each_online_node(i)
4322                        default_hstate.max_huge_pages_node[i] =
4323                                default_hugepages_in_node[i];
4324                if (hstate_is_gigantic(&default_hstate))
4325                        hugetlb_hstate_alloc_pages(&default_hstate);
4326                default_hstate_max_huge_pages = 0;
4327        }
4328
4329        return 1;
4330}
4331__setup("default_hugepagesz=", default_hugepagesz_setup);
4332
4333static unsigned int allowed_mems_nr(struct hstate *h)
4334{
4335        int node;
4336        unsigned int nr = 0;
4337        nodemask_t *mpol_allowed;
4338        unsigned int *array = h->free_huge_pages_node;
4339        gfp_t gfp_mask = htlb_alloc_mask(h);
4340
4341        mpol_allowed = policy_nodemask_current(gfp_mask);
4342
4343        for_each_node_mask(node, cpuset_current_mems_allowed) {
4344                if (!mpol_allowed || node_isset(node, *mpol_allowed))
4345                        nr += array[node];
4346        }
4347
4348        return nr;
4349}
4350
4351#ifdef CONFIG_SYSCTL
4352static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4353                                          void *buffer, size_t *length,
4354                                          loff_t *ppos, unsigned long *out)
4355{
4356        struct ctl_table dup_table;
4357
4358        /*
4359         * In order to avoid races with __do_proc_doulongvec_minmax(), we
4360         * can duplicate the @table and alter the duplicate of it.
4361         */
4362        dup_table = *table;
4363        dup_table.data = out;
4364
4365        return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4366}
4367
4368static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4369                         struct ctl_table *table, int write,
4370                         void *buffer, size_t *length, loff_t *ppos)
4371{
4372        struct hstate *h = &default_hstate;
4373        unsigned long tmp = h->max_huge_pages;
4374        int ret;
4375
4376        if (!hugepages_supported())
4377                return -EOPNOTSUPP;
4378
4379        ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4380                                             &tmp);
4381        if (ret)
4382                goto out;
4383
4384        if (write)
4385                ret = __nr_hugepages_store_common(obey_mempolicy, h,
4386                                                  NUMA_NO_NODE, tmp, *length);
4387out:
4388        return ret;
4389}
4390
4391int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4392                          void *buffer, size_t *length, loff_t *ppos)
4393{
4394
4395        return hugetlb_sysctl_handler_common(false, table, write,
4396                                                        buffer, length, ppos);
4397}
4398
4399#ifdef CONFIG_NUMA
4400int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4401                          void *buffer, size_t *length, loff_t *ppos)
4402{
4403        return hugetlb_sysctl_handler_common(true, table, write,
4404                                                        buffer, length, ppos);
4405}
4406#endif /* CONFIG_NUMA */
4407
4408int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4409                void *buffer, size_t *length, loff_t *ppos)
4410{
4411        struct hstate *h = &default_hstate;
4412        unsigned long tmp;
4413        int ret;
4414
4415        if (!hugepages_supported())
4416                return -EOPNOTSUPP;
4417
4418        tmp = h->nr_overcommit_huge_pages;
4419
4420        if (write && hstate_is_gigantic(h))
4421                return -EINVAL;
4422
4423        ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4424                                             &tmp);
4425        if (ret)
4426                goto out;
4427
4428        if (write) {
4429                spin_lock_irq(&hugetlb_lock);
4430                h->nr_overcommit_huge_pages = tmp;
4431                spin_unlock_irq(&hugetlb_lock);
4432        }
4433out:
4434        return ret;
4435}
4436
4437#endif /* CONFIG_SYSCTL */
4438
4439void hugetlb_report_meminfo(struct seq_file *m)
4440{
4441        struct hstate *h;
4442        unsigned long total = 0;
4443
4444        if (!hugepages_supported())
4445                return;
4446
4447        for_each_hstate(h) {
4448                unsigned long count = h->nr_huge_pages;
4449
4450                total += huge_page_size(h) * count;
4451
4452                if (h == &default_hstate)
4453                        seq_printf(m,
4454                                   "HugePages_Total:   %5lu\n"
4455                                   "HugePages_Free:    %5lu\n"
4456                                   "HugePages_Rsvd:    %5lu\n"
4457                                   "HugePages_Surp:    %5lu\n"
4458                                   "Hugepagesize:   %8lu kB\n",
4459                                   count,
4460                                   h->free_huge_pages,
4461                                   h->resv_huge_pages,
4462                                   h->surplus_huge_pages,
4463                                   huge_page_size(h) / SZ_1K);
4464        }
4465
4466        seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4467}
4468
4469int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4470{
4471        struct hstate *h = &default_hstate;
4472
4473        if (!hugepages_supported())
4474                return 0;
4475
4476        return sysfs_emit_at(buf, len,
4477                             "Node %d HugePages_Total: %5u\n"
4478                             "Node %d HugePages_Free:  %5u\n"
4479                             "Node %d HugePages_Surp:  %5u\n",
4480                             nid, h->nr_huge_pages_node[nid],
4481                             nid, h->free_huge_pages_node[nid],
4482                             nid, h->surplus_huge_pages_node[nid]);
4483}
4484
4485void hugetlb_show_meminfo(void)
4486{
4487        struct hstate *h;
4488        int nid;
4489
4490        if (!hugepages_supported())
4491                return;
4492
4493        for_each_node_state(nid, N_MEMORY)
4494                for_each_hstate(h)
4495                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4496                                nid,
4497                                h->nr_huge_pages_node[nid],
4498                                h->free_huge_pages_node[nid],
4499                                h->surplus_huge_pages_node[nid],
4500                                huge_page_size(h) / SZ_1K);
4501}
4502
4503void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4504{
4505        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4506                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4507}
4508
4509/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4510unsigned long hugetlb_total_pages(void)
4511{
4512        struct hstate *h;
4513        unsigned long nr_total_pages = 0;
4514
4515        for_each_hstate(h)
4516                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4517        return nr_total_pages;
4518}
4519
4520static int hugetlb_acct_memory(struct hstate *h, long delta)
4521{
4522        int ret = -ENOMEM;
4523
4524        if (!delta)
4525                return 0;
4526
4527        spin_lock_irq(&hugetlb_lock);
4528        /*
4529         * When cpuset is configured, it breaks the strict hugetlb page
4530         * reservation as the accounting is done on a global variable. Such
4531         * reservation is completely rubbish in the presence of cpuset because
4532         * the reservation is not checked against page availability for the
4533         * current cpuset. Application can still potentially OOM'ed by kernel
4534         * with lack of free htlb page in cpuset that the task is in.
4535         * Attempt to enforce strict accounting with cpuset is almost
4536         * impossible (or too ugly) because cpuset is too fluid that
4537         * task or memory node can be dynamically moved between cpusets.
4538         *
4539         * The change of semantics for shared hugetlb mapping with cpuset is
4540         * undesirable. However, in order to preserve some of the semantics,
4541         * we fall back to check against current free page availability as
4542         * a best attempt and hopefully to minimize the impact of changing
4543         * semantics that cpuset has.
4544         *
4545         * Apart from cpuset, we also have memory policy mechanism that
4546         * also determines from which node the kernel will allocate memory
4547         * in a NUMA system. So similar to cpuset, we also should consider
4548         * the memory policy of the current task. Similar to the description
4549         * above.
4550         */
4551        if (delta > 0) {
4552                if (gather_surplus_pages(h, delta) < 0)
4553                        goto out;
4554
4555                if (delta > allowed_mems_nr(h)) {
4556                        return_unused_surplus_pages(h, delta);
4557                        goto out;
4558                }
4559        }
4560
4561        ret = 0;
4562        if (delta < 0)
4563                return_unused_surplus_pages(h, (unsigned long) -delta);
4564
4565out:
4566        spin_unlock_irq(&hugetlb_lock);
4567        return ret;
4568}
4569
4570static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4571{
4572        struct resv_map *resv = vma_resv_map(vma);
4573
4574        /*
4575         * This new VMA should share its siblings reservation map if present.
4576         * The VMA will only ever have a valid reservation map pointer where
4577         * it is being copied for another still existing VMA.  As that VMA
4578         * has a reference to the reservation map it cannot disappear until
4579         * after this open call completes.  It is therefore safe to take a
4580         * new reference here without additional locking.
4581         */
4582        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4583                resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4584                kref_get(&resv->refs);
4585        }
4586}
4587
4588static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4589{
4590        struct hstate *h = hstate_vma(vma);
4591        struct resv_map *resv = vma_resv_map(vma);
4592        struct hugepage_subpool *spool = subpool_vma(vma);
4593        unsigned long reserve, start, end;
4594        long gbl_reserve;
4595
4596        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4597                return;
4598
4599        start = vma_hugecache_offset(h, vma, vma->vm_start);
4600        end = vma_hugecache_offset(h, vma, vma->vm_end);
4601
4602        reserve = (end - start) - region_count(resv, start, end);
4603        hugetlb_cgroup_uncharge_counter(resv, start, end);
4604        if (reserve) {
4605                /*
4606                 * Decrement reserve counts.  The global reserve count may be
4607                 * adjusted if the subpool has a minimum size.
4608                 */
4609                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4610                hugetlb_acct_memory(h, -gbl_reserve);
4611        }
4612
4613        kref_put(&resv->refs, resv_map_release);
4614}
4615
4616static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4617{
4618        if (addr & ~(huge_page_mask(hstate_vma(vma))))
4619                return -EINVAL;
4620        return 0;
4621}
4622
4623static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4624{
4625        return huge_page_size(hstate_vma(vma));
4626}
4627
4628/*
4629 * We cannot handle pagefaults against hugetlb pages at all.  They cause
4630 * handle_mm_fault() to try to instantiate regular-sized pages in the
4631 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4632 * this far.
4633 */
4634static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4635{
4636        BUG();
4637        return 0;
4638}
4639
4640/*
4641 * When a new function is introduced to vm_operations_struct and added
4642 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4643 * This is because under System V memory model, mappings created via
4644 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4645 * their original vm_ops are overwritten with shm_vm_ops.
4646 */
4647const struct vm_operations_struct hugetlb_vm_ops = {
4648        .fault = hugetlb_vm_op_fault,
4649        .open = hugetlb_vm_op_open,
4650        .close = hugetlb_vm_op_close,
4651        .may_split = hugetlb_vm_op_split,
4652        .pagesize = hugetlb_vm_op_pagesize,
4653};
4654
4655static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4656                                int writable)
4657{
4658        pte_t entry;
4659        unsigned int shift = huge_page_shift(hstate_vma(vma));
4660
4661        if (writable) {
4662                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4663                                         vma->vm_page_prot)));
4664        } else {
4665                entry = huge_pte_wrprotect(mk_huge_pte(page,
4666                                           vma->vm_page_prot));
4667        }
4668        entry = pte_mkyoung(entry);
4669        entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4670
4671        return entry;
4672}
4673
4674static void set_huge_ptep_writable(struct vm_area_struct *vma,
4675                                   unsigned long address, pte_t *ptep)
4676{
4677        pte_t entry;
4678
4679        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4680        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4681                update_mmu_cache(vma, address, ptep);
4682}
4683
4684bool is_hugetlb_entry_migration(pte_t pte)
4685{
4686        swp_entry_t swp;
4687
4688        if (huge_pte_none(pte) || pte_present(pte))
4689                return false;
4690        swp = pte_to_swp_entry(pte);
4691        if (is_migration_entry(swp))
4692                return true;
4693        else
4694                return false;
4695}
4696
4697static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4698{
4699        swp_entry_t swp;
4700
4701        if (huge_pte_none(pte) || pte_present(pte))
4702                return false;
4703        swp = pte_to_swp_entry(pte);
4704        if (is_hwpoison_entry(swp))
4705                return true;
4706        else
4707                return false;
4708}
4709
4710static void
4711hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4712                     struct page *new_page)
4713{
4714        __SetPageUptodate(new_page);
4715        hugepage_add_new_anon_rmap(new_page, vma, addr);
4716        set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4717        hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4718        ClearHPageRestoreReserve(new_page);
4719        SetHPageMigratable(new_page);
4720}
4721
4722int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4723                            struct vm_area_struct *dst_vma,
4724                            struct vm_area_struct *src_vma)
4725{
4726        pte_t *src_pte, *dst_pte, entry, dst_entry;
4727        struct page *ptepage;
4728        unsigned long addr;
4729        bool cow = is_cow_mapping(src_vma->vm_flags);
4730        struct hstate *h = hstate_vma(src_vma);
4731        unsigned long sz = huge_page_size(h);
4732        unsigned long npages = pages_per_huge_page(h);
4733        struct address_space *mapping = src_vma->vm_file->f_mapping;
4734        struct mmu_notifier_range range;
4735        int ret = 0;
4736
4737        if (cow) {
4738                mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4739                                        src_vma->vm_start,
4740                                        src_vma->vm_end);
4741                mmu_notifier_invalidate_range_start(&range);
4742                mmap_assert_write_locked(src);
4743                raw_write_seqcount_begin(&src->write_protect_seq);
4744        } else {
4745                /*
4746                 * For shared mappings i_mmap_rwsem must be held to call
4747                 * huge_pte_alloc, otherwise the returned ptep could go
4748                 * away if part of a shared pmd and another thread calls
4749                 * huge_pmd_unshare.
