linux/mm/memcontrol.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
  26 */
  27
  28#include <linux/page_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/pagewalk.h>
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/vm_event_item.h>
  37#include <linux/smp.h>
  38#include <linux/page-flags.h>
  39#include <linux/backing-dev.h>
  40#include <linux/bit_spinlock.h>
  41#include <linux/rcupdate.h>
  42#include <linux/limits.h>
  43#include <linux/export.h>
  44#include <linux/mutex.h>
  45#include <linux/rbtree.h>
  46#include <linux/slab.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/spinlock.h>
  50#include <linux/eventfd.h>
  51#include <linux/poll.h>
  52#include <linux/sort.h>
  53#include <linux/fs.h>
  54#include <linux/seq_file.h>
  55#include <linux/vmpressure.h>
  56#include <linux/memremap.h>
  57#include <linux/mm_inline.h>
  58#include <linux/swap_cgroup.h>
  59#include <linux/cpu.h>
  60#include <linux/oom.h>
  61#include <linux/lockdep.h>
  62#include <linux/file.h>
  63#include <linux/resume_user_mode.h>
  64#include <linux/psi.h>
  65#include <linux/seq_buf.h>
  66#include "internal.h"
  67#include <net/sock.h>
  68#include <net/ip.h>
  69#include "slab.h"
  70#include "swap.h"
  71
  72#include <linux/uaccess.h>
  73
  74#include <trace/events/vmscan.h>
  75
  76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  77EXPORT_SYMBOL(memory_cgrp_subsys);
  78
  79struct mem_cgroup *root_mem_cgroup __read_mostly;
  80
  81/* Active memory cgroup to use from an interrupt context */
  82DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  83EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  84
  85/* Socket memory accounting disabled? */
  86static bool cgroup_memory_nosocket __ro_after_init;
  87
  88/* Kernel memory accounting disabled? */
  89static bool cgroup_memory_nokmem __ro_after_init;
  90
  91/* Whether the swap controller is active */
  92#ifdef CONFIG_MEMCG_SWAP
  93static bool cgroup_memory_noswap __ro_after_init;
  94#else
  95#define cgroup_memory_noswap            1
  96#endif
  97
  98#ifdef CONFIG_CGROUP_WRITEBACK
  99static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
 100#endif
 101
 102/* Whether legacy memory+swap accounting is active */
 103static bool do_memsw_account(void)
 104{
 105        return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
 106}
 107
 108#define THRESHOLDS_EVENTS_TARGET 128
 109#define SOFTLIMIT_EVENTS_TARGET 1024
 110
 111/*
 112 * Cgroups above their limits are maintained in a RB-Tree, independent of
 113 * their hierarchy representation
 114 */
 115
 116struct mem_cgroup_tree_per_node {
 117        struct rb_root rb_root;
 118        struct rb_node *rb_rightmost;
 119        spinlock_t lock;
 120};
 121
 122struct mem_cgroup_tree {
 123        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 124};
 125
 126static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 127
 128/* for OOM */
 129struct mem_cgroup_eventfd_list {
 130        struct list_head list;
 131        struct eventfd_ctx *eventfd;
 132};
 133
 134/*
 135 * cgroup_event represents events which userspace want to receive.
 136 */
 137struct mem_cgroup_event {
 138        /*
 139         * memcg which the event belongs to.
 140         */
 141        struct mem_cgroup *memcg;
 142        /*
 143         * eventfd to signal userspace about the event.
 144         */
 145        struct eventfd_ctx *eventfd;
 146        /*
 147         * Each of these stored in a list by the cgroup.
 148         */
 149        struct list_head list;
 150        /*
 151         * register_event() callback will be used to add new userspace
 152         * waiter for changes related to this event.  Use eventfd_signal()
 153         * on eventfd to send notification to userspace.
 154         */
 155        int (*register_event)(struct mem_cgroup *memcg,
 156                              struct eventfd_ctx *eventfd, const char *args);
 157        /*
 158         * unregister_event() callback will be called when userspace closes
 159         * the eventfd or on cgroup removing.  This callback must be set,
 160         * if you want provide notification functionality.
 161         */
 162        void (*unregister_event)(struct mem_cgroup *memcg,
 163                                 struct eventfd_ctx *eventfd);
 164        /*
 165         * All fields below needed to unregister event when
 166         * userspace closes eventfd.
 167         */
 168        poll_table pt;
 169        wait_queue_head_t *wqh;
 170        wait_queue_entry_t wait;
 171        struct work_struct remove;
 172};
 173
 174static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 175static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 176
 177/* Stuffs for move charges at task migration. */
 178/*
 179 * Types of charges to be moved.
 180 */
 181#define MOVE_ANON       0x1U
 182#define MOVE_FILE       0x2U
 183#define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
 184
 185/* "mc" and its members are protected by cgroup_mutex */
 186static struct move_charge_struct {
 187        spinlock_t        lock; /* for from, to */
 188        struct mm_struct  *mm;
 189        struct mem_cgroup *from;
 190        struct mem_cgroup *to;
 191        unsigned long flags;
 192        unsigned long precharge;
 193        unsigned long moved_charge;
 194        unsigned long moved_swap;
 195        struct task_struct *moving_task;        /* a task moving charges */
 196        wait_queue_head_t waitq;                /* a waitq for other context */
 197} mc = {
 198        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 199        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 200};
 201
 202/*
 203 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 204 * limit reclaim to prevent infinite loops, if they ever occur.
 205 */
 206#define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 207#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 208
 209/* for encoding cft->private value on file */
 210enum res_type {
 211        _MEM,
 212        _MEMSWAP,
 213        _KMEM,
 214        _TCP,
 215};
 216
 217#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
 218#define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
 219#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 220
 221/*
 222 * Iteration constructs for visiting all cgroups (under a tree).  If
 223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 224 * be used for reference counting.
 225 */
 226#define for_each_mem_cgroup_tree(iter, root)            \
 227        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
 228             iter != NULL;                              \
 229             iter = mem_cgroup_iter(root, iter, NULL))
 230
 231#define for_each_mem_cgroup(iter)                       \
 232        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
 233             iter != NULL;                              \
 234             iter = mem_cgroup_iter(NULL, iter, NULL))
 235
 236static inline bool task_is_dying(void)
 237{
 238        return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 239                (current->flags & PF_EXITING);
 240}
 241
 242/* Some nice accessors for the vmpressure. */
 243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 244{
 245        if (!memcg)
 246                memcg = root_mem_cgroup;
 247        return &memcg->vmpressure;
 248}
 249
 250struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
 251{
 252        return container_of(vmpr, struct mem_cgroup, vmpressure);
 253}
 254
 255#ifdef CONFIG_MEMCG_KMEM
 256static DEFINE_SPINLOCK(objcg_lock);
 257
 258bool mem_cgroup_kmem_disabled(void)
 259{
 260        return cgroup_memory_nokmem;
 261}
 262
 263static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 264                                      unsigned int nr_pages);
 265
 266static void obj_cgroup_release(struct percpu_ref *ref)
 267{
 268        struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 269        unsigned int nr_bytes;
 270        unsigned int nr_pages;
 271        unsigned long flags;
 272
 273        /*
 274         * At this point all allocated objects are freed, and
 275         * objcg->nr_charged_bytes can't have an arbitrary byte value.
 276         * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 277         *
 278         * The following sequence can lead to it:
 279         * 1) CPU0: objcg == stock->cached_objcg
 280         * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 281         *          PAGE_SIZE bytes are charged
 282         * 3) CPU1: a process from another memcg is allocating something,
 283         *          the stock if flushed,
 284         *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 285         * 5) CPU0: we do release this object,
 286         *          92 bytes are added to stock->nr_bytes
 287         * 6) CPU0: stock is flushed,
 288         *          92 bytes are added to objcg->nr_charged_bytes
 289         *
 290         * In the result, nr_charged_bytes == PAGE_SIZE.
 291         * This page will be uncharged in obj_cgroup_release().
 292         */
 293        nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 294        WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 295        nr_pages = nr_bytes >> PAGE_SHIFT;
 296
 297        if (nr_pages)
 298                obj_cgroup_uncharge_pages(objcg, nr_pages);
 299
 300        spin_lock_irqsave(&objcg_lock, flags);
 301        list_del(&objcg->list);
 302        spin_unlock_irqrestore(&objcg_lock, flags);
 303
 304        percpu_ref_exit(ref);
 305        kfree_rcu(objcg, rcu);
 306}
 307
 308static struct obj_cgroup *obj_cgroup_alloc(void)
 309{
 310        struct obj_cgroup *objcg;
 311        int ret;
 312
 313        objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 314        if (!objcg)
 315                return NULL;
 316
 317        ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 318                              GFP_KERNEL);
 319        if (ret) {
 320                kfree(objcg);
 321                return NULL;
 322        }
 323        INIT_LIST_HEAD(&objcg->list);
 324        return objcg;
 325}
 326
 327static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 328                                  struct mem_cgroup *parent)
 329{
 330        struct obj_cgroup *objcg, *iter;
 331
 332        objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 333
 334        spin_lock_irq(&objcg_lock);
 335
 336        /* 1) Ready to reparent active objcg. */
 337        list_add(&objcg->list, &memcg->objcg_list);
 338        /* 2) Reparent active objcg and already reparented objcgs to parent. */
 339        list_for_each_entry(iter, &memcg->objcg_list, list)
 340                WRITE_ONCE(iter->memcg, parent);
 341        /* 3) Move already reparented objcgs to the parent's list */
 342        list_splice(&memcg->objcg_list, &parent->objcg_list);
 343
 344        spin_unlock_irq(&objcg_lock);
 345
 346        percpu_ref_kill(&objcg->refcnt);
 347}
 348
 349/*
 350 * A lot of the calls to the cache allocation functions are expected to be
 351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 352 * conditional to this static branch, we'll have to allow modules that does
 353 * kmem_cache_alloc and the such to see this symbol as well
 354 */
 355DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 356EXPORT_SYMBOL(memcg_kmem_enabled_key);
 357#endif
 358
 359/**
 360 * mem_cgroup_css_from_page - css of the memcg associated with a page
 361 * @page: page of interest
 362 *
 363 * If memcg is bound to the default hierarchy, css of the memcg associated
 364 * with @page is returned.  The returned css remains associated with @page
 365 * until it is released.
 366 *
 367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 368 * is returned.
 369 */
 370struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 371{
 372        struct mem_cgroup *memcg;
 373
 374        memcg = page_memcg(page);
 375
 376        if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 377                memcg = root_mem_cgroup;
 378
 379        return &memcg->css;
 380}
 381
 382/**
 383 * page_cgroup_ino - return inode number of the memcg a page is charged to
 384 * @page: the page
 385 *
 386 * Look up the closest online ancestor of the memory cgroup @page is charged to
 387 * and return its inode number or 0 if @page is not charged to any cgroup. It
 388 * is safe to call this function without holding a reference to @page.
 389 *
 390 * Note, this function is inherently racy, because there is nothing to prevent
 391 * the cgroup inode from getting torn down and potentially reallocated a moment
 392 * after page_cgroup_ino() returns, so it only should be used by callers that
 393 * do not care (such as procfs interfaces).
 394 */
 395ino_t page_cgroup_ino(struct page *page)
 396{
 397        struct mem_cgroup *memcg;
 398        unsigned long ino = 0;
 399
 400        rcu_read_lock();
 401        memcg = page_memcg_check(page);
 402
 403        while (memcg && !(memcg->css.flags & CSS_ONLINE))
 404                memcg = parent_mem_cgroup(memcg);
 405        if (memcg)
 406                ino = cgroup_ino(memcg->css.cgroup);
 407        rcu_read_unlock();
 408        return ino;
 409}
 410
 411static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 412                                         struct mem_cgroup_tree_per_node *mctz,
 413                                         unsigned long new_usage_in_excess)
 414{
 415        struct rb_node **p = &mctz->rb_root.rb_node;
 416        struct rb_node *parent = NULL;
 417        struct mem_cgroup_per_node *mz_node;
 418        bool rightmost = true;
 419
 420        if (mz->on_tree)
 421                return;
 422
 423        mz->usage_in_excess = new_usage_in_excess;
 424        if (!mz->usage_in_excess)
 425                return;
 426        while (*p) {
 427                parent = *p;
 428                mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 429                                        tree_node);
 430                if (mz->usage_in_excess < mz_node->usage_in_excess) {
 431                        p = &(*p)->rb_left;
 432                        rightmost = false;
 433                } else {
 434                        p = &(*p)->rb_right;
 435                }
 436        }
 437
 438        if (rightmost)
 439                mctz->rb_rightmost = &mz->tree_node;
 440
 441        rb_link_node(&mz->tree_node, parent, p);
 442        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 443        mz->on_tree = true;
 444}
 445
 446static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 447                                         struct mem_cgroup_tree_per_node *mctz)
 448{
 449        if (!mz->on_tree)
 450                return;
 451
 452        if (&mz->tree_node == mctz->rb_rightmost)
 453                mctz->rb_rightmost = rb_prev(&mz->tree_node);
 454
 455        rb_erase(&mz->tree_node, &mctz->rb_root);
 456        mz->on_tree = false;
 457}
 458
 459static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 460                                       struct mem_cgroup_tree_per_node *mctz)
 461{
 462        unsigned long flags;
 463
 464        spin_lock_irqsave(&mctz->lock, flags);
 465        __mem_cgroup_remove_exceeded(mz, mctz);
 466        spin_unlock_irqrestore(&mctz->lock, flags);
 467}
 468
 469static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 470{
 471        unsigned long nr_pages = page_counter_read(&memcg->memory);
 472        unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 473        unsigned long excess = 0;
 474
 475        if (nr_pages > soft_limit)
 476                excess = nr_pages - soft_limit;
 477
 478        return excess;
 479}
 480
 481static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
 482{
 483        unsigned long excess;
 484        struct mem_cgroup_per_node *mz;
 485        struct mem_cgroup_tree_per_node *mctz;
 486
 487        mctz = soft_limit_tree.rb_tree_per_node[nid];
 488        if (!mctz)
 489                return;
 490        /*
 491         * Necessary to update all ancestors when hierarchy is used.
 492         * because their event counter is not touched.
 493         */
 494        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 495                mz = memcg->nodeinfo[nid];
 496                excess = soft_limit_excess(memcg);
 497                /*
 498                 * We have to update the tree if mz is on RB-tree or
 499                 * mem is over its softlimit.
 500                 */
 501                if (excess || mz->on_tree) {
 502                        unsigned long flags;
 503
 504                        spin_lock_irqsave(&mctz->lock, flags);
 505                        /* if on-tree, remove it */
 506                        if (mz->on_tree)
 507                                __mem_cgroup_remove_exceeded(mz, mctz);
 508                        /*
 509                         * Insert again. mz->usage_in_excess will be updated.
 510                         * If excess is 0, no tree ops.
 511                         */
 512                        __mem_cgroup_insert_exceeded(mz, mctz, excess);
 513                        spin_unlock_irqrestore(&mctz->lock, flags);
 514                }
 515        }
 516}
 517
 518static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 519{
 520        struct mem_cgroup_tree_per_node *mctz;
 521        struct mem_cgroup_per_node *mz;
 522        int nid;
 523
 524        for_each_node(nid) {
 525                mz = memcg->nodeinfo[nid];
 526                mctz = soft_limit_tree.rb_tree_per_node[nid];
 527                if (mctz)
 528                        mem_cgroup_remove_exceeded(mz, mctz);
 529        }
 530}
 531
 532static struct mem_cgroup_per_node *
 533__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 534{
 535        struct mem_cgroup_per_node *mz;
 536
 537retry:
 538        mz = NULL;
 539        if (!mctz->rb_rightmost)
 540                goto done;              /* Nothing to reclaim from */
 541
 542        mz = rb_entry(mctz->rb_rightmost,
 543                      struct mem_cgroup_per_node, tree_node);
 544        /*
 545         * Remove the node now but someone else can add it back,
 546         * we will to add it back at the end of reclaim to its correct
 547         * position in the tree.
 548         */
 549        __mem_cgroup_remove_exceeded(mz, mctz);
 550        if (!soft_limit_excess(mz->memcg) ||
 551            !css_tryget(&mz->memcg->css))
 552                goto retry;
 553done:
 554        return mz;
 555}
 556
 557static struct mem_cgroup_per_node *
 558mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 559{
 560        struct mem_cgroup_per_node *mz;
 561
 562        spin_lock_irq(&mctz->lock);
 563        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 564        spin_unlock_irq(&mctz->lock);
 565        return mz;
 566}
 567
 568/*
 569 * memcg and lruvec stats flushing
 570 *
 571 * Many codepaths leading to stats update or read are performance sensitive and
 572 * adding stats flushing in such codepaths is not desirable. So, to optimize the
 573 * flushing the kernel does:
 574 *
 575 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
 576 *    rstat update tree grow unbounded.
 577 *
 578 * 2) Flush the stats synchronously on reader side only when there are more than
 579 *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
 580 *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
 581 *    only for 2 seconds due to (1).
 582 */
 583static void flush_memcg_stats_dwork(struct work_struct *w);
 584static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
 585static DEFINE_SPINLOCK(stats_flush_lock);
 586static DEFINE_PER_CPU(unsigned int, stats_updates);
 587static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
 588static u64 flush_next_time;
 589
 590#define FLUSH_TIME (2UL*HZ)
 591
 592/*
 593 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
 594 * not rely on this as part of an acquired spinlock_t lock. These functions are
 595 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
 596 * is sufficient.
 597 */
 598static void memcg_stats_lock(void)
 599{
 600#ifdef CONFIG_PREEMPT_RT
 601      preempt_disable();
 602#else
 603      VM_BUG_ON(!irqs_disabled());
 604#endif
 605}
 606
 607static void __memcg_stats_lock(void)
 608{
 609#ifdef CONFIG_PREEMPT_RT
 610      preempt_disable();
 611#endif
 612}
 613
 614static void memcg_stats_unlock(void)
 615{
 616#ifdef CONFIG_PREEMPT_RT
 617      preempt_enable();
 618#endif
 619}
 620
 621static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
 622{
 623        unsigned int x;
 624
 625        cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 626
 627        x = __this_cpu_add_return(stats_updates, abs(val));
 628        if (x > MEMCG_CHARGE_BATCH) {
 629                atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
 630                __this_cpu_write(stats_updates, 0);
 631        }
 632}
 633
 634static void __mem_cgroup_flush_stats(void)
 635{
 636        unsigned long flag;
 637
 638        if (!spin_trylock_irqsave(&stats_flush_lock, flag))
 639                return;
 640
 641        flush_next_time = jiffies_64 + 2*FLUSH_TIME;
 642        cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
 643        atomic_set(&stats_flush_threshold, 0);
 644        spin_unlock_irqrestore(&stats_flush_lock, flag);
 645}
 646
 647void mem_cgroup_flush_stats(void)
 648{
 649        if (atomic_read(&stats_flush_threshold) > num_online_cpus())
 650                __mem_cgroup_flush_stats();
 651}
 652
 653void mem_cgroup_flush_stats_delayed(void)
 654{
 655        if (time_after64(jiffies_64, flush_next_time))
 656                mem_cgroup_flush_stats();
 657}
 658
 659static void flush_memcg_stats_dwork(struct work_struct *w)
 660{
 661        __mem_cgroup_flush_stats();
 662        queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
 663}
 664
 665/**
 666 * __mod_memcg_state - update cgroup memory statistics
 667 * @memcg: the memory cgroup
 668 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 669 * @val: delta to add to the counter, can be negative
 670 */
 671void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 672{
 673        if (mem_cgroup_disabled())
 674                return;
 675
 676        __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 677        memcg_rstat_updated(memcg, val);
 678}
 679
 680/* idx can be of type enum memcg_stat_item or node_stat_item. */
 681static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 682{
 683        long x = 0;
 684        int cpu;
 685
 686        for_each_possible_cpu(cpu)
 687                x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
 688#ifdef CONFIG_SMP
 689        if (x < 0)
 690                x = 0;
 691#endif
 692        return x;
 693}
 694
 695void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 696                              int val)
 697{
 698        struct mem_cgroup_per_node *pn;
 699        struct mem_cgroup *memcg;
 700
 701        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 702        memcg = pn->memcg;
 703
 704        /*
 705         * The caller from rmap relay on disabled preemption becase they never
 706         * update their counter from in-interrupt context. For these two
 707         * counters we check that the update is never performed from an
 708         * interrupt context while other caller need to have disabled interrupt.
 709         */
 710        __memcg_stats_lock();
 711        if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
 712                switch (idx) {
 713                case NR_ANON_MAPPED:
 714                case NR_FILE_MAPPED:
 715                case NR_ANON_THPS:
 716                case NR_SHMEM_PMDMAPPED:
 717                case NR_FILE_PMDMAPPED:
 718                        WARN_ON_ONCE(!in_task());
 719                        break;
 720                default:
 721                        WARN_ON_ONCE(!irqs_disabled());
 722                }
 723        }
 724
 725        /* Update memcg */
 726        __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 727
 728        /* Update lruvec */
 729        __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
 730
 731        memcg_rstat_updated(memcg, val);
 732        memcg_stats_unlock();
 733}
 734
 735/**
 736 * __mod_lruvec_state - update lruvec memory statistics
 737 * @lruvec: the lruvec
 738 * @idx: the stat item
 739 * @val: delta to add to the counter, can be negative
 740 *
 741 * The lruvec is the intersection of the NUMA node and a cgroup. This
 742 * function updates the all three counters that are affected by a
 743 * change of state at this level: per-node, per-cgroup, per-lruvec.
 744 */
 745void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 746                        int val)
 747{
 748        /* Update node */
 749        __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 750
 751        /* Update memcg and lruvec */
 752        if (!mem_cgroup_disabled())
 753                __mod_memcg_lruvec_state(lruvec, idx, val);
 754}
 755
 756void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
 757                             int val)
 758{
 759        struct page *head = compound_head(page); /* rmap on tail pages */
 760        struct mem_cgroup *memcg;
 761        pg_data_t *pgdat = page_pgdat(page);
 762        struct lruvec *lruvec;
 763
 764        rcu_read_lock();
 765        memcg = page_memcg(head);
 766        /* Untracked pages have no memcg, no lruvec. Update only the node */
 767        if (!memcg) {
 768                rcu_read_unlock();
 769                __mod_node_page_state(pgdat, idx, val);
 770                return;
 771        }
 772
 773        lruvec = mem_cgroup_lruvec(memcg, pgdat);
 774        __mod_lruvec_state(lruvec, idx, val);
 775        rcu_read_unlock();
 776}
 777EXPORT_SYMBOL(__mod_lruvec_page_state);
 778
 779void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 780{
 781        pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 782        struct mem_cgroup *memcg;
 783        struct lruvec *lruvec;
 784
 785        rcu_read_lock();
 786        memcg = mem_cgroup_from_obj(p);
 787
 788        /*
 789         * Untracked pages have no memcg, no lruvec. Update only the
 790         * node. If we reparent the slab objects to the root memcg,
 791         * when we free the slab object, we need to update the per-memcg
 792         * vmstats to keep it correct for the root memcg.
 793         */
 794        if (!memcg) {
 795                __mod_node_page_state(pgdat, idx, val);
 796        } else {
 797                lruvec = mem_cgroup_lruvec(memcg, pgdat);
 798                __mod_lruvec_state(lruvec, idx, val);
 799        }
 800        rcu_read_unlock();
 801}
 802
 803/**
 804 * __count_memcg_events - account VM events in a cgroup
 805 * @memcg: the memory cgroup
 806 * @idx: the event item
 807 * @count: the number of events that occurred
 808 */
 809void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 810                          unsigned long count)
 811{
 812        if (mem_cgroup_disabled())
 813                return;
 814
 815        memcg_stats_lock();
 816        __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
 817        memcg_rstat_updated(memcg, count);
 818        memcg_stats_unlock();
 819}
 820
 821static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 822{
 823        return READ_ONCE(memcg->vmstats.events[event]);
 824}
 825
 826static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 827{
 828        long x = 0;
 829        int cpu;
 830
 831        for_each_possible_cpu(cpu)
 832                x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
 833        return x;
 834}
 835
 836static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 837                                         int nr_pages)
 838{
 839        /* pagein of a big page is an event. So, ignore page size */
 840        if (nr_pages > 0)
 841                __count_memcg_events(memcg, PGPGIN, 1);
 842        else {
 843                __count_memcg_events(memcg, PGPGOUT, 1);
 844                nr_pages = -nr_pages; /* for event */
 845        }
 846
 847        __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 848}
 849
 850static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 851                                       enum mem_cgroup_events_target target)
 852{
 853        unsigned long val, next;
 854
 855        val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 856        next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 857        /* from time_after() in jiffies.h */
 858        if ((long)(next - val) < 0) {
 859                switch (target) {
 860                case MEM_CGROUP_TARGET_THRESH:
 861                        next = val + THRESHOLDS_EVENTS_TARGET;
 862                        break;
 863                case MEM_CGROUP_TARGET_SOFTLIMIT:
 864                        next = val + SOFTLIMIT_EVENTS_TARGET;
 865                        break;
 866                default:
 867                        break;
 868                }
 869                __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 870                return true;
 871        }
 872        return false;
 873}
 874
 875/*
 876 * Check events in order.
 877 *
 878 */
 879static void memcg_check_events(struct mem_cgroup *memcg, int nid)
 880{
 881        if (IS_ENABLED(CONFIG_PREEMPT_RT))
 882                return;
 883
 884        /* threshold event is triggered in finer grain than soft limit */
 885        if (unlikely(mem_cgroup_event_ratelimit(memcg,
 886                                                MEM_CGROUP_TARGET_THRESH))) {
 887                bool do_softlimit;
 888
 889                do_softlimit = mem_cgroup_event_ratelimit(memcg,
 890                                                MEM_CGROUP_TARGET_SOFTLIMIT);
 891                mem_cgroup_threshold(memcg);
 892                if (unlikely(do_softlimit))
 893                        mem_cgroup_update_tree(memcg, nid);
 894        }
 895}
 896
 897struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 898{
 899        /*
 900         * mm_update_next_owner() may clear mm->owner to NULL
 901         * if it races with swapoff, page migration, etc.
 902         * So this can be called with p == NULL.
 903         */
 904        if (unlikely(!p))
 905                return NULL;
 906
 907        return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 908}
 909EXPORT_SYMBOL(mem_cgroup_from_task);
 910
 911static __always_inline struct mem_cgroup *active_memcg(void)
 912{
 913        if (!in_task())
 914                return this_cpu_read(int_active_memcg);
 915        else
 916                return current->active_memcg;
 917}
 918
 919/**
 920 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 921 * @mm: mm from which memcg should be extracted. It can be NULL.
 922 *
 923 * Obtain a reference on mm->memcg and returns it if successful. If mm
 924 * is NULL, then the memcg is chosen as follows:
 925 * 1) The active memcg, if set.
 926 * 2) current->mm->memcg, if available
 927 * 3) root memcg
 928 * If mem_cgroup is disabled, NULL is returned.
 929 */
 930struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 931{
 932        struct mem_cgroup *memcg;
 933
 934        if (mem_cgroup_disabled())
 935                return NULL;
 936
 937        /*
 938         * Page cache insertions can happen without an
 939         * actual mm context, e.g. during disk probing
 940         * on boot, loopback IO, acct() writes etc.
 941         *
 942         * No need to css_get on root memcg as the reference
 943         * counting is disabled on the root level in the
 944         * cgroup core. See CSS_NO_REF.
 945         */
 946        if (unlikely(!mm)) {
 947                memcg = active_memcg();
 948                if (unlikely(memcg)) {
 949                        /* remote memcg must hold a ref */
 950                        css_get(&memcg->css);
 951                        return memcg;
 952                }
 953                mm = current->mm;
 954                if (unlikely(!mm))
 955                        return root_mem_cgroup;
 956        }
 957
 958        rcu_read_lock();
 959        do {
 960                memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 961                if (unlikely(!memcg))
 962                        memcg = root_mem_cgroup;
 963        } while (!css_tryget(&memcg->css));
 964        rcu_read_unlock();
 965        return memcg;
 966}
 967EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 968
 969static __always_inline bool memcg_kmem_bypass(void)
 970{
 971        /* Allow remote memcg charging from any context. */
 972        if (unlikely(active_memcg()))
 973                return false;
 974
 975        /* Memcg to charge can't be determined. */
 976        if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
 977                return true;
 978
 979        return false;
 980}
 981
 982/**
 983 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 984 * @root: hierarchy root
 985 * @prev: previously returned memcg, NULL on first invocation
 986 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 987 *
 988 * Returns references to children of the hierarchy below @root, or
 989 * @root itself, or %NULL after a full round-trip.
