linux/mm/pagewalk.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/pagewalk.h>
   3#include <linux/highmem.h>
   4#include <linux/sched.h>
   5#include <linux/hugetlb.h>
   6
   7/*
   8 * We want to know the real level where a entry is located ignoring any
   9 * folding of levels which may be happening. For example if p4d is folded then
  10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
  11 */
  12static int real_depth(int depth)
  13{
  14        if (depth == 3 && PTRS_PER_PMD == 1)
  15                depth = 2;
  16        if (depth == 2 && PTRS_PER_PUD == 1)
  17                depth = 1;
  18        if (depth == 1 && PTRS_PER_P4D == 1)
  19                depth = 0;
  20        return depth;
  21}
  22
  23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
  24                                unsigned long end, struct mm_walk *walk)
  25{
  26        const struct mm_walk_ops *ops = walk->ops;
  27        int err = 0;
  28
  29        for (;;) {
  30                err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
  31                if (err)
  32                       break;
  33                if (addr >= end - PAGE_SIZE)
  34                        break;
  35                addr += PAGE_SIZE;
  36                pte++;
  37        }
  38        return err;
  39}
  40
  41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  42                          struct mm_walk *walk)
  43{
  44        pte_t *pte;
  45        int err = 0;
  46        spinlock_t *ptl;
  47
  48        if (walk->no_vma) {
  49                pte = pte_offset_map(pmd, addr);
  50                err = walk_pte_range_inner(pte, addr, end, walk);
  51                pte_unmap(pte);
  52        } else {
  53                pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  54                err = walk_pte_range_inner(pte, addr, end, walk);
  55                pte_unmap_unlock(pte, ptl);
  56        }
  57
  58        return err;
  59}
  60
  61#ifdef CONFIG_ARCH_HAS_HUGEPD
  62static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
  63                             unsigned long end, struct mm_walk *walk, int pdshift)
  64{
  65        int err = 0;
  66        const struct mm_walk_ops *ops = walk->ops;
  67        int shift = hugepd_shift(*phpd);
  68        int page_size = 1 << shift;
  69
  70        if (!ops->pte_entry)
  71                return 0;
  72
  73        if (addr & (page_size - 1))
  74                return 0;
  75
  76        for (;;) {
  77                pte_t *pte;
  78
  79                spin_lock(&walk->mm->page_table_lock);
  80                pte = hugepte_offset(*phpd, addr, pdshift);
  81                err = ops->pte_entry(pte, addr, addr + page_size, walk);
  82                spin_unlock(&walk->mm->page_table_lock);
  83
  84                if (err)
  85                        break;
  86                if (addr >= end - page_size)
  87                        break;
  88                addr += page_size;
  89        }
  90        return err;
  91}
  92#else
  93static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
  94                             unsigned long end, struct mm_walk *walk, int pdshift)
  95{
  96        return 0;
  97}
  98#endif
  99
 100static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 101                          struct mm_walk *walk)
 102{
 103        pmd_t *pmd;
 104        unsigned long next;
 105        const struct mm_walk_ops *ops = walk->ops;
 106        int err = 0;
 107        int depth = real_depth(3);
 108
 109        pmd = pmd_offset(pud, addr);
 110        do {
 111again:
 112                next = pmd_addr_end(addr, end);
 113                if (pmd_none(*pmd) || (!walk->vma && !walk->no_vma)) {
 114                        if (ops->pte_hole)
 115                                err = ops->pte_hole(addr, next, depth, walk);
 116                        if (err)
 117                                break;
 118                        continue;
 119                }
 120
 121                walk->action = ACTION_SUBTREE;
 122
 123                /*
 124                 * This implies that each ->pmd_entry() handler
 125                 * needs to know about pmd_trans_huge() pmds
 126                 */
 127                if (ops->pmd_entry)
 128                        err = ops->pmd_entry(pmd, addr, next, walk);