4750                 */
4751                i_mmap_lock_read(mapping);
4752        }
4753
4754        for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4755                spinlock_t *src_ptl, *dst_ptl;
4756                src_pte = huge_pte_offset(src, addr, sz);
4757                if (!src_pte)
4758                        continue;
4759                dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4760                if (!dst_pte) {
4761                        ret = -ENOMEM;
4762                        break;
4763                }
4764
4765                /*
4766                 * If the pagetables are shared don't copy or take references.
4767                 * dst_pte == src_pte is the common case of src/dest sharing.
4768                 *
4769                 * However, src could have 'unshared' and dst shares with
4770                 * another vma.  If dst_pte !none, this implies sharing.
4771                 * Check here before taking page table lock, and once again
4772                 * after taking the lock below.
4773                 */
4774                dst_entry = huge_ptep_get(dst_pte);
4775                if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4776                        continue;
4777
4778                dst_ptl = huge_pte_lock(h, dst, dst_pte);
4779                src_ptl = huge_pte_lockptr(h, src, src_pte);
4780                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4781                entry = huge_ptep_get(src_pte);
4782                dst_entry = huge_ptep_get(dst_pte);
4783again:
4784                if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4785                        /*
4786                         * Skip if src entry none.  Also, skip in the
4787                         * unlikely case dst entry !none as this implies
4788                         * sharing with another vma.
4789                         */
4790                        ;
4791                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4792                        bool uffd_wp = huge_pte_uffd_wp(entry);
4793
4794                        if (!userfaultfd_wp(dst_vma) && uffd_wp)
4795                                entry = huge_pte_clear_uffd_wp(entry);
4796                        set_huge_pte_at(dst, addr, dst_pte, entry);
4797                } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4798                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
4799                        bool uffd_wp = huge_pte_uffd_wp(entry);
4800
4801                        if (!is_readable_migration_entry(swp_entry) && cow) {
4802                                /*
4803                                 * COW mappings require pages in both
4804                                 * parent and child to be set to read.
4805                                 */
4806                                swp_entry = make_readable_migration_entry(
4807                                                        swp_offset(swp_entry));
4808                                entry = swp_entry_to_pte(swp_entry);
4809                                if (userfaultfd_wp(src_vma) && uffd_wp)
4810                                        entry = huge_pte_mkuffd_wp(entry);
4811                                set_huge_swap_pte_at(src, addr, src_pte,
4812                                                     entry, sz);
4813                        }
4814                        if (!userfaultfd_wp(dst_vma) && uffd_wp)
4815                                entry = huge_pte_clear_uffd_wp(entry);
4816                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4817                } else if (unlikely(is_pte_marker(entry))) {
4818                        /*
4819                         * We copy the pte marker only if the dst vma has
4820                         * uffd-wp enabled.
4821                         */
4822                        if (userfaultfd_wp(dst_vma))
4823                                set_huge_pte_at(dst, addr, dst_pte, entry);
4824                } else {
4825                        entry = huge_ptep_get(src_pte);
4826                        ptepage = pte_page(entry);
4827                        get_page(ptepage);
4828
4829                        /*
4830                         * Failing to duplicate the anon rmap is a rare case
4831                         * where we see pinned hugetlb pages while they're
4832                         * prone to COW. We need to do the COW earlier during
4833                         * fork.
4834                         *
4835                         * When pre-allocating the page or copying data, we
4836                         * need to be without the pgtable locks since we could
4837                         * sleep during the process.
4838                         */
4839                        if (!PageAnon(ptepage)) {
4840                                page_dup_file_rmap(ptepage, true);
4841                        } else if (page_try_dup_anon_rmap(ptepage, true,
4842                                                          src_vma)) {
4843                                pte_t src_pte_old = entry;
4844                                struct page *new;
4845
4846                                spin_unlock(src_ptl);
4847                                spin_unlock(dst_ptl);
4848                                /* Do not use reserve as it's private owned */
4849                                new = alloc_huge_page(dst_vma, addr, 1);
4850                                if (IS_ERR(new)) {
4851                                        put_page(ptepage);
4852                                        ret = PTR_ERR(new);
4853                                        break;
4854                                }
4855                                copy_user_huge_page(new, ptepage, addr, dst_vma,
4856                                                    npages);
4857                                put_page(ptepage);
4858
4859                                /* Install the new huge page if src pte stable */
4860                                dst_ptl = huge_pte_lock(h, dst, dst_pte);
4861                                src_ptl = huge_pte_lockptr(h, src, src_pte);
4862                                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4863                                entry = huge_ptep_get(src_pte);
4864                                if (!pte_same(src_pte_old, entry)) {
4865                                        restore_reserve_on_error(h, dst_vma, addr,
4866                                                                new);
4867                                        put_page(new);
4868                                        /* dst_entry won't change as in child */
4869                                        goto again;
4870                                }
4871                                hugetlb_install_page(dst_vma, dst_pte, addr, new);
4872                                spin_unlock(src_ptl);
4873                                spin_unlock(dst_ptl);
4874                                continue;
4875                        }
4876
4877                        if (cow) {
4878                                /*
4879                                 * No need to notify as we are downgrading page
4880                                 * table protection not changing it to point
4881                                 * to a new page.
4882                                 *
4883                                 * See Documentation/vm/mmu_notifier.rst
4884                                 */
4885                                huge_ptep_set_wrprotect(src, addr, src_pte);
4886                                entry = huge_pte_wrprotect(entry);
4887                        }
4888
4889                        set_huge_pte_at(dst, addr, dst_pte, entry);
4890                        hugetlb_count_add(npages, dst);
4891                }
4892                spin_unlock(src_ptl);
4893                spin_unlock(dst_ptl);
4894        }
4895
4896        if (cow) {
4897                raw_write_seqcount_end(&src->write_protect_seq);
4898                mmu_notifier_invalidate_range_end(&range);
4899        } else {
4900                i_mmap_unlock_read(mapping);
4901        }
4902
4903        return ret;
4904}
4905
4906static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4907                          unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4908{
4909        struct hstate *h = hstate_vma(vma);
4910        struct mm_struct *mm = vma->vm_mm;
4911        spinlock_t *src_ptl, *dst_ptl;
4912        pte_t pte;
4913
4914        dst_ptl = huge_pte_lock(h, mm, dst_pte);
4915        src_ptl = huge_pte_lockptr(h, mm, src_pte);
4916
4917        /*
4918         * We don't have to worry about the ordering of src and dst ptlocks
4919         * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4920         */
4921        if (src_ptl != dst_ptl)
4922                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4923
4924        pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4925        set_huge_pte_at(mm, new_addr, dst_pte, pte);
4926
4927        if (src_ptl != dst_ptl)
4928                spin_unlock(src_ptl);
4929        spin_unlock(dst_ptl);
4930}
4931
4932int move_hugetlb_page_tables(struct vm_area_struct *vma,
4933                             struct vm_area_struct *new_vma,
4934                             unsigned long old_addr, unsigned long new_addr,
4935                             unsigned long len)
4936{
4937        struct hstate *h = hstate_vma(vma);
4938        struct address_space *mapping = vma->vm_file->f_mapping;
4939        unsigned long sz = huge_page_size(h);
4940        struct mm_struct *mm = vma->vm_mm;
4941        unsigned long old_end = old_addr + len;
4942        unsigned long old_addr_copy;
4943        pte_t *src_pte, *dst_pte;
4944        struct mmu_notifier_range range;
4945        bool shared_pmd = false;
4946
4947        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4948                                old_end);
4949        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4950        /*
4951         * In case of shared PMDs, we should cover the maximum possible
4952         * range.
4953         */
4954        flush_cache_range(vma, range.start, range.end);
4955
4956        mmu_notifier_invalidate_range_start(&range);
4957        /* Prevent race with file truncation */
4958        i_mmap_lock_write(mapping);
4959        for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4960                src_pte = huge_pte_offset(mm, old_addr, sz);
4961                if (!src_pte)
4962                        continue;
4963                if (huge_pte_none(huge_ptep_get(src_pte)))
4964                        continue;
4965
4966                /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4967                 * arg may be modified. Pass a copy instead to preserve the
4968                 * value in old_addr.
4969                 */
4970                old_addr_copy = old_addr;
4971
4972                if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) {
4973                        shared_pmd = true;
4974                        continue;
4975                }
4976
4977                dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4978                if (!dst_pte)
4979                        break;
4980
4981                move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4982        }
4983
4984        if (shared_pmd)
4985                flush_tlb_range(vma, range.start, range.end);
4986        else
4987                flush_tlb_range(vma, old_end - len, old_end);
4988        mmu_notifier_invalidate_range_end(&range);
4989        i_mmap_unlock_write(mapping);
4990
4991        return len + old_addr - old_end;
4992}
4993
4994static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4995                                   unsigned long start, unsigned long end,
4996                                   struct page *ref_page, zap_flags_t zap_flags)
4997{
4998        struct mm_struct *mm = vma->vm_mm;
4999        unsigned long address;
5000        pte_t *ptep;
5001        pte_t pte;
5002        spinlock_t *ptl;
5003        struct page *page;
5004        struct hstate *h = hstate_vma(vma);
5005        unsigned long sz = huge_page_size(h);
5006        struct mmu_notifier_range range;
5007        bool force_flush = false;
5008
5009        WARN_ON(!is_vm_hugetlb_page(vma));
5010        BUG_ON(start & ~huge_page_mask(h));
5011        BUG_ON(end & ~huge_page_mask(h));
5012
5013        /*
5014         * This is a hugetlb vma, all the pte entries should point
5015         * to huge page.
5016         */
5017        tlb_change_page_size(tlb, sz);
5018        tlb_start_vma(tlb, vma);
5019
5020        /*
5021         * If sharing possible, alert mmu notifiers of worst case.
5022         */
5023        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5024                                end);
5025        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5026        mmu_notifier_invalidate_range_start(&range);
5027        address = start;
5028        for (; address < end; address += sz) {
5029                ptep = huge_pte_offset(mm, address, sz);
5030                if (!ptep)
5031                        continue;
5032
5033                ptl = huge_pte_lock(h, mm, ptep);
5034                if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5035                        spin_unlock(ptl);
5036                        tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5037                        force_flush = true;
5038                        continue;
5039                }
5040
5041                pte = huge_ptep_get(ptep);
5042                if (huge_pte_none(pte)) {
5043                        spin_unlock(ptl);
5044                        continue;
5045                }
5046
5047                /*
5048                 * Migrating hugepage or HWPoisoned hugepage is already
5049                 * unmapped and its refcount is dropped, so just clear pte here.
5050                 */
5051                if (unlikely(!pte_present(pte))) {
5052                        /*
5053                         * If the pte was wr-protected by uffd-wp in any of the
5054                         * swap forms, meanwhile the caller does not want to
5055                         * drop the uffd-wp bit in this zap, then replace the
5056                         * pte with a marker.
