linux/mm/internal.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* internal.h: mm/ internal definitions
   3 *
   4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7#ifndef __MM_INTERNAL_H
   8#define __MM_INTERNAL_H
   9
  10#include <linux/fs.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/rmap.h>
  14#include <linux/tracepoint-defs.h>
  15
  16struct folio_batch;
  17
  18/*
  19 * The set of flags that only affect watermark checking and reclaim
  20 * behaviour. This is used by the MM to obey the caller constraints
  21 * about IO, FS and watermark checking while ignoring placement
  22 * hints such as HIGHMEM usage.
  23 */
  24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
  25                        __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
  26                        __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
  27                        __GFP_ATOMIC|__GFP_NOLOCKDEP)
  28
  29/* The GFP flags allowed during early boot */
  30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
  31
  32/* Control allocation cpuset and node placement constraints */
  33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
  34
  35/* Do not use these with a slab allocator */
  36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
  37
  38/*
  39 * Different from WARN_ON_ONCE(), no warning will be issued
  40 * when we specify __GFP_NOWARN.
  41 */
  42#define WARN_ON_ONCE_GFP(cond, gfp)     ({                              \
  43        static bool __section(".data.once") __warned;                   \
  44        int __ret_warn_once = !!(cond);                                 \
  45                                                                        \
  46        if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
  47                __warned = true;                                        \
  48                WARN_ON(1);                                             \
  49        }                                                               \
  50        unlikely(__ret_warn_once);                                      \
  51})
  52
  53void page_writeback_init(void);
  54
  55static inline void *folio_raw_mapping(struct folio *folio)
  56{
  57        unsigned long mapping = (unsigned long)folio->mapping;
  58
  59        return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
  60}
  61
  62void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
  63                                                int nr_throttled);
  64static inline void acct_reclaim_writeback(struct folio *folio)
  65{
  66        pg_data_t *pgdat = folio_pgdat(folio);
  67        int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
  68
  69        if (nr_throttled)
  70                __acct_reclaim_writeback(pgdat, folio, nr_throttled);
  71}
  72
  73static inline void wake_throttle_isolated(pg_data_t *pgdat)
  74{
  75        wait_queue_head_t *wqh;
  76
  77        wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
  78        if (waitqueue_active(wqh))
  79                wake_up(wqh);
  80}
  81
  82vm_fault_t do_swap_page(struct vm_fault *vmf);
  83void folio_rotate_reclaimable(struct folio *folio);
  84bool __folio_end_writeback(struct folio *folio);
  85void deactivate_file_folio(struct folio *folio);
  86
  87void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  88                unsigned long floor, unsigned long ceiling);
  89void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
  90
  91struct zap_details;
  92void unmap_page_range(struct mmu_gather *tlb,
  93                             struct vm_area_struct *vma,
  94                             unsigned long addr, unsigned long end,
  95                             struct zap_details *details);
  96
  97void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
  98                unsigned int order);
  99void force_page_cache_ra(struct readahead_control *, unsigned long nr);
 100static inline void force_page_cache_readahead(struct address_space *mapping,
 101                struct file *file, pgoff_t index, unsigned long nr_to_read)
 102{
 103        DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
 104        force_page_cache_ra(&ractl, nr_to_read);
 105}
 106
 107unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
 108                pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 109unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
 110                pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 111void filemap_free_folio(struct address_space *mapping, struct folio *folio);
 112int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
 113bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
 114                loff_t end);
 115long invalidate_inode_page(struct page *page);
 116unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
 117                pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
 118
 119/**
 120 * folio_evictable - Test whether a folio is evictable.
 121 * @folio: The folio to test.
 122 *
 123 * Test whether @folio is evictable -- i.e., should be placed on
 124 * active/inactive lists vs unevictable list.
 125 *
 126 * Reasons folio might not be evictable:
 127 * 1. folio's mapping marked unevictable
 128 * 2. One of the pages in the folio is part of an mlocked VMA
 129 */
 130static inline bool folio_evictable(struct folio *folio)
 131{
 132        bool ret;
 133
 134        /* Prevent address_space of inode and swap cache from being freed */
 135        rcu_read_lock();
 136        ret = !mapping_unevictable(folio_mapping(folio)) &&
 137                        !folio_test_mlocked(folio);
 138        rcu_read_unlock();
 139        return ret;
 140}
 141
 142static inline bool page_evictable(struct page *page)
 143{
 144        bool ret;
 145
 146        /* Prevent address_space of inode and swap cache from being freed */
 147        rcu_read_lock();
 148        ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
 149        rcu_read_unlock();
 150        return ret;
 151}
 152
 153/*
 154 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 155 * a count of one.