 990 *
 991 * Caller must pass the return value in @prev on subsequent
 992 * invocations for reference counting, or use mem_cgroup_iter_break()
 993 * to cancel a hierarchy walk before the round-trip is complete.
 994 *
 995 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 996 * in the hierarchy among all concurrent reclaimers operating on the
 997 * same node.
 998 */
 999struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1000                                   struct mem_cgroup *prev,
1001                                   struct mem_cgroup_reclaim_cookie *reclaim)
1002{
1003        struct mem_cgroup_reclaim_iter *iter;
1004        struct cgroup_subsys_state *css = NULL;
1005        struct mem_cgroup *memcg = NULL;
1006        struct mem_cgroup *pos = NULL;
1007
1008        if (mem_cgroup_disabled())
1009                return NULL;
1010
1011        if (!root)
1012                root = root_mem_cgroup;
1013
1014        rcu_read_lock();
1015
1016        if (reclaim) {
1017                struct mem_cgroup_per_node *mz;
1018
1019                mz = root->nodeinfo[reclaim->pgdat->node_id];
1020                iter = &mz->iter;
1021
1022                /*
1023                 * On start, join the current reclaim iteration cycle.
1024                 * Exit when a concurrent walker completes it.
1025                 */
1026                if (!prev)
1027                        reclaim->generation = iter->generation;
1028                else if (reclaim->generation != iter->generation)
1029                        goto out_unlock;
1030
1031                while (1) {
1032                        pos = READ_ONCE(iter->position);
1033                        if (!pos || css_tryget(&pos->css))
1034                                break;
1035                        /*
1036                         * css reference reached zero, so iter->position will
1037                         * be cleared by ->css_released. However, we should not
1038                         * rely on this happening soon, because ->css_released
1039                         * is called from a work queue, and by busy-waiting we
1040                         * might block it. So we clear iter->position right
1041                         * away.
1042                         */
1043                        (void)cmpxchg(&iter->position, pos, NULL);
1044                }
1045        } else if (prev) {
1046                pos = prev;
1047        }
1048
1049        if (pos)
1050                css = &pos->css;
1051
1052        for (;;) {
1053                css = css_next_descendant_pre(css, &root->css);
1054                if (!css) {
1055                        /*
1056                         * Reclaimers share the hierarchy walk, and a
1057                         * new one might jump in right at the end of
1058                         * the hierarchy - make sure they see at least
1059                         * one group and restart from the beginning.
1060                         */
1061                        if (!prev)
1062                                continue;
1063                        break;
1064                }
1065
1066                /*
1067                 * Verify the css and acquire a reference.  The root
1068                 * is provided by the caller, so we know it's alive
1069                 * and kicking, and don't take an extra reference.
1070                 */
1071                if (css == &root->css || css_tryget(css)) {
1072                        memcg = mem_cgroup_from_css(css);
1073                        break;
1074                }
1075        }
1076
1077        if (reclaim) {
1078                /*
1079                 * The position could have already been updated by a competing
1080                 * thread, so check that the value hasn't changed since we read
1081                 * it to avoid reclaiming from the same cgroup twice.
1082                 */
1083                (void)cmpxchg(&iter->position, pos, memcg);
1084
1085                if (pos)
1086                        css_put(&pos->css);
1087
1088                if (!memcg)
1089                        iter->generation++;
1090        }
1091
1092out_unlock:
1093        rcu_read_unlock();
1094        if (prev && prev != root)
1095                css_put(&prev->css);
1096
1097        return memcg;
1098}
1099
1100/**
1101 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1102 * @root: hierarchy root
1103 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1104 */
1105void mem_cgroup_iter_break(struct mem_cgroup *root,
1106                           struct mem_cgroup *prev)
1107{
1108        if (!root)
1109                root = root_mem_cgroup;
1110        if (prev && prev != root)
1111                css_put(&prev->css);
1112}
1113
1114static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1115                                        struct mem_cgroup *dead_memcg)
1116{
1117        struct mem_cgroup_reclaim_iter *iter;
1118        struct mem_cgroup_per_node *mz;
1119        int nid;
1120
1121        for_each_node(nid) {
1122                mz = from->nodeinfo[nid];
1123                iter = &mz->iter;
1124                cmpxchg(&iter->position, dead_memcg, NULL);
1125        }
1126}
1127
1128static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1129{
1130        struct mem_cgroup *memcg = dead_memcg;
1131        struct mem_cgroup *last;
1132
1133        do {
1134                __invalidate_reclaim_iterators(memcg, dead_memcg);
1135                last = memcg;
1136        } while ((memcg = parent_mem_cgroup(memcg)));
1137
1138        /*
1139         * When cgruop1 non-hierarchy mode is used,
1140         * parent_mem_cgroup() does not walk all the way up to the
1141         * cgroup root (root_mem_cgroup). So we have to handle
1142         * dead_memcg from cgroup root separately.
1143         */
1144        if (last != root_mem_cgroup)
1145                __invalidate_reclaim_iterators(root_mem_cgroup,
1146                                                dead_memcg);
1147}
1148
1149/**
1150 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1151 * @memcg: hierarchy root
1152 * @fn: function to call for each task
1153 * @arg: argument passed to @fn
1154 *
1155 * This function iterates over tasks attached to @memcg or to any of its
1156 * descendants and calls @fn for each task. If @fn returns a non-zero
1157 * value, the function breaks the iteration loop and returns the value.
1158 * Otherwise, it will iterate over all tasks and return 0.
1159 *
1160 * This function must not be called for the root memory cgroup.
1161 */
1162int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1163                          int (*fn)(struct task_struct *, void *), void *arg)
1164{
1165        struct mem_cgroup *iter;
1166        int ret = 0;
1167
1168        BUG_ON(memcg == root_mem_cgroup);
1169
1170        for_each_mem_cgroup_tree(iter, memcg) {
1171                struct css_task_iter it;
1172                struct task_struct *task;
1173
1174                css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1175                while (!ret && (task = css_task_iter_next(&it)))
1176                        ret = fn(task, arg);
1177                css_task_iter_end(&it);
1178                if (ret) {
1179                        mem_cgroup_iter_break(memcg, iter);
1180                        break;
1181                }
1182        }
1183        return ret;
1184}
1185
1186#ifdef CONFIG_DEBUG_VM
1187void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1188{
1189        struct mem_cgroup *memcg;
1190
1191        if (mem_cgroup_disabled())
1192                return;
1193
1194        memcg = folio_memcg(folio);
1195
1196        if (!memcg)
1197                VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1198        else
1199                VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1200}
1201#endif
1202
1203/**
1204 * folio_lruvec_lock - Lock the lruvec for a folio.
1205 * @folio: Pointer to the folio.
1206 *
1207 * These functions are safe to use under any of the following conditions:
1208 * - folio locked
1209 * - folio_test_lru false
1210 * - folio_memcg_lock()
1211 * - folio frozen (refcount of 0)
1212 *
1213 * Return: The lruvec this folio is on with its lock held.
1214 */
1215struct lruvec *folio_lruvec_lock(struct folio *folio)
1216{
1217        struct lruvec *lruvec = folio_lruvec(folio);
1218
1219        spin_lock(&lruvec->lru_lock);
1220        lruvec_memcg_debug(lruvec, folio);
1221
1222        return lruvec;
1223}
1224
1225/**
1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227 * @folio: Pointer to the folio.
1228 *
1229 * These functions are safe to use under any of the following conditions:
1230 * - folio locked
1231 * - folio_test_lru false
1232 * - folio_memcg_lock()
1233 * - folio frozen (refcount of 0)
1234 *
1235 * Return: The lruvec this folio is on with its lock held and interrupts
1236 * disabled.
1237 */
1238struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1239{
1240        struct lruvec *lruvec = folio_lruvec(folio);
1241
1242        spin_lock_irq(&lruvec->lru_lock);
1243        lruvec_memcg_debug(lruvec, folio);
1244
1245        return lruvec;
1246}
1247
1248/**
1249 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1250 * @folio: Pointer to the folio.
1251 * @flags: Pointer to irqsave flags.
1252 *
1253 * These functions are safe to use under any of the following conditions:
1254 * - folio locked
1255 * - folio_test_lru false
1256 * - folio_memcg_lock()
1257 * - folio frozen (refcount of 0)
1258 *
1259 * Return: The lruvec this folio is on with its lock held and interrupts
1260 * disabled.
1261 */
1262struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1263                unsigned long *flags)
1264{
1265        struct lruvec *lruvec = folio_lruvec(folio);
1266
1267        spin_lock_irqsave(&lruvec->lru_lock, *flags);
1268        lruvec_memcg_debug(lruvec, folio);
1269
1270        return lruvec;
1271}
1272
1273/**
1274 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1275 * @lruvec: mem_cgroup per zone lru vector
1276 * @lru: index of lru list the page is sitting on
1277 * @zid: zone id of the accounted pages
1278 * @nr_pages: positive when adding or negative when removing
1279 *
1280 * This function must be called under lru_lock, just before a page is added
1281 * to or just after a page is removed from an lru list.
1282 */
1283void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284                                int zid, int nr_pages)
1285{
1286        struct mem_cgroup_per_node *mz;
1287        unsigned long *lru_size;
1288        long size;
1289
1290        if (mem_cgroup_disabled())
1291                return;
1292
1293        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1294        lru_size = &mz->lru_zone_size[zid][lru];
1295
1296        if (nr_pages < 0)
1297                *lru_size += nr_pages;
1298
1299        size = *lru_size;
1300        if (WARN_ONCE(size < 0,
1301                "%s(%p, %d, %d): lru_size %ld\n",
1302                __func__, lruvec, lru, nr_pages, size)) {
1303                VM_BUG_ON(1);
1304                *lru_size = 0;
1305        }
1306
1307        if (nr_pages > 0)
1308                *lru_size += nr_pages;
1309}
1310
1311/**
1312 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313 * @memcg: the memory cgroup
1314 *
1315 * Returns the maximum amount of memory @mem can be charged with, in
1316 * pages.
1317 */
1318static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1319{
1320        unsigned long margin = 0;
1321        unsigned long count;
1322        unsigned long limit;
1323
1324        count = page_counter_read(&memcg->memory);
1325        limit = READ_ONCE(memcg->memory.max);
1326        if (count < limit)
1327                margin = limit - count;
1328
1329        if (do_memsw_account()) {
1330                count = page_counter_read(&memcg->memsw);
1331                limit = READ_ONCE(memcg->memsw.max);
1332                if (count < limit)
1333                        margin = min(margin, limit - count);
1334                else
1335                        margin = 0;
1336        }
1337
1338        return margin;
1339}
1340
1341/*
1342 * A routine for checking "mem" is under move_account() or not.
1343 *
1344 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1345 * moving cgroups. This is for waiting at high-memory pressure
1346 * caused by "move".
1347 */
1348static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1349{
1350        struct mem_cgroup *from;
1351        struct mem_cgroup *to;
1352        bool ret = false;
1353        /*
1354         * Unlike task_move routines, we access mc.to, mc.from not under
1355         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1356         */
1357        spin_lock(&mc.lock);
1358        from = mc.from;
1359        to = mc.to;
1360        if (!from)
1361                goto unlock;
1362
1363        ret = mem_cgroup_is_descendant(from, memcg) ||
1364                mem_cgroup_is_descendant(to, memcg);
1365unlock:
1366        spin_unlock(&mc.lock);
1367        return ret;
1368}
1369
1370static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1371{
1372        if (mc.moving_task && current != mc.moving_task) {
1373                if (mem_cgroup_under_move(memcg)) {
1374                        DEFINE_WAIT(wait);
1375                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1376                        /* moving charge context might have finished. */
1377                        if (mc.moving_task)
1378                                schedule();
1379                        finish_wait(&mc.waitq, &wait);
1380                        return true;
1381                }
1382        }
1383        return false;
1384}
1385
1386struct memory_stat {
1387        const char *name;
1388        unsigned int idx;
1389};
1390
1391static const struct memory_stat memory_stats[] = {
1392        { "anon",                       NR_ANON_MAPPED                  },
1393        { "file",                       NR_FILE_PAGES                   },
1394        { "kernel",                     MEMCG_KMEM                      },
1395        { "kernel_stack",               NR_KERNEL_STACK_KB              },
1396        { "pagetables",                 NR_PAGETABLE                    },
1397        { "percpu",                     MEMCG_PERCPU_B                  },
1398        { "sock",                       MEMCG_SOCK                      },
1399        { "vmalloc",                    MEMCG_VMALLOC                   },
1400        { "shmem",                      NR_SHMEM                        },
1401#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1402        { "zswap",                      MEMCG_ZSWAP_B                   },
1403        { "zswapped",                   MEMCG_ZSWAPPED                  },
1404#endif
1405        { "file_mapped",                NR_FILE_MAPPED                  },
1406        { "file_dirty",                 NR_FILE_DIRTY                   },
1407        { "file_writeback",             NR_WRITEBACK                    },
1408#ifdef CONFIG_SWAP
1409        { "swapcached",                 NR_SWAPCACHE                    },
1410#endif
1411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412        { "anon_thp",                   NR_ANON_THPS                    },
1413        { "file_thp",                   NR_FILE_THPS                    },
1414        { "shmem_thp",                  NR_SHMEM_THPS                   },
1415#endif
1416        { "inactive_anon",              NR_INACTIVE_ANON                },
1417        { "active_anon",                NR_ACTIVE_ANON                  },
1418        { "inactive_file",              NR_INACTIVE_FILE                },
1419        { "active_file",                NR_ACTIVE_FILE                  },
1420        { "unevictable",                NR_UNEVICTABLE                  },
1421        { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1422        { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1423
1424        /* The memory events */
1425        { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1426        { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1427        { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1428        { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1429        { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1430        { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1431        { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1432};
1433
1434/* Translate stat items to the correct unit for memory.stat output */
1435static int memcg_page_state_unit(int item)
1436{
1437        switch (item) {
1438        case MEMCG_PERCPU_B:
1439        case MEMCG_ZSWAP_B:
1440        case NR_SLAB_RECLAIMABLE_B:
1441        case NR_SLAB_UNRECLAIMABLE_B:
1442        case WORKINGSET_REFAULT_ANON:
1443        case WORKINGSET_REFAULT_FILE:
1444        case WORKINGSET_ACTIVATE_ANON:
1445        case WORKINGSET_ACTIVATE_FILE:
1446        case WORKINGSET_RESTORE_ANON:
1447        case WORKINGSET_RESTORE_FILE:
1448        case WORKINGSET_NODERECLAIM:
1449                return 1;
1450        case NR_KERNEL_STACK_KB:
1451                return SZ_1K;
1452        default:
1453                return PAGE_SIZE;
1454        }
1455}
1456
1457static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1458                                                    int item)
1459{
1460        return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1461}
1462
1463static char *memory_stat_format(struct mem_cgroup *memcg)
1464{
1465        struct seq_buf s;
1466        int i;
1467
1468        seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1469        if (!s.buffer)
1470                return NULL;
1471
1472        /*
1473         * Provide statistics on the state of the memory subsystem as
1474         * well as cumulative event counters that show past behavior.
1475         *
1476         * This list is ordered following a combination of these gradients:
1477         * 1) generic big picture -> specifics and details
1478         * 2) reflecting userspace activity -> reflecting kernel heuristics
1479         *
1480         * Current memory state:
1481         */
1482        mem_cgroup_flush_stats();
1483
1484        for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1485                u64 size;
1486
1487                size = memcg_page_state_output(memcg, memory_stats[i].idx);
1488                seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1489
1490                if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1491                        size += memcg_page_state_output(memcg,
1492                                                        NR_SLAB_RECLAIMABLE_B);
1493                        seq_buf_printf(&s, "slab %llu\n", size);
1494                }
1495        }
1496
1497        /* Accumulated memory events */
1498
1499        seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1500                       memcg_events(memcg, PGFAULT));
1501        seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1502                       memcg_events(memcg, PGMAJFAULT));
1503        seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1504                       memcg_events(memcg, PGREFILL));
1505        seq_buf_printf(&s, "pgscan %lu\n",
1506                       memcg_events(memcg, PGSCAN_KSWAPD) +
1507                       memcg_events(memcg, PGSCAN_DIRECT));
1508        seq_buf_printf(&s, "pgsteal %lu\n",
1509                       memcg_events(memcg, PGSTEAL_KSWAPD) +
1510                       memcg_events(memcg, PGSTEAL_DIRECT));
1511        seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1512                       memcg_events(memcg, PGACTIVATE));
1513        seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1514                       memcg_events(memcg, PGDEACTIVATE));
1515        seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1516                       memcg_events(memcg, PGLAZYFREE));
1517        seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1518                       memcg_events(memcg, PGLAZYFREED));
1519
1520#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1521        seq_buf_printf(&s, "%s %lu\n", vm_event_name(ZSWPIN),
1522                       memcg_events(memcg, ZSWPIN));
1523        seq_buf_printf(&s, "%s %lu\n", vm_event_name(ZSWPOUT),
1524                       memcg_events(memcg, ZSWPOUT));
1525#endif
1526
1527#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528        seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1529                       memcg_events(memcg, THP_FAULT_ALLOC));
1530        seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1531                       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1532#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1533
1534        /* The above should easily fit into one page */
1535        WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1536
1537        return s.buffer;
1538}
1539
1540#define K(x) ((x) << (PAGE_SHIFT-10))
1541/**
1542 * mem_cgroup_print_oom_context: Print OOM information relevant to
1543 * memory controller.
1544 * @memcg: The memory cgroup that went over limit
1545 * @p: Task that is going to be killed
1546 *
1547 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1548 * enabled
1549 */
1550void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1551{
1552        rcu_read_lock();
1553
1554        if (memcg) {
1555                pr_cont(",oom_memcg=");
1556                pr_cont_cgroup_path(memcg->css.cgroup);
1557        } else
1558                pr_cont(",global_oom");
1559        if (p) {
1560                pr_cont(",task_memcg=");
1561                pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1562        }
1563        rcu_read_unlock();
1564}
1565
1566/**
1567 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1568 * memory controller.
1569 * @memcg: The memory cgroup that went over limit
1570 */
1571void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1572{
1573        char *buf;
1574
1575        pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1576                K((u64)page_counter_read(&memcg->memory)),
1577                K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1578        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1579                pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1580                        K((u64)page_counter_read(&memcg->swap)),
1581                        K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1582        else {
1583                pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1584                        K((u64)page_counter_read(&memcg->memsw)),
1585                        K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1586                pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1587                        K((u64)page_counter_read(&memcg->kmem)),
1588                        K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1589        }
1590
1591        pr_info("Memory cgroup stats for ");
1592        pr_cont_cgroup_path(memcg->css.cgroup);
1593        pr_cont(":");
1594        buf = memory_stat_format(memcg);
1595        if (!buf)
1596                return;
1597        pr_info("%s", buf);
1598        kfree(buf);
1599}
1600
1601/*
1602 * Return the memory (and swap, if configured) limit for a memcg.
1603 */
1604unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1605{
1606        unsigned long max = READ_ONCE(memcg->memory.max);
1607
1608        if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1609                if (mem_cgroup_swappiness(memcg))
1610                        max += min(READ_ONCE(memcg->swap.max),
1611                                   (unsigned long)total_swap_pages);
1612        } else { /* v1 */
1613                if (mem_cgroup_swappiness(memcg)) {
1614                        /* Calculate swap excess capacity from memsw limit */
1615                        unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1616
1617                        max += min(swap, (unsigned long)total_swap_pages);
1618                }
1619        }
1620        return max;
1621}
1622
1623unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1624{
1625        return page_counter_read(&memcg->memory);
1626}
1627
1628static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1629                                     int order)
1630{
1631        struct oom_control oc = {
1632                .zonelist = NULL,
1633                .nodemask = NULL,
1634                .memcg = memcg,
1635                .gfp_mask = gfp_mask,
1636                .order = order,
1637        };
1638        bool ret = true;
1639
1640        if (mutex_lock_killable(&oom_lock))
1641                return true;
1642
1643        if (mem_cgroup_margin(memcg) >= (1 << order))
1644                goto unlock;
1645
1646        /*
1647         * A few threads which were not waiting at mutex_lock_killable() can
1648         * fail to bail out. Therefore, check again after holding oom_lock.
1649         */
1650        ret = task_is_dying() || out_of_memory(&oc);
1651
1652unlock:
1653        mutex_unlock(&oom_lock);
1654        return ret;
1655}
1656
1657static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1658                                   pg_data_t *pgdat,
1659                                   gfp_t gfp_mask,
1660                                   unsigned long *total_scanned)
1661{
1662        struct mem_cgroup *victim = NULL;
1663        int total = 0;
1664        int loop = 0;
1665        unsigned long excess;
1666        unsigned long nr_scanned;
1667        struct mem_cgroup_reclaim_cookie reclaim = {
1668                .pgdat = pgdat,
1669        };
1670
1671        excess = soft_limit_excess(root_memcg);
1672
1673        while (1) {
1674                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1675                if (!victim) {
1676                        loop++;
1677                        if (loop >= 2) {
1678                                /*
1679                                 * If we have not been able to reclaim
1680                                 * anything, it might because there are
1681                                 * no reclaimable pages under this hierarchy
1682                                 */
1683                                if (!total)
1684                                        break;
1685                                /*
1686                                 * We want to do more targeted reclaim.
1687                                 * excess >> 2 is not to excessive so as to
1688                                 * reclaim too much, nor too less that we keep
1689                                 * coming back to reclaim from this cgroup
1690                                 */
1691                                if (total >= (excess >> 2) ||
1692                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1693                                        break;
1694                        }
1695                        continue;
1696                }
1697                total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1698                                        pgdat, &nr_scanned);
1699                *total_scanned += nr_scanned;
1700                if (!soft_limit_excess(root_memcg))
1701                        break;
1702        }
1703        mem_cgroup_iter_break(root_memcg, victim);
1704        return total;
1705}
1706
1707#ifdef CONFIG_LOCKDEP
1708static struct lockdep_map memcg_oom_lock_dep_map = {
1709        .name = "memcg_oom_lock",
1710};
1711#endif
1712
1713static DEFINE_SPINLOCK(memcg_oom_lock);
1714
1715/*
1716 * Check OOM-Killer is already running under our hierarchy.
1717 * If someone is running, return false.
1718 */
1719static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1720{
1721        struct mem_cgroup *iter, *failed = NULL;
1722
1723        spin_lock(&memcg_oom_lock);
1724
1725        for_each_mem_cgroup_tree(iter, memcg) {
1726                if (iter->oom_lock) {
1727                        /*
1728                         * this subtree of our hierarchy is already locked
1729                         * so we cannot give a lock.
1730                         */
1731                        failed = iter;
1732                        mem_cgroup_iter_break(memcg, iter);
1733                        break;
1734                } else
1735                        iter->oom_lock = true;
1736        }
1737
1738        if (failed) {
1739                /*
1740                 * OK, we failed to lock the whole subtree so we have
1741                 * to clean up what we set up to the failing subtree
1742                 */
1743                for_each_mem_cgroup_tree(iter, memcg) {
1744                        if (iter == failed) {
1745                                mem_cgroup_iter_break(memcg, iter);
1746                                break;
1747                        }
1748                        iter->oom_lock = false;
1749                }
1750        } else
1751                mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1752
1753        spin_unlock(&memcg_oom_lock);
1754
1755        return !failed;
1756}
1757
1758static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1759{
1760        struct mem_cgroup *iter;
1761
1762        spin_lock(&memcg_oom_lock);
1763        mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1764        for_each_mem_cgroup_tree(iter, memcg)
1765                iter->oom_lock = false;
1766        spin_unlock(&memcg_oom_lock);
1767}
1768
1769static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1770{
1771        struct mem_cgroup *iter;
1772
1773        spin_lock(&memcg_oom_lock);
1774        for_each_mem_cgroup_tree(iter, memcg)
1775                iter->under_oom++;
1776        spin_unlock(&memcg_oom_lock);
1777}
1778
1779static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1780{
1781        struct mem_cgroup *iter;
1782
1783        /*
1784         * Be careful about under_oom underflows because a child memcg
1785         * could have been added after mem_cgroup_mark_under_oom.
1786         */
1787        spin_lock(&memcg_oom_lock);
1788        for_each_mem_cgroup_tree(iter, memcg)
1789                if (iter->under_oom > 0)
1790                        iter->under_oom--;
1791        spin_unlock(&memcg_oom_lock);
1792}
1793
1794static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1795
1796struct oom_wait_info {
1797        struct mem_cgroup *memcg;
1798        wait_queue_entry_t      wait;
1799};
1800
1801static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1802        unsigned mode, int sync, void *arg)
1803{
1804        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1805        struct mem_cgroup *oom_wait_memcg;
1806        struct oom_wait_info *oom_wait_info;
1807
1808        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1809        oom_wait_memcg = oom_wait_info->memcg;
1810
1811        if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1812            !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1813                return 0;
1814        return autoremove_wake_function(wait, mode, sync, arg);
1815}
1816
1817static void memcg_oom_recover(struct mem_cgroup *memcg)
1818{
1819        /*
1820         * For the following lockless ->under_oom test, the only required
1821         * guarantee is that it must see the state asserted by an OOM when
1822         * this function is called as a result of userland actions
1823         * triggered by the notification of the OOM.  This is trivially
1824         * achieved by invoking mem_cgroup_mark_under_oom() before
1825         * triggering notification.
1826         */
1827        if (memcg && memcg->under_oom)
1828                __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1829}
1830
1831/*
1832 * Returns true if successfully killed one or more processes. Though in some
1833 * corner cases it can return true even without killing any process.
1834 */
1835static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1836{
1837        bool locked, ret;
1838
1839        if (order > PAGE_ALLOC_COSTLY_ORDER)
1840                return false;
1841
1842        memcg_memory_event(memcg, MEMCG_OOM);
1843
1844        /*
1845         * We are in the middle of the charge context here, so we
1846         * don't want to block when potentially sitting on a callstack
1847         * that holds all kinds of filesystem and mm locks.
1848         *
1849         * cgroup1 allows disabling the OOM killer and waiting for outside
1850         * handling until the charge can succeed; remember the context and put
1851         * the task to sleep at the end of the page fault when all locks are
1852         * released.
1853         *
1854         * On the other hand, in-kernel OOM killer allows for an async victim
1855         * memory reclaim (oom_reaper) and that means that we are not solely
1856         * relying on the oom victim to make a forward progress and we can
1857         * invoke the oom killer here.
1858         *
1859         * Please note that mem_cgroup_out_of_memory might fail to find a
1860         * victim and then we have to bail out from the charge path.
1861         */
1862        if (memcg->oom_kill_disable) {
1863                if (current->in_user_fault) {
1864                        css_get(&memcg->css);
1865                        current->memcg_in_oom = memcg;
1866                        current->memcg_oom_gfp_mask = mask;
1867                        current->memcg_oom_order = order;
1868                }
1869                return false;
1870        }
1871
1872        mem_cgroup_mark_under_oom(memcg);
1873
1874        locked = mem_cgroup_oom_trylock(memcg);
1875
1876        if (locked)
1877                mem_cgroup_oom_notify(memcg);
1878
1879        mem_cgroup_unmark_under_oom(memcg);
1880        ret = mem_cgroup_out_of_memory(memcg, mask, order);
1881
1882        if (locked)
1883                mem_cgroup_oom_unlock(memcg);
1884
1885        return ret;
1886}
1887
1888/**
1889 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1890 * @handle: actually kill/wait or just clean up the OOM state
1891 *
1892 * This has to be called at the end of a page fault if the memcg OOM
1893 * handler was enabled.
1894 *
1895 * Memcg supports userspace OOM handling where failed allocations must
1896 * sleep on a waitqueue until the userspace task resolves the
1897 * situation.  Sleeping directly in the charge context with all kinds
1898 * of locks held is not a good idea, instead we remember an OOM state
1899 * in the task and mem_cgroup_oom_synchronize() has to be called at
1900 * the end of the page fault to complete the OOM handling.
1901 *
1902 * Returns %true if an ongoing memcg OOM situation was detected and
1903 * completed, %false otherwise.