5057                         */
5058                        if (pte_swp_uffd_wp_any(pte) &&
5059                            !(zap_flags & ZAP_FLAG_DROP_MARKER))
5060                                set_huge_pte_at(mm, address, ptep,
5061                                                make_pte_marker(PTE_MARKER_UFFD_WP));
5062                        else
5063                                huge_pte_clear(mm, address, ptep, sz);
5064                        spin_unlock(ptl);
5065                        continue;
5066                }
5067
5068                page = pte_page(pte);
5069                /*
5070                 * If a reference page is supplied, it is because a specific
5071                 * page is being unmapped, not a range. Ensure the page we
5072                 * are about to unmap is the actual page of interest.
5073                 */
5074                if (ref_page) {
5075                        if (page != ref_page) {
5076                                spin_unlock(ptl);
5077                                continue;
5078                        }
5079                        /*
5080                         * Mark the VMA as having unmapped its page so that
5081                         * future faults in this VMA will fail rather than
5082                         * looking like data was lost
5083                         */
5084                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5085                }
5086
5087                pte = huge_ptep_get_and_clear(mm, address, ptep);
5088                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5089                if (huge_pte_dirty(pte))
5090                        set_page_dirty(page);
5091                /* Leave a uffd-wp pte marker if needed */
5092                if (huge_pte_uffd_wp(pte) &&
5093                    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5094                        set_huge_pte_at(mm, address, ptep,
5095                                        make_pte_marker(PTE_MARKER_UFFD_WP));
5096                hugetlb_count_sub(pages_per_huge_page(h), mm);
5097                page_remove_rmap(page, vma, true);
5098
5099                spin_unlock(ptl);
5100                tlb_remove_page_size(tlb, page, huge_page_size(h));
5101                /*
5102                 * Bail out after unmapping reference page if supplied
5103                 */
5104                if (ref_page)
5105                        break;
5106        }
5107        mmu_notifier_invalidate_range_end(&range);
5108        tlb_end_vma(tlb, vma);
5109
5110        /*
5111         * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5112         * could defer the flush until now, since by holding i_mmap_rwsem we
5113         * guaranteed that the last refernece would not be dropped. But we must
5114         * do the flushing before we return, as otherwise i_mmap_rwsem will be
5115         * dropped and the last reference to the shared PMDs page might be
5116         * dropped as well.
5117         *
5118         * In theory we could defer the freeing of the PMD pages as well, but
5119         * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5120         * detect sharing, so we cannot defer the release of the page either.
5121         * Instead, do flush now.
5122         */
5123        if (force_flush)
5124                tlb_flush_mmu_tlbonly(tlb);
5125}
5126
5127void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5128                          struct vm_area_struct *vma, unsigned long start,
5129                          unsigned long end, struct page *ref_page,
5130                          zap_flags_t zap_flags)
5131{
5132        __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5133
5134        /*
5135         * Clear this flag so that x86's huge_pmd_share page_table_shareable
5136         * test will fail on a vma being torn down, and not grab a page table
5137         * on its way out.  We're lucky that the flag has such an appropriate
5138         * name, and can in fact be safely cleared here. We could clear it
5139         * before the __unmap_hugepage_range above, but all that's necessary
5140         * is to clear it before releasing the i_mmap_rwsem. This works
5141         * because in the context this is called, the VMA is about to be
5142         * destroyed and the i_mmap_rwsem is held.
5143         */
5144        vma->vm_flags &= ~VM_MAYSHARE;
5145}
5146
5147void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5148                          unsigned long end, struct page *ref_page,
5149                          zap_flags_t zap_flags)
5150{
5151        struct mmu_gather tlb;
5152
5153        tlb_gather_mmu(&tlb, vma->vm_mm);
5154        __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5155        tlb_finish_mmu(&tlb);
5156}
5157
5158/*
5159 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5160 * mapping it owns the reserve page for. The intention is to unmap the page
5161 * from other VMAs and let the children be SIGKILLed if they are faulting the
5162 * same region.
5163 */
5164static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5165                              struct page *page, unsigned long address)
5166{
5167        struct hstate *h = hstate_vma(vma);
5168        struct vm_area_struct *iter_vma;
5169        struct address_space *mapping;
5170        pgoff_t pgoff;
5171
5172        /*
5173         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5174         * from page cache lookup which is in HPAGE_SIZE units.
5175         */
5176        address = address & huge_page_mask(h);
5177        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5178                        vma->vm_pgoff;
5179        mapping = vma->vm_file->f_mapping;
5180
5181        /*
5182         * Take the mapping lock for the duration of the table walk. As
5183         * this mapping should be shared between all the VMAs,
5184         * __unmap_hugepage_range() is called as the lock is already held
5185         */
5186        i_mmap_lock_write(mapping);
5187        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5188                /* Do not unmap the current VMA */
5189                if (iter_vma == vma)
5190                        continue;
5191
5192                /*
5193                 * Shared VMAs have their own reserves and do not affect
5194                 * MAP_PRIVATE accounting but it is possible that a shared
5195                 * VMA is using the same page so check and skip such VMAs.
5196                 */
5197                if (iter_vma->vm_flags & VM_MAYSHARE)
5198                        continue;
5199
5200                /*
5201                 * Unmap the page from other VMAs without their own reserves.
5202                 * They get marked to be SIGKILLed if they fault in these
5203                 * areas. This is because a future no-page fault on this VMA
5204                 * could insert a zeroed page instead of the data existing
5205                 * from the time of fork. This would look like data corruption
5206                 */
5207                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5208                        unmap_hugepage_range(iter_vma, address,
5209                                             address + huge_page_size(h), page, 0);
5210        }
5211        i_mmap_unlock_write(mapping);
5212}
5213
5214/*
5215 * hugetlb_wp() should be called with page lock of the original hugepage held.
5216 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5217 * cannot race with other handlers or page migration.
5218 * Keep the pte_same checks anyway to make transition from the mutex easier.
5219 */
5220static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5221                       unsigned long address, pte_t *ptep, unsigned int flags,
5222                       struct page *pagecache_page, spinlock_t *ptl)
5223{
5224        const bool unshare = flags & FAULT_FLAG_UNSHARE;
5225        pte_t pte;
5226        struct hstate *h = hstate_vma(vma);
5227        struct page *old_page, *new_page;
5228        int outside_reserve = 0;
5229        vm_fault_t ret = 0;
5230        unsigned long haddr = address & huge_page_mask(h);
5231        struct mmu_notifier_range range;
5232
5233        VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5234        VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5235
5236        pte = huge_ptep_get(ptep);
5237        old_page = pte_page(pte);
5238
5239        delayacct_wpcopy_start();
5240
5241retry_avoidcopy:
5242        /*
5243         * If no-one else is actually using this page, we're the exclusive
5244         * owner and can reuse this page.
5245         */
5246        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5247                if (!PageAnonExclusive(old_page))
5248                        page_move_anon_rmap(old_page, vma);
5249                if (likely(!unshare))
5250                        set_huge_ptep_writable(vma, haddr, ptep);
5251
5252                delayacct_wpcopy_end();
5253                return 0;
5254        }
5255        VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5256                       old_page);
5257
5258        /*
5259         * If the process that created a MAP_PRIVATE mapping is about to
5260         * perform a COW due to a shared page count, attempt to satisfy
5261         * the allocation without using the existing reserves. The pagecache
5262         * page is used to determine if the reserve at this address was
5263         * consumed or not. If reserves were used, a partial faulted mapping
5264         * at the time of fork() could consume its reserves on COW instead
5265         * of the full address range.
5266         */
5267        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5268                        old_page != pagecache_page)
5269                outside_reserve = 1;
5270
5271        get_page(old_page);
5272
5273        /*
5274         * Drop page table lock as buddy allocator may be called. It will
5275         * be acquired again before returning to the caller, as expected.
5276         */
5277        spin_unlock(ptl);
5278        new_page = alloc_huge_page(vma, haddr, outside_reserve);
5279
5280        if (IS_ERR(new_page)) {
5281                /*
5282                 * If a process owning a MAP_PRIVATE mapping fails to COW,
5283                 * it is due to references held by a child and an insufficient
5284                 * huge page pool. To guarantee the original mappers
5285                 * reliability, unmap the page from child processes. The child
5286                 * may get SIGKILLed if it later faults.
5287                 */
5288                if (outside_reserve) {
5289                        struct address_space *mapping = vma->vm_file->f_mapping;
5290                        pgoff_t idx;
5291                        u32 hash;
5292
5293                        put_page(old_page);
5294                        BUG_ON(huge_pte_none(pte));
5295                        /*
5296                         * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5297                         * unmapping.  unmapping needs to hold i_mmap_rwsem
5298                         * in write mode.  Dropping i_mmap_rwsem in read mode
5299                         * here is OK as COW mappings do not interact with
5300                         * PMD sharing.
5301                         *
5302                         * Reacquire both after unmap operation.
5303                         */
5304                        idx = vma_hugecache_offset(h, vma, haddr);
5305                        hash = hugetlb_fault_mutex_hash(mapping, idx);
5306                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5307                        i_mmap_unlock_read(mapping);
5308
5309                        unmap_ref_private(mm, vma, old_page, haddr);
5310
5311                        i_mmap_lock_read(mapping);
5312                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
5313                        spin_lock(ptl);
5314                        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5315                        if (likely(ptep &&
5316                                   pte_same(huge_ptep_get(ptep), pte)))
5317                                goto retry_avoidcopy;
5318                        /*
5319                         * race occurs while re-acquiring page table
5320                         * lock, and our job is done.
5321                         */
5322                        delayacct_wpcopy_end();
5323                        return 0;
5324                }
5325
5326                ret = vmf_error(PTR_ERR(new_page));
5327                goto out_release_old;
5328        }
5329
5330        /*
5331         * When the original hugepage is shared one, it does not have
5332         * anon_vma prepared.
5333         */
5334        if (unlikely(anon_vma_prepare(vma))) {
5335                ret = VM_FAULT_OOM;
5336                goto out_release_all;
5337        }
5338
5339        copy_user_huge_page(new_page, old_page, address, vma,
5340                            pages_per_huge_page(h));
5341        __SetPageUptodate(new_page);
5342
5343        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5344                                haddr + huge_page_size(h));
5345        mmu_notifier_invalidate_range_start(&range);
5346
5347        /*
5348         * Retake the page table lock to check for racing updates
5349         * before the page tables are altered
5350         */
5351        spin_lock(ptl);
5352        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5353        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5354                ClearHPageRestoreReserve(new_page);
5355
5356                /* Break COW or unshare */
5357                huge_ptep_clear_flush(vma, haddr, ptep);
5358                mmu_notifier_invalidate_range(mm, range.start, range.end);
5359                page_remove_rmap(old_page, vma, true);
5360                hugepage_add_new_anon_rmap(new_page, vma, haddr);
5361                set_huge_pte_at(mm, haddr, ptep,
5362                                make_huge_pte(vma, new_page, !unshare));
5363                SetHPageMigratable(new_page);
5364                /* Make the old page be freed below */
5365                new_page = old_page;
5366        }
5367        spin_unlock(ptl);
5368        mmu_notifier_invalidate_range_end(&range);
5369out_release_all:
5370        /*
5371         * No restore in case of successful pagetable update (Break COW or
5372         * unshare)
5373         */
5374        if (new_page != old_page)
5375                restore_reserve_on_error(h, vma, haddr, new_page);
5376        put_page(new_page);
5377out_release_old:
5378        put_page(old_page);
5379
5380        spin_lock(ptl); /* Caller expects lock to be held */
5381
5382        delayacct_wpcopy_end();
5383        return ret;
5384}
5385
5386/* Return the pagecache page at a given address within a VMA */
5387static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5388                        struct vm_area_struct *vma, unsigned long address)
5389{
5390        struct address_space *mapping;
5391        pgoff_t idx;
5392
5393        mapping = vma->vm_file->f_mapping;
5394        idx = vma_hugecache_offset(h, vma, address);
5395
5396        return find_lock_page(mapping, idx);
5397}
5398
5399/*
5400 * Return whether there is a pagecache page to back given address within VMA.
