linux/mm/percpu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/percpu.c - percpu memory allocator
   4 *
   5 * Copyright (C) 2009           SUSE Linux Products GmbH
   6 * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
   7 *
   8 * Copyright (C) 2017           Facebook Inc.
   9 * Copyright (C) 2017           Dennis Zhou <dennis@kernel.org>
  10 *
  11 * The percpu allocator handles both static and dynamic areas.  Percpu
  12 * areas are allocated in chunks which are divided into units.  There is
  13 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
  14 * based on NUMA properties of the machine.
  15 *
  16 *  c0                           c1                         c2
  17 *  -------------------          -------------------        ------------
  18 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  19 *  -------------------  ......  -------------------  ....  ------------
  20 *
  21 * Allocation is done by offsets into a unit's address space.  Ie., an
  22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
  23 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
  24 * and even sparse.  Access is handled by configuring percpu base
  25 * registers according to the cpu to unit mappings and offsetting the
  26 * base address using pcpu_unit_size.
  27 *
  28 * There is special consideration for the first chunk which must handle
  29 * the static percpu variables in the kernel image as allocation services
  30 * are not online yet.  In short, the first chunk is structured like so:
  31 *
  32 *                  <Static | [Reserved] | Dynamic>
  33 *
  34 * The static data is copied from the original section managed by the
  35 * linker.  The reserved section, if non-zero, primarily manages static
  36 * percpu variables from kernel modules.  Finally, the dynamic section
  37 * takes care of normal allocations.
  38 *
  39 * The allocator organizes chunks into lists according to free size and
  40 * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
  41 * flag should be passed.  All memcg-aware allocations are sharing one set
  42 * of chunks and all unaccounted allocations and allocations performed
  43 * by processes belonging to the root memory cgroup are using the second set.
  44 *
  45 * The allocator tries to allocate from the fullest chunk first. Each chunk
  46 * is managed by a bitmap with metadata blocks.  The allocation map is updated
  47 * on every allocation and free to reflect the current state while the boundary
  48 * map is only updated on allocation.  Each metadata block contains
  49 * information to help mitigate the need to iterate over large portions
  50 * of the bitmap.  The reverse mapping from page to chunk is stored in
  51 * the page's index.  Lastly, units are lazily backed and grow in unison.
  52 *
  53 * There is a unique conversion that goes on here between bytes and bits.
  54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
  55 * tracks the number of pages it is responsible for in nr_pages.  Helper
  56 * functions are used to convert from between the bytes, bits, and blocks.
  57 * All hints are managed in bits unless explicitly stated.
  58 *
  59 * To use this allocator, arch code should do the following:
  60 *
  61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  62 *   regular address to percpu pointer and back if they need to be
  63 *   different from the default
  64 *
  65 * - use pcpu_setup_first_chunk() during percpu area initialization to
  66 *   setup the first chunk containing the kernel static percpu area
  67 */
  68
  69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  70
  71#include <linux/bitmap.h>
  72#include <linux/cpumask.h>
  73#include <linux/memblock.h>
  74#include <linux/err.h>
  75#include <linux/lcm.h>
  76#include <linux/list.h>
  77#include <linux/log2.h>
  78#include <linux/mm.h>
  79#include <linux/module.h>
  80#include <linux/mutex.h>
  81#include <linux/percpu.h>
  82#include <linux/pfn.h>
  83#include <linux/slab.h>
  84#include <linux/spinlock.h>
  85#include <linux/vmalloc.h>
  86#include <linux/workqueue.h>
  87#include <linux/kmemleak.h>
  88#include <linux/sched.h>
  89#include <linux/sched/mm.h>
  90#include <linux/memcontrol.h>
  91
  92#include <asm/cacheflush.h>
  93#include <asm/sections.h>
  94#include <asm/tlbflush.h>
  95#include <asm/io.h>
  96
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/percpu.h>
  99
 100#include "percpu-internal.h"
 101
 102/*
 103 * The slots are sorted by the size of the biggest continuous free area.
 104 * 1-31 bytes share the same slot.