1904 */
1905bool mem_cgroup_oom_synchronize(bool handle)
1906{
1907        struct mem_cgroup *memcg = current->memcg_in_oom;
1908        struct oom_wait_info owait;
1909        bool locked;
1910
1911        /* OOM is global, do not handle */
1912        if (!memcg)
1913                return false;
1914
1915        if (!handle)
1916                goto cleanup;
1917
1918        owait.memcg = memcg;
1919        owait.wait.flags = 0;
1920        owait.wait.func = memcg_oom_wake_function;
1921        owait.wait.private = current;
1922        INIT_LIST_HEAD(&owait.wait.entry);
1923
1924        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1925        mem_cgroup_mark_under_oom(memcg);
1926
1927        locked = mem_cgroup_oom_trylock(memcg);
1928
1929        if (locked)
1930                mem_cgroup_oom_notify(memcg);
1931
1932        if (locked && !memcg->oom_kill_disable) {
1933                mem_cgroup_unmark_under_oom(memcg);
1934                finish_wait(&memcg_oom_waitq, &owait.wait);
1935                mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1936                                         current->memcg_oom_order);
1937        } else {
1938                schedule();
1939                mem_cgroup_unmark_under_oom(memcg);
1940                finish_wait(&memcg_oom_waitq, &owait.wait);
1941        }
1942
1943        if (locked) {
1944                mem_cgroup_oom_unlock(memcg);
1945                /*
1946                 * There is no guarantee that an OOM-lock contender
1947                 * sees the wakeups triggered by the OOM kill
1948                 * uncharges.  Wake any sleepers explicitly.
1949                 */
1950                memcg_oom_recover(memcg);
1951        }
1952cleanup:
1953        current->memcg_in_oom = NULL;
1954        css_put(&memcg->css);
1955        return true;
1956}
1957
1958/**
1959 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1960 * @victim: task to be killed by the OOM killer
1961 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1962 *
1963 * Returns a pointer to a memory cgroup, which has to be cleaned up
1964 * by killing all belonging OOM-killable tasks.
1965 *
1966 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1967 */
1968struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1969                                            struct mem_cgroup *oom_domain)
1970{
1971        struct mem_cgroup *oom_group = NULL;
1972        struct mem_cgroup *memcg;
1973
1974        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1975                return NULL;
1976
1977        if (!oom_domain)
1978                oom_domain = root_mem_cgroup;
1979
1980        rcu_read_lock();
1981
1982        memcg = mem_cgroup_from_task(victim);
1983        if (memcg == root_mem_cgroup)
1984                goto out;
1985
1986        /*
1987         * If the victim task has been asynchronously moved to a different
1988         * memory cgroup, we might end up killing tasks outside oom_domain.
1989         * In this case it's better to ignore memory.group.oom.
1990         */
1991        if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1992                goto out;
1993
1994        /*
1995         * Traverse the memory cgroup hierarchy from the victim task's
1996         * cgroup up to the OOMing cgroup (or root) to find the
1997         * highest-level memory cgroup with oom.group set.
1998         */
1999        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2000                if (memcg->oom_group)
2001                        oom_group = memcg;
2002
2003                if (memcg == oom_domain)
2004                        break;
2005        }
2006
2007        if (oom_group)
2008                css_get(&oom_group->css);
2009out:
2010        rcu_read_unlock();
2011
2012        return oom_group;
2013}
2014
2015void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2016{
2017        pr_info("Tasks in ");
2018        pr_cont_cgroup_path(memcg->css.cgroup);
2019        pr_cont(" are going to be killed due to memory.oom.group set\n");
2020}
2021
2022/**
2023 * folio_memcg_lock - Bind a folio to its memcg.
2024 * @folio: The folio.
2025 *
2026 * This function prevents unlocked LRU folios from being moved to
2027 * another cgroup.
2028 *
2029 * It ensures lifetime of the bound memcg.  The caller is responsible
2030 * for the lifetime of the folio.
2031 */
2032void folio_memcg_lock(struct folio *folio)
2033{
2034        struct mem_cgroup *memcg;
2035        unsigned long flags;
2036
2037        /*
2038         * The RCU lock is held throughout the transaction.  The fast
2039         * path can get away without acquiring the memcg->move_lock
2040         * because page moving starts with an RCU grace period.
2041         */
2042        rcu_read_lock();
2043
2044        if (mem_cgroup_disabled())
2045                return;
2046again:
2047        memcg = folio_memcg(folio);
2048        if (unlikely(!memcg))
2049                return;
2050
2051#ifdef CONFIG_PROVE_LOCKING
2052        local_irq_save(flags);
2053        might_lock(&memcg->move_lock);
2054        local_irq_restore(flags);
2055#endif
2056
2057        if (atomic_read(&memcg->moving_account) <= 0)
2058                return;
2059
2060        spin_lock_irqsave(&memcg->move_lock, flags);
2061        if (memcg != folio_memcg(folio)) {
2062                spin_unlock_irqrestore(&memcg->move_lock, flags);
2063                goto again;
2064        }
2065
2066        /*
2067         * When charge migration first begins, we can have multiple
2068         * critical sections holding the fast-path RCU lock and one
2069         * holding the slowpath move_lock. Track the task who has the
2070         * move_lock for unlock_page_memcg().
2071         */
2072        memcg->move_lock_task = current;
2073        memcg->move_lock_flags = flags;
2074}
2075
2076void lock_page_memcg(struct page *page)
2077{
2078        folio_memcg_lock(page_folio(page));
2079}
2080
2081static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2082{
2083        if (memcg && memcg->move_lock_task == current) {
2084                unsigned long flags = memcg->move_lock_flags;
2085
2086                memcg->move_lock_task = NULL;
2087                memcg->move_lock_flags = 0;
2088
2089                spin_unlock_irqrestore(&memcg->move_lock, flags);
2090        }
2091
2092        rcu_read_unlock();
2093}
2094
2095/**
2096 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2097 * @folio: The folio.
2098 *
2099 * This releases the binding created by folio_memcg_lock().  This does
2100 * not change the accounting of this folio to its memcg, but it does
2101 * permit others to change it.
2102 */
2103void folio_memcg_unlock(struct folio *folio)
2104{
2105        __folio_memcg_unlock(folio_memcg(folio));
2106}
2107
2108void unlock_page_memcg(struct page *page)
2109{
2110        folio_memcg_unlock(page_folio(page));
2111}
2112
2113struct memcg_stock_pcp {
2114        local_lock_t stock_lock;
2115        struct mem_cgroup *cached; /* this never be root cgroup */
2116        unsigned int nr_pages;
2117
2118#ifdef CONFIG_MEMCG_KMEM
2119        struct obj_cgroup *cached_objcg;
2120        struct pglist_data *cached_pgdat;
2121        unsigned int nr_bytes;
2122        int nr_slab_reclaimable_b;
2123        int nr_slab_unreclaimable_b;
2124#endif
2125
2126        struct work_struct work;
2127        unsigned long flags;
2128#define FLUSHING_CACHED_CHARGE  0
2129};
2130static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2131        .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2132};
2133static DEFINE_MUTEX(percpu_charge_mutex);
2134
2135#ifdef CONFIG_MEMCG_KMEM
2136static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2137static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2138                                     struct mem_cgroup *root_memcg);
2139static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2140
2141#else
2142static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2143{
2144        return NULL;
2145}
2146static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2147                                     struct mem_cgroup *root_memcg)
2148{
2149        return false;
2150}
2151static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2152{
2153}
2154#endif
2155
2156/**
2157 * consume_stock: Try to consume stocked charge on this cpu.
2158 * @memcg: memcg to consume from.
2159 * @nr_pages: how many pages to charge.
2160 *
2161 * The charges will only happen if @memcg matches the current cpu's memcg
2162 * stock, and at least @nr_pages are available in that stock.  Failure to
2163 * service an allocation will refill the stock.
2164 *
2165 * returns true if successful, false otherwise.
2166 */
2167static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2168{
2169        struct memcg_stock_pcp *stock;
2170        unsigned long flags;
2171        bool ret = false;
2172
2173        if (nr_pages > MEMCG_CHARGE_BATCH)
2174                return ret;
2175
2176        local_lock_irqsave(&memcg_stock.stock_lock, flags);
2177
2178        stock = this_cpu_ptr(&memcg_stock);
2179        if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2180                stock->nr_pages -= nr_pages;
2181                ret = true;
2182        }
2183
2184        local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2185
2186        return ret;
2187}
2188
2189/*
2190 * Returns stocks cached in percpu and reset cached information.
2191 */
2192static void drain_stock(struct memcg_stock_pcp *stock)
2193{
2194        struct mem_cgroup *old = stock->cached;
2195
2196        if (!old)
2197                return;
2198
2199        if (stock->nr_pages) {
2200                page_counter_uncharge(&old->memory, stock->nr_pages);
2201                if (do_memsw_account())
2202                        page_counter_uncharge(&old->memsw, stock->nr_pages);
2203                stock->nr_pages = 0;
2204        }
2205
2206        css_put(&old->css);
2207        stock->cached = NULL;
2208}
2209
2210static void drain_local_stock(struct work_struct *dummy)
2211{
2212        struct memcg_stock_pcp *stock;
2213        struct obj_cgroup *old = NULL;
2214        unsigned long flags;
2215
2216        /*
2217         * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2218         * drain_stock races is that we always operate on local CPU stock
2219         * here with IRQ disabled
2220         */
2221        local_lock_irqsave(&memcg_stock.stock_lock, flags);
2222
2223        stock = this_cpu_ptr(&memcg_stock);
2224        old = drain_obj_stock(stock);
2225        drain_stock(stock);
2226        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2227
2228        local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2229        if (old)
2230                obj_cgroup_put(old);
2231}
2232
2233/*
2234 * Cache charges(val) to local per_cpu area.
2235 * This will be consumed by consume_stock() function, later.
2236 */
2237static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2238{
2239        struct memcg_stock_pcp *stock;
2240
2241        stock = this_cpu_ptr(&memcg_stock);
2242        if (stock->cached != memcg) { /* reset if necessary */
2243                drain_stock(stock);
2244                css_get(&memcg->css);
2245                stock->cached = memcg;
2246        }
2247        stock->nr_pages += nr_pages;
2248
2249        if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2250                drain_stock(stock);
2251}
2252
2253static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2254{
2255        unsigned long flags;
2256
2257        local_lock_irqsave(&memcg_stock.stock_lock, flags);
2258        __refill_stock(memcg, nr_pages);
2259        local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2260}
2261
2262/*
2263 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2264 * of the hierarchy under it.
2265 */
2266static void drain_all_stock(struct mem_cgroup *root_memcg)
2267{
2268        int cpu, curcpu;
2269
2270        /* If someone's already draining, avoid adding running more workers. */
2271        if (!mutex_trylock(&percpu_charge_mutex))
2272                return;
2273        /*
2274         * Notify other cpus that system-wide "drain" is running
2275         * We do not care about races with the cpu hotplug because cpu down
2276         * as well as workers from this path always operate on the local
2277         * per-cpu data. CPU up doesn't touch memcg_stock at all.
2278         */
2279        migrate_disable();
2280        curcpu = smp_processor_id();
2281        for_each_online_cpu(cpu) {
2282                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2283                struct mem_cgroup *memcg;
2284                bool flush = false;
2285
2286                rcu_read_lock();
2287                memcg = stock->cached;
2288                if (memcg && stock->nr_pages &&
2289                    mem_cgroup_is_descendant(memcg, root_memcg))
2290                        flush = true;
2291                else if (obj_stock_flush_required(stock, root_memcg))
2292                        flush = true;
2293                rcu_read_unlock();
2294
2295                if (flush &&
2296                    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2297                        if (cpu == curcpu)
2298                                drain_local_stock(&stock->work);
2299                        else
2300                                schedule_work_on(cpu, &stock->work);
2301                }
2302        }
2303        migrate_enable();
2304        mutex_unlock(&percpu_charge_mutex);
2305}
2306
2307static int memcg_hotplug_cpu_dead(unsigned int cpu)
2308{
2309        struct memcg_stock_pcp *stock;
2310
2311        stock = &per_cpu(memcg_stock, cpu);
2312        drain_stock(stock);
2313
2314        return 0;
2315}
2316
2317static unsigned long reclaim_high(struct mem_cgroup *memcg,
2318                                  unsigned int nr_pages,
2319                                  gfp_t gfp_mask)
2320{
2321        unsigned long nr_reclaimed = 0;
2322
2323        do {
2324                unsigned long pflags;
2325
2326                if (page_counter_read(&memcg->memory) <=
2327                    READ_ONCE(memcg->memory.high))
2328                        continue;
2329
2330                memcg_memory_event(memcg, MEMCG_HIGH);
2331
2332                psi_memstall_enter(&pflags);
2333                nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2334                                                             gfp_mask, true);
2335                psi_memstall_leave(&pflags);
2336        } while ((memcg = parent_mem_cgroup(memcg)) &&
2337                 !mem_cgroup_is_root(memcg));
2338
2339        return nr_reclaimed;
2340}
2341
2342static void high_work_func(struct work_struct *work)
2343{
2344        struct mem_cgroup *memcg;
2345
2346        memcg = container_of(work, struct mem_cgroup, high_work);
2347        reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2348}
2349
2350/*
2351 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2352 * enough to still cause a significant slowdown in most cases, while still
2353 * allowing diagnostics and tracing to proceed without becoming stuck.
2354 */
2355#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2356
2357/*
2358 * When calculating the delay, we use these either side of the exponentiation to
2359 * maintain precision and scale to a reasonable number of jiffies (see the table
2360 * below.
2361 *
2362 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2363 *   overage ratio to a delay.
2364 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2365 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2366 *   to produce a reasonable delay curve.
2367 *
2368 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2369 * reasonable delay curve compared to precision-adjusted overage, not
2370 * penalising heavily at first, but still making sure that growth beyond the
2371 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2372 * example, with a high of 100 megabytes:
2373 *
2374 *  +-------+------------------------+
2375 *  | usage | time to allocate in ms |
2376 *  +-------+------------------------+
2377 *  | 100M  |                      0 |
2378 *  | 101M  |                      6 |
2379 *  | 102M  |                     25 |
2380 *  | 103M  |                     57 |
2381 *  | 104M  |                    102 |
2382 *  | 105M  |                    159 |
2383 *  | 106M  |                    230 |
2384 *  | 107M  |                    313 |
2385 *  | 108M  |                    409 |
2386 *  | 109M  |                    518 |
2387 *  | 110M  |                    639 |
2388 *  | 111M  |                    774 |
2389 *  | 112M  |                    921 |
2390 *  | 113M  |                   1081 |
2391 *  | 114M  |                   1254 |
2392 *  | 115M  |                   1439 |
2393 *  | 116M  |                   1638 |
2394 *  | 117M  |                   1849 |
2395 *  | 118M  |                   2000 |
2396 *  | 119M  |                   2000 |
2397 *  | 120M  |                   2000 |
2398 *  +-------+------------------------+
2399 */
2400 #define MEMCG_DELAY_PRECISION_SHIFT 20
2401 #define MEMCG_DELAY_SCALING_SHIFT 14
2402
2403static u64 calculate_overage(unsigned long usage, unsigned long high)
2404{
2405        u64 overage;
2406
2407        if (usage <= high)
2408                return 0;
2409
2410        /*
2411         * Prevent division by 0 in overage calculation by acting as if
2412         * it was a threshold of 1 page
2413         */
2414        high = max(high, 1UL);
2415
2416        overage = usage - high;
2417        overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2418        return div64_u64(overage, high);
2419}
2420
2421static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2422{
2423        u64 overage, max_overage = 0;
2424
2425        do {
2426                overage = calculate_overage(page_counter_read(&memcg->memory),
2427                                            READ_ONCE(memcg->memory.high));
2428                max_overage = max(overage, max_overage);
2429        } while ((memcg = parent_mem_cgroup(memcg)) &&
2430                 !mem_cgroup_is_root(memcg));
2431
2432        return max_overage;
2433}
2434
2435static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2436{
2437        u64 overage, max_overage = 0;
2438
2439        do {
2440                overage = calculate_overage(page_counter_read(&memcg->swap),
2441                                            READ_ONCE(memcg->swap.high));
2442                if (overage)
2443                        memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2444                max_overage = max(overage, max_overage);
2445        } while ((memcg = parent_mem_cgroup(memcg)) &&
2446                 !mem_cgroup_is_root(memcg));
2447
2448        return max_overage;
2449}
2450
2451/*
2452 * Get the number of jiffies that we should penalise a mischievous cgroup which
2453 * is exceeding its memory.high by checking both it and its ancestors.
2454 */
2455static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2456                                          unsigned int nr_pages,
2457                                          u64 max_overage)
2458{
2459        unsigned long penalty_jiffies;
2460
2461        if (!max_overage)
2462                return 0;
2463
2464        /*
2465         * We use overage compared to memory.high to calculate the number of
2466         * jiffies to sleep (penalty_jiffies). Ideally this value should be
2467         * fairly lenient on small overages, and increasingly harsh when the
2468         * memcg in question makes it clear that it has no intention of stopping
2469         * its crazy behaviour, so we exponentially increase the delay based on
2470         * overage amount.
2471         */
2472        penalty_jiffies = max_overage * max_overage * HZ;
2473        penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2474        penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2475
2476        /*
2477         * Factor in the task's own contribution to the overage, such that four
2478         * N-sized allocations are throttled approximately the same as one
2479         * 4N-sized allocation.
2480         *
2481         * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2482         * larger the current charge patch is than that.
2483         */
2484        return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2485}
2486
2487/*
2488 * Scheduled by try_charge() to be executed from the userland return path
2489 * and reclaims memory over the high limit.
2490 */
2491void mem_cgroup_handle_over_high(void)
2492{
2493        unsigned long penalty_jiffies;
2494        unsigned long pflags;
2495        unsigned long nr_reclaimed;
2496        unsigned int nr_pages = current->memcg_nr_pages_over_high;
2497        int nr_retries = MAX_RECLAIM_RETRIES;
2498        struct mem_cgroup *memcg;
2499        bool in_retry = false;
2500
2501        if (likely(!nr_pages))
2502                return;
2503
2504        memcg = get_mem_cgroup_from_mm(current->mm);
2505        current->memcg_nr_pages_over_high = 0;
2506
2507retry_reclaim:
2508        /*
2509         * The allocating task should reclaim at least the batch size, but for
2510         * subsequent retries we only want to do what's necessary to prevent oom
2511         * or breaching resource isolation.
2512         *
2513         * This is distinct from memory.max or page allocator behaviour because
2514         * memory.high is currently batched, whereas memory.max and the page
2515         * allocator run every time an allocation is made.
2516         */
2517        nr_reclaimed = reclaim_high(memcg,
2518                                    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2519                                    GFP_KERNEL);
2520
2521        /*
2522         * memory.high is breached and reclaim is unable to keep up. Throttle
2523         * allocators proactively to slow down excessive growth.
2524         */
2525        penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2526                                               mem_find_max_overage(memcg));
2527
2528        penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2529                                                swap_find_max_overage(memcg));
2530
2531        /*
2532         * Clamp the max delay per usermode return so as to still keep the
2533         * application moving forwards and also permit diagnostics, albeit
2534         * extremely slowly.
2535         */
2536        penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2537
2538        /*
2539         * Don't sleep if the amount of jiffies this memcg owes us is so low
2540         * that it's not even worth doing, in an attempt to be nice to those who
2541         * go only a small amount over their memory.high value and maybe haven't
2542         * been aggressively reclaimed enough yet.
2543         */
2544        if (penalty_jiffies <= HZ / 100)
2545                goto out;
2546
2547        /*
2548         * If reclaim is making forward progress but we're still over
2549         * memory.high, we want to encourage that rather than doing allocator
2550         * throttling.
2551         */
2552        if (nr_reclaimed || nr_retries--) {
2553                in_retry = true;
2554                goto retry_reclaim;
2555        }
2556
2557        /*
2558         * If we exit early, we're guaranteed to die (since
2559         * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2560         * need to account for any ill-begotten jiffies to pay them off later.
2561         */
2562        psi_memstall_enter(&pflags);
2563        schedule_timeout_killable(penalty_jiffies);
2564        psi_memstall_leave(&pflags);
2565
2566out:
2567        css_put(&memcg->css);
2568}
2569
2570static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2571                        unsigned int nr_pages)
2572{
2573        unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2574        int nr_retries = MAX_RECLAIM_RETRIES;
2575        struct mem_cgroup *mem_over_limit;
2576        struct page_counter *counter;
2577        unsigned long nr_reclaimed;
2578        bool passed_oom = false;
2579        bool may_swap = true;
2580        bool drained = false;
2581        unsigned long pflags;
2582
2583retry:
2584        if (consume_stock(memcg, nr_pages))
2585                return 0;
2586
2587        if (!do_memsw_account() ||
2588            page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2589                if (page_counter_try_charge(&memcg->memory, batch, &counter))
2590                        goto done_restock;
2591                if (do_memsw_account())
2592                        page_counter_uncharge(&memcg->memsw, batch);
2593                mem_over_limit = mem_cgroup_from_counter(counter, memory);
2594        } else {
2595                mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2596                may_swap = false;
2597        }
2598
2599        if (batch > nr_pages) {
2600                batch = nr_pages;
2601                goto retry;
2602        }
2603
2604        /*
2605         * Prevent unbounded recursion when reclaim operations need to
2606         * allocate memory. This might exceed the limits temporarily,
2607         * but we prefer facilitating memory reclaim and getting back
2608         * under the limit over triggering OOM kills in these cases.
2609         */
2610        if (unlikely(current->flags & PF_MEMALLOC))
2611                goto force;
2612
2613        if (unlikely(task_in_memcg_oom(current)))
2614                goto nomem;
2615
2616        if (!gfpflags_allow_blocking(gfp_mask))
2617                goto nomem;
2618
2619        memcg_memory_event(mem_over_limit, MEMCG_MAX);
2620
2621        psi_memstall_enter(&pflags);
2622        nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2623                                                    gfp_mask, may_swap);
2624        psi_memstall_leave(&pflags);
2625
2626        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2627                goto retry;
2628
2629        if (!drained) {
2630                drain_all_stock(mem_over_limit);
2631                drained = true;
2632                goto retry;
2633        }
2634
2635        if (gfp_mask & __GFP_NORETRY)
2636                goto nomem;
2637        /*
2638         * Even though the limit is exceeded at this point, reclaim
2639         * may have been able to free some pages.  Retry the charge
2640         * before killing the task.
2641         *
2642         * Only for regular pages, though: huge pages are rather
2643         * unlikely to succeed so close to the limit, and we fall back
2644         * to regular pages anyway in case of failure.
2645         */
2646        if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2647                goto retry;
2648        /*
2649         * At task move, charge accounts can be doubly counted. So, it's
2650         * better to wait until the end of task_move if something is going on.
2651         */
2652        if (mem_cgroup_wait_acct_move(mem_over_limit))
2653                goto retry;
2654
2655        if (nr_retries--)
2656                goto retry;
2657
2658        if (gfp_mask & __GFP_RETRY_MAYFAIL)
2659                goto nomem;
2660
2661        /* Avoid endless loop for tasks bypassed by the oom killer */
2662        if (passed_oom && task_is_dying())
2663                goto nomem;
2664
2665        /*
2666         * keep retrying as long as the memcg oom killer is able to make
2667         * a forward progress or bypass the charge if the oom killer
2668         * couldn't make any progress.
2669         */
2670        if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2671                           get_order(nr_pages * PAGE_SIZE))) {
2672                passed_oom = true;
2673                nr_retries = MAX_RECLAIM_RETRIES;
2674                goto retry;
2675        }
2676nomem:
2677        /*
2678         * Memcg doesn't have a dedicated reserve for atomic
2679         * allocations. But like the global atomic pool, we need to
2680         * put the burden of reclaim on regular allocation requests
2681         * and let these go through as privileged allocations.
2682         */
2683        if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2684                return -ENOMEM;
2685force:
2686        /*
2687         * The allocation either can't fail or will lead to more memory
2688         * being freed very soon.  Allow memory usage go over the limit
2689         * temporarily by force charging it.
2690         */
2691        page_counter_charge(&memcg->memory, nr_pages);
2692        if (do_memsw_account())
2693                page_counter_charge(&memcg->memsw, nr_pages);
2694
2695        return 0;
2696
2697done_restock:
2698        if (batch > nr_pages)
2699                refill_stock(memcg, batch - nr_pages);
2700
2701        /*
2702         * If the hierarchy is above the normal consumption range, schedule
2703         * reclaim on returning to userland.  We can perform reclaim here
2704         * if __GFP_RECLAIM but let's always punt for simplicity and so that
2705         * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2706         * not recorded as it most likely matches current's and won't
2707         * change in the meantime.  As high limit is checked again before
2708         * reclaim, the cost of mismatch is negligible.
2709         */
2710        do {
2711                bool mem_high, swap_high;
2712
2713                mem_high = page_counter_read(&memcg->memory) >
2714                        READ_ONCE(memcg->memory.high);
2715                swap_high = page_counter_read(&memcg->swap) >
2716                        READ_ONCE(memcg->swap.high);
2717
2718                /* Don't bother a random interrupted task */
2719                if (!in_task()) {
2720                        if (mem_high) {
2721                                schedule_work(&memcg->high_work);
2722                                break;
2723                        }
2724                        continue;
2725                }
2726
2727                if (mem_high || swap_high) {
2728                        /*
2729                         * The allocating tasks in this cgroup will need to do
2730                         * reclaim or be throttled to prevent further growth
2731                         * of the memory or swap footprints.
2732                         *
2733                         * Target some best-effort fairness between the tasks,
2734                         * and distribute reclaim work and delay penalties
2735                         * based on how much each task is actually allocating.
2736                         */
2737                        current->memcg_nr_pages_over_high += batch;
2738                        set_notify_resume(current);
2739                        break;
2740                }
2741        } while ((memcg = parent_mem_cgroup(memcg)));
2742
2743        if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2744            !(current->flags & PF_MEMALLOC) &&
2745            gfpflags_allow_blocking(gfp_mask)) {
2746                mem_cgroup_handle_over_high();
2747        }
2748        return 0;
2749}
2750
2751static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2752                             unsigned int nr_pages)
2753{
2754        if (mem_cgroup_is_root(memcg))
2755                return 0;
2756
2757        return try_charge_memcg(memcg, gfp_mask, nr_pages);
2758}
2759
2760static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2761{
2762        if (mem_cgroup_is_root(memcg))
2763                return;
2764
2765        page_counter_uncharge(&memcg->memory, nr_pages);
2766        if (do_memsw_account())
2767                page_counter_uncharge(&memcg->memsw, nr_pages);
2768}
2769
2770static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2771{
2772        VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2773        /*
2774         * Any of the following ensures page's memcg stability:
2775         *
2776         * - the page lock
2777         * - LRU isolation
2778         * - lock_page_memcg()
2779         * - exclusive reference
2780         */
2781        folio->memcg_data = (unsigned long)memcg;
2782}
2783
2784#ifdef CONFIG_MEMCG_KMEM
2785/*
2786 * The allocated objcg pointers array is not accounted directly.
2787 * Moreover, it should not come from DMA buffer and is not readily
2788 * reclaimable. So those GFP bits should be masked off.
2789 */
2790#define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2791
2792/*
2793 * mod_objcg_mlstate() may be called with irq enabled, so
2794 * mod_memcg_lruvec_state() should be used.
2795 */
2796static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2797                                     struct pglist_data *pgdat,
2798                                     enum node_stat_item idx, int nr)
2799{
2800        struct mem_cgroup *memcg;
2801        struct lruvec *lruvec;
2802
2803        rcu_read_lock();
2804        memcg = obj_cgroup_memcg(objcg);
2805        lruvec = mem_cgroup_lruvec(memcg, pgdat);
2806        mod_memcg_lruvec_state(lruvec, idx, nr);
2807        rcu_read_unlock();
2808}
2809
2810int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2811                                 gfp_t gfp, bool new_slab)
2812{
2813        unsigned int objects = objs_per_slab(s, slab);
2814        unsigned long memcg_data;
2815        void *vec;
2816
2817        gfp &= ~OBJCGS_CLEAR_MASK;
2818        vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2819                           slab_nid(slab));
2820        if (!vec)
2821                return -ENOMEM;
2822
2823        memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2824        if (new_slab) {
2825                /*
2826                 * If the slab is brand new and nobody can yet access its
2827                 * memcg_data, no synchronization is required and memcg_data can
2828                 * be simply assigned.