5401 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5402 */
5403static bool hugetlbfs_pagecache_present(struct hstate *h,
5404                        struct vm_area_struct *vma, unsigned long address)
5405{
5406        struct address_space *mapping;
5407        pgoff_t idx;
5408        struct page *page;
5409
5410        mapping = vma->vm_file->f_mapping;
5411        idx = vma_hugecache_offset(h, vma, address);
5412
5413        page = find_get_page(mapping, idx);
5414        if (page)
5415                put_page(page);
5416        return page != NULL;
5417}
5418
5419int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5420                           pgoff_t idx)
5421{
5422        struct inode *inode = mapping->host;
5423        struct hstate *h = hstate_inode(inode);
5424        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5425
5426        if (err)
5427                return err;
5428        ClearHPageRestoreReserve(page);
5429
5430        /*
5431         * set page dirty so that it will not be removed from cache/file
5432         * by non-hugetlbfs specific code paths.
5433         */
5434        set_page_dirty(page);
5435
5436        spin_lock(&inode->i_lock);
5437        inode->i_blocks += blocks_per_huge_page(h);
5438        spin_unlock(&inode->i_lock);
5439        return 0;
5440}
5441
5442static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5443                                                  struct address_space *mapping,
5444                                                  pgoff_t idx,
5445                                                  unsigned int flags,
5446                                                  unsigned long haddr,
5447                                                  unsigned long addr,
5448                                                  unsigned long reason)
5449{
5450        vm_fault_t ret;
5451        u32 hash;
5452        struct vm_fault vmf = {
5453                .vma = vma,
5454                .address = haddr,
5455                .real_address = addr,
5456                .flags = flags,
5457
5458                /*
5459                 * Hard to debug if it ends up being
5460                 * used by a callee that assumes
5461                 * something about the other
5462                 * uninitialized fields... same as in
5463                 * memory.c
5464                 */
5465        };
5466
5467        /*
5468         * hugetlb_fault_mutex and i_mmap_rwsem must be
5469         * dropped before handling userfault.  Reacquire
5470         * after handling fault to make calling code simpler.
5471         */
5472        hash = hugetlb_fault_mutex_hash(mapping, idx);
5473        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5474        i_mmap_unlock_read(mapping);
5475        ret = handle_userfault(&vmf, reason);
5476        i_mmap_lock_read(mapping);
5477        mutex_lock(&hugetlb_fault_mutex_table[hash]);
5478
5479        return ret;
5480}
5481
5482static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5483                        struct vm_area_struct *vma,
5484                        struct address_space *mapping, pgoff_t idx,
5485                        unsigned long address, pte_t *ptep,
5486                        pte_t old_pte, unsigned int flags)
5487{
5488        struct hstate *h = hstate_vma(vma);
5489        vm_fault_t ret = VM_FAULT_SIGBUS;
5490        int anon_rmap = 0;
5491        unsigned long size;
5492        struct page *page;
5493        pte_t new_pte;
5494        spinlock_t *ptl;
5495        unsigned long haddr = address & huge_page_mask(h);
5496        bool new_page, new_pagecache_page = false;
5497
5498        /*
5499         * Currently, we are forced to kill the process in the event the
5500         * original mapper has unmapped pages from the child due to a failed
5501         * COW/unsharing. Warn that such a situation has occurred as it may not
5502         * be obvious.
5503         */
5504        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5505                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5506                           current->pid);
5507                return ret;
5508        }
5509
5510        /*
5511         * We can not race with truncation due to holding i_mmap_rwsem.
5512         * i_size is modified when holding i_mmap_rwsem, so check here
5513         * once for faults beyond end of file.
5514         */
5515        size = i_size_read(mapping->host) >> huge_page_shift(h);
5516        if (idx >= size)
5517                goto out;
5518
5519retry:
5520        new_page = false;
5521        page = find_lock_page(mapping, idx);
5522        if (!page) {
5523                /* Check for page in userfault range */
5524                if (userfaultfd_missing(vma)) {
5525                        ret = hugetlb_handle_userfault(vma, mapping, idx,
5526                                                       flags, haddr, address,
5527                                                       VM_UFFD_MISSING);
5528                        goto out;
5529                }
5530
5531                page = alloc_huge_page(vma, haddr, 0);
5532                if (IS_ERR(page)) {
5533                        /*
5534                         * Returning error will result in faulting task being
5535                         * sent SIGBUS.  The hugetlb fault mutex prevents two
5536                         * tasks from racing to fault in the same page which
5537                         * could result in false unable to allocate errors.
5538                         * Page migration does not take the fault mutex, but
5539                         * does a clear then write of pte's under page table
5540                         * lock.  Page fault code could race with migration,
5541                         * notice the clear pte and try to allocate a page
5542                         * here.  Before returning error, get ptl and make
5543                         * sure there really is no pte entry.
5544                         */
5545                        ptl = huge_pte_lock(h, mm, ptep);
5546                        ret = 0;
5547                        if (huge_pte_none(huge_ptep_get(ptep)))
5548                                ret = vmf_error(PTR_ERR(page));
5549                        spin_unlock(ptl);
5550                        goto out;
5551                }
5552                clear_huge_page(page, address, pages_per_huge_page(h));
5553                __SetPageUptodate(page);
5554                new_page = true;
5555
5556                if (vma->vm_flags & VM_MAYSHARE) {
5557                        int err = huge_add_to_page_cache(page, mapping, idx);
5558                        if (err) {
5559                                put_page(page);
5560                                if (err == -EEXIST)
5561                                        goto retry;
5562                                goto out;
5563                        }
5564                        new_pagecache_page = true;
5565                } else {
5566                        lock_page(page);
5567                        if (unlikely(anon_vma_prepare(vma))) {
5568                                ret = VM_FAULT_OOM;
5569                                goto backout_unlocked;
5570                        }
5571                        anon_rmap = 1;
5572                }
5573        } else {
5574                /*
5575                 * If memory error occurs between mmap() and fault, some process
5576                 * don't have hwpoisoned swap entry for errored virtual address.
5577                 * So we need to block hugepage fault by PG_hwpoison bit check.
5578                 */
5579                if (unlikely(PageHWPoison(page))) {
5580                        ret = VM_FAULT_HWPOISON_LARGE |
5581                                VM_FAULT_SET_HINDEX(hstate_index(h));
5582                        goto backout_unlocked;
5583                }
5584
5585                /* Check for page in userfault range. */
5586                if (userfaultfd_minor(vma)) {
5587                        unlock_page(page);
5588                        put_page(page);
5589                        ret = hugetlb_handle_userfault(vma, mapping, idx,
5590                                                       flags, haddr, address,
5591                                                       VM_UFFD_MINOR);
5592                        goto out;
5593                }
5594        }
5595
5596        /*
5597         * If we are going to COW a private mapping later, we examine the
5598         * pending reservations for this page now. This will ensure that
5599         * any allocations necessary to record that reservation occur outside
5600         * the spinlock.
5601         */
5602        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5603                if (vma_needs_reservation(h, vma, haddr) < 0) {
5604                        ret = VM_FAULT_OOM;
5605                        goto backout_unlocked;
5606                }
5607                /* Just decrements count, does not deallocate */
5608                vma_end_reservation(h, vma, haddr);
5609        }
5610
5611        ptl = huge_pte_lock(h, mm, ptep);
5612        ret = 0;
5613        /* If pte changed from under us, retry */
5614        if (!pte_same(huge_ptep_get(ptep), old_pte))
5615                goto backout;
5616
5617        if (anon_rmap) {
5618                ClearHPageRestoreReserve(page);
5619                hugepage_add_new_anon_rmap(page, vma, haddr);
5620        } else
5621                page_dup_file_rmap(page, true);
5622        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5623                                && (vma->vm_flags & VM_SHARED)));
5624        /*
5625         * If this pte was previously wr-protected, keep it wr-protected even
5626         * if populated.
5627         */
5628        if (unlikely(pte_marker_uffd_wp(old_pte)))
5629                new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5630        set_huge_pte_at(mm, haddr, ptep, new_pte);
5631
5632        hugetlb_count_add(pages_per_huge_page(h), mm);
5633        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5634                /* Optimization, do the COW without a second fault */
5635                ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5636        }
5637
5638        spin_unlock(ptl);
5639
5640        /*
5641         * Only set HPageMigratable in newly allocated pages.  Existing pages
5642         * found in the pagecache may not have HPageMigratableset if they have
5643         * been isolated for migration.
5644         */
5645        if (new_page)
5646                SetHPageMigratable(page);
5647
5648        unlock_page(page);
5649out:
5650        return ret;
5651
5652backout:
5653        spin_unlock(ptl);
5654backout_unlocked:
5655        unlock_page(page);
5656        /* restore reserve for newly allocated pages not in page cache */
5657        if (new_page && !new_pagecache_page)
5658                restore_reserve_on_error(h, vma, haddr, page);
5659        put_page(page);
5660        goto out;
5661}
5662
5663#ifdef CONFIG_SMP
5664u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5665{
5666        unsigned long key[2];
5667        u32 hash;
5668
5669        key[0] = (unsigned long) mapping;
5670        key[1] = idx;
5671
5672        hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5673
5674        return hash & (num_fault_mutexes - 1);
5675}
5676#else
5677/*
5678 * For uniprocessor systems we always use a single mutex, so just
5679 * return 0 and avoid the hashing overhead.
5680 */
5681u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5682{
5683        return 0;
5684}
5685#endif
5686
5687vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5688                        unsigned long address, unsigned int flags)
5689{
5690        pte_t *ptep, entry;
5691        spinlock_t *ptl;
5692        vm_fault_t ret;
5693        u32 hash;
5694        pgoff_t idx;
5695        struct page *page = NULL;
5696        struct page *pagecache_page = NULL;
5697        struct hstate *h = hstate_vma(vma);
5698        struct address_space *mapping;
5699        int need_wait_lock = 0;
5700        unsigned long haddr = address & huge_page_mask(h);
5701
5702        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5703        if (ptep) {
5704                /*
5705                 * Since we hold no locks, ptep could be stale.  That is
5706                 * OK as we are only making decisions based on content and
5707                 * not actually modifying content here.
5708                 */
5709                entry = huge_ptep_get(ptep);
5710                if (unlikely(is_hugetlb_entry_migration(entry))) {
5711                        migration_entry_wait_huge(vma, mm, ptep);
5712                        return 0;
5713                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5714                        return VM_FAULT_HWPOISON_LARGE |
5715                                VM_FAULT_SET_HINDEX(hstate_index(h));
5716        }
5717
5718        /*
5719         * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5720         * until finished with ptep.  This serves two purposes:
5721         * 1) It prevents huge_pmd_unshare from being called elsewhere
5722         *    and making the ptep no longer valid.
5723         * 2) It synchronizes us with i_size modifications during truncation.
5724         *
5725         * ptep could have already be assigned via huge_pte_offset.  That
5726         * is OK, as huge_pte_alloc will return the same value unless
5727         * something has changed.
5728         */
5729        mapping = vma->vm_file->f_mapping;
5730        i_mmap_lock_read(mapping);
5731        ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5732        if (!ptep) {
5733                i_mmap_unlock_read(mapping);
5734                return VM_FAULT_OOM;
5735        }
5736
5737        /*
5738         * Serialize hugepage allocation and instantiation, so that we don't
5739         * get spurious allocation failures if two CPUs race to instantiate
5740         * the same page in the page cache.
5741         */
5742        idx = vma_hugecache_offset(h, vma, haddr);
5743        hash = hugetlb_fault_mutex_hash(mapping, idx);
5744        mutex_lock(&hugetlb_fault_mutex_table[hash]);
5745
5746        entry = huge_ptep_get(ptep);
5747        /* PTE markers should be handled the same way as none pte */
5748        if (huge_pte_none_mostly(entry)) {
5749                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5750                                      entry, flags);
5751                goto out_mutex;
5752        }
5753
5754        ret = 0;
5755
5756        /*
5757         * entry could be a migration/hwpoison entry at this point, so this
5758         * check prevents the kernel from going below assuming that we have
5759         * an active hugepage in pagecache. This goto expects the 2nd page
5760         * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5761         * properly handle it.