 129                if (err)
 130                        break;
 131
 132                if (walk->action == ACTION_AGAIN)
 133                        goto again;
 134
 135                /*
 136                 * Check this here so we only break down trans_huge
 137                 * pages when we _need_ to
 138                 */
 139                if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
 140                    walk->action == ACTION_CONTINUE ||
 141                    !(ops->pte_entry))
 142                        continue;
 143
 144                if (walk->vma) {
 145                        split_huge_pmd(walk->vma, pmd, addr);
 146                        if (pmd_trans_unstable(pmd))
 147                                goto again;
 148                }
 149
 150                if (is_hugepd(__hugepd(pmd_val(*pmd))))
 151                        err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
 152                else
 153                        err = walk_pte_range(pmd, addr, next, walk);
 154                if (err)
 155                        break;
 156        } while (pmd++, addr = next, addr != end);
 157
 158        return err;
 159}
 160
 161static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 162                          struct mm_walk *walk)
 163{
 164        pud_t *pud;
 165        unsigned long next;
 166        const struct mm_walk_ops *ops = walk->ops;
 167        int err = 0;
 168        int depth = real_depth(2);
 169
 170        pud = pud_offset(p4d, addr);
 171        do {
 172 again:
 173                next = pud_addr_end(addr, end);
 174                if (pud_none(*pud) || (!walk->vma && !walk->no_vma)) {
 175                        if (ops->pte_hole)
 176                                err = ops->pte_hole(addr, next, depth, walk);
 177                        if (err)
 178                                break;
 179                        continue;
 180                }
 181
 182                walk->action = ACTION_SUBTREE;
 183
 184                if (ops->pud_entry)
 185                        err = ops->pud_entry(pud, addr, next, walk);
 186                if (err)
 187                        break;
 188
 189                if (walk->action == ACTION_AGAIN)
 190                        goto again;
 191
 192                if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
 193                    walk->action == ACTION_CONTINUE ||
 194                    !(ops->pmd_entry || ops->pte_entry))
 195                        continue;
 196
 197                if (walk->vma)
 198                        split_huge_pud(walk->vma, pud, addr);
 199                if (pud_none(*pud))
 200                        goto again;
 201
 202                if (is_hugepd(__hugepd(pud_val(*pud))))
 203                        err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
 204                else
 205                        err = walk_pmd_range(pud, addr, next, walk);
 206                if (err)
 207                        break;
 208        } while (pud++, addr = next, addr != end);
 209
 210        return err;
 211}
 212
 213static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 214                          struct mm_walk *walk)
 215{
 216        p4d_t *p4d;
 217        unsigned long next;
 218        const struct mm_walk_ops *ops = walk->ops;
 219        int err = 0;
 220        int depth = real_depth(1);
 221
 222        p4d = p4d_offset(pgd, addr);
 223        do {
 224                next = p4d_addr_end(addr, end);
 225                if (p4d_none_or_clear_bad(p4d)) {
 226                        if (ops->pte_hole)
 227                                err = ops->pte_hole(addr, next, depth, walk);
 228                        if (err)
 229                                break;
 230                        continue;
 231                }
 232                if (ops->p4d_entry) {
 233                        err = ops->p4d_entry(p4d, addr, next, walk);
 234                        if (err)
 235                                break;
 236                }
 237                if (is_hugepd(__hugepd(p4d_val(*p4d))))
 238                        err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
 239                else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