 156 */
 157static inline void set_page_refcounted(struct page *page)
 158{
 159        VM_BUG_ON_PAGE(PageTail(page), page);
 160        VM_BUG_ON_PAGE(page_ref_count(page), page);
 161        set_page_count(page, 1);
 162}
 163
 164extern unsigned long highest_memmap_pfn;
 165
 166/*
 167 * Maximum number of reclaim retries without progress before the OOM
 168 * killer is consider the only way forward.
 169 */
 170#define MAX_RECLAIM_RETRIES 16
 171
 172/*
 173 * in mm/early_ioremap.c
 174 */
 175pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
 176                                        unsigned long size, pgprot_t prot);
 177
 178/*
 179 * in mm/vmscan.c:
 180 */
 181int isolate_lru_page(struct page *page);
 182int folio_isolate_lru(struct folio *folio);
 183void putback_lru_page(struct page *page);
 184void folio_putback_lru(struct folio *folio);
 185extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
 186
 187/*
 188 * in mm/rmap.c:
 189 */
 190extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 191
 192/*
 193 * in mm/page_alloc.c
 194 */
 195
 196/*
 197 * Structure for holding the mostly immutable allocation parameters passed
 198 * between functions involved in allocations, including the alloc_pages*
 199 * family of functions.
 200 *
 201 * nodemask, migratetype and highest_zoneidx are initialized only once in
 202 * __alloc_pages() and then never change.
 203 *
 204 * zonelist, preferred_zone and highest_zoneidx are set first in
 205 * __alloc_pages() for the fast path, and might be later changed
 206 * in __alloc_pages_slowpath(). All other functions pass the whole structure
 207 * by a const pointer.
 208 */
 209struct alloc_context {
 210        struct zonelist *zonelist;
 211        nodemask_t *nodemask;
 212        struct zoneref *preferred_zoneref;
 213        int migratetype;
 214
 215        /*
 216         * highest_zoneidx represents highest usable zone index of
 217         * the allocation request. Due to the nature of the zone,
 218         * memory on lower zone than the highest_zoneidx will be
 219         * protected by lowmem_reserve[highest_zoneidx].
 220         *
 221         * highest_zoneidx is also used by reclaim/compaction to limit
 222         * the target zone since higher zone than this index cannot be
 223         * usable for this allocation request.
 224         */
 225        enum zone_type highest_zoneidx;
 226        bool spread_dirty_pages;
 227};
 228
 229/*
 230 * This function returns the order of a free page in the buddy system. In
 231 * general, page_zone(page)->lock must be held by the caller to prevent the
 232 * page from being allocated in parallel and returning garbage as the order.
 233 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 234 * page cannot be allocated or merged in parallel. Alternatively, it must
 235 * handle invalid values gracefully, and use buddy_order_unsafe() below.
 236 */
 237static inline unsigned int buddy_order(struct page *page)
 238{
 239        /* PageBuddy() must be checked by the caller */
 240        return page_private(page);
 241}
 242
 243/*
 244 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
 245 * PageBuddy() should be checked first by the caller to minimize race window,
 246 * and invalid values must be handled gracefully.
 247 *
 248 * READ_ONCE is used so that if the caller assigns the result into a local
 249 * variable and e.g. tests it for valid range before using, the compiler cannot
 250 * decide to remove the variable and inline the page_private(page) multiple
 251 * times, potentially observing different values in the tests and the actual
 252 * use of the result.
 253 */
 254#define buddy_order_unsafe(page)        READ_ONCE(page_private(page))
 255
 256/*
 257 * This function checks whether a page is free && is the buddy
 258 * we can coalesce a page and its buddy if
 259 * (a) the buddy is not in a hole (check before calling!) &&
 260 * (b) the buddy is in the buddy system &&
 261 * (c) a page and its buddy have the same order &&
 262 * (d) a page and its buddy are in the same zone.