5762         */
5763        if (!pte_present(entry))
5764                goto out_mutex;
5765
5766        /*
5767         * If we are going to COW/unshare the mapping later, we examine the
5768         * pending reservations for this page now. This will ensure that any
5769         * allocations necessary to record that reservation occur outside the
5770         * spinlock. For private mappings, we also lookup the pagecache
5771         * page now as it is used to determine if a reservation has been
5772         * consumed.
5773         */
5774        if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5775            !huge_pte_write(entry)) {
5776                if (vma_needs_reservation(h, vma, haddr) < 0) {
5777                        ret = VM_FAULT_OOM;
5778                        goto out_mutex;
5779                }
5780                /* Just decrements count, does not deallocate */
5781                vma_end_reservation(h, vma, haddr);
5782
5783                if (!(vma->vm_flags & VM_MAYSHARE))
5784                        pagecache_page = hugetlbfs_pagecache_page(h,
5785                                                                vma, haddr);
5786        }
5787
5788        ptl = huge_pte_lock(h, mm, ptep);
5789
5790        /* Check for a racing update before calling hugetlb_wp() */
5791        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5792                goto out_ptl;
5793
5794        /* Handle userfault-wp first, before trying to lock more pages */
5795        if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5796            (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5797                struct vm_fault vmf = {
5798                        .vma = vma,
5799                        .address = haddr,
5800                        .real_address = address,
5801                        .flags = flags,
5802                };
5803
5804                spin_unlock(ptl);
5805                if (pagecache_page) {
5806                        unlock_page(pagecache_page);
5807                        put_page(pagecache_page);
5808                }
5809                mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5810                i_mmap_unlock_read(mapping);
5811                return handle_userfault(&vmf, VM_UFFD_WP);
5812        }
5813
5814        /*
5815         * hugetlb_wp() requires page locks of pte_page(entry) and
5816         * pagecache_page, so here we need take the former one
5817         * when page != pagecache_page or !pagecache_page.
5818         */
5819        page = pte_page(entry);
5820        if (page != pagecache_page)
5821                if (!trylock_page(page)) {
5822                        need_wait_lock = 1;
5823                        goto out_ptl;
5824                }
5825
5826        get_page(page);
5827
5828        if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5829                if (!huge_pte_write(entry)) {
5830                        ret = hugetlb_wp(mm, vma, address, ptep, flags,
5831                                         pagecache_page, ptl);
5832                        goto out_put_page;
5833                } else if (likely(flags & FAULT_FLAG_WRITE)) {
5834                        entry = huge_pte_mkdirty(entry);
5835                }
5836        }
5837        entry = pte_mkyoung(entry);
5838        if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5839                                                flags & FAULT_FLAG_WRITE))
5840                update_mmu_cache(vma, haddr, ptep);
5841out_put_page:
5842        if (page != pagecache_page)
5843                unlock_page(page);
5844        put_page(page);
5845out_ptl:
5846        spin_unlock(ptl);
5847
5848        if (pagecache_page) {
5849                unlock_page(pagecache_page);
5850                put_page(pagecache_page);
5851        }
5852out_mutex:
5853        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5854        i_mmap_unlock_read(mapping);
5855        /*
5856         * Generally it's safe to hold refcount during waiting page lock. But
5857         * here we just wait to defer the next page fault to avoid busy loop and
5858         * the page is not used after unlocked before returning from the current
5859         * page fault. So we are safe from accessing freed page, even if we wait
5860         * here without taking refcount.
5861         */
5862        if (need_wait_lock)
5863                wait_on_page_locked(page);
5864        return ret;
5865}
5866
5867#ifdef CONFIG_USERFAULTFD
5868/*
5869 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5870 * modifications for huge pages.
5871 */
5872int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5873                            pte_t *dst_pte,
5874                            struct vm_area_struct *dst_vma,
5875                            unsigned long dst_addr,
5876                            unsigned long src_addr,
5877                            enum mcopy_atomic_mode mode,
5878                            struct page **pagep,
5879                            bool wp_copy)
5880{
5881        bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5882        struct hstate *h = hstate_vma(dst_vma);
5883        struct address_space *mapping = dst_vma->vm_file->f_mapping;
5884        pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5885        unsigned long size;
5886        int vm_shared = dst_vma->vm_flags & VM_SHARED;
5887        pte_t _dst_pte;
5888        spinlock_t *ptl;
5889        int ret = -ENOMEM;
5890        struct page *page;
5891        int writable;
5892        bool page_in_pagecache = false;
5893
5894        if (is_continue) {
5895                ret = -EFAULT;
5896                page = find_lock_page(mapping, idx);
5897                if (!page)
5898                        goto out;
5899                page_in_pagecache = true;
5900        } else if (!*pagep) {
5901                /* If a page already exists, then it's UFFDIO_COPY for
5902                 * a non-missing case. Return -EEXIST.
5903                 */
5904                if (vm_shared &&
5905                    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5906                        ret = -EEXIST;
5907                        goto out;
5908                }
5909
5910                page = alloc_huge_page(dst_vma, dst_addr, 0);
5911                if (IS_ERR(page)) {
5912                        ret = -ENOMEM;
5913                        goto out;
5914                }
5915
5916                ret = copy_huge_page_from_user(page,
5917                                                (const void __user *) src_addr,
5918                                                pages_per_huge_page(h), false);
5919
5920                /* fallback to copy_from_user outside mmap_lock */
5921                if (unlikely(ret)) {
5922                        ret = -ENOENT;
5923                        /* Free the allocated page which may have
5924                         * consumed a reservation.
5925                         */
5926                        restore_reserve_on_error(h, dst_vma, dst_addr, page);
5927                        put_page(page);
5928
5929                        /* Allocate a temporary page to hold the copied
5930                         * contents.
5931                         */
5932                        page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5933                        if (!page) {
5934                                ret = -ENOMEM;
5935                                goto out;
5936                        }
5937                        *pagep = page;
5938                        /* Set the outparam pagep and return to the caller to
5939                         * copy the contents outside the lock. Don't free the
5940                         * page.
5941                         */
5942                        goto out;
5943                }
5944        } else {
5945                if (vm_shared &&
5946                    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5947                        put_page(*pagep);
5948                        ret = -EEXIST;
5949                        *pagep = NULL;
5950                        goto out;
5951                }
5952
5953                page = alloc_huge_page(dst_vma, dst_addr, 0);
5954                if (IS_ERR(page)) {
5955                        put_page(*pagep);
5956                        ret = -ENOMEM;
5957                        *pagep = NULL;
5958                        goto out;
5959                }
5960                copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5961                                    pages_per_huge_page(h));
5962                put_page(*pagep);
5963                *pagep = NULL;
5964        }
5965
5966        /*
5967         * The memory barrier inside __SetPageUptodate makes sure that
5968         * preceding stores to the page contents become visible before
5969         * the set_pte_at() write.
5970         */
5971        __SetPageUptodate(page);
5972
5973        /* Add shared, newly allocated pages to the page cache. */
5974        if (vm_shared && !is_continue) {
5975                size = i_size_read(mapping->host) >> huge_page_shift(h);
5976                ret = -EFAULT;
5977                if (idx >= size)
5978                        goto out_release_nounlock;
5979
5980                /*
5981                 * Serialization between remove_inode_hugepages() and
5982                 * huge_add_to_page_cache() below happens through the
5983                 * hugetlb_fault_mutex_table that here must be hold by
5984                 * the caller.
5985                 */
5986                ret = huge_add_to_page_cache(page, mapping, idx);
5987                if (ret)
5988                        goto out_release_nounlock;
5989                page_in_pagecache = true;
5990        }
5991
5992        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5993        spin_lock(ptl);
5994
5995        /*
5996         * Recheck the i_size after holding PT lock to make sure not
5997         * to leave any page mapped (as page_mapped()) beyond the end
5998         * of the i_size (remove_inode_hugepages() is strict about
5999         * enforcing that). If we bail out here, we'll also leave a
6000         * page in the radix tree in the vm_shared case beyond the end
6001         * of the i_size, but remove_inode_hugepages() will take care
6002         * of it as soon as we drop the hugetlb_fault_mutex_table.
6003         */
6004        size = i_size_read(mapping->host) >> huge_page_shift(h);
6005        ret = -EFAULT;
6006        if (idx >= size)
6007                goto out_release_unlock;
6008
6009        ret = -EEXIST;
6010        /*
6011         * We allow to overwrite a pte marker: consider when both MISSING|WP
6012         * registered, we firstly wr-protect a none pte which has no page cache
6013         * page backing it, then access the page.
6014         */
6015        if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6016                goto out_release_unlock;
6017
6018        if (vm_shared) {
6019                page_dup_file_rmap(page, true);
6020        } else {
6021                ClearHPageRestoreReserve(page);
6022                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6023        }
6024
6025        /*
6026         * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6027         * with wp flag set, don't set pte write bit.
6028         */
6029        if (wp_copy || (is_continue && !vm_shared))
6030                writable = 0;
6031        else
6032                writable = dst_vma->vm_flags & VM_WRITE;
6033
6034        _dst_pte = make_huge_pte(dst_vma, page, writable);
6035        /*
6036         * Always mark UFFDIO_COPY page dirty; note that this may not be
6037         * extremely important for hugetlbfs for now since swapping is not
6038         * supported, but we should still be clear in that this page cannot be
6039         * thrown away at will, even if write bit not set.
6040         */
6041        _dst_pte = huge_pte_mkdirty(_dst_pte);
6042        _dst_pte = pte_mkyoung(_dst_pte);
6043
6044        if (wp_copy)
6045                _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6046
6047        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6048
6049        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
6050                                        dst_vma->vm_flags & VM_WRITE);
6051        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6052
6053        /* No need to invalidate - it was non-present before */
6054        update_mmu_cache(dst_vma, dst_addr, dst_pte);
6055
6056        spin_unlock(ptl);
6057        if (!is_continue)
6058                SetHPageMigratable(page);
6059        if (vm_shared || is_continue)
6060                unlock_page(page);
6061        ret = 0;
6062out:
6063        return ret;
6064out_release_unlock:
6065        spin_unlock(ptl);
6066        if (vm_shared || is_continue)
6067                unlock_page(page);
6068out_release_nounlock:
6069        if (!page_in_pagecache)
6070                restore_reserve_on_error(h, dst_vma, dst_addr, page);
6071        put_page(page);
6072        goto out;
6073}
6074#endif /* CONFIG_USERFAULTFD */
6075
6076static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6077                                 int refs, struct page **pages,
6078                                 struct vm_area_struct **vmas)
6079{
6080        int nr;
6081
6082        for (nr = 0; nr < refs; nr++) {
6083                if (likely(pages))
6084                        pages[nr] = mem_map_offset(page, nr);
6085                if (vmas)
6086                        vmas[nr] = vma;
6087        }
6088}
6089
6090static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6091                                               bool *unshare)
6092{
6093        pte_t pteval = huge_ptep_get(pte);
6094
6095        *unshare = false;
6096        if (is_swap_pte(pteval))
6097                return true;
6098        if (huge_pte_write(pteval))
6099                return false;
6100        if (flags & FOLL_WRITE)
6101                return true;
6102        if (gup_must_unshare(flags, pte_page(pteval))) {
6103                *unshare = true;
6104                return true;
6105        }
6106        return false;
6107}
6108
6109long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6110                         struct page **pages, struct vm_area_struct **vmas,
6111                         unsigned long *position, unsigned long *nr_pages,
6112                         long i, unsigned int flags, int *locked)
6113{
6114        unsigned long pfn_offset;
6115        unsigned long vaddr = *position;
6116        unsigned long remainder = *nr_pages;
6117        struct hstate *h = hstate_vma(vma);
6118        int err = -EFAULT, refs;
6119
6120        while (vaddr < vma->vm_end && remainder) {
6121                pte_t *pte;
6122                spinlock_t *ptl = NULL;
6123                bool unshare = false;
6124                int absent;
6125                struct page *page;
6126
6127                /*
6128                 * If we have a pending SIGKILL, don't keep faulting pages and
6129                 * potentially allocating memory.
6130                 */
6131                if (fatal_signal_pending(current)) {
6132                        remainder = 0;
6133                        break;
6134                }
6135
6136                /*
6137                 * Some archs (sparc64, sh*) have multiple pte_ts to
6138                 * each hugepage.  We have to make sure we get the
6139                 * first, for the page indexing below to work.