2829                 */
2830                slab->memcg_data = memcg_data;
2831        } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2832                /*
2833                 * If the slab is already in use, somebody can allocate and
2834                 * assign obj_cgroups in parallel. In this case the existing
2835                 * objcg vector should be reused.
2836                 */
2837                kfree(vec);
2838                return 0;
2839        }
2840
2841        kmemleak_not_leak(vec);
2842        return 0;
2843}
2844
2845/*
2846 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2847 *
2848 * A passed kernel object can be a slab object or a generic kernel page, so
2849 * different mechanisms for getting the memory cgroup pointer should be used.
2850 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2851 * can not know for sure how the kernel object is implemented.
2852 * mem_cgroup_from_obj() can be safely used in such cases.
2853 *
2854 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2855 * cgroup_mutex, etc.
2856 */
2857struct mem_cgroup *mem_cgroup_from_obj(void *p)
2858{
2859        struct folio *folio;
2860
2861        if (mem_cgroup_disabled())
2862                return NULL;
2863
2864        folio = virt_to_folio(p);
2865
2866        /*
2867         * Slab objects are accounted individually, not per-page.
2868         * Memcg membership data for each individual object is saved in
2869         * slab->memcg_data.
2870         */
2871        if (folio_test_slab(folio)) {
2872                struct obj_cgroup **objcgs;
2873                struct slab *slab;
2874                unsigned int off;
2875
2876                slab = folio_slab(folio);
2877                objcgs = slab_objcgs(slab);
2878                if (!objcgs)
2879                        return NULL;
2880
2881                off = obj_to_index(slab->slab_cache, slab, p);
2882                if (objcgs[off])
2883                        return obj_cgroup_memcg(objcgs[off]);
2884
2885                return NULL;
2886        }
2887
2888        /*
2889         * page_memcg_check() is used here, because in theory we can encounter
2890         * a folio where the slab flag has been cleared already, but
2891         * slab->memcg_data has not been freed yet
2892         * page_memcg_check(page) will guarantee that a proper memory
2893         * cgroup pointer or NULL will be returned.
2894         */
2895        return page_memcg_check(folio_page(folio, 0));
2896}
2897
2898static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2899{
2900        struct obj_cgroup *objcg = NULL;
2901
2902        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2903                objcg = rcu_dereference(memcg->objcg);
2904                if (objcg && obj_cgroup_tryget(objcg))
2905                        break;
2906                objcg = NULL;
2907        }
2908        return objcg;
2909}
2910
2911__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2912{
2913        struct obj_cgroup *objcg = NULL;
2914        struct mem_cgroup *memcg;
2915
2916        if (memcg_kmem_bypass())
2917                return NULL;
2918
2919        rcu_read_lock();
2920        if (unlikely(active_memcg()))
2921                memcg = active_memcg();
2922        else
2923                memcg = mem_cgroup_from_task(current);
2924        objcg = __get_obj_cgroup_from_memcg(memcg);
2925        rcu_read_unlock();
2926        return objcg;
2927}
2928
2929struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
2930{
2931        struct obj_cgroup *objcg;
2932
2933        if (!memcg_kmem_enabled() || memcg_kmem_bypass())
2934                return NULL;
2935
2936        if (PageMemcgKmem(page)) {
2937                objcg = __folio_objcg(page_folio(page));
2938                obj_cgroup_get(objcg);
2939        } else {
2940                struct mem_cgroup *memcg;
2941
2942                rcu_read_lock();
2943                memcg = __folio_memcg(page_folio(page));
2944                if (memcg)
2945                        objcg = __get_obj_cgroup_from_memcg(memcg);
2946                else
2947                        objcg = NULL;
2948                rcu_read_unlock();
2949        }
2950        return objcg;
2951}
2952
2953static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2954{
2955        mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2956        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2957                if (nr_pages > 0)
2958                        page_counter_charge(&memcg->kmem, nr_pages);
2959                else
2960                        page_counter_uncharge(&memcg->kmem, -nr_pages);
2961        }
2962}
2963
2964
2965/*
2966 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2967 * @objcg: object cgroup to uncharge
2968 * @nr_pages: number of pages to uncharge
2969 */
2970static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2971                                      unsigned int nr_pages)
2972{
2973        struct mem_cgroup *memcg;
2974
2975        memcg = get_mem_cgroup_from_objcg(objcg);
2976
2977        memcg_account_kmem(memcg, -nr_pages);
2978        refill_stock(memcg, nr_pages);
2979
2980        css_put(&memcg->css);
2981}
2982
2983/*
2984 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2985 * @objcg: object cgroup to charge
2986 * @gfp: reclaim mode
2987 * @nr_pages: number of pages to charge
2988 *
2989 * Returns 0 on success, an error code on failure.
2990 */
2991static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2992                                   unsigned int nr_pages)
2993{
2994        struct mem_cgroup *memcg;
2995        int ret;
2996
2997        memcg = get_mem_cgroup_from_objcg(objcg);
2998
2999        ret = try_charge_memcg(memcg, gfp, nr_pages);
3000        if (ret)
3001                goto out;
3002
3003        memcg_account_kmem(memcg, nr_pages);
3004out:
3005        css_put(&memcg->css);
3006
3007        return ret;
3008}
3009
3010/**
3011 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3012 * @page: page to charge
3013 * @gfp: reclaim mode
3014 * @order: allocation order
3015 *
3016 * Returns 0 on success, an error code on failure.
3017 */
3018int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3019{
3020        struct obj_cgroup *objcg;
3021        int ret = 0;
3022
3023        objcg = get_obj_cgroup_from_current();
3024        if (objcg) {
3025                ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3026                if (!ret) {
3027                        page->memcg_data = (unsigned long)objcg |
3028                                MEMCG_DATA_KMEM;
3029                        return 0;
3030                }
3031                obj_cgroup_put(objcg);
3032        }
3033        return ret;
3034}
3035
3036/**
3037 * __memcg_kmem_uncharge_page: uncharge a kmem page
3038 * @page: page to uncharge
3039 * @order: allocation order
3040 */
3041void __memcg_kmem_uncharge_page(struct page *page, int order)
3042{
3043        struct folio *folio = page_folio(page);
3044        struct obj_cgroup *objcg;
3045        unsigned int nr_pages = 1 << order;
3046
3047        if (!folio_memcg_kmem(folio))
3048                return;
3049
3050        objcg = __folio_objcg(folio);
3051        obj_cgroup_uncharge_pages(objcg, nr_pages);
3052        folio->memcg_data = 0;
3053        obj_cgroup_put(objcg);
3054}
3055
3056void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3057                     enum node_stat_item idx, int nr)
3058{
3059        struct memcg_stock_pcp *stock;
3060        struct obj_cgroup *old = NULL;
3061        unsigned long flags;
3062        int *bytes;
3063
3064        local_lock_irqsave(&memcg_stock.stock_lock, flags);
3065        stock = this_cpu_ptr(&memcg_stock);
3066
3067        /*
3068         * Save vmstat data in stock and skip vmstat array update unless
3069         * accumulating over a page of vmstat data or when pgdat or idx
3070         * changes.
3071         */
3072        if (stock->cached_objcg != objcg) {
3073                old = drain_obj_stock(stock);
3074                obj_cgroup_get(objcg);
3075                stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3076                                ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3077                stock->cached_objcg = objcg;
3078                stock->cached_pgdat = pgdat;
3079        } else if (stock->cached_pgdat != pgdat) {
3080                /* Flush the existing cached vmstat data */
3081                struct pglist_data *oldpg = stock->cached_pgdat;
3082
3083                if (stock->nr_slab_reclaimable_b) {
3084                        mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3085                                          stock->nr_slab_reclaimable_b);
3086                        stock->nr_slab_reclaimable_b = 0;
3087                }
3088                if (stock->nr_slab_unreclaimable_b) {
3089                        mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3090                                          stock->nr_slab_unreclaimable_b);
3091                        stock->nr_slab_unreclaimable_b = 0;
3092                }
3093                stock->cached_pgdat = pgdat;
3094        }
3095
3096        bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3097                                               : &stock->nr_slab_unreclaimable_b;
3098        /*
3099         * Even for large object >= PAGE_SIZE, the vmstat data will still be
3100         * cached locally at least once before pushing it out.
3101         */
3102        if (!*bytes) {
3103                *bytes = nr;
3104                nr = 0;
3105        } else {
3106                *bytes += nr;
3107                if (abs(*bytes) > PAGE_SIZE) {
3108                        nr = *bytes;
3109                        *bytes = 0;
3110                } else {
3111                        nr = 0;
3112                }
3113        }
3114        if (nr)
3115                mod_objcg_mlstate(objcg, pgdat, idx, nr);
3116
3117        local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3118        if (old)
3119                obj_cgroup_put(old);
3120}
3121
3122static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3123{
3124        struct memcg_stock_pcp *stock;
3125        unsigned long flags;
3126        bool ret = false;
3127
3128        local_lock_irqsave(&memcg_stock.stock_lock, flags);
3129
3130        stock = this_cpu_ptr(&memcg_stock);
3131        if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3132                stock->nr_bytes -= nr_bytes;
3133                ret = true;
3134        }
3135
3136        local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3137
3138        return ret;
3139}
3140
3141static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3142{
3143        struct obj_cgroup *old = stock->cached_objcg;
3144
3145        if (!old)
3146                return NULL;
3147
3148        if (stock->nr_bytes) {
3149                unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3150                unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3151
3152                if (nr_pages) {
3153                        struct mem_cgroup *memcg;
3154
3155                        memcg = get_mem_cgroup_from_objcg(old);
3156
3157                        memcg_account_kmem(memcg, -nr_pages);
3158                        __refill_stock(memcg, nr_pages);
3159
3160                        css_put(&memcg->css);
3161                }
3162
3163                /*
3164                 * The leftover is flushed to the centralized per-memcg value.
3165                 * On the next attempt to refill obj stock it will be moved
3166                 * to a per-cpu stock (probably, on an other CPU), see
3167                 * refill_obj_stock().
3168                 *
3169                 * How often it's flushed is a trade-off between the memory
3170                 * limit enforcement accuracy and potential CPU contention,
3171                 * so it might be changed in the future.
3172                 */
3173                atomic_add(nr_bytes, &old->nr_charged_bytes);
3174                stock->nr_bytes = 0;
3175        }
3176
3177        /*
3178         * Flush the vmstat data in current stock
3179         */
3180        if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3181                if (stock->nr_slab_reclaimable_b) {
3182                        mod_objcg_mlstate(old, stock->cached_pgdat,
3183                                          NR_SLAB_RECLAIMABLE_B,
3184                                          stock->nr_slab_reclaimable_b);
3185                        stock->nr_slab_reclaimable_b = 0;
3186                }
3187                if (stock->nr_slab_unreclaimable_b) {
3188                        mod_objcg_mlstate(old, stock->cached_pgdat,
3189                                          NR_SLAB_UNRECLAIMABLE_B,
3190                                          stock->nr_slab_unreclaimable_b);
3191                        stock->nr_slab_unreclaimable_b = 0;
3192                }
3193                stock->cached_pgdat = NULL;
3194        }
3195
3196        stock->cached_objcg = NULL;
3197        /*
3198         * The `old' objects needs to be released by the caller via
3199         * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3200         */
3201        return old;
3202}
3203
3204static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3205                                     struct mem_cgroup *root_memcg)
3206{
3207        struct mem_cgroup *memcg;
3208
3209        if (stock->cached_objcg) {
3210                memcg = obj_cgroup_memcg(stock->cached_objcg);
3211                if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3212                        return true;
3213        }
3214
3215        return false;
3216}
3217
3218static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3219                             bool allow_uncharge)
3220{
3221        struct memcg_stock_pcp *stock;
3222        struct obj_cgroup *old = NULL;
3223        unsigned long flags;
3224        unsigned int nr_pages = 0;
3225
3226        local_lock_irqsave(&memcg_stock.stock_lock, flags);
3227
3228        stock = this_cpu_ptr(&memcg_stock);
3229        if (stock->cached_objcg != objcg) { /* reset if necessary */
3230                old = drain_obj_stock(stock);
3231                obj_cgroup_get(objcg);
3232                stock->cached_objcg = objcg;
3233                stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3234                                ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3235                allow_uncharge = true;  /* Allow uncharge when objcg changes */
3236        }
3237        stock->nr_bytes += nr_bytes;
3238
3239        if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3240                nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3241                stock->nr_bytes &= (PAGE_SIZE - 1);
3242        }
3243
3244        local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3245        if (old)
3246                obj_cgroup_put(old);
3247
3248        if (nr_pages)
3249                obj_cgroup_uncharge_pages(objcg, nr_pages);
3250}
3251
3252int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3253{
3254        unsigned int nr_pages, nr_bytes;
3255        int ret;
3256
3257        if (consume_obj_stock(objcg, size))
3258                return 0;
3259
3260        /*
3261         * In theory, objcg->nr_charged_bytes can have enough
3262         * pre-charged bytes to satisfy the allocation. However,
3263         * flushing objcg->nr_charged_bytes requires two atomic
3264         * operations, and objcg->nr_charged_bytes can't be big.
3265         * The shared objcg->nr_charged_bytes can also become a
3266         * performance bottleneck if all tasks of the same memcg are
3267         * trying to update it. So it's better to ignore it and try
3268         * grab some new pages. The stock's nr_bytes will be flushed to
3269         * objcg->nr_charged_bytes later on when objcg changes.
3270         *
3271         * The stock's nr_bytes may contain enough pre-charged bytes
3272         * to allow one less page from being charged, but we can't rely
3273         * on the pre-charged bytes not being changed outside of
3274         * consume_obj_stock() or refill_obj_stock(). So ignore those
3275         * pre-charged bytes as well when charging pages. To avoid a
3276         * page uncharge right after a page charge, we set the
3277         * allow_uncharge flag to false when calling refill_obj_stock()
3278         * to temporarily allow the pre-charged bytes to exceed the page
3279         * size limit. The maximum reachable value of the pre-charged
3280         * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3281         * race.
3282         */
3283        nr_pages = size >> PAGE_SHIFT;
3284        nr_bytes = size & (PAGE_SIZE - 1);
3285
3286        if (nr_bytes)
3287                nr_pages += 1;
3288
3289        ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3290        if (!ret && nr_bytes)
3291                refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3292
3293        return ret;
3294}
3295
3296void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3297{
3298        refill_obj_stock(objcg, size, true);
3299}
3300
3301#endif /* CONFIG_MEMCG_KMEM */
3302
3303/*
3304 * Because page_memcg(head) is not set on tails, set it now.
3305 */
3306void split_page_memcg(struct page *head, unsigned int nr)
3307{
3308        struct folio *folio = page_folio(head);
3309        struct mem_cgroup *memcg = folio_memcg(folio);
3310        int i;
3311
3312        if (mem_cgroup_disabled() || !memcg)
3313                return;
3314
3315        for (i = 1; i < nr; i++)
3316                folio_page(folio, i)->memcg_data = folio->memcg_data;
3317
3318        if (folio_memcg_kmem(folio))
3319                obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3320        else
3321                css_get_many(&memcg->css, nr - 1);
3322}
3323
3324#ifdef CONFIG_MEMCG_SWAP
3325/**
3326 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3327 * @entry: swap entry to be moved
3328 * @from:  mem_cgroup which the entry is moved from
3329 * @to:  mem_cgroup which the entry is moved to
3330 *
3331 * It succeeds only when the swap_cgroup's record for this entry is the same
3332 * as the mem_cgroup's id of @from.
3333 *
3334 * Returns 0 on success, -EINVAL on failure.
3335 *
3336 * The caller must have charged to @to, IOW, called page_counter_charge() about
3337 * both res and memsw, and called css_get().
3338 */
3339static int mem_cgroup_move_swap_account(swp_entry_t entry,
3340                                struct mem_cgroup *from, struct mem_cgroup *to)
3341{
3342        unsigned short old_id, new_id;
3343
3344        old_id = mem_cgroup_id(from);
3345        new_id = mem_cgroup_id(to);
3346
3347        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3348                mod_memcg_state(from, MEMCG_SWAP, -1);
3349                mod_memcg_state(to, MEMCG_SWAP, 1);
3350                return 0;
3351        }
3352        return -EINVAL;
3353}
3354#else
3355static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3356                                struct mem_cgroup *from, struct mem_cgroup *to)
3357{
3358        return -EINVAL;
3359}
3360#endif
3361
3362static DEFINE_MUTEX(memcg_max_mutex);
3363
3364static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3365                                 unsigned long max, bool memsw)
3366{
3367        bool enlarge = false;
3368        bool drained = false;
3369        int ret;
3370        bool limits_invariant;
3371        struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3372
3373        do {
3374                if (signal_pending(current)) {
3375                        ret = -EINTR;
3376                        break;
3377                }
3378
3379                mutex_lock(&memcg_max_mutex);
3380                /*
3381                 * Make sure that the new limit (memsw or memory limit) doesn't
3382                 * break our basic invariant rule memory.max <= memsw.max.
3383                 */
3384                limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3385                                           max <= memcg->memsw.max;
3386                if (!limits_invariant) {
3387                        mutex_unlock(&memcg_max_mutex);
3388                        ret = -EINVAL;
3389                        break;
3390                }
3391                if (max > counter->max)
3392                        enlarge = true;
3393                ret = page_counter_set_max(counter, max);
3394                mutex_unlock(&memcg_max_mutex);
3395
3396                if (!ret)
3397                        break;
3398
3399                if (!drained) {
3400                        drain_all_stock(memcg);
3401                        drained = true;
3402                        continue;
3403                }
3404
3405                if (!try_to_free_mem_cgroup_pages(memcg, 1,
3406                                        GFP_KERNEL, !memsw)) {
3407                        ret = -EBUSY;
3408                        break;
3409                }
3410        } while (true);
3411
3412        if (!ret && enlarge)
3413                memcg_oom_recover(memcg);
3414
3415        return ret;
3416}
3417
3418unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3419                                            gfp_t gfp_mask,
3420                                            unsigned long *total_scanned)
3421{
3422        unsigned long nr_reclaimed = 0;
3423        struct mem_cgroup_per_node *mz, *next_mz = NULL;
3424        unsigned long reclaimed;
3425        int loop = 0;
3426        struct mem_cgroup_tree_per_node *mctz;
3427        unsigned long excess;
3428
3429        if (order > 0)
3430                return 0;
3431
3432        mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3433
3434        /*
3435         * Do not even bother to check the largest node if the root
3436         * is empty. Do it lockless to prevent lock bouncing. Races
3437         * are acceptable as soft limit is best effort anyway.
3438         */
3439        if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3440                return 0;
3441
3442        /*
3443         * This loop can run a while, specially if mem_cgroup's continuously
3444         * keep exceeding their soft limit and putting the system under
3445         * pressure
3446         */
3447        do {
3448                if (next_mz)
3449                        mz = next_mz;
3450                else
3451                        mz = mem_cgroup_largest_soft_limit_node(mctz);
3452                if (!mz)
3453                        break;
3454
3455                reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3456                                                    gfp_mask, total_scanned);
3457                nr_reclaimed += reclaimed;
3458                spin_lock_irq(&mctz->lock);
3459
3460                /*
3461                 * If we failed to reclaim anything from this memory cgroup
3462                 * it is time to move on to the next cgroup
3463                 */
3464                next_mz = NULL;
3465                if (!reclaimed)
3466                        next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3467
3468                excess = soft_limit_excess(mz->memcg);
3469                /*
3470                 * One school of thought says that we should not add
3471                 * back the node to the tree if reclaim returns 0.
3472                 * But our reclaim could return 0, simply because due
3473                 * to priority we are exposing a smaller subset of
3474                 * memory to reclaim from. Consider this as a longer
3475                 * term TODO.
3476                 */
3477                /* If excess == 0, no tree ops */
3478                __mem_cgroup_insert_exceeded(mz, mctz, excess);
3479                spin_unlock_irq(&mctz->lock);
3480                css_put(&mz->memcg->css);
3481                loop++;
3482                /*
3483                 * Could not reclaim anything and there are no more
3484                 * mem cgroups to try or we seem to be looping without
3485                 * reclaiming anything.
3486                 */
3487                if (!nr_reclaimed &&
3488                        (next_mz == NULL ||
3489                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3490                        break;
3491        } while (!nr_reclaimed);
3492        if (next_mz)
3493                css_put(&next_mz->memcg->css);
3494        return nr_reclaimed;
3495}
3496
3497/*
3498 * Reclaims as many pages from the given memcg as possible.
3499 *
3500 * Caller is responsible for holding css reference for memcg.
3501 */
3502static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3503{
3504        int nr_retries = MAX_RECLAIM_RETRIES;
3505
3506        /* we call try-to-free pages for make this cgroup empty */
3507        lru_add_drain_all();
3508
3509        drain_all_stock(memcg);
3510
3511        /* try to free all pages in this cgroup */
3512        while (nr_retries && page_counter_read(&memcg->memory)) {
3513                if (signal_pending(current))
3514                        return -EINTR;
3515
3516                if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3517                        nr_retries--;
3518        }
3519
3520        return 0;
3521}
3522
3523static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3524                                            char *buf, size_t nbytes,
3525                                            loff_t off)
3526{
3527        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3528
3529        if (mem_cgroup_is_root(memcg))
3530                return -EINVAL;
3531        return mem_cgroup_force_empty(memcg) ?: nbytes;
3532}
3533
3534static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3535                                     struct cftype *cft)
3536{
3537        return 1;
3538}
3539
3540static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3541                                      struct cftype *cft, u64 val)
3542{
3543        if (val == 1)
3544                return 0;
3545
3546        pr_warn_once("Non-hierarchical mode is deprecated. "
3547                     "Please report your usecase to linux-mm@kvack.org if you "
3548                     "depend on this functionality.\n");
3549
3550        return -EINVAL;
3551}
3552
3553static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3554{
3555        unsigned long val;
3556
3557        if (mem_cgroup_is_root(memcg)) {
3558                mem_cgroup_flush_stats();
3559                val = memcg_page_state(memcg, NR_FILE_PAGES) +
3560                        memcg_page_state(memcg, NR_ANON_MAPPED);
3561                if (swap)
3562                        val += memcg_page_state(memcg, MEMCG_SWAP);
3563        } else {
3564                if (!swap)
3565                        val = page_counter_read(&memcg->memory);
3566                else
3567                        val = page_counter_read(&memcg->memsw);
3568        }
3569        return val;
3570}
3571
3572enum {
3573        RES_USAGE,
3574        RES_LIMIT,
3575        RES_MAX_USAGE,
3576        RES_FAILCNT,
3577        RES_SOFT_LIMIT,
3578};
3579
3580static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3581                               struct cftype *cft)
3582{
3583        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584        struct page_counter *counter;
3585
3586        switch (MEMFILE_TYPE(cft->private)) {
3587        case _MEM:
3588                counter = &memcg->memory;
3589                break;
3590        case _MEMSWAP:
3591                counter = &memcg->memsw;
3592                break;
3593        case _KMEM:
3594                counter = &memcg->kmem;
3595                break;
3596        case _TCP:
3597                counter = &memcg->tcpmem;
3598                break;
3599        default:
3600                BUG();
3601        }
3602
3603        switch (MEMFILE_ATTR(cft->private)) {
3604        case RES_USAGE:
3605                if (counter == &memcg->memory)
3606                        return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3607                if (counter == &memcg->memsw)
3608                        return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3609                return (u64)page_counter_read(counter) * PAGE_SIZE;
3610        case RES_LIMIT:
3611                return (u64)counter->max * PAGE_SIZE;
3612        case RES_MAX_USAGE:
3613                return (u64)counter->watermark * PAGE_SIZE;
3614        case RES_FAILCNT:
3615                return counter->failcnt;
3616        case RES_SOFT_LIMIT:
3617                return (u64)memcg->soft_limit * PAGE_SIZE;
3618        default:
3619                BUG();
3620        }
3621}
3622
3623#ifdef CONFIG_MEMCG_KMEM
3624static int memcg_online_kmem(struct mem_cgroup *memcg)
3625{
3626        struct obj_cgroup *objcg;
3627
3628        if (cgroup_memory_nokmem)
3629                return 0;
3630
3631        if (unlikely(mem_cgroup_is_root(memcg)))
3632                return 0;
3633
3634        objcg = obj_cgroup_alloc();
3635        if (!objcg)
3636                return -ENOMEM;
3637
3638        objcg->memcg = memcg;
3639        rcu_assign_pointer(memcg->objcg, objcg);
3640
3641        static_branch_enable(&memcg_kmem_enabled_key);
3642
3643        memcg->kmemcg_id = memcg->id.id;
3644
3645        return 0;
3646}
3647
3648static void memcg_offline_kmem(struct mem_cgroup *memcg)
3649{
3650        struct mem_cgroup *parent;
3651
3652        if (cgroup_memory_nokmem)
3653                return;
3654
3655        if (unlikely(mem_cgroup_is_root(memcg)))
3656                return;
3657
3658        parent = parent_mem_cgroup(memcg);
3659        if (!parent)
3660                parent = root_mem_cgroup;
3661
3662        memcg_reparent_objcgs(memcg, parent);
3663
3664        /*
3665         * After we have finished memcg_reparent_objcgs(), all list_lrus
3666         * corresponding to this cgroup are guaranteed to remain empty.
3667         * The ordering is imposed by list_lru_node->lock taken by
3668         * memcg_reparent_list_lrus().
3669         */
3670        memcg_reparent_list_lrus(memcg, parent);
3671}
3672#else
3673static int memcg_online_kmem(struct mem_cgroup *memcg)
3674{
3675        return 0;
3676}
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678{
3679}
3680#endif /* CONFIG_MEMCG_KMEM */
3681
3682static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3683{
3684        int ret;
3685
3686        mutex_lock(&memcg_max_mutex);
3687
3688        ret = page_counter_set_max(&memcg->tcpmem, max);
3689        if (ret)
3690                goto out;
3691
3692        if (!memcg->tcpmem_active) {
3693                /*
3694                 * The active flag needs to be written after the static_key
3695                 * update. This is what guarantees that the socket activation
3696                 * function is the last one to run. See mem_cgroup_sk_alloc()
3697                 * for details, and note that we don't mark any socket as
3698                 * belonging to this memcg until that flag is up.
3699                 *
3700                 * We need to do this, because static_keys will span multiple
3701                 * sites, but we can't control their order. If we mark a socket
3702                 * as accounted, but the accounting functions are not patched in
3703                 * yet, we'll lose accounting.
3704                 *
3705                 * We never race with the readers in mem_cgroup_sk_alloc(),
3706                 * because when this value change, the code to process it is not
3707                 * patched in yet.
3708                 */
3709                static_branch_inc(&memcg_sockets_enabled_key);
3710                memcg->tcpmem_active = true;
3711        }
3712out:
3713        mutex_unlock(&memcg_max_mutex);
3714        return ret;
3715}
3716
3717/*
3718 * The user of this function is...
3719 * RES_LIMIT.
3720 */
3721static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3722                                char *buf, size_t nbytes, loff_t off)
3723{
3724        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3725        unsigned long nr_pages;
3726        int ret;
3727
3728        buf = strstrip(buf);
3729        ret = page_counter_memparse(buf, "-1", &nr_pages);
3730        if (ret)
3731                return ret;
3732
3733        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3734        case RES_LIMIT:
3735                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3736                        ret = -EINVAL;
3737                        break;
3738                }
3739                switch (MEMFILE_TYPE(of_cft(of)->private)) {
3740                case _MEM:
3741                        ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3742                        break;
3743                case _MEMSWAP:
3744                        ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3745                        break;
3746                case _KMEM:
3747                        /* kmem.limit_in_bytes is deprecated. */
3748                        ret = -EOPNOTSUPP;
3749                        break;
3750                case _TCP:
3751                        ret = memcg_update_tcp_max(memcg, nr_pages);
3752                        break;
3753                }
3754                break;
3755        case RES_SOFT_LIMIT:
3756                if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3757                        ret = -EOPNOTSUPP;
3758                } else {
3759                        memcg->soft_limit = nr_pages;
3760                        ret = 0;
3761                }
3762                break;
3763        }
3764        return ret ?: nbytes;
3765}
3766
3767static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3768                                size_t nbytes, loff_t off)
3769{
3770        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3771        struct page_counter *counter;
3772
3773        switch (MEMFILE_TYPE(of_cft(of)->private)) {
3774        case _MEM:
3775                counter = &memcg->memory;
3776                break;
3777        case _MEMSWAP:
3778                counter = &memcg->memsw;
3779                break;
3780        case _KMEM:
3781                counter = &memcg->kmem;
3782                break;
3783        case _TCP:
3784                counter = &memcg->tcpmem;
3785                break;
3786        default:
3787                BUG();
3788        }
3789
3790        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3791        case RES_MAX_USAGE:
3792                page_counter_reset_watermark(counter);
3793                break;
3794        case RES_FAILCNT:
3795                counter->failcnt = 0;
3796                break;
3797        default:
3798                BUG();
3799        }
3800
3801        return nbytes;
3802}
3803
3804static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3805                                        struct cftype *cft)
3806{
3807        return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3808}
3809
3810#ifdef CONFIG_MMU
3811static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3812                                        struct cftype *cft, u64 val)
3813{
3814        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3815
3816        if (val & ~MOVE_MASK)
3817                return -EINVAL;
3818
3819        /*
3820         * No kind of locking is needed in here, because ->can_attach() will
3821         * check this value once in the beginning of the process, and then carry
3822         * on with stale data. This means that changes to this value will only
3823         * affect task migrations starting after the change.