 263 *
 264 * For recording whether a page is in the buddy system, we set PageBuddy.
 265 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 266 *
 267 * For recording page's order, we use page_private(page).
 268 */
 269static inline bool page_is_buddy(struct page *page, struct page *buddy,
 270                                 unsigned int order)
 271{
 272        if (!page_is_guard(buddy) && !PageBuddy(buddy))
 273                return false;
 274
 275        if (buddy_order(buddy) != order)
 276                return false;
 277
 278        /*
 279         * zone check is done late to avoid uselessly calculating
 280         * zone/node ids for pages that could never merge.
 281         */
 282        if (page_zone_id(page) != page_zone_id(buddy))
 283                return false;
 284
 285        VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 286
 287        return true;
 288}
 289
 290/*
 291 * Locate the struct page for both the matching buddy in our
 292 * pair (buddy1) and the combined O(n+1) page they form (page).
 293 *
 294 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 295 * the following equation:
 296 *     B2 = B1 ^ (1 << O)
 297 * For example, if the starting buddy (buddy2) is #8 its order
 298 * 1 buddy is #10:
 299 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 300 *
 301 * 2) Any buddy B will have an order O+1 parent P which
 302 * satisfies the following equation:
 303 *     P = B & ~(1 << O)
 304 *
 305 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 306 */
 307static inline unsigned long
 308__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
 309{
 310        return page_pfn ^ (1 << order);
 311}
 312
 313/*
 314 * Find the buddy of @page and validate it.
 315 * @page: The input page
 316 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
 317 *       function is used in the performance-critical __free_one_page().
 318 * @order: The order of the page
 319 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
 320 *             page_to_pfn().
 321 *
 322 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
 323 * not the same as @page. The validation is necessary before use it.
 324 *
 325 * Return: the found buddy page or NULL if not found.
 326 */
 327static inline struct page *find_buddy_page_pfn(struct page *page,
 328                        unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
 329{
 330        unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
 331        struct page *buddy;
 332
 333        buddy = page + (__buddy_pfn - pfn);
 334        if (buddy_pfn)
 335                *buddy_pfn = __buddy_pfn;
 336
 337        if (page_is_buddy(page, buddy, order))
 338                return buddy;
 339        return NULL;
 340}
 341
 342extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
 343                                unsigned long end_pfn, struct zone *zone);
 344
 345static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
 346                                unsigned long end_pfn, struct zone *zone)
 347{
 348        if (zone->contiguous)
 349                return pfn_to_page(start_pfn);
 350
 351        return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
 352}
 353
 354extern int __isolate_free_page(struct page *page, unsigned int order);
 355extern void __putback_isolated_page(struct page *page, unsigned int order,
 356                                    int mt);
 357extern void memblock_free_pages(struct page *page, unsigned long pfn,
 358                                        unsigned int order);
 359extern void __free_pages_core(struct page *page, unsigned int order);
 360extern void prep_compound_page(struct page *page, unsigned int order);
 361extern void post_alloc_hook(struct page *page, unsigned int order,
 362                                        gfp_t gfp_flags);
 363extern int user_min_free_kbytes;
 364
 365extern void free_unref_page(struct page *page, unsigned int order);
 366extern void free_unref_page_list(struct list_head *list);
 367
 368extern void zone_pcp_update(struct zone *zone, int cpu_online);
 369extern void zone_pcp_reset(struct zone *zone);
 370extern void zone_pcp_disable(struct zone *zone);
 371extern void zone_pcp_enable(struct zone *zone);
 372
 373extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
 374                          phys_addr_t min_addr,
 375                          int nid, bool exact_nid);
 376
 377int split_free_page(struct page *free_page,
 378                        unsigned int order, unsigned long split_pfn_offset);
 379
 380#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 381
 382/*
 383 * in mm/compaction.c
 384 */
 385/*
 386 * compact_control is used to track pages being migrated and the free pages
 387 * they are being migrated to during memory compaction. The free_pfn starts
 388 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 389 * are moved to the end of a zone during a compaction run and the run
 390 * completes when free_pfn <= migrate_pfn
 391 */
 392struct compact_control {
 393        struct list_head freepages;     /* List of free pages to migrate to */
 394        struct list_head migratepages;  /* List of pages being migrated */
 395        unsigned int nr_freepages;      /* Number of isolated free pages */
 396        unsigned int nr_migratepages;   /* Number of pages to migrate */
 397        unsigned long free_pfn;         /* isolate_freepages search base */
 398        /*
 399         * Acts as an in/out parameter to page isolation for migration.