 240                        err = walk_pud_range(p4d, addr, next, walk);
 241                if (err)
 242                        break;
 243        } while (p4d++, addr = next, addr != end);
 244
 245        return err;
 246}
 247
 248static int walk_pgd_range(unsigned long addr, unsigned long end,
 249                          struct mm_walk *walk)
 250{
 251        pgd_t *pgd;
 252        unsigned long next;
 253        const struct mm_walk_ops *ops = walk->ops;
 254        int err = 0;
 255
 256        if (walk->pgd)
 257                pgd = walk->pgd + pgd_index(addr);
 258        else
 259                pgd = pgd_offset(walk->mm, addr);
 260        do {
 261                next = pgd_addr_end(addr, end);
 262                if (pgd_none_or_clear_bad(pgd)) {
 263                        if (ops->pte_hole)
 264                                err = ops->pte_hole(addr, next, 0, walk);
 265                        if (err)
 266                                break;
 267                        continue;
 268                }
 269                if (ops->pgd_entry) {
 270                        err = ops->pgd_entry(pgd, addr, next, walk);
 271                        if (err)
 272                                break;
 273                }
 274                if (is_hugepd(__hugepd(pgd_val(*pgd))))
 275                        err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
 276                else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
 277                        err = walk_p4d_range(pgd, addr, next, walk);
 278                if (err)
 279                        break;
 280        } while (pgd++, addr = next, addr != end);
 281
 282        return err;
 283}
 284
 285#ifdef CONFIG_HUGETLB_PAGE
 286static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
 287                                       unsigned long end)
 288{
 289        unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
 290        return boundary < end ? boundary : end;
 291}
 292
 293static int walk_hugetlb_range(unsigned long addr, unsigned long end,
 294                              struct mm_walk *walk)
 295{
 296        struct vm_area_struct *vma = walk->vma;
 297        struct hstate *h = hstate_vma(vma);
 298        unsigned long next;
 299        unsigned long hmask = huge_page_mask(h);
 300        unsigned long sz = huge_page_size(h);
 301        pte_t *pte;
 302        const struct mm_walk_ops *ops = walk->ops;
 303        int err = 0;
 304
 305        do {
 306                next = hugetlb_entry_end(h, addr, end);
 307                pte = huge_pte_offset(walk->mm, addr & hmask, sz);
 308
 309                if (pte)
 310                        err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
 311                else if (ops->pte_hole)
 312                        err = ops->pte_hole(addr, next, -1, walk);
 313
 314                if (err)
 315                        break;
 316        } while (addr = next, addr != end);
 317
 318        return err;
 319}
 320
 321#else /* CONFIG_HUGETLB_PAGE */
 322static int walk_hugetlb_range(unsigned long addr, unsigned long end,
 323                              struct mm_walk *walk)
 324{
 325        return 0;
 326}
 327
 328#endif /* CONFIG_HUGETLB_PAGE */
 329
 330/*
 331 * Decide whether we really walk over the current vma on [@start, @end)
 332 * or skip it via the returned value. Return 0 if we do walk over the
 333 * current vma, and return 1 if we skip the vma. Negative values means
 334 * error, where we abort the current walk.
 335 */
 336static int walk_page_test(unsigned long start, unsigned long end,
 337                        struct mm_walk *walk)
 338{
 339        struct vm_area_struct *vma = walk->vma;
 340        const struct mm_walk_ops *ops = walk->ops;
 341
 342        if (ops->test_walk)
 343                return ops->test_walk(start, end, walk);
 344
 345        /*
 346         * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
 347         * range, so we don't walk over it as we do for normal vmas. However,
 348         * Some callers are interested in handling hole range and they don't
 349         * want to just ignore any single address range. Such users certainly
 350         * define their ->pte_hole() callbacks, so let's delegate them to handle
 351         * vma(VM_PFNMAP).