3824         */
3825        memcg->move_charge_at_immigrate = val;
3826        return 0;
3827}
3828#else
3829static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3830                                        struct cftype *cft, u64 val)
3831{
3832        return -ENOSYS;
3833}
3834#endif
3835
3836#ifdef CONFIG_NUMA
3837
3838#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3839#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3840#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3841
3842static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3843                                int nid, unsigned int lru_mask, bool tree)
3844{
3845        struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3846        unsigned long nr = 0;
3847        enum lru_list lru;
3848
3849        VM_BUG_ON((unsigned)nid >= nr_node_ids);
3850
3851        for_each_lru(lru) {
3852                if (!(BIT(lru) & lru_mask))
3853                        continue;
3854                if (tree)
3855                        nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3856                else
3857                        nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3858        }
3859        return nr;
3860}
3861
3862static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3863                                             unsigned int lru_mask,
3864                                             bool tree)
3865{
3866        unsigned long nr = 0;
3867        enum lru_list lru;
3868
3869        for_each_lru(lru) {
3870                if (!(BIT(lru) & lru_mask))
3871                        continue;
3872                if (tree)
3873                        nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3874                else
3875                        nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3876        }
3877        return nr;
3878}
3879
3880static int memcg_numa_stat_show(struct seq_file *m, void *v)
3881{
3882        struct numa_stat {
3883                const char *name;
3884                unsigned int lru_mask;
3885        };
3886
3887        static const struct numa_stat stats[] = {
3888                { "total", LRU_ALL },
3889                { "file", LRU_ALL_FILE },
3890                { "anon", LRU_ALL_ANON },
3891                { "unevictable", BIT(LRU_UNEVICTABLE) },
3892        };
3893        const struct numa_stat *stat;
3894        int nid;
3895        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3896
3897        mem_cgroup_flush_stats();
3898
3899        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3900                seq_printf(m, "%s=%lu", stat->name,
3901                           mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3902                                                   false));
3903                for_each_node_state(nid, N_MEMORY)
3904                        seq_printf(m, " N%d=%lu", nid,
3905                                   mem_cgroup_node_nr_lru_pages(memcg, nid,
3906                                                        stat->lru_mask, false));
3907                seq_putc(m, '\n');
3908        }
3909
3910        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3911
3912                seq_printf(m, "hierarchical_%s=%lu", stat->name,
3913                           mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3914                                                   true));
3915                for_each_node_state(nid, N_MEMORY)
3916                        seq_printf(m, " N%d=%lu", nid,
3917                                   mem_cgroup_node_nr_lru_pages(memcg, nid,
3918                                                        stat->lru_mask, true));
3919                seq_putc(m, '\n');
3920        }
3921
3922        return 0;
3923}
3924#endif /* CONFIG_NUMA */
3925
3926static const unsigned int memcg1_stats[] = {
3927        NR_FILE_PAGES,
3928        NR_ANON_MAPPED,
3929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3930        NR_ANON_THPS,
3931#endif
3932        NR_SHMEM,
3933        NR_FILE_MAPPED,
3934        NR_FILE_DIRTY,
3935        NR_WRITEBACK,
3936        MEMCG_SWAP,
3937};
3938
3939static const char *const memcg1_stat_names[] = {
3940        "cache",
3941        "rss",
3942#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3943        "rss_huge",
3944#endif
3945        "shmem",
3946        "mapped_file",
3947        "dirty",
3948        "writeback",
3949        "swap",
3950};
3951
3952/* Universal VM events cgroup1 shows, original sort order */
3953static const unsigned int memcg1_events[] = {
3954        PGPGIN,
3955        PGPGOUT,
3956        PGFAULT,
3957        PGMAJFAULT,
3958};
3959
3960static int memcg_stat_show(struct seq_file *m, void *v)
3961{
3962        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3963        unsigned long memory, memsw;
3964        struct mem_cgroup *mi;
3965        unsigned int i;
3966
3967        BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3968
3969        mem_cgroup_flush_stats();
3970
3971        for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3972                unsigned long nr;
3973
3974                if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3975                        continue;
3976                nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3977                seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3978        }
3979
3980        for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3981                seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3982                           memcg_events_local(memcg, memcg1_events[i]));
3983
3984        for (i = 0; i < NR_LRU_LISTS; i++)
3985                seq_printf(m, "%s %lu\n", lru_list_name(i),
3986                           memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3987                           PAGE_SIZE);
3988
3989        /* Hierarchical information */
3990        memory = memsw = PAGE_COUNTER_MAX;
3991        for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3992                memory = min(memory, READ_ONCE(mi->memory.max));
3993                memsw = min(memsw, READ_ONCE(mi->memsw.max));
3994        }
3995        seq_printf(m, "hierarchical_memory_limit %llu\n",
3996                   (u64)memory * PAGE_SIZE);
3997        if (do_memsw_account())
3998                seq_printf(m, "hierarchical_memsw_limit %llu\n",
3999                           (u64)memsw * PAGE_SIZE);
4000
4001        for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4002                unsigned long nr;
4003
4004                if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4005                        continue;
4006                nr = memcg_page_state(memcg, memcg1_stats[i]);
4007                seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4008                                                (u64)nr * PAGE_SIZE);
4009        }
4010
4011        for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4012                seq_printf(m, "total_%s %llu\n",
4013                           vm_event_name(memcg1_events[i]),
4014                           (u64)memcg_events(memcg, memcg1_events[i]));
4015
4016        for (i = 0; i < NR_LRU_LISTS; i++)
4017                seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4018                           (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4019                           PAGE_SIZE);
4020
4021#ifdef CONFIG_DEBUG_VM
4022        {
4023                pg_data_t *pgdat;
4024                struct mem_cgroup_per_node *mz;
4025                unsigned long anon_cost = 0;
4026                unsigned long file_cost = 0;
4027
4028                for_each_online_pgdat(pgdat) {
4029                        mz = memcg->nodeinfo[pgdat->node_id];
4030
4031                        anon_cost += mz->lruvec.anon_cost;
4032                        file_cost += mz->lruvec.file_cost;
4033                }
4034                seq_printf(m, "anon_cost %lu\n", anon_cost);
4035                seq_printf(m, "file_cost %lu\n", file_cost);
4036        }
4037#endif
4038
4039        return 0;
4040}
4041
4042static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4043                                      struct cftype *cft)
4044{
4045        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4046
4047        return mem_cgroup_swappiness(memcg);
4048}
4049
4050static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4051                                       struct cftype *cft, u64 val)
4052{
4053        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4054
4055        if (val > 200)
4056                return -EINVAL;
4057
4058        if (!mem_cgroup_is_root(memcg))
4059                memcg->swappiness = val;
4060        else
4061                vm_swappiness = val;
4062
4063        return 0;
4064}
4065
4066static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4067{
4068        struct mem_cgroup_threshold_ary *t;
4069        unsigned long usage;
4070        int i;
4071
4072        rcu_read_lock();
4073        if (!swap)
4074                t = rcu_dereference(memcg->thresholds.primary);
4075        else
4076                t = rcu_dereference(memcg->memsw_thresholds.primary);
4077
4078        if (!t)
4079                goto unlock;
4080
4081        usage = mem_cgroup_usage(memcg, swap);
4082
4083        /*
4084         * current_threshold points to threshold just below or equal to usage.
4085         * If it's not true, a threshold was crossed after last
4086         * call of __mem_cgroup_threshold().
4087         */
4088        i = t->current_threshold;
4089
4090        /*
4091         * Iterate backward over array of thresholds starting from
4092         * current_threshold and check if a threshold is crossed.
4093         * If none of thresholds below usage is crossed, we read
4094         * only one element of the array here.
4095         */
4096        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4097                eventfd_signal(t->entries[i].eventfd, 1);
4098
4099        /* i = current_threshold + 1 */
4100        i++;
4101
4102        /*
4103         * Iterate forward over array of thresholds starting from
4104         * current_threshold+1 and check if a threshold is crossed.
4105         * If none of thresholds above usage is crossed, we read
4106         * only one element of the array here.
4107         */
4108        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4109                eventfd_signal(t->entries[i].eventfd, 1);
4110
4111        /* Update current_threshold */
4112        t->current_threshold = i - 1;
4113unlock:
4114        rcu_read_unlock();
4115}
4116
4117static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4118{
4119        while (memcg) {
4120                __mem_cgroup_threshold(memcg, false);
4121                if (do_memsw_account())
4122                        __mem_cgroup_threshold(memcg, true);
4123
4124                memcg = parent_mem_cgroup(memcg);
4125        }
4126}
4127
4128static int compare_thresholds(const void *a, const void *b)
4129{
4130        const struct mem_cgroup_threshold *_a = a;
4131        const struct mem_cgroup_threshold *_b = b;
4132
4133        if (_a->threshold > _b->threshold)
4134                return 1;
4135
4136        if (_a->threshold < _b->threshold)
4137                return -1;
4138
4139        return 0;
4140}
4141
4142static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4143{
4144        struct mem_cgroup_eventfd_list *ev;
4145
4146        spin_lock(&memcg_oom_lock);
4147
4148        list_for_each_entry(ev, &memcg->oom_notify, list)
4149                eventfd_signal(ev->eventfd, 1);
4150
4151        spin_unlock(&memcg_oom_lock);
4152        return 0;
4153}
4154
4155static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4156{
4157        struct mem_cgroup *iter;
4158
4159        for_each_mem_cgroup_tree(iter, memcg)
4160                mem_cgroup_oom_notify_cb(iter);
4161}
4162
4163static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4164        struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4165{
4166        struct mem_cgroup_thresholds *thresholds;
4167        struct mem_cgroup_threshold_ary *new;
4168        unsigned long threshold;
4169        unsigned long usage;
4170        int i, size, ret;
4171
4172        ret = page_counter_memparse(args, "-1", &threshold);
4173        if (ret)
4174                return ret;
4175
4176        mutex_lock(&memcg->thresholds_lock);
4177
4178        if (type == _MEM) {
4179                thresholds = &memcg->thresholds;
4180                usage = mem_cgroup_usage(memcg, false);
4181        } else if (type == _MEMSWAP) {
4182                thresholds = &memcg->memsw_thresholds;
4183                usage = mem_cgroup_usage(memcg, true);
4184        } else
4185                BUG();
4186
4187        /* Check if a threshold crossed before adding a new one */
4188        if (thresholds->primary)
4189                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4190
4191        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4192
4193        /* Allocate memory for new array of thresholds */
4194        new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4195        if (!new) {
4196                ret = -ENOMEM;
4197                goto unlock;
4198        }
4199        new->size = size;
4200
4201        /* Copy thresholds (if any) to new array */
4202        if (thresholds->primary)
4203                memcpy(new->entries, thresholds->primary->entries,
4204                       flex_array_size(new, entries, size - 1));
4205
4206        /* Add new threshold */
4207        new->entries[size - 1].eventfd = eventfd;
4208        new->entries[size - 1].threshold = threshold;
4209
4210        /* Sort thresholds. Registering of new threshold isn't time-critical */
4211        sort(new->entries, size, sizeof(*new->entries),
4212                        compare_thresholds, NULL);
4213
4214        /* Find current threshold */
4215        new->current_threshold = -1;
4216        for (i = 0; i < size; i++) {
4217                if (new->entries[i].threshold <= usage) {
4218                        /*
4219                         * new->current_threshold will not be used until
4220                         * rcu_assign_pointer(), so it's safe to increment
4221                         * it here.
4222                         */
4223                        ++new->current_threshold;
4224                } else
4225                        break;
4226        }
4227
4228        /* Free old spare buffer and save old primary buffer as spare */
4229        kfree(thresholds->spare);
4230        thresholds->spare = thresholds->primary;
4231
4232        rcu_assign_pointer(thresholds->primary, new);
4233
4234        /* To be sure that nobody uses thresholds */
4235        synchronize_rcu();
4236
4237unlock:
4238        mutex_unlock(&memcg->thresholds_lock);
4239
4240        return ret;
4241}
4242
4243static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4244        struct eventfd_ctx *eventfd, const char *args)
4245{
4246        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4247}
4248
4249static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4250        struct eventfd_ctx *eventfd, const char *args)
4251{
4252        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4253}
4254
4255static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4256        struct eventfd_ctx *eventfd, enum res_type type)
4257{
4258        struct mem_cgroup_thresholds *thresholds;
4259        struct mem_cgroup_threshold_ary *new;
4260        unsigned long usage;
4261        int i, j, size, entries;
4262
4263        mutex_lock(&memcg->thresholds_lock);
4264
4265        if (type == _MEM) {
4266                thresholds = &memcg->thresholds;
4267                usage = mem_cgroup_usage(memcg, false);
4268        } else if (type == _MEMSWAP) {
4269                thresholds = &memcg->memsw_thresholds;
4270                usage = mem_cgroup_usage(memcg, true);
4271        } else
4272                BUG();
4273
4274        if (!thresholds->primary)
4275                goto unlock;
4276
4277        /* Check if a threshold crossed before removing */
4278        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4279
4280        /* Calculate new number of threshold */
4281        size = entries = 0;
4282        for (i = 0; i < thresholds->primary->size; i++) {
4283                if (thresholds->primary->entries[i].eventfd != eventfd)
4284                        size++;
4285                else
4286                        entries++;
4287        }
4288
4289        new = thresholds->spare;
4290
4291        /* If no items related to eventfd have been cleared, nothing to do */
4292        if (!entries)
4293                goto unlock;
4294
4295        /* Set thresholds array to NULL if we don't have thresholds */
4296        if (!size) {
4297                kfree(new);
4298                new = NULL;
4299                goto swap_buffers;
4300        }
4301
4302        new->size = size;
4303
4304        /* Copy thresholds and find current threshold */
4305        new->current_threshold = -1;
4306        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4307                if (thresholds->primary->entries[i].eventfd == eventfd)
4308                        continue;
4309
4310                new->entries[j] = thresholds->primary->entries[i];
4311                if (new->entries[j].threshold <= usage) {
4312                        /*
4313                         * new->current_threshold will not be used
4314                         * until rcu_assign_pointer(), so it's safe to increment
4315                         * it here.
4316                         */
4317                        ++new->current_threshold;
4318                }
4319                j++;
4320        }
4321
4322swap_buffers:
4323        /* Swap primary and spare array */
4324        thresholds->spare = thresholds->primary;
4325
4326        rcu_assign_pointer(thresholds->primary, new);
4327
4328        /* To be sure that nobody uses thresholds */
4329        synchronize_rcu();
4330
4331        /* If all events are unregistered, free the spare array */
4332        if (!new) {
4333                kfree(thresholds->spare);
4334                thresholds->spare = NULL;
4335        }
4336unlock:
4337        mutex_unlock(&memcg->thresholds_lock);
4338}
4339
4340static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4341        struct eventfd_ctx *eventfd)
4342{
4343        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4344}
4345
4346static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4347        struct eventfd_ctx *eventfd)
4348{
4349        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4350}
4351
4352static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4353        struct eventfd_ctx *eventfd, const char *args)
4354{
4355        struct mem_cgroup_eventfd_list *event;
4356
4357        event = kmalloc(sizeof(*event), GFP_KERNEL);
4358        if (!event)
4359                return -ENOMEM;
4360
4361        spin_lock(&memcg_oom_lock);
4362
4363        event->eventfd = eventfd;
4364        list_add(&event->list, &memcg->oom_notify);
4365
4366        /* already in OOM ? */
4367        if (memcg->under_oom)
4368                eventfd_signal(eventfd, 1);
4369        spin_unlock(&memcg_oom_lock);
4370
4371        return 0;
4372}
4373
4374static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4375        struct eventfd_ctx *eventfd)
4376{
4377        struct mem_cgroup_eventfd_list *ev, *tmp;
4378
4379        spin_lock(&memcg_oom_lock);
4380
4381        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4382                if (ev->eventfd == eventfd) {
4383                        list_del(&ev->list);
4384                        kfree(ev);
4385                }
4386        }
4387
4388        spin_unlock(&memcg_oom_lock);
4389}
4390
4391static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4392{
4393        struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4394
4395        seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4396        seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4397        seq_printf(sf, "oom_kill %lu\n",
4398                   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4399        return 0;
4400}
4401
4402static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4403        struct cftype *cft, u64 val)
4404{
4405        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4406
4407        /* cannot set to root cgroup and only 0 and 1 are allowed */
4408        if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4409                return -EINVAL;
4410
4411        memcg->oom_kill_disable = val;
4412        if (!val)
4413                memcg_oom_recover(memcg);
4414
4415        return 0;
4416}
4417
4418#ifdef CONFIG_CGROUP_WRITEBACK
4419
4420#include <trace/events/writeback.h>
4421
4422static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4423{
4424        return wb_domain_init(&memcg->cgwb_domain, gfp);
4425}
4426
4427static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4428{
4429        wb_domain_exit(&memcg->cgwb_domain);
4430}
4431
4432static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4433{
4434        wb_domain_size_changed(&memcg->cgwb_domain);
4435}
4436
4437struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4438{
4439        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4440
4441        if (!memcg->css.parent)
4442                return NULL;
4443
4444        return &memcg->cgwb_domain;
4445}
4446
4447/**
4448 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4449 * @wb: bdi_writeback in question
4450 * @pfilepages: out parameter for number of file pages
4451 * @pheadroom: out parameter for number of allocatable pages according to memcg
4452 * @pdirty: out parameter for number of dirty pages
4453 * @pwriteback: out parameter for number of pages under writeback
4454 *
4455 * Determine the numbers of file, headroom, dirty, and writeback pages in
4456 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4457 * is a bit more involved.
4458 *
4459 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4460 * headroom is calculated as the lowest headroom of itself and the
4461 * ancestors.  Note that this doesn't consider the actual amount of
4462 * available memory in the system.  The caller should further cap
4463 * *@pheadroom accordingly.
4464 */
4465void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4466                         unsigned long *pheadroom, unsigned long *pdirty,
4467                         unsigned long *pwriteback)
4468{
4469        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4470        struct mem_cgroup *parent;
4471
4472        mem_cgroup_flush_stats();
4473
4474        *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4475        *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4476        *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4477                        memcg_page_state(memcg, NR_ACTIVE_FILE);
4478
4479        *pheadroom = PAGE_COUNTER_MAX;
4480        while ((parent = parent_mem_cgroup(memcg))) {
4481                unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4482                                            READ_ONCE(memcg->memory.high));
4483                unsigned long used = page_counter_read(&memcg->memory);
4484
4485                *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4486                memcg = parent;
4487        }
4488}
4489
4490/*
4491 * Foreign dirty flushing
4492 *
4493 * There's an inherent mismatch between memcg and writeback.  The former
4494 * tracks ownership per-page while the latter per-inode.  This was a
4495 * deliberate design decision because honoring per-page ownership in the
4496 * writeback path is complicated, may lead to higher CPU and IO overheads
4497 * and deemed unnecessary given that write-sharing an inode across
4498 * different cgroups isn't a common use-case.
4499 *
4500 * Combined with inode majority-writer ownership switching, this works well
4501 * enough in most cases but there are some pathological cases.  For
4502 * example, let's say there are two cgroups A and B which keep writing to
4503 * different but confined parts of the same inode.  B owns the inode and
4504 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4505 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4506 * triggering background writeback.  A will be slowed down without a way to
4507 * make writeback of the dirty pages happen.
4508 *
4509 * Conditions like the above can lead to a cgroup getting repeatedly and
4510 * severely throttled after making some progress after each
4511 * dirty_expire_interval while the underlying IO device is almost
4512 * completely idle.
4513 *
4514 * Solving this problem completely requires matching the ownership tracking
4515 * granularities between memcg and writeback in either direction.  However,
4516 * the more egregious behaviors can be avoided by simply remembering the
4517 * most recent foreign dirtying events and initiating remote flushes on
4518 * them when local writeback isn't enough to keep the memory clean enough.
4519 *
4520 * The following two functions implement such mechanism.  When a foreign
4521 * page - a page whose memcg and writeback ownerships don't match - is
4522 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4523 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4524 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4525 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4526 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4527 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4528 * limited to MEMCG_CGWB_FRN_CNT.
4529 *
4530 * The mechanism only remembers IDs and doesn't hold any object references.
4531 * As being wrong occasionally doesn't matter, updates and accesses to the
4532 * records are lockless and racy.
4533 */
4534void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4535                                             struct bdi_writeback *wb)
4536{
4537        struct mem_cgroup *memcg = folio_memcg(folio);
4538        struct memcg_cgwb_frn *frn;
4539        u64 now = get_jiffies_64();
4540        u64 oldest_at = now;
4541        int oldest = -1;
4542        int i;
4543
4544        trace_track_foreign_dirty(folio, wb);
4545
4546        /*
4547         * Pick the slot to use.  If there is already a slot for @wb, keep
4548         * using it.  If not replace the oldest one which isn't being
4549         * written out.
4550         */
4551        for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4552                frn = &memcg->cgwb_frn[i];
4553                if (frn->bdi_id == wb->bdi->id &&
4554                    frn->memcg_id == wb->memcg_css->id)
4555                        break;
4556                if (time_before64(frn->at, oldest_at) &&
4557                    atomic_read(&frn->done.cnt) == 1) {
4558                        oldest = i;
4559                        oldest_at = frn->at;
4560                }
4561        }
4562
4563        if (i < MEMCG_CGWB_FRN_CNT) {
4564                /*
4565                 * Re-using an existing one.  Update timestamp lazily to
4566                 * avoid making the cacheline hot.  We want them to be
4567                 * reasonably up-to-date and significantly shorter than
4568                 * dirty_expire_interval as that's what expires the record.
4569                 * Use the shorter of 1s and dirty_expire_interval / 8.
4570                 */
4571                unsigned long update_intv =
4572                        min_t(unsigned long, HZ,
4573                              msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4574
4575                if (time_before64(frn->at, now - update_intv))
4576                        frn->at = now;
4577        } else if (oldest >= 0) {
4578                /* replace the oldest free one */
4579                frn = &memcg->cgwb_frn[oldest];
4580                frn->bdi_id = wb->bdi->id;
4581                frn->memcg_id = wb->memcg_css->id;
4582                frn->at = now;
4583        }
4584}
4585
4586/* issue foreign writeback flushes for recorded foreign dirtying events */
4587void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4588{
4589        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4590        unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4591        u64 now = jiffies_64;
4592        int i;
4593
4594        for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4595                struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4596
4597                /*
4598                 * If the record is older than dirty_expire_interval,
4599                 * writeback on it has already started.  No need to kick it
4600                 * off again.  Also, don't start a new one if there's
4601                 * already one in flight.
4602                 */
4603                if (time_after64(frn->at, now - intv) &&
4604                    atomic_read(&frn->done.cnt) == 1) {
4605                        frn->at = 0;
4606                        trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4607                        cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4608                                               WB_REASON_FOREIGN_FLUSH,
4609                                               &frn->done);
4610                }
4611        }
4612}
4613
4614#else   /* CONFIG_CGROUP_WRITEBACK */
4615
4616static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4617{
4618        return 0;
4619}
4620
4621static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4622{
4623}
4624
4625static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4626{
4627}
4628
4629#endif  /* CONFIG_CGROUP_WRITEBACK */
4630
4631/*
4632 * DO NOT USE IN NEW FILES.
4633 *
4634 * "cgroup.event_control" implementation.
4635 *
4636 * This is way over-engineered.  It tries to support fully configurable
4637 * events for each user.  Such level of flexibility is completely
4638 * unnecessary especially in the light of the planned unified hierarchy.
4639 *
4640 * Please deprecate this and replace with something simpler if at all
4641 * possible.
4642 */
4643
4644/*
4645 * Unregister event and free resources.
4646 *
4647 * Gets called from workqueue.
4648 */
4649static void memcg_event_remove(struct work_struct *work)
4650{
4651        struct mem_cgroup_event *event =
4652                container_of(work, struct mem_cgroup_event, remove);
4653        struct mem_cgroup *memcg = event->memcg;
4654
4655        remove_wait_queue(event->wqh, &event->wait);
4656
4657        event->unregister_event(memcg, event->eventfd);
4658
4659        /* Notify userspace the event is going away. */
4660        eventfd_signal(event->eventfd, 1);
4661
4662        eventfd_ctx_put(event->eventfd);
4663        kfree(event);
4664        css_put(&memcg->css);
4665}
4666
4667/*
4668 * Gets called on EPOLLHUP on eventfd when user closes it.
4669 *
4670 * Called with wqh->lock held and interrupts disabled.
4671 */
4672static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4673                            int sync, void *key)
4674{
4675        struct mem_cgroup_event *event =
4676                container_of(wait, struct mem_cgroup_event, wait);
4677        struct mem_cgroup *memcg = event->memcg;
4678        __poll_t flags = key_to_poll(key);
4679
4680        if (flags & EPOLLHUP) {
4681                /*
4682                 * If the event has been detached at cgroup removal, we
4683                 * can simply return knowing the other side will cleanup
4684                 * for us.
4685                 *
4686                 * We can't race against event freeing since the other
4687                 * side will require wqh->lock via remove_wait_queue(),
4688                 * which we hold.
4689                 */
4690                spin_lock(&memcg->event_list_lock);
4691                if (!list_empty(&event->list)) {
4692                        list_del_init(&event->list);
4693                        /*
4694                         * We are in atomic context, but cgroup_event_remove()
4695                         * may sleep, so we have to call it in workqueue.
4696                         */
4697                        schedule_work(&event->remove);
4698                }
4699                spin_unlock(&memcg->event_list_lock);
4700        }
4701
4702        return 0;
4703}
4704
4705static void memcg_event_ptable_queue_proc(struct file *file,
4706                wait_queue_head_t *wqh, poll_table *pt)
4707{
4708        struct mem_cgroup_event *event =
4709                container_of(pt, struct mem_cgroup_event, pt);
4710
4711        event->wqh = wqh;
4712        add_wait_queue(wqh, &event->wait);
4713}
4714
4715/*
4716 * DO NOT USE IN NEW FILES.
4717 *
4718 * Parse input and register new cgroup event handler.
4719 *
4720 * Input must be in format '<event_fd> <control_fd> <args>'.
4721 * Interpretation of args is defined by control file implementation.
4722 */
4723static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4724                                         char *buf, size_t nbytes, loff_t off)
4725{
4726        struct cgroup_subsys_state *css = of_css(of);
4727        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4728        struct mem_cgroup_event *event;
4729        struct cgroup_subsys_state *cfile_css;
4730        unsigned int efd, cfd;
4731        struct fd efile;
4732        struct fd cfile;
4733        const char *name;
4734        char *endp;
4735        int ret;
4736
4737        if (IS_ENABLED(CONFIG_PREEMPT_RT))
4738                return -EOPNOTSUPP;
4739
4740        buf = strstrip(buf);
4741
4742        efd = simple_strtoul(buf, &endp, 10);
4743        if (*endp != ' ')
4744                return -EINVAL;
4745        buf = endp + 1;
4746
4747        cfd = simple_strtoul(buf, &endp, 10);
4748        if ((*endp != ' ') && (*endp != '\0'))
4749                return -EINVAL;
4750        buf = endp + 1;
4751
4752        event = kzalloc(sizeof(*event), GFP_KERNEL);
4753        if (!event)
4754                return -ENOMEM;
4755
4756        event->memcg = memcg;
4757        INIT_LIST_HEAD(&event->list);
4758        init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4759        init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4760        INIT_WORK(&event->remove, memcg_event_remove);
4761
4762        efile = fdget(efd);
4763        if (!efile.file) {
4764                ret = -EBADF;
4765                goto out_kfree;
4766        }
4767
4768        event->eventfd = eventfd_ctx_fileget(efile.file);
4769        if (IS_ERR(event->eventfd)) {
4770                ret = PTR_ERR(event->eventfd);
4771                goto out_put_efile;
4772        }
4773
4774        cfile = fdget(cfd);
4775        if (!cfile.file) {
4776                ret = -EBADF;
4777                goto out_put_eventfd;
4778        }
4779
4780        /* the process need read permission on control file */
4781        /* AV: shouldn't we check that it's been opened for read instead? */
4782        ret = file_permission(cfile.file, MAY_READ);
4783        if (ret < 0)
4784                goto out_put_cfile;
4785
4786        /*
4787         * Determine the event callbacks and set them in @event.  This used
4788         * to be done via struct cftype but cgroup core no longer knows
4789         * about these events.  The following is crude but the whole thing
4790         * is for compatibility anyway.