 400         * isolate_migratepages uses it as a search base.
 401         * isolate_migratepages_block will update the value to the next pfn
 402         * after the last isolated one.
 403         */
 404        unsigned long migrate_pfn;
 405        unsigned long fast_start_pfn;   /* a pfn to start linear scan from */
 406        struct zone *zone;
 407        unsigned long total_migrate_scanned;
 408        unsigned long total_free_scanned;
 409        unsigned short fast_search_fail;/* failures to use free list searches */
 410        short search_order;             /* order to start a fast search at */
 411        const gfp_t gfp_mask;           /* gfp mask of a direct compactor */
 412        int order;                      /* order a direct compactor needs */
 413        int migratetype;                /* migratetype of direct compactor */
 414        const unsigned int alloc_flags; /* alloc flags of a direct compactor */
 415        const int highest_zoneidx;      /* zone index of a direct compactor */
 416        enum migrate_mode mode;         /* Async or sync migration mode */
 417        bool ignore_skip_hint;          /* Scan blocks even if marked skip */
 418        bool no_set_skip_hint;          /* Don't mark blocks for skipping */
 419        bool ignore_block_suitable;     /* Scan blocks considered unsuitable */
 420        bool direct_compaction;         /* False from kcompactd or /proc/... */
 421        bool proactive_compaction;      /* kcompactd proactive compaction */
 422        bool whole_zone;                /* Whole zone should/has been scanned */
 423        bool contended;                 /* Signal lock contention */
 424        bool rescan;                    /* Rescanning the same pageblock */
 425        bool alloc_contig;              /* alloc_contig_range allocation */
 426};
 427
 428/*
 429 * Used in direct compaction when a page should be taken from the freelists
 430 * immediately when one is created during the free path.
 431 */
 432struct capture_control {
 433        struct compact_control *cc;
 434        struct page *page;
 435};
 436
 437unsigned long
 438isolate_freepages_range(struct compact_control *cc,
 439                        unsigned long start_pfn, unsigned long end_pfn);
 440int
 441isolate_migratepages_range(struct compact_control *cc,
 442                           unsigned long low_pfn, unsigned long end_pfn);
 443
 444int __alloc_contig_migrate_range(struct compact_control *cc,
 445                                        unsigned long start, unsigned long end);
 446#endif
 447int find_suitable_fallback(struct free_area *area, unsigned int order,
 448                        int migratetype, bool only_stealable, bool *can_steal);
 449
 450/*
 451 * These three helpers classifies VMAs for virtual memory accounting.
 452 */
 453
 454/*
 455 * Executable code area - executable, not writable, not stack
 456 */
 457static inline bool is_exec_mapping(vm_flags_t flags)
 458{
 459        return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
 460}
 461
 462/*
 463 * Stack area - automatically grows in one direction
 464 *
 465 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
 466 * do_mmap() forbids all other combinations.
 467 */
 468static inline bool is_stack_mapping(vm_flags_t flags)
 469{
 470        return (flags & VM_STACK) == VM_STACK;
 471}
 472
 473/*
 474 * Data area - private, writable, not stack
 475 */
 476static inline bool is_data_mapping(vm_flags_t flags)
 477{
 478        return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
 479}
 480
 481/* mm/util.c */
 482void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 483                struct vm_area_struct *prev);
 484void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
 485struct anon_vma *folio_anon_vma(struct folio *folio);
 486
 487#ifdef CONFIG_MMU
 488void unmap_mapping_folio(struct folio *folio);
 489extern long populate_vma_page_range(struct vm_area_struct *vma,
 490                unsigned long start, unsigned long end, int *locked);
 491extern long faultin_vma_page_range(struct vm_area_struct *vma,
 492                                   unsigned long start, unsigned long end,
 493                                   bool write, int *locked);
 494extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
 495                              unsigned long len);
 496/*
 497 * mlock_vma_page() and munlock_vma_page():
 498 * should be called with vma's mmap_lock held for read or write,
 499 * under page table lock for the pte/pmd being added or removed.