6140                 *
6141                 * Note that page table lock is not held when pte is null.
6142                 */
6143                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6144                                      huge_page_size(h));
6145                if (pte)
6146                        ptl = huge_pte_lock(h, mm, pte);
6147                absent = !pte || huge_pte_none(huge_ptep_get(pte));
6148
6149                /*
6150                 * When coredumping, it suits get_dump_page if we just return
6151                 * an error where there's an empty slot with no huge pagecache
6152                 * to back it.  This way, we avoid allocating a hugepage, and
6153                 * the sparse dumpfile avoids allocating disk blocks, but its
6154                 * huge holes still show up with zeroes where they need to be.
6155                 */
6156                if (absent && (flags & FOLL_DUMP) &&
6157                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6158                        if (pte)
6159                                spin_unlock(ptl);
6160                        remainder = 0;
6161                        break;
6162                }
6163
6164                /*
6165                 * We need call hugetlb_fault for both hugepages under migration
6166                 * (in which case hugetlb_fault waits for the migration,) and
6167                 * hwpoisoned hugepages (in which case we need to prevent the
6168                 * caller from accessing to them.) In order to do this, we use
6169                 * here is_swap_pte instead of is_hugetlb_entry_migration and
6170                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6171                 * both cases, and because we can't follow correct pages
6172                 * directly from any kind of swap entries.
6173                 */
6174                if (absent ||
6175                    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6176                        vm_fault_t ret;
6177                        unsigned int fault_flags = 0;
6178
6179                        if (pte)
6180                                spin_unlock(ptl);
6181                        if (flags & FOLL_WRITE)
6182                                fault_flags |= FAULT_FLAG_WRITE;
6183                        else if (unshare)
6184                                fault_flags |= FAULT_FLAG_UNSHARE;
6185                        if (locked)
6186                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6187                                        FAULT_FLAG_KILLABLE;
6188                        if (flags & FOLL_NOWAIT)
6189                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6190                                        FAULT_FLAG_RETRY_NOWAIT;
6191                        if (flags & FOLL_TRIED) {
6192                                /*
6193                                 * Note: FAULT_FLAG_ALLOW_RETRY and
6194                                 * FAULT_FLAG_TRIED can co-exist
6195                                 */
6196                                fault_flags |= FAULT_FLAG_TRIED;
6197                        }
6198                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6199                        if (ret & VM_FAULT_ERROR) {
6200                                err = vm_fault_to_errno(ret, flags);
6201                                remainder = 0;
6202                                break;
6203                        }
6204                        if (ret & VM_FAULT_RETRY) {
6205                                if (locked &&
6206                                    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6207                                        *locked = 0;
6208                                *nr_pages = 0;
6209                                /*
6210                                 * VM_FAULT_RETRY must not return an
6211                                 * error, it will return zero
6212                                 * instead.
6213                                 *
6214                                 * No need to update "position" as the
6215                                 * caller will not check it after
6216                                 * *nr_pages is set to 0.
6217                                 */
6218                                return i;
6219                        }
6220                        continue;
6221                }
6222
6223                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6224                page = pte_page(huge_ptep_get(pte));
6225
6226                VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6227                               !PageAnonExclusive(page), page);
6228
6229                /*
6230                 * If subpage information not requested, update counters
6231                 * and skip the same_page loop below.
6232                 */
6233                if (!pages && !vmas && !pfn_offset &&
6234                    (vaddr + huge_page_size(h) < vma->vm_end) &&
6235                    (remainder >= pages_per_huge_page(h))) {
6236                        vaddr += huge_page_size(h);
6237                        remainder -= pages_per_huge_page(h);
6238                        i += pages_per_huge_page(h);
6239                        spin_unlock(ptl);
6240                        continue;
6241                }
6242
6243                /* vaddr may not be aligned to PAGE_SIZE */
6244                refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6245                    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6246
6247                if (pages || vmas)
6248                        record_subpages_vmas(mem_map_offset(page, pfn_offset),
6249                                             vma, refs,
6250                                             likely(pages) ? pages + i : NULL,
6251                                             vmas ? vmas + i : NULL);
6252
6253                if (pages) {
6254                        /*
6255                         * try_grab_folio() should always succeed here,
6256                         * because: a) we hold the ptl lock, and b) we've just
6257                         * checked that the huge page is present in the page
6258                         * tables. If the huge page is present, then the tail
6259                         * pages must also be present. The ptl prevents the
6260                         * head page and tail pages from being rearranged in
6261                         * any way. So this page must be available at this
6262                         * point, unless the page refcount overflowed:
6263                         */
6264                        if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6265                                                         flags))) {
6266                                spin_unlock(ptl);
6267                                remainder = 0;
6268                                err = -ENOMEM;
6269                                break;
6270                        }
6271                }
6272
6273                vaddr += (refs << PAGE_SHIFT);
6274                remainder -= refs;
6275                i += refs;
6276
6277                spin_unlock(ptl);
6278        }
6279        *nr_pages = remainder;
6280        /*
6281         * setting position is actually required only if remainder is
6282         * not zero but it's faster not to add a "if (remainder)"
6283         * branch.
6284         */
6285        *position = vaddr;
6286
6287        return i ? i : err;
6288}
6289
6290unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6291                unsigned long address, unsigned long end,
6292                pgprot_t newprot, unsigned long cp_flags)
6293{
6294        struct mm_struct *mm = vma->vm_mm;
6295        unsigned long start = address;
6296        pte_t *ptep;
6297        pte_t pte;
6298        struct hstate *h = hstate_vma(vma);
6299        unsigned long pages = 0, psize = huge_page_size(h);
6300        bool shared_pmd = false;
6301        struct mmu_notifier_range range;
6302        bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6303        bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6304
6305        /*
6306         * In the case of shared PMDs, the area to flush could be beyond
6307         * start/end.  Set range.start/range.end to cover the maximum possible
6308         * range if PMD sharing is possible.
6309         */
6310        mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6311                                0, vma, mm, start, end);
6312        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6313
6314        BUG_ON(address >= end);
6315        flush_cache_range(vma, range.start, range.end);
6316
6317        mmu_notifier_invalidate_range_start(&range);
6318        i_mmap_lock_write(vma->vm_file->f_mapping);
6319        for (; address < end; address += psize) {
6320                spinlock_t *ptl;
6321                ptep = huge_pte_offset(mm, address, psize);
6322                if (!ptep)
6323                        continue;
6324                ptl = huge_pte_lock(h, mm, ptep);
6325                if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6326                        /*
6327                         * When uffd-wp is enabled on the vma, unshare
6328                         * shouldn't happen at all.  Warn about it if it
6329                         * happened due to some reason.
6330                         */
6331                        WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6332                        pages++;
6333                        spin_unlock(ptl);
6334                        shared_pmd = true;
6335                        continue;
6336                }
6337                pte = huge_ptep_get(ptep);
6338                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6339                        spin_unlock(ptl);
6340                        continue;
6341                }
6342                if (unlikely(is_hugetlb_entry_migration(pte))) {
6343                        swp_entry_t entry = pte_to_swp_entry(pte);
6344                        struct page *page = pfn_swap_entry_to_page(entry);
6345
6346                        if (!is_readable_migration_entry(entry)) {
6347                                pte_t newpte;
6348
6349                                if (PageAnon(page))
6350                                        entry = make_readable_exclusive_migration_entry(
6351                                                                swp_offset(entry));
6352                                else
6353                                        entry = make_readable_migration_entry(
6354                                                                swp_offset(entry));
6355                                newpte = swp_entry_to_pte(entry);
6356                                if (uffd_wp)
6357                                        newpte = pte_swp_mkuffd_wp(newpte);
6358                                else if (uffd_wp_resolve)
6359                                        newpte = pte_swp_clear_uffd_wp(newpte);
6360                                set_huge_swap_pte_at(mm, address, ptep,
6361                                                     newpte, psize);
6362                                pages++;
6363                        }
6364                        spin_unlock(ptl);
6365                        continue;
6366                }
6367                if (unlikely(pte_marker_uffd_wp(pte))) {
6368                        /*
6369                         * This is changing a non-present pte into a none pte,
6370                         * no need for huge_ptep_modify_prot_start/commit().
6371                         */
6372                        if (uffd_wp_resolve)
6373                                huge_pte_clear(mm, address, ptep, psize);
6374                }
6375                if (!huge_pte_none(pte)) {
6376                        pte_t old_pte;
6377                        unsigned int shift = huge_page_shift(hstate_vma(vma));
6378
6379                        old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6380                        pte = huge_pte_modify(old_pte, newprot);
6381                        pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6382                        if (uffd_wp)
6383                                pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6384                        else if (uffd_wp_resolve)
6385                                pte = huge_pte_clear_uffd_wp(pte);
6386                        huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6387                        pages++;
6388                } else {
6389                        /* None pte */
6390                        if (unlikely(uffd_wp))
6391                                /* Safe to modify directly (none->non-present). */
6392                                set_huge_pte_at(mm, address, ptep,
6393                                                make_pte_marker(PTE_MARKER_UFFD_WP));
6394                }
6395                spin_unlock(ptl);
6396        }
6397        /*
6398         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6399         * may have cleared our pud entry and done put_page on the page table:
6400         * once we release i_mmap_rwsem, another task can do the final put_page
6401         * and that page table be reused and filled with junk.  If we actually
6402         * did unshare a page of pmds, flush the range corresponding to the pud.
6403         */
6404        if (shared_pmd)
6405                flush_hugetlb_tlb_range(vma, range.start, range.end);
6406        else
6407                flush_hugetlb_tlb_range(vma, start, end);
6408        /*
6409         * No need to call mmu_notifier_invalidate_range() we are downgrading
6410         * page table protection not changing it to point to a new page.
6411         *
6412         * See Documentation/vm/mmu_notifier.rst
6413         */
6414        i_mmap_unlock_write(vma->vm_file->f_mapping);
6415        mmu_notifier_invalidate_range_end(&range);
6416
6417        return pages << h->order;
6418}
6419
6420/* Return true if reservation was successful, false otherwise.  */
6421bool hugetlb_reserve_pages(struct inode *inode,
6422                                        long from, long to,
6423                                        struct vm_area_struct *vma,
6424                                        vm_flags_t vm_flags)
6425{
6426        long chg, add = -1;
6427        struct hstate *h = hstate_inode(inode);
6428        struct hugepage_subpool *spool = subpool_inode(inode);
6429        struct resv_map *resv_map;
6430        struct hugetlb_cgroup *h_cg = NULL;
6431        long gbl_reserve, regions_needed = 0;
6432
6433        /* This should never happen */
6434        if (from > to) {
6435                VM_WARN(1, "%s called with a negative range\n", __func__);
6436                return false;
6437        }
6438
6439        /*
6440         * Only apply hugepage reservation if asked. At fault time, an
6441         * attempt will be made for VM_NORESERVE to allocate a page
6442         * without using reserves
6443         */
6444        if (vm_flags & VM_NORESERVE)
6445                return true;
6446
6447        /*
6448         * Shared mappings base their reservation on the number of pages that
6449         * are already allocated on behalf of the file. Private mappings need
6450         * to reserve the full area even if read-only as mprotect() may be
6451         * called to make the mapping read-write. Assume !vma is a shm mapping
6452         */
6453        if (!vma || vma->vm_flags & VM_MAYSHARE) {
6454                /*
6455                 * resv_map can not be NULL as hugetlb_reserve_pages is only
6456                 * called for inodes for which resv_maps were created (see
6457                 * hugetlbfs_get_inode).
6458                 */
6459                resv_map = inode_resv_map(inode);
6460
6461                chg = region_chg(resv_map, from, to, &regions_needed);
6462
6463        } else {
6464                /* Private mapping. */
6465                resv_map = resv_map_alloc();
6466                if (!resv_map)
6467                        return false;
6468
6469                chg = to - from;
6470
6471                set_vma_resv_map(vma, resv_map);
6472                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6473        }
6474
6475        if (chg < 0)
6476                goto out_err;
6477
6478        if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6479                                chg * pages_per_huge_page(h), &h_cg) < 0)
6480                goto out_err;
6481
6482        if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6483                /* For private mappings, the hugetlb_cgroup uncharge info hangs
6484                 * of the resv_map.