4791         *
4792         * DO NOT ADD NEW FILES.
4793         */
4794        name = cfile.file->f_path.dentry->d_name.name;
4795
4796        if (!strcmp(name, "memory.usage_in_bytes")) {
4797                event->register_event = mem_cgroup_usage_register_event;
4798                event->unregister_event = mem_cgroup_usage_unregister_event;
4799        } else if (!strcmp(name, "memory.oom_control")) {
4800                event->register_event = mem_cgroup_oom_register_event;
4801                event->unregister_event = mem_cgroup_oom_unregister_event;
4802        } else if (!strcmp(name, "memory.pressure_level")) {
4803                event->register_event = vmpressure_register_event;
4804                event->unregister_event = vmpressure_unregister_event;
4805        } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4806                event->register_event = memsw_cgroup_usage_register_event;
4807                event->unregister_event = memsw_cgroup_usage_unregister_event;
4808        } else {
4809                ret = -EINVAL;
4810                goto out_put_cfile;
4811        }
4812
4813        /*
4814         * Verify @cfile should belong to @css.  Also, remaining events are
4815         * automatically removed on cgroup destruction but the removal is
4816         * asynchronous, so take an extra ref on @css.
4817         */
4818        cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4819                                               &memory_cgrp_subsys);
4820        ret = -EINVAL;
4821        if (IS_ERR(cfile_css))
4822                goto out_put_cfile;
4823        if (cfile_css != css) {
4824                css_put(cfile_css);
4825                goto out_put_cfile;
4826        }
4827
4828        ret = event->register_event(memcg, event->eventfd, buf);
4829        if (ret)
4830                goto out_put_css;
4831
4832        vfs_poll(efile.file, &event->pt);
4833
4834        spin_lock_irq(&memcg->event_list_lock);
4835        list_add(&event->list, &memcg->event_list);
4836        spin_unlock_irq(&memcg->event_list_lock);
4837
4838        fdput(cfile);
4839        fdput(efile);
4840
4841        return nbytes;
4842
4843out_put_css:
4844        css_put(css);
4845out_put_cfile:
4846        fdput(cfile);
4847out_put_eventfd:
4848        eventfd_ctx_put(event->eventfd);
4849out_put_efile:
4850        fdput(efile);
4851out_kfree:
4852        kfree(event);
4853
4854        return ret;
4855}
4856
4857#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4858static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4859{
4860        /*
4861         * Deprecated.
4862         * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4863         */
4864        return 0;
4865}
4866#endif
4867
4868static struct cftype mem_cgroup_legacy_files[] = {
4869        {
4870                .name = "usage_in_bytes",
4871                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4872                .read_u64 = mem_cgroup_read_u64,
4873        },
4874        {
4875                .name = "max_usage_in_bytes",
4876                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4877                .write = mem_cgroup_reset,
4878                .read_u64 = mem_cgroup_read_u64,
4879        },
4880        {
4881                .name = "limit_in_bytes",
4882                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4883                .write = mem_cgroup_write,
4884                .read_u64 = mem_cgroup_read_u64,
4885        },
4886        {
4887                .name = "soft_limit_in_bytes",
4888                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4889                .write = mem_cgroup_write,
4890                .read_u64 = mem_cgroup_read_u64,
4891        },
4892        {
4893                .name = "failcnt",
4894                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4895                .write = mem_cgroup_reset,
4896                .read_u64 = mem_cgroup_read_u64,
4897        },
4898        {
4899                .name = "stat",
4900                .seq_show = memcg_stat_show,
4901        },
4902        {
4903                .name = "force_empty",
4904                .write = mem_cgroup_force_empty_write,
4905        },
4906        {
4907                .name = "use_hierarchy",
4908                .write_u64 = mem_cgroup_hierarchy_write,
4909                .read_u64 = mem_cgroup_hierarchy_read,
4910        },
4911        {
4912                .name = "cgroup.event_control",         /* XXX: for compat */
4913                .write = memcg_write_event_control,
4914                .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4915        },
4916        {
4917                .name = "swappiness",
4918                .read_u64 = mem_cgroup_swappiness_read,
4919                .write_u64 = mem_cgroup_swappiness_write,
4920        },
4921        {
4922                .name = "move_charge_at_immigrate",
4923                .read_u64 = mem_cgroup_move_charge_read,
4924                .write_u64 = mem_cgroup_move_charge_write,
4925        },
4926        {
4927                .name = "oom_control",
4928                .seq_show = mem_cgroup_oom_control_read,
4929                .write_u64 = mem_cgroup_oom_control_write,
4930        },
4931        {
4932                .name = "pressure_level",
4933        },
4934#ifdef CONFIG_NUMA
4935        {
4936                .name = "numa_stat",
4937                .seq_show = memcg_numa_stat_show,
4938        },
4939#endif
4940        {
4941                .name = "kmem.limit_in_bytes",
4942                .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4943                .write = mem_cgroup_write,
4944                .read_u64 = mem_cgroup_read_u64,
4945        },
4946        {
4947                .name = "kmem.usage_in_bytes",
4948                .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4949                .read_u64 = mem_cgroup_read_u64,
4950        },
4951        {
4952                .name = "kmem.failcnt",
4953                .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4954                .write = mem_cgroup_reset,
4955                .read_u64 = mem_cgroup_read_u64,
4956        },
4957        {
4958                .name = "kmem.max_usage_in_bytes",
4959                .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4960                .write = mem_cgroup_reset,
4961                .read_u64 = mem_cgroup_read_u64,
4962        },
4963#if defined(CONFIG_MEMCG_KMEM) && \
4964        (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4965        {
4966                .name = "kmem.slabinfo",
4967                .seq_show = mem_cgroup_slab_show,
4968        },
4969#endif
4970        {
4971                .name = "kmem.tcp.limit_in_bytes",
4972                .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4973                .write = mem_cgroup_write,
4974                .read_u64 = mem_cgroup_read_u64,
4975        },
4976        {
4977                .name = "kmem.tcp.usage_in_bytes",
4978                .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4979                .read_u64 = mem_cgroup_read_u64,
4980        },
4981        {
4982                .name = "kmem.tcp.failcnt",
4983                .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4984                .write = mem_cgroup_reset,
4985                .read_u64 = mem_cgroup_read_u64,
4986        },
4987        {
4988                .name = "kmem.tcp.max_usage_in_bytes",
4989                .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4990                .write = mem_cgroup_reset,
4991                .read_u64 = mem_cgroup_read_u64,
4992        },
4993        { },    /* terminate */
4994};
4995
4996/*
4997 * Private memory cgroup IDR
4998 *
4999 * Swap-out records and page cache shadow entries need to store memcg
5000 * references in constrained space, so we maintain an ID space that is
5001 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5002 * memory-controlled cgroups to 64k.
5003 *
5004 * However, there usually are many references to the offline CSS after
5005 * the cgroup has been destroyed, such as page cache or reclaimable
5006 * slab objects, that don't need to hang on to the ID. We want to keep
5007 * those dead CSS from occupying IDs, or we might quickly exhaust the
5008 * relatively small ID space and prevent the creation of new cgroups
5009 * even when there are much fewer than 64k cgroups - possibly none.
5010 *
5011 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5012 * be freed and recycled when it's no longer needed, which is usually
5013 * when the CSS is offlined.
5014 *
5015 * The only exception to that are records of swapped out tmpfs/shmem
5016 * pages that need to be attributed to live ancestors on swapin. But
5017 * those references are manageable from userspace.
5018 */
5019
5020static DEFINE_IDR(mem_cgroup_idr);
5021
5022static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5023{
5024        if (memcg->id.id > 0) {
5025                idr_remove(&mem_cgroup_idr, memcg->id.id);
5026                memcg->id.id = 0;
5027        }
5028}
5029
5030static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5031                                                  unsigned int n)
5032{
5033        refcount_add(n, &memcg->id.ref);
5034}
5035
5036static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5037{
5038        if (refcount_sub_and_test(n, &memcg->id.ref)) {
5039                mem_cgroup_id_remove(memcg);
5040
5041                /* Memcg ID pins CSS */
5042                css_put(&memcg->css);
5043        }
5044}
5045
5046static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5047{
5048        mem_cgroup_id_put_many(memcg, 1);
5049}
5050
5051/**
5052 * mem_cgroup_from_id - look up a memcg from a memcg id
5053 * @id: the memcg id to look up
5054 *
5055 * Caller must hold rcu_read_lock().
5056 */
5057struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5058{
5059        WARN_ON_ONCE(!rcu_read_lock_held());
5060        return idr_find(&mem_cgroup_idr, id);
5061}
5062
5063static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5064{
5065        struct mem_cgroup_per_node *pn;
5066
5067        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5068        if (!pn)
5069                return 1;
5070
5071        pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5072                                                   GFP_KERNEL_ACCOUNT);
5073        if (!pn->lruvec_stats_percpu) {
5074                kfree(pn);
5075                return 1;
5076        }
5077
5078        lruvec_init(&pn->lruvec);
5079        pn->memcg = memcg;
5080
5081        memcg->nodeinfo[node] = pn;
5082        return 0;
5083}
5084
5085static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5086{
5087        struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5088
5089        if (!pn)
5090                return;
5091
5092        free_percpu(pn->lruvec_stats_percpu);
5093        kfree(pn);
5094}
5095
5096static void __mem_cgroup_free(struct mem_cgroup *memcg)
5097{
5098        int node;
5099
5100        for_each_node(node)
5101                free_mem_cgroup_per_node_info(memcg, node);
5102        free_percpu(memcg->vmstats_percpu);
5103        kfree(memcg);
5104}
5105
5106static void mem_cgroup_free(struct mem_cgroup *memcg)
5107{
5108        memcg_wb_domain_exit(memcg);
5109        __mem_cgroup_free(memcg);
5110}
5111
5112static struct mem_cgroup *mem_cgroup_alloc(void)
5113{
5114        struct mem_cgroup *memcg;
5115        int node;
5116        int __maybe_unused i;
5117        long error = -ENOMEM;
5118
5119        memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5120        if (!memcg)
5121                return ERR_PTR(error);
5122
5123        memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5124                                 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5125        if (memcg->id.id < 0) {
5126                error = memcg->id.id;
5127                goto fail;
5128        }
5129
5130        memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5131                                                 GFP_KERNEL_ACCOUNT);
5132        if (!memcg->vmstats_percpu)
5133                goto fail;
5134
5135        for_each_node(node)
5136                if (alloc_mem_cgroup_per_node_info(memcg, node))
5137                        goto fail;
5138
5139        if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5140                goto fail;
5141
5142        INIT_WORK(&memcg->high_work, high_work_func);
5143        INIT_LIST_HEAD(&memcg->oom_notify);
5144        mutex_init(&memcg->thresholds_lock);
5145        spin_lock_init(&memcg->move_lock);
5146        vmpressure_init(&memcg->vmpressure);
5147        INIT_LIST_HEAD(&memcg->event_list);
5148        spin_lock_init(&memcg->event_list_lock);
5149        memcg->socket_pressure = jiffies;
5150#ifdef CONFIG_MEMCG_KMEM
5151        memcg->kmemcg_id = -1;
5152        INIT_LIST_HEAD(&memcg->objcg_list);
5153#endif
5154#ifdef CONFIG_CGROUP_WRITEBACK
5155        INIT_LIST_HEAD(&memcg->cgwb_list);
5156        for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5157                memcg->cgwb_frn[i].done =
5158                        __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5159#endif
5160#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5161        spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5162        INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5163        memcg->deferred_split_queue.split_queue_len = 0;
5164#endif
5165        idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5166        return memcg;
5167fail:
5168        mem_cgroup_id_remove(memcg);
5169        __mem_cgroup_free(memcg);
5170        return ERR_PTR(error);
5171}
5172
5173static struct cgroup_subsys_state * __ref
5174mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5175{
5176        struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5177        struct mem_cgroup *memcg, *old_memcg;
5178
5179        old_memcg = set_active_memcg(parent);
5180        memcg = mem_cgroup_alloc();
5181        set_active_memcg(old_memcg);
5182        if (IS_ERR(memcg))
5183                return ERR_CAST(memcg);
5184
5185        page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5186        memcg->soft_limit = PAGE_COUNTER_MAX;
5187#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5188        memcg->zswap_max = PAGE_COUNTER_MAX;
5189#endif
5190        page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5191        if (parent) {
5192                memcg->swappiness = mem_cgroup_swappiness(parent);
5193                memcg->oom_kill_disable = parent->oom_kill_disable;
5194
5195                page_counter_init(&memcg->memory, &parent->memory);
5196                page_counter_init(&memcg->swap, &parent->swap);
5197                page_counter_init(&memcg->kmem, &parent->kmem);
5198                page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5199        } else {
5200                page_counter_init(&memcg->memory, NULL);
5201                page_counter_init(&memcg->swap, NULL);
5202                page_counter_init(&memcg->kmem, NULL);
5203                page_counter_init(&memcg->tcpmem, NULL);
5204
5205                root_mem_cgroup = memcg;
5206                return &memcg->css;
5207        }
5208
5209        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5210                static_branch_inc(&memcg_sockets_enabled_key);
5211
5212        return &memcg->css;
5213}
5214
5215static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5216{
5217        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5218
5219        if (memcg_online_kmem(memcg))
5220                goto remove_id;
5221
5222        /*
5223         * A memcg must be visible for expand_shrinker_info()
5224         * by the time the maps are allocated. So, we allocate maps
5225         * here, when for_each_mem_cgroup() can't skip it.
5226         */
5227        if (alloc_shrinker_info(memcg))
5228                goto offline_kmem;
5229
5230        /* Online state pins memcg ID, memcg ID pins CSS */
5231        refcount_set(&memcg->id.ref, 1);
5232        css_get(css);
5233
5234        if (unlikely(mem_cgroup_is_root(memcg)))
5235                queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5236                                   2UL*HZ);
5237        return 0;
5238offline_kmem:
5239        memcg_offline_kmem(memcg);
5240remove_id:
5241        mem_cgroup_id_remove(memcg);
5242        return -ENOMEM;
5243}
5244
5245static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5246{
5247        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5248        struct mem_cgroup_event *event, *tmp;
5249
5250        /*
5251         * Unregister events and notify userspace.
5252         * Notify userspace about cgroup removing only after rmdir of cgroup
5253         * directory to avoid race between userspace and kernelspace.
5254         */
5255        spin_lock_irq(&memcg->event_list_lock);
5256        list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5257                list_del_init(&event->list);
5258                schedule_work(&event->remove);
5259        }
5260        spin_unlock_irq(&memcg->event_list_lock);
5261
5262        page_counter_set_min(&memcg->memory, 0);
5263        page_counter_set_low(&memcg->memory, 0);
5264
5265        memcg_offline_kmem(memcg);
5266        reparent_shrinker_deferred(memcg);
5267        wb_memcg_offline(memcg);
5268
5269        drain_all_stock(memcg);
5270
5271        mem_cgroup_id_put(memcg);
5272}
5273
5274static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5275{
5276        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5277
5278        invalidate_reclaim_iterators(memcg);
5279}
5280
5281static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5282{
5283        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5284        int __maybe_unused i;
5285
5286#ifdef CONFIG_CGROUP_WRITEBACK
5287        for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5288                wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5289#endif
5290        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5291                static_branch_dec(&memcg_sockets_enabled_key);
5292
5293        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5294                static_branch_dec(&memcg_sockets_enabled_key);
5295
5296        vmpressure_cleanup(&memcg->vmpressure);
5297        cancel_work_sync(&memcg->high_work);
5298        mem_cgroup_remove_from_trees(memcg);
5299        free_shrinker_info(memcg);
5300        mem_cgroup_free(memcg);
5301}
5302
5303/**
5304 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5305 * @css: the target css
5306 *
5307 * Reset the states of the mem_cgroup associated with @css.  This is
5308 * invoked when the userland requests disabling on the default hierarchy
5309 * but the memcg is pinned through dependency.  The memcg should stop
5310 * applying policies and should revert to the vanilla state as it may be
5311 * made visible again.
5312 *
5313 * The current implementation only resets the essential configurations.
5314 * This needs to be expanded to cover all the visible parts.
5315 */
5316static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5317{
5318        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5319
5320        page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5321        page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5322        page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5323        page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5324        page_counter_set_min(&memcg->memory, 0);
5325        page_counter_set_low(&memcg->memory, 0);
5326        page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5327        memcg->soft_limit = PAGE_COUNTER_MAX;
5328        page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5329        memcg_wb_domain_size_changed(memcg);
5330}
5331
5332static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5333{
5334        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335        struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5336        struct memcg_vmstats_percpu *statc;
5337        long delta, v;
5338        int i, nid;
5339
5340        statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5341
5342        for (i = 0; i < MEMCG_NR_STAT; i++) {
5343                /*
5344                 * Collect the aggregated propagation counts of groups
5345                 * below us. We're in a per-cpu loop here and this is
5346                 * a global counter, so the first cycle will get them.
5347                 */
5348                delta = memcg->vmstats.state_pending[i];
5349                if (delta)
5350                        memcg->vmstats.state_pending[i] = 0;
5351
5352                /* Add CPU changes on this level since the last flush */
5353                v = READ_ONCE(statc->state[i]);
5354                if (v != statc->state_prev[i]) {
5355                        delta += v - statc->state_prev[i];
5356                        statc->state_prev[i] = v;
5357                }
5358
5359                if (!delta)
5360                        continue;
5361
5362                /* Aggregate counts on this level and propagate upwards */
5363                memcg->vmstats.state[i] += delta;
5364                if (parent)
5365                        parent->vmstats.state_pending[i] += delta;
5366        }
5367
5368        for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5369                delta = memcg->vmstats.events_pending[i];
5370                if (delta)
5371                        memcg->vmstats.events_pending[i] = 0;
5372
5373                v = READ_ONCE(statc->events[i]);
5374                if (v != statc->events_prev[i]) {
5375                        delta += v - statc->events_prev[i];
5376                        statc->events_prev[i] = v;
5377                }
5378
5379                if (!delta)
5380                        continue;
5381
5382                memcg->vmstats.events[i] += delta;
5383                if (parent)
5384                        parent->vmstats.events_pending[i] += delta;
5385        }
5386
5387        for_each_node_state(nid, N_MEMORY) {
5388                struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5389                struct mem_cgroup_per_node *ppn = NULL;
5390                struct lruvec_stats_percpu *lstatc;
5391
5392                if (parent)
5393                        ppn = parent->nodeinfo[nid];
5394
5395                lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5396
5397                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5398                        delta = pn->lruvec_stats.state_pending[i];
5399                        if (delta)
5400                                pn->lruvec_stats.state_pending[i] = 0;
5401
5402                        v = READ_ONCE(lstatc->state[i]);
5403                        if (v != lstatc->state_prev[i]) {
5404                                delta += v - lstatc->state_prev[i];
5405                                lstatc->state_prev[i] = v;
5406                        }
5407
5408                        if (!delta)
5409                                continue;
5410
5411                        pn->lruvec_stats.state[i] += delta;
5412                        if (ppn)
5413                                ppn->lruvec_stats.state_pending[i] += delta;
5414                }
5415        }
5416}
5417
5418#ifdef CONFIG_MMU
5419/* Handlers for move charge at task migration. */
5420static int mem_cgroup_do_precharge(unsigned long count)
5421{
5422        int ret;
5423
5424        /* Try a single bulk charge without reclaim first, kswapd may wake */
5425        ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5426        if (!ret) {
5427                mc.precharge += count;
5428                return ret;
5429        }
5430
5431        /* Try charges one by one with reclaim, but do not retry */
5432        while (count--) {
5433                ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5434                if (ret)
5435                        return ret;
5436                mc.precharge++;
5437                cond_resched();
5438        }
5439        return 0;
5440}
5441
5442union mc_target {
5443        struct page     *page;
5444        swp_entry_t     ent;
5445};
5446
5447enum mc_target_type {
5448        MC_TARGET_NONE = 0,
5449        MC_TARGET_PAGE,
5450        MC_TARGET_SWAP,
5451        MC_TARGET_DEVICE,
5452};
5453
5454static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5455                                                unsigned long addr, pte_t ptent)
5456{
5457        struct page *page = vm_normal_page(vma, addr, ptent);
5458
5459        if (!page || !page_mapped(page))
5460                return NULL;
5461        if (PageAnon(page)) {
5462                if (!(mc.flags & MOVE_ANON))
5463                        return NULL;
5464        } else {
5465                if (!(mc.flags & MOVE_FILE))
5466                        return NULL;
5467        }
5468        if (!get_page_unless_zero(page))
5469                return NULL;
5470
5471        return page;
5472}
5473
5474#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5475static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5476                        pte_t ptent, swp_entry_t *entry)
5477{
5478        struct page *page = NULL;
5479        swp_entry_t ent = pte_to_swp_entry(ptent);
5480
5481        if (!(mc.flags & MOVE_ANON))
5482                return NULL;
5483
5484        /*
5485         * Handle device private pages that are not accessible by the CPU, but
5486         * stored as special swap entries in the page table.
5487         */
5488        if (is_device_private_entry(ent)) {
5489                page = pfn_swap_entry_to_page(ent);
5490                if (!get_page_unless_zero(page))
5491                        return NULL;
5492                return page;
5493        }
5494
5495        if (non_swap_entry(ent))
5496                return NULL;
5497
5498        /*
5499         * Because lookup_swap_cache() updates some statistics counter,
5500         * we call find_get_page() with swapper_space directly.
5501         */
5502        page = find_get_page(swap_address_space(ent), swp_offset(ent));
5503        entry->val = ent.val;
5504
5505        return page;
5506}
5507#else
5508static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5509                        pte_t ptent, swp_entry_t *entry)
5510{
5511        return NULL;
5512}
5513#endif
5514
5515static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5516                        unsigned long addr, pte_t ptent)
5517{
5518        if (!vma->vm_file) /* anonymous vma */
5519                return NULL;
5520        if (!(mc.flags & MOVE_FILE))
5521                return NULL;
5522
5523        /* page is moved even if it's not RSS of this task(page-faulted). */
5524        /* shmem/tmpfs may report page out on swap: account for that too. */
5525        return find_get_incore_page(vma->vm_file->f_mapping,
5526                        linear_page_index(vma, addr));
5527}
5528
5529/**
5530 * mem_cgroup_move_account - move account of the page
5531 * @page: the page
5532 * @compound: charge the page as compound or small page
5533 * @from: mem_cgroup which the page is moved from.
5534 * @to: mem_cgroup which the page is moved to. @from != @to.
5535 *
5536 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5537 *
5538 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5539 * from old cgroup.
5540 */
5541static int mem_cgroup_move_account(struct page *page,
5542                                   bool compound,
5543                                   struct mem_cgroup *from,
5544                                   struct mem_cgroup *to)
5545{
5546        struct folio *folio = page_folio(page);
5547        struct lruvec *from_vec, *to_vec;
5548        struct pglist_data *pgdat;
5549        unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5550        int nid, ret;
5551
5552        VM_BUG_ON(from == to);
5553        VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5554        VM_BUG_ON(compound && !folio_test_large(folio));
5555
5556        /*
5557         * Prevent mem_cgroup_migrate() from looking at
5558         * page's memory cgroup of its source page while we change it.
5559         */
5560        ret = -EBUSY;
5561        if (!folio_trylock(folio))
5562                goto out;
5563
5564        ret = -EINVAL;
5565        if (folio_memcg(folio) != from)
5566                goto out_unlock;
5567
5568        pgdat = folio_pgdat(folio);
5569        from_vec = mem_cgroup_lruvec(from, pgdat);
5570        to_vec = mem_cgroup_lruvec(to, pgdat);
5571
5572        folio_memcg_lock(folio);
5573
5574        if (folio_test_anon(folio)) {
5575                if (folio_mapped(folio)) {
5576                        __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5577                        __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5578                        if (folio_test_transhuge(folio)) {
5579                                __mod_lruvec_state(from_vec, NR_ANON_THPS,
5580                                                   -nr_pages);
5581                                __mod_lruvec_state(to_vec, NR_ANON_THPS,
5582                                                   nr_pages);
5583                        }
5584                }
5585        } else {
5586                __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5587                __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5588
5589                if (folio_test_swapbacked(folio)) {
5590                        __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5591                        __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5592                }
5593
5594                if (folio_mapped(folio)) {
5595                        __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5596                        __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5597                }
5598
5599                if (folio_test_dirty(folio)) {
5600                        struct address_space *mapping = folio_mapping(folio);
5601
5602                        if (mapping_can_writeback(mapping)) {
5603                                __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5604                                                   -nr_pages);
5605                                __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5606                                                   nr_pages);
5607                        }
5608                }
5609        }
5610
5611        if (folio_test_writeback(folio)) {
5612                __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5613                __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5614        }
5615
5616        /*
5617         * All state has been migrated, let's switch to the new memcg.
5618         *
5619         * It is safe to change page's memcg here because the page
5620         * is referenced, charged, isolated, and locked: we can't race
5621         * with (un)charging, migration, LRU putback, or anything else
5622         * that would rely on a stable page's memory cgroup.
5623         *
5624         * Note that lock_page_memcg is a memcg lock, not a page lock,
5625         * to save space. As soon as we switch page's memory cgroup to a
5626         * new memcg that isn't locked, the above state can change
5627         * concurrently again. Make sure we're truly done with it.
5628         */
5629        smp_mb();
5630
5631        css_get(&to->css);
5632        css_put(&from->css);
5633
5634        folio->memcg_data = (unsigned long)to;
5635
5636        __folio_memcg_unlock(from);
5637
5638        ret = 0;
5639        nid = folio_nid(folio);
5640
5641        local_irq_disable();
5642        mem_cgroup_charge_statistics(to, nr_pages);
5643        memcg_check_events(to, nid);
5644        mem_cgroup_charge_statistics(from, -nr_pages);
5645        memcg_check_events(from, nid);
5646        local_irq_enable();
5647out_unlock:
5648        folio_unlock(folio);
5649out:
5650        return ret;
5651}
5652
5653/**
5654 * get_mctgt_type - get target type of moving charge
5655 * @vma: the vma the pte to be checked belongs
5656 * @addr: the address corresponding to the pte to be checked
5657 * @ptent: the pte to be checked
5658 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5659 *
5660 * Returns
5661 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5662 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5663 *     move charge. if @target is not NULL, the page is stored in target->page
5664 *     with extra refcnt got(Callers should handle it).
5665 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5666 *     target for charge migration. if @target is not NULL, the entry is stored
5667 *     in target->ent.
5668 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5669 *     (so ZONE_DEVICE page and thus not on the lru).
5670 *     For now we such page is charge like a regular page would be as for all
5671 *     intent and purposes it is just special memory taking the place of a
5672 *     regular page.
5673 *
5674 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5675 *
5676 * Called with pte lock held.
5677 */
5678
5679static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5680                unsigned long addr, pte_t ptent, union mc_target *target)
5681{
5682        struct page *page = NULL;
5683        enum mc_target_type ret = MC_TARGET_NONE;
5684        swp_entry_t ent = { .val = 0 };
5685
5686        if (pte_present(ptent))
5687                page = mc_handle_present_pte(vma, addr, ptent);
5688        else if (pte_none_mostly(ptent))
5689                /*
5690                 * PTE markers should be treated as a none pte here, separated
5691                 * from other swap handling below.