 352         */
 353        if (vma->vm_flags & VM_PFNMAP) {
 354                int err = 1;
 355                if (ops->pte_hole)
 356                        err = ops->pte_hole(start, end, -1, walk);
 357                return err ? err : 1;
 358        }
 359        return 0;
 360}
 361
 362static int __walk_page_range(unsigned long start, unsigned long end,
 363                        struct mm_walk *walk)
 364{
 365        int err = 0;
 366        struct vm_area_struct *vma = walk->vma;
 367        const struct mm_walk_ops *ops = walk->ops;
 368
 369        if (vma && ops->pre_vma) {
 370                err = ops->pre_vma(start, end, walk);
 371                if (err)
 372                        return err;
 373        }
 374
 375        if (vma && is_vm_hugetlb_page(vma)) {
 376                if (ops->hugetlb_entry)
 377                        err = walk_hugetlb_range(start, end, walk);
 378        } else
 379                err = walk_pgd_range(start, end, walk);
 380
 381        if (vma && ops->post_vma)
 382                ops->post_vma(walk);
 383
 384        return err;
 385}
 386
 387/**
 388 * walk_page_range - walk page table with caller specific callbacks
 389 * @mm:         mm_struct representing the target process of page table walk
 390 * @start:      start address of the virtual address range
 391 * @end:        end address of the virtual address range
 392 * @ops:        operation to call during the walk
 393 * @private:    private data for callbacks' usage
 394 *
 395 * Recursively walk the page table tree of the process represented by @mm
 396 * within the virtual address range [@start, @end). During walking, we can do
 397 * some caller-specific works for each entry, by setting up pmd_entry(),
 398 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
 399 * callbacks, the associated entries/pages are just ignored.
 400 * The return values of these callbacks are commonly defined like below:
 401 *
 402 *  - 0  : succeeded to handle the current entry, and if you don't reach the
 403 *         end address yet, continue to walk.
 404 *  - >0 : succeeded to handle the current entry, and return to the caller
 405 *         with caller specific value.
 406 *  - <0 : failed to handle the current entry, and return to the caller
 407 *         with error code.
 408 *
 409 * Before starting to walk page table, some callers want to check whether
 410 * they really want to walk over the current vma, typically by checking
 411 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
 412 * purpose.
 413 *
 414 * If operations need to be staged before and committed after a vma is walked,
 415 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
 416 * since it is intended to handle commit-type operations, can't return any
 417 * errors.
 418 *
 419 * struct mm_walk keeps current values of some common data like vma and pmd,
 420 * which are useful for the access from callbacks. If you want to pass some
 421 * caller-specific data to callbacks, @private should be helpful.
 422 *
 423 * Locking:
 424 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
 425 *   because these function traverse vma list and/or access to vma's data.
 426 */
 427int walk_page_range(struct mm_struct *mm, unsigned long start,
 428                unsigned long end, const struct mm_walk_ops *ops,
 429                void *private)
 430{
 431        int err = 0;
 432        unsigned long next;
 433        struct vm_area_struct *vma;
 434        struct mm_walk walk = {
 435                .ops            = ops,
 436                .mm             = mm,
 437                .private        = private,
 438        };
 439
 440        if (start >= end)
 441                return -EINVAL;
 442
 443        if (!walk.mm)
 444                return -EINVAL;
 445
 446        mmap_assert_locked(walk.mm);
 447
 448        vma = find_vma(walk.mm, start);
 449        do {
 450                if (!vma) { /* after the last vma */
 451                        walk.vma = NULL;
 452                        next = end;
 453                } else if (start < vma->vm_start) { /* outside vma */
 454                        walk.vma = NULL;
 455                        next = min(end, vma->vm_start);
 456                } else { /* inside vma */
 457                        walk.vma = vma;
 458                        next = min(end, vma->vm_end);
 459                        vma = vma->vm_next;
 460
 461                        err = walk_page_test(start, next, &walk);
 462                        if (err > 0) {
 463                                /*
 464                                 * positive return values are purely for
 465                                 * controlling the pagewalk, so should never
 466                                 * be passed to the callers.
 467                                 */
 468                                err = 0;
 469                                continue;
 470                        }
 471                        if (err < 0)
 472                                break;
 473                }
 474                if (walk.vma || walk.ops->pte_hole)
 475                        err = __walk_page_range(start, next, &walk);
 476                if (err)
 477                        break;
 478        } while (start = next, start < end);
 479        return err;
 480}
 481
 482/*
 483 * Similar to walk_page_range() but can walk any page tables even if they are
 484 * not backed by VMAs. Because 'unusual' entries may be walked this function
 485 * will also not lock the PTEs for the pte_entry() callback. This is useful for
 486 * walking the kernel pages tables or page tables for firmware.