6485                 */
6486                resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6487        }
6488
6489        /*
6490         * There must be enough pages in the subpool for the mapping. If
6491         * the subpool has a minimum size, there may be some global
6492         * reservations already in place (gbl_reserve).
6493         */
6494        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6495        if (gbl_reserve < 0)
6496                goto out_uncharge_cgroup;
6497
6498        /*
6499         * Check enough hugepages are available for the reservation.
6500         * Hand the pages back to the subpool if there are not
6501         */
6502        if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6503                goto out_put_pages;
6504
6505        /*
6506         * Account for the reservations made. Shared mappings record regions
6507         * that have reservations as they are shared by multiple VMAs.
6508         * When the last VMA disappears, the region map says how much
6509         * the reservation was and the page cache tells how much of
6510         * the reservation was consumed. Private mappings are per-VMA and
6511         * only the consumed reservations are tracked. When the VMA
6512         * disappears, the original reservation is the VMA size and the
6513         * consumed reservations are stored in the map. Hence, nothing
6514         * else has to be done for private mappings here
6515         */
6516        if (!vma || vma->vm_flags & VM_MAYSHARE) {
6517                add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6518
6519                if (unlikely(add < 0)) {
6520                        hugetlb_acct_memory(h, -gbl_reserve);
6521                        goto out_put_pages;
6522                } else if (unlikely(chg > add)) {
6523                        /*
6524                         * pages in this range were added to the reserve
6525                         * map between region_chg and region_add.  This
6526                         * indicates a race with alloc_huge_page.  Adjust
6527                         * the subpool and reserve counts modified above
6528                         * based on the difference.
6529                         */
6530                        long rsv_adjust;
6531
6532                        /*
6533                         * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6534                         * reference to h_cg->css. See comment below for detail.
6535                         */
6536                        hugetlb_cgroup_uncharge_cgroup_rsvd(
6537                                hstate_index(h),
6538                                (chg - add) * pages_per_huge_page(h), h_cg);
6539
6540                        rsv_adjust = hugepage_subpool_put_pages(spool,
6541                                                                chg - add);
6542                        hugetlb_acct_memory(h, -rsv_adjust);
6543                } else if (h_cg) {
6544                        /*
6545                         * The file_regions will hold their own reference to
6546                         * h_cg->css. So we should release the reference held
6547                         * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6548                         * done.
6549                         */
6550                        hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6551                }
6552        }
6553        return true;
6554
6555out_put_pages:
6556        /* put back original number of pages, chg */
6557        (void)hugepage_subpool_put_pages(spool, chg);
6558out_uncharge_cgroup:
6559        hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6560                                            chg * pages_per_huge_page(h), h_cg);
6561out_err:
6562        if (!vma || vma->vm_flags & VM_MAYSHARE)
6563                /* Only call region_abort if the region_chg succeeded but the
6564                 * region_add failed or didn't run.
6565                 */
6566                if (chg >= 0 && add < 0)
6567                        region_abort(resv_map, from, to, regions_needed);
6568        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6569                kref_put(&resv_map->refs, resv_map_release);
6570        return false;
6571}
6572
6573long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6574                                                                long freed)
6575{
6576        struct hstate *h = hstate_inode(inode);
6577        struct resv_map *resv_map = inode_resv_map(inode);
6578        long chg = 0;
6579        struct hugepage_subpool *spool = subpool_inode(inode);
6580        long gbl_reserve;
6581
6582        /*
6583         * Since this routine can be called in the evict inode path for all
6584         * hugetlbfs inodes, resv_map could be NULL.
6585         */
6586        if (resv_map) {
6587                chg = region_del(resv_map, start, end);
6588                /*
6589                 * region_del() can fail in the rare case where a region
6590                 * must be split and another region descriptor can not be
6591                 * allocated.  If end == LONG_MAX, it will not fail.
6592                 */
6593                if (chg < 0)
6594                        return chg;
6595        }
6596
6597        spin_lock(&inode->i_lock);
6598        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6599        spin_unlock(&inode->i_lock);
6600
6601        /*
6602         * If the subpool has a minimum size, the number of global
6603         * reservations to be released may be adjusted.
6604         *
6605         * Note that !resv_map implies freed == 0. So (chg - freed)
6606         * won't go negative.
6607         */
6608        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6609        hugetlb_acct_memory(h, -gbl_reserve);
6610
6611        return 0;
6612}
6613
6614#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6615static unsigned long page_table_shareable(struct vm_area_struct *svma,
6616                                struct vm_area_struct *vma,
6617                                unsigned long addr, pgoff_t idx)
6618{
6619        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6620                                svma->vm_start;
6621        unsigned long sbase = saddr & PUD_MASK;
6622        unsigned long s_end = sbase + PUD_SIZE;
6623
6624        /* Allow segments to share if only one is marked locked */
6625        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6626        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6627
6628        /*
6629         * match the virtual addresses, permission and the alignment of the
6630         * page table page.
6631         */
6632        if (pmd_index(addr) != pmd_index(saddr) ||
6633            vm_flags != svm_flags ||
6634            !range_in_vma(svma, sbase, s_end))
6635                return 0;
6636
6637        return saddr;
6638}
6639
6640static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6641{
6642        unsigned long base = addr & PUD_MASK;
6643        unsigned long end = base + PUD_SIZE;
6644
6645        /*
6646         * check on proper vm_flags and page table alignment
6647         */
6648        if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6649                return true;
6650        return false;
6651}
6652
6653bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6654{
6655#ifdef CONFIG_USERFAULTFD
6656        if (uffd_disable_huge_pmd_share(vma))
6657                return false;
6658#endif
6659        return vma_shareable(vma, addr);
6660}
6661
6662/*
6663 * Determine if start,end range within vma could be mapped by shared pmd.
6664 * If yes, adjust start and end to cover range associated with possible
6665 * shared pmd mappings.
6666 */
6667void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6668                                unsigned long *start, unsigned long *end)
6669{
6670        unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6671                v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6672
6673        /*
6674         * vma needs to span at least one aligned PUD size, and the range
6675         * must be at least partially within in.
6676         */
6677        if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6678                (*end <= v_start) || (*start >= v_end))
6679                return;
6680
6681        /* Extend the range to be PUD aligned for a worst case scenario */
6682        if (*start > v_start)
6683                *start = ALIGN_DOWN(*start, PUD_SIZE);
6684
6685        if (*end < v_end)
6686                *end = ALIGN(*end, PUD_SIZE);
6687}
6688
6689/*
6690 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6691 * and returns the corresponding pte. While this is not necessary for the
6692 * !shared pmd case because we can allocate the pmd later as well, it makes the
6693 * code much cleaner.
6694 *
6695 * This routine must be called with i_mmap_rwsem held in at least read mode if
6696 * sharing is possible.  For hugetlbfs, this prevents removal of any page
6697 * table entries associated with the address space.  This is important as we
6698 * are setting up sharing based on existing page table entries (mappings).
6699 */
6700pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6701                      unsigned long addr, pud_t *pud)
6702{
6703        struct address_space *mapping = vma->vm_file->f_mapping;
6704        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6705                        vma->vm_pgoff;
6706        struct vm_area_struct *svma;
6707        unsigned long saddr;
6708        pte_t *spte = NULL;
6709        pte_t *pte;
6710        spinlock_t *ptl;
6711
6712        i_mmap_assert_locked(mapping);
6713        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6714                if (svma == vma)
6715                        continue;
6716
6717                saddr = page_table_shareable(svma, vma, addr, idx);
6718                if (saddr) {
6719                        spte = huge_pte_offset(svma->vm_mm, saddr,
6720                                               vma_mmu_pagesize(svma));
6721                        if (spte) {
6722                                get_page(virt_to_page(spte));
6723                                break;
6724                        }
6725                }
6726        }
6727
6728        if (!spte)
6729                goto out;
6730
6731        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6732        if (pud_none(*pud)) {
6733                pud_populate(mm, pud,
6734                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
6735                mm_inc_nr_pmds(mm);
6736        } else {
6737                put_page(virt_to_page(spte));
6738        }
6739        spin_unlock(ptl);
6740out:
6741        pte = (pte_t *)pmd_alloc(mm, pud, addr);
6742        return pte;
6743}
6744
6745/*
6746 * unmap huge page backed by shared pte.
6747 *
6748 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6749 * indicated by page_count > 1, unmap is achieved by clearing pud and
6750 * decrementing the ref count. If count == 1, the pte page is not shared.
6751 *
6752 * Called with page table lock held and i_mmap_rwsem held in write mode.
6753 *
6754 * returns: 1 successfully unmapped a shared pte page
6755 *          0 the underlying pte page is not shared, or it is the last user
6756 */
6757int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6758                                        unsigned long *addr, pte_t *ptep)
6759{
6760        pgd_t *pgd = pgd_offset(mm, *addr);
6761        p4d_t *p4d = p4d_offset(pgd, *addr);
6762        pud_t *pud = pud_offset(p4d, *addr);
6763
6764        i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6765        BUG_ON(page_count(virt_to_page(ptep)) == 0);
6766        if (page_count(virt_to_page(ptep)) == 1)
6767                return 0;
6768
6769        pud_clear(pud);
6770        put_page(virt_to_page(ptep));
6771        mm_dec_nr_pmds(mm);
6772        /*
6773         * This update of passed address optimizes loops sequentially
6774         * processing addresses in increments of huge page size (PMD_SIZE
6775         * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
6776         * Update address to the 'last page' in the cleared area so that
6777         * calling loop can move to first page past this area.
6778         */
6779        *addr |= PUD_SIZE - PMD_SIZE;
6780        return 1;
6781}
6782
6783#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6784pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6785                      unsigned long addr, pud_t *pud)
6786{
6787        return NULL;
6788}
6789
6790int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6791                                unsigned long *addr, pte_t *ptep)
6792{
6793        return 0;
6794}
6795
6796void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6797                                unsigned long *start, unsigned long *end)
6798{
6799}
6800
6801bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6802{
6803        return false;
6804}
6805#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6806
6807#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6808pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6809                        unsigned long addr, unsigned long sz)
6810{
6811        pgd_t *pgd;
6812        p4d_t *p4d;
6813        pud_t *pud;
6814        pte_t *pte = NULL;
6815
6816        pgd = pgd_offset(mm, addr);
6817        p4d = p4d_alloc(mm, pgd, addr);
6818        if (!p4d)
6819                return NULL;
6820        pud = pud_alloc(mm, p4d, addr);
6821        if (pud) {
6822                if (sz == PUD_SIZE) {
6823                        pte = (pte_t *)pud;
6824                } else {
6825                        BUG_ON(sz != PMD_SIZE);
6826                        if (want_pmd_share(vma, addr) && pud_none(*pud))
6827                                pte = huge_pmd_share(mm, vma, addr, pud);
6828                        else
6829                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
6830                }
6831        }
6832        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6833
6834        return pte;
6835}
6836
6837/*
6838 * huge_pte_offset() - Walk the page table to resolve the hugepage
6839 * entry at address @addr
6840 *
6841 * Return: Pointer to page table entry (PUD or PMD) for
6842 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6843 * size @sz doesn't match the hugepage size at this level of the page
6844 * table.
6845 */
6846pte_t *huge_pte_offset(struct mm_struct *mm,
6847                       unsigned long addr, unsigned long sz)
6848{
6849        pgd_t *pgd;
6850        p4d_t *p4d;
6851        pud_t *pud;
6852        pmd_t *pmd;
6853
6854        pgd = pgd_offset(mm, addr);
6855        if (!pgd_present(*pgd))
6856                return NULL;
6857        p4d = p4d_offset(pgd, addr);
6858        if (!p4d_present(*p4d))
6859                return NULL;
6860
6861        pud = pud_offset(p4d, addr);
6862        if (sz == PUD_SIZE)
6863                /* must be pud huge, non-present or none */
6864                return (pte_t *)pud;
6865        if (!pud_present(*pud))
6866                return NULL;
6867        /* must have a valid entry and size to go further */
6868
6869        pmd = pmd_offset(pud, addr);
6870        /* must be pmd huge, non-present or none */
6871        return (pte_t *)pmd;
6872}
6873
6874#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6875
6876/*
6877 * These functions are overwritable if your architecture needs its own
6878 * behavior.