5692                 */
5693                page = mc_handle_file_pte(vma, addr, ptent);
5694        else if (is_swap_pte(ptent))
5695                page = mc_handle_swap_pte(vma, ptent, &ent);
5696
5697        if (!page && !ent.val)
5698                return ret;
5699        if (page) {
5700                /*
5701                 * Do only loose check w/o serialization.
5702                 * mem_cgroup_move_account() checks the page is valid or
5703                 * not under LRU exclusion.
5704                 */
5705                if (page_memcg(page) == mc.from) {
5706                        ret = MC_TARGET_PAGE;
5707                        if (is_device_private_page(page))
5708                                ret = MC_TARGET_DEVICE;
5709                        if (target)
5710                                target->page = page;
5711                }
5712                if (!ret || !target)
5713                        put_page(page);
5714        }
5715        /*
5716         * There is a swap entry and a page doesn't exist or isn't charged.
5717         * But we cannot move a tail-page in a THP.
5718         */
5719        if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5720            mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5721                ret = MC_TARGET_SWAP;
5722                if (target)
5723                        target->ent = ent;
5724        }
5725        return ret;
5726}
5727
5728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5729/*
5730 * We don't consider PMD mapped swapping or file mapped pages because THP does
5731 * not support them for now.
5732 * Caller should make sure that pmd_trans_huge(pmd) is true.
5733 */
5734static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5735                unsigned long addr, pmd_t pmd, union mc_target *target)
5736{
5737        struct page *page = NULL;
5738        enum mc_target_type ret = MC_TARGET_NONE;
5739
5740        if (unlikely(is_swap_pmd(pmd))) {
5741                VM_BUG_ON(thp_migration_supported() &&
5742                                  !is_pmd_migration_entry(pmd));
5743                return ret;
5744        }
5745        page = pmd_page(pmd);
5746        VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5747        if (!(mc.flags & MOVE_ANON))
5748                return ret;
5749        if (page_memcg(page) == mc.from) {
5750                ret = MC_TARGET_PAGE;
5751                if (target) {
5752                        get_page(page);
5753                        target->page = page;
5754                }
5755        }
5756        return ret;
5757}
5758#else
5759static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5760                unsigned long addr, pmd_t pmd, union mc_target *target)
5761{
5762        return MC_TARGET_NONE;
5763}
5764#endif
5765
5766static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5767                                        unsigned long addr, unsigned long end,
5768                                        struct mm_walk *walk)
5769{
5770        struct vm_area_struct *vma = walk->vma;
5771        pte_t *pte;
5772        spinlock_t *ptl;
5773
5774        ptl = pmd_trans_huge_lock(pmd, vma);
5775        if (ptl) {
5776                /*
5777                 * Note their can not be MC_TARGET_DEVICE for now as we do not
5778                 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5779                 * this might change.
5780                 */
5781                if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5782                        mc.precharge += HPAGE_PMD_NR;
5783                spin_unlock(ptl);
5784                return 0;
5785        }
5786
5787        if (pmd_trans_unstable(pmd))
5788                return 0;
5789        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5790        for (; addr != end; pte++, addr += PAGE_SIZE)
5791                if (get_mctgt_type(vma, addr, *pte, NULL))
5792                        mc.precharge++; /* increment precharge temporarily */
5793        pte_unmap_unlock(pte - 1, ptl);
5794        cond_resched();
5795
5796        return 0;
5797}
5798
5799static const struct mm_walk_ops precharge_walk_ops = {
5800        .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5801};
5802
5803static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5804{
5805        unsigned long precharge;
5806
5807        mmap_read_lock(mm);
5808        walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5809        mmap_read_unlock(mm);
5810
5811        precharge = mc.precharge;
5812        mc.precharge = 0;
5813
5814        return precharge;
5815}
5816
5817static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5818{
5819        unsigned long precharge = mem_cgroup_count_precharge(mm);
5820
5821        VM_BUG_ON(mc.moving_task);
5822        mc.moving_task = current;
5823        return mem_cgroup_do_precharge(precharge);
5824}
5825
5826/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5827static void __mem_cgroup_clear_mc(void)
5828{
5829        struct mem_cgroup *from = mc.from;
5830        struct mem_cgroup *to = mc.to;
5831
5832        /* we must uncharge all the leftover precharges from mc.to */
5833        if (mc.precharge) {
5834                cancel_charge(mc.to, mc.precharge);
5835                mc.precharge = 0;
5836        }
5837        /*
5838         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5839         * we must uncharge here.
5840         */
5841        if (mc.moved_charge) {
5842                cancel_charge(mc.from, mc.moved_charge);
5843                mc.moved_charge = 0;
5844        }
5845        /* we must fixup refcnts and charges */
5846        if (mc.moved_swap) {
5847                /* uncharge swap account from the old cgroup */
5848                if (!mem_cgroup_is_root(mc.from))
5849                        page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5850
5851                mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5852
5853                /*
5854                 * we charged both to->memory and to->memsw, so we
5855                 * should uncharge to->memory.
5856                 */
5857                if (!mem_cgroup_is_root(mc.to))
5858                        page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5859
5860                mc.moved_swap = 0;
5861        }
5862        memcg_oom_recover(from);
5863        memcg_oom_recover(to);
5864        wake_up_all(&mc.waitq);
5865}
5866
5867static void mem_cgroup_clear_mc(void)
5868{
5869        struct mm_struct *mm = mc.mm;
5870
5871        /*
5872         * we must clear moving_task before waking up waiters at the end of
5873         * task migration.
5874         */
5875        mc.moving_task = NULL;
5876        __mem_cgroup_clear_mc();
5877        spin_lock(&mc.lock);
5878        mc.from = NULL;
5879        mc.to = NULL;
5880        mc.mm = NULL;
5881        spin_unlock(&mc.lock);
5882
5883        mmput(mm);
5884}
5885
5886static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5887{
5888        struct cgroup_subsys_state *css;
5889        struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5890        struct mem_cgroup *from;
5891        struct task_struct *leader, *p;
5892        struct mm_struct *mm;
5893        unsigned long move_flags;
5894        int ret = 0;
5895
5896        /* charge immigration isn't supported on the default hierarchy */
5897        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5898                return 0;
5899
5900        /*
5901         * Multi-process migrations only happen on the default hierarchy
5902         * where charge immigration is not used.  Perform charge
5903         * immigration if @tset contains a leader and whine if there are
5904         * multiple.
5905         */
5906        p = NULL;
5907        cgroup_taskset_for_each_leader(leader, css, tset) {
5908                WARN_ON_ONCE(p);
5909                p = leader;
5910                memcg = mem_cgroup_from_css(css);
5911        }
5912        if (!p)
5913                return 0;
5914
5915        /*
5916         * We are now committed to this value whatever it is. Changes in this
5917         * tunable will only affect upcoming migrations, not the current one.
5918         * So we need to save it, and keep it going.
5919         */
5920        move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5921        if (!move_flags)
5922                return 0;
5923
5924        from = mem_cgroup_from_task(p);
5925
5926        VM_BUG_ON(from == memcg);
5927
5928        mm = get_task_mm(p);
5929        if (!mm)
5930                return 0;
5931        /* We move charges only when we move a owner of the mm */
5932        if (mm->owner == p) {
5933                VM_BUG_ON(mc.from);
5934                VM_BUG_ON(mc.to);
5935                VM_BUG_ON(mc.precharge);
5936                VM_BUG_ON(mc.moved_charge);
5937                VM_BUG_ON(mc.moved_swap);
5938
5939                spin_lock(&mc.lock);
5940                mc.mm = mm;
5941                mc.from = from;
5942                mc.to = memcg;
5943                mc.flags = move_flags;
5944                spin_unlock(&mc.lock);
5945                /* We set mc.moving_task later */
5946
5947                ret = mem_cgroup_precharge_mc(mm);
5948                if (ret)
5949                        mem_cgroup_clear_mc();
5950        } else {
5951                mmput(mm);
5952        }
5953        return ret;
5954}
5955
5956static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5957{
5958        if (mc.to)
5959                mem_cgroup_clear_mc();
5960}
5961
5962static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5963                                unsigned long addr, unsigned long end,
5964                                struct mm_walk *walk)
5965{
5966        int ret = 0;
5967        struct vm_area_struct *vma = walk->vma;
5968        pte_t *pte;
5969        spinlock_t *ptl;
5970        enum mc_target_type target_type;
5971        union mc_target target;
5972        struct page *page;
5973
5974        ptl = pmd_trans_huge_lock(pmd, vma);
5975        if (ptl) {
5976                if (mc.precharge < HPAGE_PMD_NR) {
5977                        spin_unlock(ptl);
5978                        return 0;
5979                }
5980                target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5981                if (target_type == MC_TARGET_PAGE) {
5982                        page = target.page;
5983                        if (!isolate_lru_page(page)) {
5984                                if (!mem_cgroup_move_account(page, true,
5985                                                             mc.from, mc.to)) {
5986                                        mc.precharge -= HPAGE_PMD_NR;
5987                                        mc.moved_charge += HPAGE_PMD_NR;
5988                                }
5989                                putback_lru_page(page);
5990                        }
5991                        put_page(page);
5992                } else if (target_type == MC_TARGET_DEVICE) {
5993                        page = target.page;
5994                        if (!mem_cgroup_move_account(page, true,
5995                                                     mc.from, mc.to)) {
5996                                mc.precharge -= HPAGE_PMD_NR;
5997                                mc.moved_charge += HPAGE_PMD_NR;
5998                        }
5999                        put_page(page);
6000                }
6001                spin_unlock(ptl);
6002                return 0;
6003        }
6004
6005        if (pmd_trans_unstable(pmd))
6006                return 0;
6007retry:
6008        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6009        for (; addr != end; addr += PAGE_SIZE) {
6010                pte_t ptent = *(pte++);
6011                bool device = false;
6012                swp_entry_t ent;
6013
6014                if (!mc.precharge)
6015                        break;
6016
6017                switch (get_mctgt_type(vma, addr, ptent, &target)) {
6018                case MC_TARGET_DEVICE:
6019                        device = true;
6020                        fallthrough;
6021                case MC_TARGET_PAGE:
6022                        page = target.page;
6023                        /*
6024                         * We can have a part of the split pmd here. Moving it
6025                         * can be done but it would be too convoluted so simply
6026                         * ignore such a partial THP and keep it in original
6027                         * memcg. There should be somebody mapping the head.
6028                         */
6029                        if (PageTransCompound(page))
6030                                goto put;
6031                        if (!device && isolate_lru_page(page))
6032                                goto put;
6033                        if (!mem_cgroup_move_account(page, false,
6034                                                mc.from, mc.to)) {
6035                                mc.precharge--;
6036                                /* we uncharge from mc.from later. */
6037                                mc.moved_charge++;
6038                        }
6039                        if (!device)
6040                                putback_lru_page(page);
6041put:                    /* get_mctgt_type() gets the page */
6042                        put_page(page);
6043                        break;
6044                case MC_TARGET_SWAP:
6045                        ent = target.ent;
6046                        if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6047                                mc.precharge--;
6048                                mem_cgroup_id_get_many(mc.to, 1);
6049                                /* we fixup other refcnts and charges later. */
6050                                mc.moved_swap++;
6051                        }
6052                        break;
6053                default:
6054                        break;
6055                }
6056        }
6057        pte_unmap_unlock(pte - 1, ptl);
6058        cond_resched();
6059
6060        if (addr != end) {
6061                /*
6062                 * We have consumed all precharges we got in can_attach().
6063                 * We try charge one by one, but don't do any additional
6064                 * charges to mc.to if we have failed in charge once in attach()
6065                 * phase.
6066                 */
6067                ret = mem_cgroup_do_precharge(1);
6068                if (!ret)
6069                        goto retry;
6070        }
6071
6072        return ret;
6073}
6074
6075static const struct mm_walk_ops charge_walk_ops = {
6076        .pmd_entry      = mem_cgroup_move_charge_pte_range,
6077};
6078
6079static void mem_cgroup_move_charge(void)
6080{
6081        lru_add_drain_all();
6082        /*
6083         * Signal lock_page_memcg() to take the memcg's move_lock
6084         * while we're moving its pages to another memcg. Then wait
6085         * for already started RCU-only updates to finish.
6086         */
6087        atomic_inc(&mc.from->moving_account);
6088        synchronize_rcu();
6089retry:
6090        if (unlikely(!mmap_read_trylock(mc.mm))) {
6091                /*
6092                 * Someone who are holding the mmap_lock might be waiting in
6093                 * waitq. So we cancel all extra charges, wake up all waiters,
6094                 * and retry. Because we cancel precharges, we might not be able
6095                 * to move enough charges, but moving charge is a best-effort
6096                 * feature anyway, so it wouldn't be a big problem.
6097                 */
6098                __mem_cgroup_clear_mc();
6099                cond_resched();
6100                goto retry;
6101        }
6102        /*
6103         * When we have consumed all precharges and failed in doing
6104         * additional charge, the page walk just aborts.
6105         */
6106        walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6107                        NULL);
6108
6109        mmap_read_unlock(mc.mm);
6110        atomic_dec(&mc.from->moving_account);
6111}
6112
6113static void mem_cgroup_move_task(void)
6114{
6115        if (mc.to) {
6116                mem_cgroup_move_charge();
6117                mem_cgroup_clear_mc();
6118        }
6119}
6120#else   /* !CONFIG_MMU */
6121static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6122{
6123        return 0;
6124}
6125static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6126{
6127}
6128static void mem_cgroup_move_task(void)
6129{
6130}
6131#endif
6132
6133static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6134{
6135        if (value == PAGE_COUNTER_MAX)
6136                seq_puts(m, "max\n");
6137        else
6138                seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6139
6140        return 0;
6141}
6142
6143static u64 memory_current_read(struct cgroup_subsys_state *css,
6144                               struct cftype *cft)
6145{
6146        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6147
6148        return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6149}
6150
6151static u64 memory_peak_read(struct cgroup_subsys_state *css,
6152                            struct cftype *cft)
6153{
6154        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6155
6156        return (u64)memcg->memory.watermark * PAGE_SIZE;
6157}
6158
6159static int memory_min_show(struct seq_file *m, void *v)
6160{
6161        return seq_puts_memcg_tunable(m,
6162                READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6163}
6164
6165static ssize_t memory_min_write(struct kernfs_open_file *of,
6166                                char *buf, size_t nbytes, loff_t off)
6167{
6168        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6169        unsigned long min;
6170        int err;
6171
6172        buf = strstrip(buf);
6173        err = page_counter_memparse(buf, "max", &min);
6174        if (err)
6175                return err;
6176
6177        page_counter_set_min(&memcg->memory, min);
6178
6179        return nbytes;
6180}
6181
6182static int memory_low_show(struct seq_file *m, void *v)
6183{
6184        return seq_puts_memcg_tunable(m,
6185                READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6186}
6187
6188static ssize_t memory_low_write(struct kernfs_open_file *of,
6189                                char *buf, size_t nbytes, loff_t off)
6190{
6191        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6192        unsigned long low;
6193        int err;
6194
6195        buf = strstrip(buf);
6196        err = page_counter_memparse(buf, "max", &low);
6197        if (err)
6198                return err;
6199
6200        page_counter_set_low(&memcg->memory, low);
6201
6202        return nbytes;
6203}
6204
6205static int memory_high_show(struct seq_file *m, void *v)
6206{
6207        return seq_puts_memcg_tunable(m,
6208                READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6209}
6210
6211static ssize_t memory_high_write(struct kernfs_open_file *of,
6212                                 char *buf, size_t nbytes, loff_t off)
6213{
6214        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6215        unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6216        bool drained = false;
6217        unsigned long high;
6218        int err;
6219
6220        buf = strstrip(buf);
6221        err = page_counter_memparse(buf, "max", &high);
6222        if (err)
6223                return err;
6224
6225        page_counter_set_high(&memcg->memory, high);
6226
6227        for (;;) {
6228                unsigned long nr_pages = page_counter_read(&memcg->memory);
6229                unsigned long reclaimed;
6230
6231                if (nr_pages <= high)
6232                        break;
6233
6234                if (signal_pending(current))
6235                        break;
6236
6237                if (!drained) {
6238                        drain_all_stock(memcg);
6239                        drained = true;
6240                        continue;
6241                }
6242
6243                reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6244                                                         GFP_KERNEL, true);
6245
6246                if (!reclaimed && !nr_retries--)
6247                        break;
6248        }
6249
6250        memcg_wb_domain_size_changed(memcg);
6251        return nbytes;
6252}
6253
6254static int memory_max_show(struct seq_file *m, void *v)
6255{
6256        return seq_puts_memcg_tunable(m,
6257                READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6258}
6259
6260static ssize_t memory_max_write(struct kernfs_open_file *of,
6261                                char *buf, size_t nbytes, loff_t off)
6262{
6263        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6264        unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6265        bool drained = false;
6266        unsigned long max;
6267        int err;
6268
6269        buf = strstrip(buf);
6270        err = page_counter_memparse(buf, "max", &max);
6271        if (err)
6272                return err;
6273
6274        xchg(&memcg->memory.max, max);
6275
6276        for (;;) {
6277                unsigned long nr_pages = page_counter_read(&memcg->memory);
6278
6279                if (nr_pages <= max)
6280                        break;
6281
6282                if (signal_pending(current))
6283                        break;
6284
6285                if (!drained) {
6286                        drain_all_stock(memcg);
6287                        drained = true;
6288                        continue;
6289                }
6290
6291                if (nr_reclaims) {
6292                        if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6293                                                          GFP_KERNEL, true))
6294                                nr_reclaims--;
6295                        continue;
6296                }
6297
6298                memcg_memory_event(memcg, MEMCG_OOM);
6299                if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6300                        break;
6301        }
6302
6303        memcg_wb_domain_size_changed(memcg);
6304        return nbytes;
6305}
6306
6307static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6308{
6309        seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6310        seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6311        seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6312        seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6313        seq_printf(m, "oom_kill %lu\n",
6314                   atomic_long_read(&events[MEMCG_OOM_KILL]));
6315        seq_printf(m, "oom_group_kill %lu\n",
6316                   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6317}
6318
6319static int memory_events_show(struct seq_file *m, void *v)
6320{
6321        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6322
6323        __memory_events_show(m, memcg->memory_events);
6324        return 0;
6325}
6326
6327static int memory_events_local_show(struct seq_file *m, void *v)
6328{
6329        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6330
6331        __memory_events_show(m, memcg->memory_events_local);
6332        return 0;
6333}
6334
6335static int memory_stat_show(struct seq_file *m, void *v)
6336{
6337        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6338        char *buf;
6339
6340        buf = memory_stat_format(memcg);
6341        if (!buf)
6342                return -ENOMEM;
6343        seq_puts(m, buf);
6344        kfree(buf);
6345        return 0;
6346}
6347
6348#ifdef CONFIG_NUMA
6349static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6350                                                     int item)
6351{
6352        return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6353}
6354
6355static int memory_numa_stat_show(struct seq_file *m, void *v)
6356{
6357        int i;
6358        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6359
6360        mem_cgroup_flush_stats();
6361
6362        for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6363                int nid;
6364
6365                if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6366                        continue;
6367
6368                seq_printf(m, "%s", memory_stats[i].name);
6369                for_each_node_state(nid, N_MEMORY) {
6370                        u64 size;
6371                        struct lruvec *lruvec;
6372
6373                        lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6374                        size = lruvec_page_state_output(lruvec,
6375                                                        memory_stats[i].idx);
6376                        seq_printf(m, " N%d=%llu", nid, size);
6377                }
6378                seq_putc(m, '\n');
6379        }
6380
6381        return 0;
6382}
6383#endif
6384
6385static int memory_oom_group_show(struct seq_file *m, void *v)
6386{
6387        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388
6389        seq_printf(m, "%d\n", memcg->oom_group);
6390
6391        return 0;
6392}
6393
6394static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6395                                      char *buf, size_t nbytes, loff_t off)
6396{
6397        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6398        int ret, oom_group;
6399
6400        buf = strstrip(buf);
6401        if (!buf)
6402                return -EINVAL;
6403
6404        ret = kstrtoint(buf, 0, &oom_group);
6405        if (ret)
6406                return ret;
6407
6408        if (oom_group != 0 && oom_group != 1)
6409                return -EINVAL;
6410
6411        memcg->oom_group = oom_group;
6412
6413        return nbytes;
6414}
6415
6416static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6417                              size_t nbytes, loff_t off)
6418{
6419        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6420        unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6421        unsigned long nr_to_reclaim, nr_reclaimed = 0;
6422        int err;
6423
6424        buf = strstrip(buf);
6425        err = page_counter_memparse(buf, "", &nr_to_reclaim);
6426        if (err)
6427                return err;
6428
6429        while (nr_reclaimed < nr_to_reclaim) {
6430                unsigned long reclaimed;
6431
6432                if (signal_pending(current))
6433                        return -EINTR;
6434
6435                /*
6436                 * This is the final attempt, drain percpu lru caches in the
6437                 * hope of introducing more evictable pages for
6438                 * try_to_free_mem_cgroup_pages().
6439                 */
6440                if (!nr_retries)
6441                        lru_add_drain_all();
6442
6443                reclaimed = try_to_free_mem_cgroup_pages(memcg,
6444                                                nr_to_reclaim - nr_reclaimed,
6445                                                GFP_KERNEL, true);
6446
6447                if (!reclaimed && !nr_retries--)
6448                        return -EAGAIN;
6449
6450                nr_reclaimed += reclaimed;
6451        }
6452
6453        return nbytes;
6454}
6455
6456static struct cftype memory_files[] = {
6457        {
6458                .name = "current",
6459                .flags = CFTYPE_NOT_ON_ROOT,
6460                .read_u64 = memory_current_read,
6461        },
6462        {
6463                .name = "peak",
6464                .flags = CFTYPE_NOT_ON_ROOT,
6465                .read_u64 = memory_peak_read,
6466        },
6467        {
6468                .name = "min",
6469                .flags = CFTYPE_NOT_ON_ROOT,
6470                .seq_show = memory_min_show,
6471                .write = memory_min_write,
6472        },
6473        {
6474                .name = "low",
6475                .flags = CFTYPE_NOT_ON_ROOT,
6476                .seq_show = memory_low_show,
6477                .write = memory_low_write,
6478        },
6479        {
6480                .name = "high",
6481                .flags = CFTYPE_NOT_ON_ROOT,
6482                .seq_show = memory_high_show,
6483                .write = memory_high_write,
6484        },
6485        {
6486                .name = "max",
6487                .flags = CFTYPE_NOT_ON_ROOT,
6488                .seq_show = memory_max_show,
6489                .write = memory_max_write,
6490        },
6491        {
6492                .name = "events",
6493                .flags = CFTYPE_NOT_ON_ROOT,
6494                .file_offset = offsetof(struct mem_cgroup, events_file),
6495                .seq_show = memory_events_show,
6496        },
6497        {
6498                .name = "events.local",
6499                .flags = CFTYPE_NOT_ON_ROOT,
6500                .file_offset = offsetof(struct mem_cgroup, events_local_file),
6501                .seq_show = memory_events_local_show,
6502        },
6503        {
6504                .name = "stat",
6505                .seq_show = memory_stat_show,
6506        },
6507#ifdef CONFIG_NUMA
6508        {
6509                .name = "numa_stat",
6510                .seq_show = memory_numa_stat_show,
6511        },
6512#endif
6513        {
6514                .name = "oom.group",
6515                .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6516                .seq_show = memory_oom_group_show,
6517                .write = memory_oom_group_write,
6518        },
6519        {
6520                .name = "reclaim",
6521                .flags = CFTYPE_NS_DELEGATABLE,
6522                .write = memory_reclaim,
6523        },
6524        { }     /* terminate */
6525};
6526
6527struct cgroup_subsys memory_cgrp_subsys = {
6528        .css_alloc = mem_cgroup_css_alloc,
6529        .css_online = mem_cgroup_css_online,
6530        .css_offline = mem_cgroup_css_offline,
6531        .css_released = mem_cgroup_css_released,
6532        .css_free = mem_cgroup_css_free,
6533        .css_reset = mem_cgroup_css_reset,
6534        .css_rstat_flush = mem_cgroup_css_rstat_flush,
6535        .can_attach = mem_cgroup_can_attach,
6536        .cancel_attach = mem_cgroup_cancel_attach,
6537        .post_attach = mem_cgroup_move_task,
6538        .dfl_cftypes = memory_files,
6539        .legacy_cftypes = mem_cgroup_legacy_files,
6540        .early_init = 0,
6541};
6542
6543/*
6544 * This function calculates an individual cgroup's effective
6545 * protection which is derived from its own memory.min/low, its
6546 * parent's and siblings' settings, as well as the actual memory
6547 * distribution in the tree.
6548 *
6549 * The following rules apply to the effective protection values:
6550 *
6551 * 1. At the first level of reclaim, effective protection is equal to
6552 *    the declared protection in memory.min and memory.low.
6553 *
6554 * 2. To enable safe delegation of the protection configuration, at
6555 *    subsequent levels the effective protection is capped to the
6556 *    parent's effective protection.
6557 *
6558 * 3. To make complex and dynamic subtrees easier to configure, the
6559 *    user is allowed to overcommit the declared protection at a given
6560 *    level. If that is the case, the parent's effective protection is
6561 *    distributed to the children in proportion to how much protection
6562 *    they have declared and how much of it they are utilizing.
6563 *
6564 *    This makes distribution proportional, but also work-conserving:
6565 *    if one cgroup claims much more protection than it uses memory,
6566 *    the unused remainder is available to its siblings.
6567 *
6568 * 4. Conversely, when the declared protection is undercommitted at a
6569 *    given level, the distribution of the larger parental protection
6570 *    budget is NOT proportional. A cgroup's protection from a sibling
6571 *    is capped to its own memory.min/low setting.
6572 *
6573 * 5. However, to allow protecting recursive subtrees from each other
6574 *    without having to declare each individual cgroup's fixed share
6575 *    of the ancestor's claim to protection, any unutilized -
6576 *    "floating" - protection from up the tree is distributed in
6577 *    proportion to each cgroup's *usage*. This makes the protection
6578 *    neutral wrt sibling cgroups and lets them compete freely over
6579 *    the shared parental protection budget, but it protects the
6580 *    subtree as a whole from neighboring subtrees.
6581 *
6582 * Note that 4. and 5. are not in conflict: 4. is about protecting
6583 * against immediate siblings whereas 5. is about protecting against
6584 * neighboring subtrees.
6585 */
6586static unsigned long effective_protection(unsigned long usage,
6587                                          unsigned long parent_usage,
6588                                          unsigned long setting,
6589                                          unsigned long parent_effective,
6590                                          unsigned long siblings_protected)
6591{
6592        unsigned long protected;
6593        unsigned long ep;
6594
6595        protected = min(usage, setting);
6596        /*
6597         * If all cgroups at this level combined claim and use more
6598         * protection then what the parent affords them, distribute
6599         * shares in proportion to utilization.
6600         *
6601         * We are using actual utilization rather than the statically
6602         * claimed protection in order to be work-conserving: claimed
6603         * but unused protection is available to siblings that would
6604         * otherwise get a smaller chunk than what they claimed.
6605         */
6606        if (siblings_protected > parent_effective)
6607                return protected * parent_effective / siblings_protected;
6608
6609        /*
6610         * Ok, utilized protection of all children is within what the
6611         * parent affords them, so we know whatever this child claims
6612         * and utilizes is effectively protected.
6613         *
6614         * If there is unprotected usage beyond this value, reclaim
6615         * will apply pressure in proportion to that amount.
6616         *
6617         * If there is unutilized protection, the cgroup will be fully
6618         * shielded from reclaim, but we do return a smaller value for
6619         * protection than what the group could enjoy in theory. This
6620         * is okay. With the overcommit distribution above, effective
6621         * protection is always dependent on how memory is actually
6622         * consumed among the siblings anyway.
6623         */
6624        ep = protected;
6625
6626        /*
6627         * If the children aren't claiming (all of) the protection
6628         * afforded to them by the parent, distribute the remainder in
6629         * proportion to the (unprotected) memory of each cgroup. That
6630         * way, cgroups that aren't explicitly prioritized wrt each
6631         * other compete freely over the allowance, but they are
6632         * collectively protected from neighboring trees.
6633         *
6634         * We're using unprotected memory for the weight so that if
6635         * some cgroups DO claim explicit protection, we don't protect
6636         * the same bytes twice.
6637         *
6638         * Check both usage and parent_usage against the respective
6639         * protected values. One should imply the other, but they
6640         * aren't read atomically - make sure the division is sane.