 500 *
 501 * mlock is usually called at the end of page_add_*_rmap(),
 502 * munlock at the end of page_remove_rmap(); but new anon
 503 * pages are managed by lru_cache_add_inactive_or_unevictable()
 504 * calling mlock_new_page().
 505 *
 506 * @compound is used to include pmd mappings of THPs, but filter out
 507 * pte mappings of THPs, which cannot be consistently counted: a pte
 508 * mapping of the THP head cannot be distinguished by the page alone.
 509 */
 510void mlock_folio(struct folio *folio);
 511static inline void mlock_vma_folio(struct folio *folio,
 512                        struct vm_area_struct *vma, bool compound)
 513{
 514        /*
 515         * The VM_SPECIAL check here serves two purposes.
 516         * 1) VM_IO check prevents migration from double-counting during mlock.
 517         * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
 518         *    is never left set on a VM_SPECIAL vma, there is an interval while
 519         *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
 520         *    still be set while VM_SPECIAL bits are added: so ignore it then.
 521         */
 522        if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
 523            (compound || !folio_test_large(folio)))
 524                mlock_folio(folio);
 525}
 526
 527static inline void mlock_vma_page(struct page *page,
 528                        struct vm_area_struct *vma, bool compound)
 529{
 530        mlock_vma_folio(page_folio(page), vma, compound);
 531}
 532
 533void munlock_page(struct page *page);
 534static inline void munlock_vma_page(struct page *page,
 535                        struct vm_area_struct *vma, bool compound)
 536{
 537        if (unlikely(vma->vm_flags & VM_LOCKED) &&
 538            (compound || !PageTransCompound(page)))
 539                munlock_page(page);
 540}
 541void mlock_new_page(struct page *page);
 542bool need_mlock_page_drain(int cpu);
 543void mlock_page_drain_local(void);
 544void mlock_page_drain_remote(int cpu);
 545
 546extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
 547
 548/*
 549 * Return the start of user virtual address at the specific offset within
 550 * a vma.
 551 */
 552static inline unsigned long
 553vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
 554                  struct vm_area_struct *vma)
 555{
 556        unsigned long address;
 557
 558        if (pgoff >= vma->vm_pgoff) {
 559                address = vma->vm_start +
 560                        ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 561                /* Check for address beyond vma (or wrapped through 0?) */
 562                if (address < vma->vm_start || address >= vma->vm_end)
 563                        address = -EFAULT;
 564        } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
 565                /* Test above avoids possibility of wrap to 0 on 32-bit */
 566                address = vma->vm_start;
 567        } else {
 568                address = -EFAULT;
 569        }
 570        return address;
 571}
 572
 573/*
 574 * Return the start of user virtual address of a page within a vma.
 575 * Returns -EFAULT if all of the page is outside the range of vma.
 576 * If page is a compound head, the entire compound page is considered.
 577 */
 578static inline unsigned long
 579vma_address(struct page *page, struct vm_area_struct *vma)
 580{
 581        VM_BUG_ON_PAGE(PageKsm(page), page);    /* KSM page->index unusable */
 582        return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
 583}
 584
 585/*
 586 * Then at what user virtual address will none of the range be found in vma?
 587 * Assumes that vma_address() already returned a good starting address.