6879 */
6880struct page * __weak
6881follow_huge_addr(struct mm_struct *mm, unsigned long address,
6882                              int write)
6883{
6884        return ERR_PTR(-EINVAL);
6885}
6886
6887struct page * __weak
6888follow_huge_pd(struct vm_area_struct *vma,
6889               unsigned long address, hugepd_t hpd, int flags, int pdshift)
6890{
6891        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6892        return NULL;
6893}
6894
6895struct page * __weak
6896follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6897                pmd_t *pmd, int flags)
6898{
6899        struct page *page = NULL;
6900        spinlock_t *ptl;
6901        pte_t pte;
6902
6903        /*
6904         * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6905         * follow_hugetlb_page().
6906         */
6907        if (WARN_ON_ONCE(flags & FOLL_PIN))
6908                return NULL;
6909
6910retry:
6911        ptl = pmd_lockptr(mm, pmd);
6912        spin_lock(ptl);
6913        /*
6914         * make sure that the address range covered by this pmd is not
6915         * unmapped from other threads.
6916         */
6917        if (!pmd_huge(*pmd))
6918                goto out;
6919        pte = huge_ptep_get((pte_t *)pmd);
6920        if (pte_present(pte)) {
6921                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6922                /*
6923                 * try_grab_page() should always succeed here, because: a) we
6924                 * hold the pmd (ptl) lock, and b) we've just checked that the
6925                 * huge pmd (head) page is present in the page tables. The ptl
6926                 * prevents the head page and tail pages from being rearranged
6927                 * in any way. So this page must be available at this point,
6928                 * unless the page refcount overflowed:
6929                 */
6930                if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6931                        page = NULL;
6932                        goto out;
6933                }
6934        } else {
6935                if (is_hugetlb_entry_migration(pte)) {
6936                        spin_unlock(ptl);
6937                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6938                        goto retry;
6939                }
6940                /*
6941                 * hwpoisoned entry is treated as no_page_table in
6942                 * follow_page_mask().
6943                 */
6944        }
6945out:
6946        spin_unlock(ptl);
6947        return page;
6948}
6949
6950struct page * __weak
6951follow_huge_pud(struct mm_struct *mm, unsigned long address,
6952                pud_t *pud, int flags)
6953{
6954        if (flags & (FOLL_GET | FOLL_PIN))
6955                return NULL;
6956
6957        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6958}
6959
6960struct page * __weak
6961follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6962{
6963        if (flags & (FOLL_GET | FOLL_PIN))
6964                return NULL;
6965
6966        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6967}
6968
6969bool isolate_huge_page(struct page *page, struct list_head *list)
6970{
6971        bool ret = true;
6972
6973        spin_lock_irq(&hugetlb_lock);
6974        if (!PageHeadHuge(page) ||
6975            !HPageMigratable(page) ||
6976            !get_page_unless_zero(page)) {
6977                ret = false;
6978                goto unlock;
6979        }
6980        ClearHPageMigratable(page);
6981        list_move_tail(&page->lru, list);
6982unlock:
6983        spin_unlock_irq(&hugetlb_lock);
6984        return ret;
6985}
6986
6987int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6988{
6989        int ret = 0;
6990
6991        *hugetlb = false;
6992        spin_lock_irq(&hugetlb_lock);
6993        if (PageHeadHuge(page)) {
6994                *hugetlb = true;
6995                if (HPageFreed(page))
6996                        ret = 0;
6997                else if (HPageMigratable(page))
6998                        ret = get_page_unless_zero(page);
6999                else
7000                        ret = -EBUSY;
7001        }
7002        spin_unlock_irq(&hugetlb_lock);
7003        return ret;
7004}
7005
7006int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7007{
7008        int ret;
7009
7010        spin_lock_irq(&hugetlb_lock);
7011        ret = __get_huge_page_for_hwpoison(pfn, flags);
7012        spin_unlock_irq(&hugetlb_lock);
7013        return ret;
7014}
7015
7016void putback_active_hugepage(struct page *page)
7017{
7018        spin_lock_irq(&hugetlb_lock);
7019        SetHPageMigratable(page);
7020        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7021        spin_unlock_irq(&hugetlb_lock);
7022        put_page(page);
7023}
7024
7025void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7026{
7027        struct hstate *h = page_hstate(oldpage);
7028
7029        hugetlb_cgroup_migrate(oldpage, newpage);
7030        set_page_owner_migrate_reason(newpage, reason);
7031
7032        /*
7033         * transfer temporary state of the new huge page. This is
7034         * reverse to other transitions because the newpage is going to
7035         * be final while the old one will be freed so it takes over
7036         * the temporary status.
7037         *
7038         * Also note that we have to transfer the per-node surplus state
7039         * here as well otherwise the global surplus count will not match
7040         * the per-node's.
7041         */
7042        if (HPageTemporary(newpage)) {
7043                int old_nid = page_to_nid(oldpage);
7044                int new_nid = page_to_nid(newpage);
7045
7046                SetHPageTemporary(oldpage);
7047                ClearHPageTemporary(newpage);
7048
7049                /*
7050                 * There is no need to transfer the per-node surplus state
7051                 * when we do not cross the node.
7052                 */
7053                if (new_nid == old_nid)
7054                        return;
7055                spin_lock_irq(&hugetlb_lock);
7056                if (h->surplus_huge_pages_node[old_nid]) {
7057                        h->surplus_huge_pages_node[old_nid]--;
7058                        h->surplus_huge_pages_node[new_nid]++;
7059                }
7060                spin_unlock_irq(&hugetlb_lock);
7061        }
7062}
7063
7064/*
7065 * This function will unconditionally remove all the shared pmd pgtable entries
7066 * within the specific vma for a hugetlbfs memory range.
7067 */
7068void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7069{
7070        struct hstate *h = hstate_vma(vma);
7071        unsigned long sz = huge_page_size(h);
7072        struct mm_struct *mm = vma->vm_mm;
7073        struct mmu_notifier_range range;
7074        unsigned long address, start, end;
7075        spinlock_t *ptl;
7076        pte_t *ptep;
7077
7078        if (!(vma->vm_flags & VM_MAYSHARE))
7079                return;
7080
7081        start = ALIGN(vma->vm_start, PUD_SIZE);
7082        end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7083
7084        if (start >= end)
7085                return;
7086
7087        flush_cache_range(vma, start, end);
7088        /*
7089         * No need to call adjust_range_if_pmd_sharing_possible(), because
7090         * we have already done the PUD_SIZE alignment.
7091         */
7092        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7093                                start, end);
7094        mmu_notifier_invalidate_range_start(&range);
7095        i_mmap_lock_write(vma->vm_file->f_mapping);
7096        for (address = start; address < end; address += PUD_SIZE) {
7097                unsigned long tmp = address;
7098
7099                ptep = huge_pte_offset(mm, address, sz);
7100                if (!ptep)
7101                        continue;
7102                ptl = huge_pte_lock(h, mm, ptep);
7103                /* We don't want 'address' to be changed */
7104                huge_pmd_unshare(mm, vma, &tmp, ptep);
7105                spin_unlock(ptl);
7106        }
7107        flush_hugetlb_tlb_range(vma, start, end);
7108        i_mmap_unlock_write(vma->vm_file->f_mapping);
7109        /*
7110         * No need to call mmu_notifier_invalidate_range(), see
7111         * Documentation/vm/mmu_notifier.rst.
7112         */
7113        mmu_notifier_invalidate_range_end(&range);
7114}
7115
7116#ifdef CONFIG_CMA
7117static bool cma_reserve_called __initdata;
7118
7119static int __init cmdline_parse_hugetlb_cma(char *p)
7120{
7121        int nid, count = 0;
7122        unsigned long tmp;
7123        char *s = p;
7124
7125        while (*s) {
7126                if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7127                        break;
7128
7129                if (s[count] == ':') {
7130                        if (tmp >= MAX_NUMNODES)
7131                                break;
7132                        nid = array_index_nospec(tmp, MAX_NUMNODES);
7133
7134                        s += count + 1;
7135                        tmp = memparse(s, &s);
7136                        hugetlb_cma_size_in_node[nid] = tmp;
7137                        hugetlb_cma_size += tmp;
7138
7139                        /*
7140                         * Skip the separator if have one, otherwise
7141                         * break the parsing.
7142                         */
7143                        if (*s == ',')
7144                                s++;
7145                        else
7146                                break;
7147                } else {
7148                        hugetlb_cma_size = memparse(p, &p);
7149                        break;
7150                }
7151        }
7152
7153        return 0;
7154}
7155
7156early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7157
7158void __init hugetlb_cma_reserve(int order)
7159{
7160        unsigned long size, reserved, per_node;
7161        bool node_specific_cma_alloc = false;
7162        int nid;
7163
7164        cma_reserve_called = true;
7165
7166        if (!hugetlb_cma_size)
7167                return;
7168
7169        for (nid = 0; nid < MAX_NUMNODES; nid++) {
7170                if (hugetlb_cma_size_in_node[nid] == 0)
7171                        continue;
7172
7173                if (!node_online(nid)) {
7174                        pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7175                        hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7176                        hugetlb_cma_size_in_node[nid] = 0;
7177                        continue;
7178                }
7179
7180                if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7181                        pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7182                                nid, (PAGE_SIZE << order) / SZ_1M);
7183                        hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7184                        hugetlb_cma_size_in_node[nid] = 0;
7185                } else {
7186                        node_specific_cma_alloc = true;
7187                }
7188        }
7189
7190        /* Validate the CMA size again in case some invalid nodes specified. */
7191        if (!hugetlb_cma_size)
7192                return;
7193
7194        if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7195                pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7196                        (PAGE_SIZE << order) / SZ_1M);
7197                hugetlb_cma_size = 0;
7198                return;
7199        }
7200
7201        if (!node_specific_cma_alloc) {
7202                /*
7203                 * If 3 GB area is requested on a machine with 4 numa nodes,
7204                 * let's allocate 1 GB on first three nodes and ignore the last one.
7205                 */
7206                per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7207                pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7208                        hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7209        }
7210
7211        reserved = 0;
7212        for_each_online_node(nid) {
7213                int res;
7214                char name[CMA_MAX_NAME];
7215
7216                if (node_specific_cma_alloc) {
7217                        if (hugetlb_cma_size_in_node[nid] == 0)
7218                                continue;
7219
7220                        size = hugetlb_cma_size_in_node[nid];
7221                } else {
7222                        size = min(per_node, hugetlb_cma_size - reserved);
7223                }
7224
7225                size = round_up(size, PAGE_SIZE << order);
7226
7227                snprintf(name, sizeof(name), "hugetlb%d", nid);
7228                /*
7229                 * Note that 'order per bit' is based on smallest size that
7230                 * may be returned to CMA allocator in the case of
7231                 * huge page demotion.
7232                 */
7233                res = cma_declare_contiguous_nid(0, size, 0,
7234                                                PAGE_SIZE << HUGETLB_PAGE_ORDER,
7235                                                 0, false, name,
7236                                                 &hugetlb_cma[nid], nid);
7237                if (res) {
7238                        pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7239                                res, nid);
7240                        continue;
7241                }
7242
7243                reserved += size;
7244                pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7245                        size / SZ_1M, nid);
7246
7247                if (reserved >= hugetlb_cma_size)
7248                        break;
7249        }
7250
7251        if (!reserved)
7252                /*
7253                 * hugetlb_cma_size is used to determine if allocations from
7254                 * cma are possible.  Set to zero if no cma regions are set up.
7255                 */
7256                hugetlb_cma_size = 0;
7257}
7258
7259void __init hugetlb_cma_check(void)
7260{
7261        if (!hugetlb_cma_size || cma_reserve_called)
7262                return;
7263
7264        pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7265}
7266
7267#endif /* CONFIG_CMA */
7268