6641         */
6642        if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6643                return ep;
6644        if (parent_effective > siblings_protected &&
6645            parent_usage > siblings_protected &&
6646            usage > protected) {
6647                unsigned long unclaimed;
6648
6649                unclaimed = parent_effective - siblings_protected;
6650                unclaimed *= usage - protected;
6651                unclaimed /= parent_usage - siblings_protected;
6652
6653                ep += unclaimed;
6654        }
6655
6656        return ep;
6657}
6658
6659/**
6660 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6661 * @root: the top ancestor of the sub-tree being checked
6662 * @memcg: the memory cgroup to check
6663 *
6664 * WARNING: This function is not stateless! It can only be used as part
6665 *          of a top-down tree iteration, not for isolated queries.
6666 */
6667void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6668                                     struct mem_cgroup *memcg)
6669{
6670        unsigned long usage, parent_usage;
6671        struct mem_cgroup *parent;
6672
6673        if (mem_cgroup_disabled())
6674                return;
6675
6676        if (!root)
6677                root = root_mem_cgroup;
6678
6679        /*
6680         * Effective values of the reclaim targets are ignored so they
6681         * can be stale. Have a look at mem_cgroup_protection for more
6682         * details.
6683         * TODO: calculation should be more robust so that we do not need
6684         * that special casing.
6685         */
6686        if (memcg == root)
6687                return;
6688
6689        usage = page_counter_read(&memcg->memory);
6690        if (!usage)
6691                return;
6692
6693        parent = parent_mem_cgroup(memcg);
6694
6695        if (parent == root) {
6696                memcg->memory.emin = READ_ONCE(memcg->memory.min);
6697                memcg->memory.elow = READ_ONCE(memcg->memory.low);
6698                return;
6699        }
6700
6701        parent_usage = page_counter_read(&parent->memory);
6702
6703        WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6704                        READ_ONCE(memcg->memory.min),
6705                        READ_ONCE(parent->memory.emin),
6706                        atomic_long_read(&parent->memory.children_min_usage)));
6707
6708        WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6709                        READ_ONCE(memcg->memory.low),
6710                        READ_ONCE(parent->memory.elow),
6711                        atomic_long_read(&parent->memory.children_low_usage)));
6712}
6713
6714static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6715                        gfp_t gfp)
6716{
6717        long nr_pages = folio_nr_pages(folio);
6718        int ret;
6719
6720        ret = try_charge(memcg, gfp, nr_pages);
6721        if (ret)
6722                goto out;
6723
6724        css_get(&memcg->css);
6725        commit_charge(folio, memcg);
6726
6727        local_irq_disable();
6728        mem_cgroup_charge_statistics(memcg, nr_pages);
6729        memcg_check_events(memcg, folio_nid(folio));
6730        local_irq_enable();
6731out:
6732        return ret;
6733}
6734
6735int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6736{
6737        struct mem_cgroup *memcg;
6738        int ret;
6739
6740        memcg = get_mem_cgroup_from_mm(mm);
6741        ret = charge_memcg(folio, memcg, gfp);
6742        css_put(&memcg->css);
6743
6744        return ret;
6745}
6746
6747/**
6748 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6749 * @page: page to charge
6750 * @mm: mm context of the victim
6751 * @gfp: reclaim mode
6752 * @entry: swap entry for which the page is allocated
6753 *
6754 * This function charges a page allocated for swapin. Please call this before
6755 * adding the page to the swapcache.
6756 *
6757 * Returns 0 on success. Otherwise, an error code is returned.
6758 */
6759int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6760                                  gfp_t gfp, swp_entry_t entry)
6761{
6762        struct folio *folio = page_folio(page);
6763        struct mem_cgroup *memcg;
6764        unsigned short id;
6765        int ret;
6766
6767        if (mem_cgroup_disabled())
6768                return 0;
6769
6770        id = lookup_swap_cgroup_id(entry);
6771        rcu_read_lock();
6772        memcg = mem_cgroup_from_id(id);
6773        if (!memcg || !css_tryget_online(&memcg->css))
6774                memcg = get_mem_cgroup_from_mm(mm);
6775        rcu_read_unlock();
6776
6777        ret = charge_memcg(folio, memcg, gfp);
6778
6779        css_put(&memcg->css);
6780        return ret;
6781}
6782
6783/*
6784 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6785 * @entry: swap entry for which the page is charged
6786 *
6787 * Call this function after successfully adding the charged page to swapcache.
6788 *
6789 * Note: This function assumes the page for which swap slot is being uncharged
6790 * is order 0 page.
6791 */
6792void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6793{
6794        /*
6795         * Cgroup1's unified memory+swap counter has been charged with the
6796         * new swapcache page, finish the transfer by uncharging the swap
6797         * slot. The swap slot would also get uncharged when it dies, but
6798         * it can stick around indefinitely and we'd count the page twice
6799         * the entire time.
6800         *
6801         * Cgroup2 has separate resource counters for memory and swap,
6802         * so this is a non-issue here. Memory and swap charge lifetimes
6803         * correspond 1:1 to page and swap slot lifetimes: we charge the
6804         * page to memory here, and uncharge swap when the slot is freed.
6805         */
6806        if (!mem_cgroup_disabled() && do_memsw_account()) {
6807                /*
6808                 * The swap entry might not get freed for a long time,
6809                 * let's not wait for it.  The page already received a
6810                 * memory+swap charge, drop the swap entry duplicate.
6811                 */
6812                mem_cgroup_uncharge_swap(entry, 1);
6813        }
6814}
6815
6816struct uncharge_gather {
6817        struct mem_cgroup *memcg;
6818        unsigned long nr_memory;
6819        unsigned long pgpgout;
6820        unsigned long nr_kmem;
6821        int nid;
6822};
6823
6824static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6825{
6826        memset(ug, 0, sizeof(*ug));
6827}
6828
6829static void uncharge_batch(const struct uncharge_gather *ug)
6830{
6831        unsigned long flags;
6832
6833        if (ug->nr_memory) {
6834                page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6835                if (do_memsw_account())
6836                        page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6837                if (ug->nr_kmem)
6838                        memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6839                memcg_oom_recover(ug->memcg);
6840        }
6841
6842        local_irq_save(flags);
6843        __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6844        __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6845        memcg_check_events(ug->memcg, ug->nid);
6846        local_irq_restore(flags);
6847
6848        /* drop reference from uncharge_folio */
6849        css_put(&ug->memcg->css);
6850}
6851
6852static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6853{
6854        long nr_pages;
6855        struct mem_cgroup *memcg;
6856        struct obj_cgroup *objcg;
6857
6858        VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6859
6860        /*
6861         * Nobody should be changing or seriously looking at
6862         * folio memcg or objcg at this point, we have fully
6863         * exclusive access to the folio.
6864         */
6865        if (folio_memcg_kmem(folio)) {
6866                objcg = __folio_objcg(folio);
6867                /*
6868                 * This get matches the put at the end of the function and
6869                 * kmem pages do not hold memcg references anymore.
6870                 */
6871                memcg = get_mem_cgroup_from_objcg(objcg);
6872        } else {
6873                memcg = __folio_memcg(folio);
6874        }
6875
6876        if (!memcg)
6877                return;
6878
6879        if (ug->memcg != memcg) {
6880                if (ug->memcg) {
6881                        uncharge_batch(ug);
6882                        uncharge_gather_clear(ug);
6883                }
6884                ug->memcg = memcg;
6885                ug->nid = folio_nid(folio);
6886
6887                /* pairs with css_put in uncharge_batch */
6888                css_get(&memcg->css);
6889        }
6890
6891        nr_pages = folio_nr_pages(folio);
6892
6893        if (folio_memcg_kmem(folio)) {
6894                ug->nr_memory += nr_pages;
6895                ug->nr_kmem += nr_pages;
6896
6897                folio->memcg_data = 0;
6898                obj_cgroup_put(objcg);
6899        } else {
6900                /* LRU pages aren't accounted at the root level */
6901                if (!mem_cgroup_is_root(memcg))
6902                        ug->nr_memory += nr_pages;
6903                ug->pgpgout++;
6904
6905                folio->memcg_data = 0;
6906        }
6907
6908        css_put(&memcg->css);
6909}
6910
6911void __mem_cgroup_uncharge(struct folio *folio)
6912{
6913        struct uncharge_gather ug;
6914
6915        /* Don't touch folio->lru of any random page, pre-check: */
6916        if (!folio_memcg(folio))
6917                return;
6918
6919        uncharge_gather_clear(&ug);
6920        uncharge_folio(folio, &ug);
6921        uncharge_batch(&ug);
6922}
6923
6924/**
6925 * __mem_cgroup_uncharge_list - uncharge a list of page
6926 * @page_list: list of pages to uncharge
6927 *
6928 * Uncharge a list of pages previously charged with
6929 * __mem_cgroup_charge().
6930 */
6931void __mem_cgroup_uncharge_list(struct list_head *page_list)
6932{
6933        struct uncharge_gather ug;
6934        struct folio *folio;
6935
6936        uncharge_gather_clear(&ug);
6937        list_for_each_entry(folio, page_list, lru)
6938                uncharge_folio(folio, &ug);
6939        if (ug.memcg)
6940                uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_migrate - Charge a folio's replacement.
6945 * @old: Currently circulating folio.
6946 * @new: Replacement folio.
6947 *
6948 * Charge @new as a replacement folio for @old. @old will
6949 * be uncharged upon free.
6950 *
6951 * Both folios must be locked, @new->mapping must be set up.
6952 */
6953void mem_cgroup_migrate(struct folio *old, struct folio *new)
6954{
6955        struct mem_cgroup *memcg;
6956        long nr_pages = folio_nr_pages(new);
6957        unsigned long flags;
6958
6959        VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6960        VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6961        VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6962        VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6963
6964        if (mem_cgroup_disabled())
6965                return;
6966
6967        /* Page cache replacement: new folio already charged? */
6968        if (folio_memcg(new))
6969                return;
6970
6971        memcg = folio_memcg(old);
6972        VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6973        if (!memcg)
6974                return;
6975
6976        /* Force-charge the new page. The old one will be freed soon */
6977        if (!mem_cgroup_is_root(memcg)) {
6978                page_counter_charge(&memcg->memory, nr_pages);
6979                if (do_memsw_account())
6980                        page_counter_charge(&memcg->memsw, nr_pages);
6981        }
6982
6983        css_get(&memcg->css);
6984        commit_charge(new, memcg);
6985
6986        local_irq_save(flags);
6987        mem_cgroup_charge_statistics(memcg, nr_pages);
6988        memcg_check_events(memcg, folio_nid(new));
6989        local_irq_restore(flags);
6990}
6991
6992DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6993EXPORT_SYMBOL(memcg_sockets_enabled_key);
6994
6995void mem_cgroup_sk_alloc(struct sock *sk)
6996{
6997        struct mem_cgroup *memcg;
6998
6999        if (!mem_cgroup_sockets_enabled)
7000                return;
7001
7002        /* Do not associate the sock with unrelated interrupted task's memcg. */
7003        if (!in_task())
7004                return;
7005
7006        rcu_read_lock();
7007        memcg = mem_cgroup_from_task(current);
7008        if (memcg == root_mem_cgroup)
7009                goto out;
7010        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7011                goto out;
7012        if (css_tryget(&memcg->css))
7013                sk->sk_memcg = memcg;
7014out:
7015        rcu_read_unlock();
7016}
7017
7018void mem_cgroup_sk_free(struct sock *sk)
7019{
7020        if (sk->sk_memcg)
7021                css_put(&sk->sk_memcg->css);
7022}
7023
7024/**
7025 * mem_cgroup_charge_skmem - charge socket memory
7026 * @memcg: memcg to charge
7027 * @nr_pages: number of pages to charge
7028 * @gfp_mask: reclaim mode
7029 *
7030 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7031 * @memcg's configured limit, %false if it doesn't.
7032 */
7033bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7034                             gfp_t gfp_mask)
7035{
7036        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7037                struct page_counter *fail;
7038
7039                if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7040                        memcg->tcpmem_pressure = 0;
7041                        return true;
7042                }
7043                memcg->tcpmem_pressure = 1;
7044                if (gfp_mask & __GFP_NOFAIL) {
7045                        page_counter_charge(&memcg->tcpmem, nr_pages);
7046                        return true;
7047                }
7048                return false;
7049        }
7050
7051        if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7052                mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7053                return true;
7054        }
7055
7056        return false;
7057}
7058
7059/**
7060 * mem_cgroup_uncharge_skmem - uncharge socket memory
7061 * @memcg: memcg to uncharge
7062 * @nr_pages: number of pages to uncharge
7063 */
7064void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7065{
7066        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7067                page_counter_uncharge(&memcg->tcpmem, nr_pages);
7068                return;
7069        }
7070
7071        mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7072
7073        refill_stock(memcg, nr_pages);
7074}
7075
7076static int __init cgroup_memory(char *s)
7077{
7078        char *token;
7079
7080        while ((token = strsep(&s, ",")) != NULL) {
7081                if (!*token)
7082                        continue;
7083                if (!strcmp(token, "nosocket"))
7084                        cgroup_memory_nosocket = true;
7085                if (!strcmp(token, "nokmem"))
7086                        cgroup_memory_nokmem = true;
7087        }
7088        return 1;
7089}
7090__setup("cgroup.memory=", cgroup_memory);
7091
7092/*
7093 * subsys_initcall() for memory controller.
7094 *
7095 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7096 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7097 * basically everything that doesn't depend on a specific mem_cgroup structure
7098 * should be initialized from here.
7099 */
7100static int __init mem_cgroup_init(void)
7101{
7102        int cpu, node;
7103
7104        /*
7105         * Currently s32 type (can refer to struct batched_lruvec_stat) is
7106         * used for per-memcg-per-cpu caching of per-node statistics. In order
7107         * to work fine, we should make sure that the overfill threshold can't
7108         * exceed S32_MAX / PAGE_SIZE.
7109         */
7110        BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7111
7112        cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7113                                  memcg_hotplug_cpu_dead);
7114
7115        for_each_possible_cpu(cpu)
7116                INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7117                          drain_local_stock);
7118
7119        for_each_node(node) {
7120                struct mem_cgroup_tree_per_node *rtpn;
7121
7122                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7123                                    node_online(node) ? node : NUMA_NO_NODE);
7124
7125                rtpn->rb_root = RB_ROOT;
7126                rtpn->rb_rightmost = NULL;
7127                spin_lock_init(&rtpn->lock);
7128                soft_limit_tree.rb_tree_per_node[node] = rtpn;
7129        }
7130
7131        return 0;
7132}
7133subsys_initcall(mem_cgroup_init);
7134
7135#ifdef CONFIG_MEMCG_SWAP
7136static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7137{
7138        while (!refcount_inc_not_zero(&memcg->id.ref)) {
7139                /*
7140                 * The root cgroup cannot be destroyed, so it's refcount must
7141                 * always be >= 1.
7142                 */
7143                if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7144                        VM_BUG_ON(1);
7145                        break;
7146                }
7147                memcg = parent_mem_cgroup(memcg);
7148                if (!memcg)
7149                        memcg = root_mem_cgroup;
7150        }
7151        return memcg;
7152}
7153
7154/**
7155 * mem_cgroup_swapout - transfer a memsw charge to swap
7156 * @folio: folio whose memsw charge to transfer
7157 * @entry: swap entry to move the charge to
7158 *
7159 * Transfer the memsw charge of @folio to @entry.
7160 */
7161void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7162{
7163        struct mem_cgroup *memcg, *swap_memcg;
7164        unsigned int nr_entries;
7165        unsigned short oldid;
7166
7167        VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7168        VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7169
7170        if (mem_cgroup_disabled())
7171                return;
7172
7173        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7174                return;
7175
7176        memcg = folio_memcg(folio);
7177
7178        VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7179        if (!memcg)
7180                return;
7181
7182        /*
7183         * In case the memcg owning these pages has been offlined and doesn't
7184         * have an ID allocated to it anymore, charge the closest online
7185         * ancestor for the swap instead and transfer the memory+swap charge.
7186         */
7187        swap_memcg = mem_cgroup_id_get_online(memcg);
7188        nr_entries = folio_nr_pages(folio);
7189        /* Get references for the tail pages, too */
7190        if (nr_entries > 1)
7191                mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7192        oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7193                                   nr_entries);
7194        VM_BUG_ON_FOLIO(oldid, folio);
7195        mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7196
7197        folio->memcg_data = 0;
7198
7199        if (!mem_cgroup_is_root(memcg))
7200                page_counter_uncharge(&memcg->memory, nr_entries);
7201
7202        if (!cgroup_memory_noswap && memcg != swap_memcg) {
7203                if (!mem_cgroup_is_root(swap_memcg))
7204                        page_counter_charge(&swap_memcg->memsw, nr_entries);
7205                page_counter_uncharge(&memcg->memsw, nr_entries);
7206        }
7207
7208        /*
7209         * Interrupts should be disabled here because the caller holds the
7210         * i_pages lock which is taken with interrupts-off. It is
7211         * important here to have the interrupts disabled because it is the
7212         * only synchronisation we have for updating the per-CPU variables.
7213         */
7214        memcg_stats_lock();
7215        mem_cgroup_charge_statistics(memcg, -nr_entries);
7216        memcg_stats_unlock();
7217        memcg_check_events(memcg, folio_nid(folio));
7218
7219        css_put(&memcg->css);
7220}
7221
7222/**
7223 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7224 * @folio: folio being added to swap
7225 * @entry: swap entry to charge
7226 *
7227 * Try to charge @folio's memcg for the swap space at @entry.
7228 *
7229 * Returns 0 on success, -ENOMEM on failure.
7230 */
7231int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7232{
7233        unsigned int nr_pages = folio_nr_pages(folio);
7234        struct page_counter *counter;
7235        struct mem_cgroup *memcg;
7236        unsigned short oldid;
7237
7238        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7239                return 0;
7240
7241        memcg = folio_memcg(folio);
7242
7243        VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7244        if (!memcg)
7245                return 0;
7246
7247        if (!entry.val) {
7248                memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7249                return 0;
7250        }
7251
7252        memcg = mem_cgroup_id_get_online(memcg);
7253
7254        if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7255            !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7256                memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7257                memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7258                mem_cgroup_id_put(memcg);
7259                return -ENOMEM;
7260        }
7261
7262        /* Get references for the tail pages, too */
7263        if (nr_pages > 1)
7264                mem_cgroup_id_get_many(memcg, nr_pages - 1);
7265        oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7266        VM_BUG_ON_FOLIO(oldid, folio);
7267        mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7268
7269        return 0;
7270}
7271
7272/**
7273 * __mem_cgroup_uncharge_swap - uncharge swap space
7274 * @entry: swap entry to uncharge
7275 * @nr_pages: the amount of swap space to uncharge
7276 */
7277void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7278{
7279        struct mem_cgroup *memcg;
7280        unsigned short id;
7281
7282        id = swap_cgroup_record(entry, 0, nr_pages);
7283        rcu_read_lock();
7284        memcg = mem_cgroup_from_id(id);
7285        if (memcg) {
7286                if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7287                        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7288                                page_counter_uncharge(&memcg->swap, nr_pages);
7289                        else
7290                                page_counter_uncharge(&memcg->memsw, nr_pages);
7291                }
7292                mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7293                mem_cgroup_id_put_many(memcg, nr_pages);
7294        }
7295        rcu_read_unlock();
7296}
7297
7298long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7299{
7300        long nr_swap_pages = get_nr_swap_pages();
7301
7302        if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7303                return nr_swap_pages;
7304        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7305                nr_swap_pages = min_t(long, nr_swap_pages,
7306                                      READ_ONCE(memcg->swap.max) -
7307                                      page_counter_read(&memcg->swap));
7308        return nr_swap_pages;
7309}
7310
7311bool mem_cgroup_swap_full(struct page *page)
7312{
7313        struct mem_cgroup *memcg;
7314
7315        VM_BUG_ON_PAGE(!PageLocked(page), page);
7316
7317        if (vm_swap_full())
7318                return true;
7319        if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7320                return false;
7321
7322        memcg = page_memcg(page);
7323        if (!memcg)
7324                return false;
7325
7326        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7327                unsigned long usage = page_counter_read(&memcg->swap);
7328
7329                if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7330                    usage * 2 >= READ_ONCE(memcg->swap.max))
7331                        return true;
7332        }
7333
7334        return false;
7335}
7336
7337static int __init setup_swap_account(char *s)
7338{
7339        if (!strcmp(s, "1"))
7340                cgroup_memory_noswap = false;
7341        else if (!strcmp(s, "0"))
7342                cgroup_memory_noswap = true;
7343        return 1;
7344}
7345__setup("swapaccount=", setup_swap_account);
7346
7347static u64 swap_current_read(struct cgroup_subsys_state *css,
7348                             struct cftype *cft)
7349{
7350        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7351
7352        return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7353}
7354
7355static int swap_high_show(struct seq_file *m, void *v)
7356{
7357        return seq_puts_memcg_tunable(m,
7358                READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7359}
7360
7361static ssize_t swap_high_write(struct kernfs_open_file *of,
7362                               char *buf, size_t nbytes, loff_t off)
7363{
7364        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7365        unsigned long high;
7366        int err;
7367
7368        buf = strstrip(buf);
7369        err = page_counter_memparse(buf, "max", &high);
7370        if (err)
7371                return err;
7372
7373        page_counter_set_high(&memcg->swap, high);
7374
7375        return nbytes;
7376}
7377
7378static int swap_max_show(struct seq_file *m, void *v)
7379{
7380        return seq_puts_memcg_tunable(m,
7381                READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7382}
7383
7384static ssize_t swap_max_write(struct kernfs_open_file *of,
7385                              char *buf, size_t nbytes, loff_t off)
7386{
7387        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7388        unsigned long max;
7389        int err;
7390
7391        buf = strstrip(buf);
7392        err = page_counter_memparse(buf, "max", &max);
7393        if (err)
7394                return err;
7395
7396        xchg(&memcg->swap.max, max);
7397
7398        return nbytes;
7399}
7400
7401static int swap_events_show(struct seq_file *m, void *v)
7402{
7403        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7404
7405        seq_printf(m, "high %lu\n",
7406                   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7407        seq_printf(m, "max %lu\n",
7408                   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7409        seq_printf(m, "fail %lu\n",
7410                   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7411
7412        return 0;
7413}
7414
7415static struct cftype swap_files[] = {
7416        {
7417                .name = "swap.current",
7418                .flags = CFTYPE_NOT_ON_ROOT,
7419                .read_u64 = swap_current_read,
7420        },
7421        {
7422                .name = "swap.high",
7423                .flags = CFTYPE_NOT_ON_ROOT,
7424                .seq_show = swap_high_show,
7425                .write = swap_high_write,
7426        },
7427        {
7428                .name = "swap.max",
7429                .flags = CFTYPE_NOT_ON_ROOT,
7430                .seq_show = swap_max_show,
7431                .write = swap_max_write,
7432        },
7433        {
7434                .name = "swap.events",
7435                .flags = CFTYPE_NOT_ON_ROOT,
7436                .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7437                .seq_show = swap_events_show,
7438        },
7439        { }     /* terminate */
7440};
7441
7442static struct cftype memsw_files[] = {
7443        {
7444                .name = "memsw.usage_in_bytes",
7445                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7446                .read_u64 = mem_cgroup_read_u64,
7447        },
7448        {
7449                .name = "memsw.max_usage_in_bytes",
7450                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7451                .write = mem_cgroup_reset,
7452                .read_u64 = mem_cgroup_read_u64,
7453        },
7454        {
7455                .name = "memsw.limit_in_bytes",
7456                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7457                .write = mem_cgroup_write,
7458                .read_u64 = mem_cgroup_read_u64,
7459        },
7460        {
7461                .name = "memsw.failcnt",
7462                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7463                .write = mem_cgroup_reset,
7464                .read_u64 = mem_cgroup_read_u64,
7465        },
7466        { },    /* terminate */
7467};
7468
7469#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7470/**
7471 * obj_cgroup_may_zswap - check if this cgroup can zswap
7472 * @objcg: the object cgroup
7473 *
7474 * Check if the hierarchical zswap limit has been reached.
7475 *
7476 * This doesn't check for specific headroom, and it is not atomic
7477 * either. But with zswap, the size of the allocation is only known
7478 * once compression has occured, and this optimistic pre-check avoids
7479 * spending cycles on compression when there is already no room left
7480 * or zswap is disabled altogether somewhere in the hierarchy.
7481 */
7482bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7483{
7484        struct mem_cgroup *memcg, *original_memcg;
7485        bool ret = true;
7486
7487        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7488                return true;
7489
7490        original_memcg = get_mem_cgroup_from_objcg(objcg);
7491        for (memcg = original_memcg; memcg != root_mem_cgroup;
7492             memcg = parent_mem_cgroup(memcg)) {
7493                unsigned long max = READ_ONCE(memcg->zswap_max);
7494                unsigned long pages;
7495
7496                if (max == PAGE_COUNTER_MAX)
7497                        continue;
7498                if (max == 0) {
7499                        ret = false;
7500                        break;
7501                }
7502
7503                cgroup_rstat_flush(memcg->css.cgroup);
7504                pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7505                if (pages < max)
7506                        continue;
7507                ret = false;
7508                break;
7509        }
7510        mem_cgroup_put(original_memcg);
7511        return ret;
7512}
7513
7514/**
7515 * obj_cgroup_charge_zswap - charge compression backend memory
7516 * @objcg: the object cgroup
7517 * @size: size of compressed object
7518 *
7519 * This forces the charge after obj_cgroup_may_swap() allowed
7520 * compression and storage in zwap for this cgroup to go ahead.
7521 */
7522void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7523{
7524        struct mem_cgroup *memcg;
7525
7526        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7527                return;
7528
7529        VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7530
7531        /* PF_MEMALLOC context, charging must succeed */
7532        if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7533                VM_WARN_ON_ONCE(1);
7534
7535        rcu_read_lock();
7536        memcg = obj_cgroup_memcg(objcg);
7537        mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7538        mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7539        rcu_read_unlock();
7540}
7541
7542/**
7543 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7544 * @objcg: the object cgroup
7545 * @size: size of compressed object
7546 *
7547 * Uncharges zswap memory on page in.
7548 */
7549void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7550{
7551        struct mem_cgroup *memcg;
7552
7553        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7554                return;
7555
7556        obj_cgroup_uncharge(objcg, size);
7557
7558        rcu_read_lock();
7559        memcg = obj_cgroup_memcg(objcg);
7560        mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7561        mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7562        rcu_read_unlock();
7563}
7564
7565static u64 zswap_current_read(struct cgroup_subsys_state *css,
7566                              struct cftype *cft)
7567{
7568        cgroup_rstat_flush(css->cgroup);
7569        return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7570}
7571
7572static int zswap_max_show(struct seq_file *m, void *v)
7573{
7574        return seq_puts_memcg_tunable(m,
7575                READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7576}
7577
7578static ssize_t zswap_max_write(struct kernfs_open_file *of,
7579                               char *buf, size_t nbytes, loff_t off)
7580{
7581        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7582        unsigned long max;
7583        int err;
7584
7585        buf = strstrip(buf);
7586        err = page_counter_memparse(buf, "max", &max);
7587        if (err)
7588                return err;
7589
7590        xchg(&memcg->zswap_max, max);
7591
7592        return nbytes;
7593}
7594
7595static struct cftype zswap_files[] = {
7596        {
7597                .name = "zswap.current",
7598                .flags = CFTYPE_NOT_ON_ROOT,
7599                .read_u64 = zswap_current_read,
7600        },
7601        {
7602                .name = "zswap.max",
7603                .flags = CFTYPE_NOT_ON_ROOT,
7604                .seq_show = zswap_max_show,
7605                .write = zswap_max_write,
7606        },
7607        { }     /* terminate */
7608};
7609#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7610
7611/*
7612 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7613 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7614 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7615 * boot parameter. This may result in premature OOPS inside
7616 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7617 */
7618static int __init mem_cgroup_swap_init(void)
7619{
7620        /* No memory control -> no swap control */
7621        if (mem_cgroup_disabled())
7622                cgroup_memory_noswap = true;
7623
7624        if (cgroup_memory_noswap)
7625                return 0;
7626
7627        WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7628        WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7629#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7630        WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7631#endif
7632        return 0;
7633}
7634core_initcall(mem_cgroup_swap_init);
7635
7636#endif /* CONFIG_MEMCG_SWAP */
7637