 588 */
 589static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
 590{
 591        struct vm_area_struct *vma = pvmw->vma;
 592        pgoff_t pgoff;
 593        unsigned long address;
 594
 595        /* Common case, plus ->pgoff is invalid for KSM */
 596        if (pvmw->nr_pages == 1)
 597                return pvmw->address + PAGE_SIZE;
 598
 599        pgoff = pvmw->pgoff + pvmw->nr_pages;
 600        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 601        /* Check for address beyond vma (or wrapped through 0?) */
 602        if (address < vma->vm_start || address > vma->vm_end)
 603                address = vma->vm_end;
 604        return address;
 605}
 606
 607static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
 608                                                    struct file *fpin)
 609{
 610        int flags = vmf->flags;
 611
 612        if (fpin)
 613                return fpin;
 614
 615        /*
 616         * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
 617         * anything, so we only pin the file and drop the mmap_lock if only
 618         * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
 619         */
 620        if (fault_flag_allow_retry_first(flags) &&
 621            !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
 622                fpin = get_file(vmf->vma->vm_file);
 623                mmap_read_unlock(vmf->vma->vm_mm);
 624        }
 625        return fpin;
 626}
 627#else /* !CONFIG_MMU */
 628static inline void unmap_mapping_folio(struct folio *folio) { }
 629static inline void mlock_vma_page(struct page *page,
 630                        struct vm_area_struct *vma, bool compound) { }
 631static inline void munlock_vma_page(struct page *page,
 632                        struct vm_area_struct *vma, bool compound) { }
 633static inline void mlock_new_page(struct page *page) { }
 634static inline bool need_mlock_page_drain(int cpu) { return false; }
 635static inline void mlock_page_drain_local(void) { }
 636static inline void mlock_page_drain_remote(int cpu) { }
 637static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
 638{
 639}
 640#endif /* !CONFIG_MMU */
 641
 642/*
 643 * Return the mem_map entry representing the 'offset' subpage within
 644 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
 645 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
 646 */
 647static inline struct page *mem_map_offset(struct page *base, int offset)
 648{
 649        if (unlikely(offset >= MAX_ORDER_NR_PAGES))
 650                return nth_page(base, offset);
 651        return base + offset;
 652}
 653
 654/*
 655 * Iterator over all subpages within the maximally aligned gigantic
 656 * page 'base'.  Handle any discontiguity in the mem_map.
 657 */
 658static inline struct page *mem_map_next(struct page *iter,
 659                                                struct page *base, int offset)
 660{
 661        if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
 662                unsigned long pfn = page_to_pfn(base) + offset;
 663                if (!pfn_valid(pfn))
 664                        return NULL;
 665                return pfn_to_page(pfn);
 666        }
 667        return iter + 1;
 668}
 669
 670/* Memory initialisation debug and verification */
 671enum mminit_level {
 672        MMINIT_WARNING,
 673        MMINIT_VERIFY,
 674        MMINIT_TRACE
 675};
 676
 677#ifdef CONFIG_DEBUG_MEMORY_INIT
 678
 679extern int mminit_loglevel;
 680
 681#define mminit_dprintk(level, prefix, fmt, arg...) \
 682do { \
 683        if (level < mminit_loglevel) { \
 684                if (level <= MMINIT_WARNING) \
 685                        pr_warn("mminit::" prefix " " fmt, ##arg);      \
 686                else \
 687                        printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
 688        } \
 689} while (0)
 690
 691extern void mminit_verify_pageflags_layout(void);
 692extern void mminit_verify_zonelist(void);
 693#else
 694
 695static inline void mminit_dprintk(enum mminit_level level,
 696                                const char *prefix, const char *fmt, ...)
 697{
 698}
 699
 700static inline void mminit_verify_pageflags_layout(void)
 701{
 702}
 703
 704static inline void mminit_verify_zonelist(void)
 705{
 706}
 707#endif /* CONFIG_DEBUG_MEMORY_INIT */
 708
 709#define NODE_RECLAIM_NOSCAN     -2
 710#define NODE_RECLAIM_FULL       -1
 711#define NODE_RECLAIM_SOME       0
 712#define NODE_RECLAIM_SUCCESS    1
 713
 714#ifdef CONFIG_NUMA
 715extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
 716extern int find_next_best_node(int node, nodemask_t *used_node_mask);
 717#else
 718static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