 487 */
 488int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
 489                          unsigned long end, const struct mm_walk_ops *ops,
 490                          pgd_t *pgd,
 491                          void *private)
 492{
 493        struct mm_walk walk = {
 494                .ops            = ops,
 495                .mm             = mm,
 496                .pgd            = pgd,
 497                .private        = private,
 498                .no_vma         = true
 499        };
 500
 501        if (start >= end || !walk.mm)
 502                return -EINVAL;
 503
 504        mmap_assert_locked(walk.mm);
 505
 506        return __walk_page_range(start, end, &walk);
 507}
 508
 509int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
 510                void *private)
 511{
 512        struct mm_walk walk = {
 513                .ops            = ops,
 514                .mm             = vma->vm_mm,
 515                .vma            = vma,
 516                .private        = private,
 517        };
 518        int err;
 519
 520        if (!walk.mm)
 521                return -EINVAL;
 522
 523        mmap_assert_locked(walk.mm);
 524
 525        err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
 526        if (err > 0)
 527                return 0;
 528        if (err < 0)
 529                return err;
 530        return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
 531}
 532
 533/**
 534 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
 535 * @mapping: Pointer to the struct address_space
 536 * @first_index: First page offset in the address_space
 537 * @nr: Number of incremental page offsets to cover
 538 * @ops:        operation to call during the walk
 539 * @private:    private data for callbacks' usage
 540 *
 541 * This function walks all memory areas mapped into a struct address_space.
 542 * The walk is limited to only the given page-size index range, but if
 543 * the index boundaries cross a huge page-table entry, that entry will be
 544 * included.
 545 *
 546 * Also see walk_page_range() for additional information.
 547 *
 548 * Locking:
 549 *   This function can't require that the struct mm_struct::mmap_lock is held,
 550 *   since @mapping may be mapped by multiple processes. Instead
 551 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
 552 *   callbacks, and it's up tho the caller to ensure that the
 553 *   struct mm_struct::mmap_lock is not needed.
 554 *
 555 *   Also this means that a caller can't rely on the struct
 556 *   vm_area_struct::vm_flags to be constant across a call,
 557 *   except for immutable flags. Callers requiring this shouldn't use
 558 *   this function.
 559 *
 560 * Return: 0 on success, negative error code on failure, positive number on
 561 * caller defined premature termination.
 562 */
 563int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
 564                      pgoff_t nr, const struct mm_walk_ops *ops,
 565                      void *private)
 566{
 567        struct mm_walk walk = {
 568                .ops            = ops,
 569                .private        = private,
 570        };
 571        struct vm_area_struct *vma;
 572        pgoff_t vba, vea, cba, cea;
 573        unsigned long start_addr, end_addr;
 574        int err = 0;
 575
 576        lockdep_assert_held(&mapping->i_mmap_rwsem);
 577        vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
 578                                  first_index + nr - 1) {
 579                /* Clip to the vma */
 580                vba = vma->vm_pgoff;
 581                vea = vba + vma_pages(vma);
 582                cba = first_index;
 583                cba = max(cba, vba);
 584                cea = first_index + nr;
 585                cea = min(cea, vea);
 586
 587                start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
 588                end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
 589                if (start_addr >= end_addr)
 590                        continue;
 591
 592                walk.vma = vma;
 593                walk.mm = vma->vm_mm;
 594
 595                err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
 596                if (err > 0) {
 597                        err = 0;
 598                        break;
 599                } else if (err < 0)
 600                        break;
 601
 602                err = __walk_page_range(start_addr, end_addr, &walk);
 603                if (err)
 604                        break;
 605        }
 606
 607        return err;
 608}
 609