 719                                unsigned int order)
 720{
 721        return NODE_RECLAIM_NOSCAN;
 722}
 723static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
 724{
 725        return NUMA_NO_NODE;
 726}
 727#endif
 728
 729/*
 730 * mm/memory-failure.c
 731 */
 732extern int hwpoison_filter(struct page *p);
 733
 734extern u32 hwpoison_filter_dev_major;
 735extern u32 hwpoison_filter_dev_minor;
 736extern u64 hwpoison_filter_flags_mask;
 737extern u64 hwpoison_filter_flags_value;
 738extern u64 hwpoison_filter_memcg;
 739extern u32 hwpoison_filter_enable;
 740
 741#ifdef CONFIG_MEMORY_FAILURE
 742void clear_hwpoisoned_pages(struct page *memmap, int nr_pages);
 743#else
 744static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 745{
 746}
 747#endif
 748
 749extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
 750        unsigned long, unsigned long,
 751        unsigned long, unsigned long);
 752
 753extern void set_pageblock_order(void);
 754unsigned int reclaim_clean_pages_from_list(struct zone *zone,
 755                                            struct list_head *page_list);
 756/* The ALLOC_WMARK bits are used as an index to zone->watermark */
 757#define ALLOC_WMARK_MIN         WMARK_MIN
 758#define ALLOC_WMARK_LOW         WMARK_LOW
 759#define ALLOC_WMARK_HIGH        WMARK_HIGH
 760#define ALLOC_NO_WATERMARKS     0x04 /* don't check watermarks at all */
 761
 762/* Mask to get the watermark bits */
 763#define ALLOC_WMARK_MASK        (ALLOC_NO_WATERMARKS-1)
 764
 765/*
 766 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
 767 * cannot assume a reduced access to memory reserves is sufficient for
 768 * !MMU
 769 */
 770#ifdef CONFIG_MMU
 771#define ALLOC_OOM               0x08
 772#else
 773#define ALLOC_OOM               ALLOC_NO_WATERMARKS
 774#endif
 775
 776#define ALLOC_HARDER             0x10 /* try to alloc harder */
 777#define ALLOC_HIGH               0x20 /* __GFP_HIGH set */
 778#define ALLOC_CPUSET             0x40 /* check for correct cpuset */
 779#define ALLOC_CMA                0x80 /* allow allocations from CMA areas */
 780#ifdef CONFIG_ZONE_DMA32
 781#define ALLOC_NOFRAGMENT        0x100 /* avoid mixing pageblock types */
 782#else
 783#define ALLOC_NOFRAGMENT          0x0
 784#endif
 785#define ALLOC_KSWAPD            0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
 786
 787enum ttu_flags;
 788struct tlbflush_unmap_batch;
 789
 790
 791/*
 792 * only for MM internal work items which do not depend on
 793 * any allocations or locks which might depend on allocations
 794 */
 795extern struct workqueue_struct *mm_percpu_wq;
 796
 797#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 798void try_to_unmap_flush(void);
 799void try_to_unmap_flush_dirty(void);
 800void flush_tlb_batched_pending(struct mm_struct *mm);
 801#else
 802static inline void try_to_unmap_flush(void)
 803{
 804}
 805static inline void try_to_unmap_flush_dirty(void)
 806{
 807}
 808static inline void flush_tlb_batched_pending(struct mm_struct *mm)
 809{
 810}
 811#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 812
 813extern const struct trace_print_flags pageflag_names[];
 814extern const struct trace_print_flags vmaflag_names[];
 815extern const struct trace_print_flags gfpflag_names[];
 816
 817static inline bool is_migrate_highatomic(enum migratetype migratetype)
 818{
 819        return migratetype == MIGRATE_HIGHATOMIC;
 820}
 821
 822static inline bool is_migrate_highatomic_page(struct page *page)
 823{
 824        return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
 825}
 826
 827void setup_zone_pageset(struct zone *zone);
 828
 829struct migration_target_control {
 830        int nid;                /* preferred node id */
 831        nodemask_t *nmask;
 832        gfp_t gfp_mask;
 833};
 834
 835/*
 836 * mm/vmalloc.c
 837 */
 838#ifdef CONFIG_MMU
 839int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 840                pgprot_t prot, struct page **pages, unsigned int page_shift);
 841#else
 842static inline
 843int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 844                pgprot_t prot, struct page **pages, unsigned int page_shift)
 845{
 846        return -EINVAL;
 847}
 848#endif
 849
 850void vunmap_range_noflush(unsigned long start, unsigned long end);
 851
 852int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
 853                      unsigned long addr, int page_nid, int *flags);
 854
 855void free_zone_device_page(struct page *page);
 856
 857/*
 858 * mm/gup.c
 859 */
 860struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
 861
 862DECLARE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
 863
 864#endif  /* __MM_INTERNAL_H */
 865