 105 */
 106#define PCPU_SLOT_BASE_SHIFT            5
 107/* chunks in slots below this are subject to being sidelined on failed alloc */
 108#define PCPU_SLOT_FAIL_THRESHOLD        3
 109
 110#define PCPU_EMPTY_POP_PAGES_LOW        2
 111#define PCPU_EMPTY_POP_PAGES_HIGH       4
 112
 113#ifdef CONFIG_SMP
 114/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 115#ifndef __addr_to_pcpu_ptr
 116#define __addr_to_pcpu_ptr(addr)                                        \
 117        (void __percpu *)((unsigned long)(addr) -                       \
 118                          (unsigned long)pcpu_base_addr +               \
 119                          (unsigned long)__per_cpu_start)
 120#endif
 121#ifndef __pcpu_ptr_to_addr
 122#define __pcpu_ptr_to_addr(ptr)                                         \
 123        (void __force *)((unsigned long)(ptr) +                         \
 124                         (unsigned long)pcpu_base_addr -                \
 125                         (unsigned long)__per_cpu_start)
 126#endif
 127#else   /* CONFIG_SMP */
 128/* on UP, it's always identity mapped */
 129#define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
 130#define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
 131#endif  /* CONFIG_SMP */
 132
 133static int pcpu_unit_pages __ro_after_init;
 134static int pcpu_unit_size __ro_after_init;
 135static int pcpu_nr_units __ro_after_init;
 136static int pcpu_atom_size __ro_after_init;
 137int pcpu_nr_slots __ro_after_init;
 138static int pcpu_free_slot __ro_after_init;
 139int pcpu_sidelined_slot __ro_after_init;
 140int pcpu_to_depopulate_slot __ro_after_init;
 141static size_t pcpu_chunk_struct_size __ro_after_init;
 142
 143/* cpus with the lowest and highest unit addresses */
 144static unsigned int pcpu_low_unit_cpu __ro_after_init;
 145static unsigned int pcpu_high_unit_cpu __ro_after_init;
 146
 147/* the address of the first chunk which starts with the kernel static area */
 148void *pcpu_base_addr __ro_after_init;
 149
 150static const int *pcpu_unit_map __ro_after_init;                /* cpu -> unit */
 151const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
 152
 153/* group information, used for vm allocation */
 154static int pcpu_nr_groups __ro_after_init;
 155static const unsigned long *pcpu_group_offsets __ro_after_init;
 156static const size_t *pcpu_group_sizes __ro_after_init;
 157
 158/*
 159 * The first chunk which always exists.  Note that unlike other
 160 * chunks, this one can be allocated and mapped in several different
 161 * ways and thus often doesn't live in the vmalloc area.
 162 */
 163struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
 164
 165/*
 166 * Optional reserved chunk.  This chunk reserves part of the first
 167 * chunk and serves it for reserved allocations.  When the reserved
 168 * region doesn't exist, the following variable is NULL.
 169 */
 170struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
 171
 172DEFINE_SPINLOCK(pcpu_lock);     /* all internal data structures */
 173static DEFINE_MUTEX(pcpu_alloc_mutex);  /* chunk create/destroy, [de]pop, map ext */
 174
 175struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
 176
 177/* chunks which need their map areas extended, protected by pcpu_lock */
 178static LIST_HEAD(pcpu_map_extend_chunks);
 179
 180/*
 181 * The number of empty populated pages, protected by pcpu_lock.
 182 * The reserved chunk doesn't contribute to the count.
 183 */
 184int pcpu_nr_empty_pop_pages;
 185
 186/*
 187 * The number of populated pages in use by the allocator, protected by
 188 * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
 189 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
 190 * and increments/decrements this count by 1).
 191 */
 192static unsigned long pcpu_nr_populated;
 193
 194/*
 195 * Balance work is used to populate or destroy chunks asynchronously.  We
 196 * try to keep the number of populated free pages between
 197 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 198 * empty chunk.
 199 */
 200static void pcpu_balance_workfn(struct work_struct *work);
 201static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 202static bool pcpu_async_enabled __read_mostly;
 203static bool pcpu_atomic_alloc_failed;
 204
 205static void pcpu_schedule_balance_work(void)
 206{
 207        if (pcpu_async_enabled)
 208                schedule_work(&pcpu_balance_work);
 209}
 210
 211/**
 212 * pcpu_addr_in_chunk - check if the address is served from this chunk
 213 * @chunk: chunk of interest
 214 * @addr: percpu address
 215 *
 216 * RETURNS:
 217 * True if the address is served from this chunk.
 218 */
 219static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
 220{
 221        void *start_addr, *end_addr;
 222
 223        if (!chunk)
 224                return false;
 225
 226        start_addr = chunk->base_addr + chunk->start_offset;
 227        end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
 228                   chunk->end_offset;
 229
 230        return addr >= start_addr && addr < end_addr;
 231}
 232
 233static int __pcpu_size_to_slot(int size)
 234{
 235        int highbit = fls(size);        /* size is in bytes */
 236        return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 237}
 238
 239static int pcpu_size_to_slot(int size)
 240{
 241        if (size == pcpu_unit_size)
 242                return pcpu_free_slot;
 243        return __pcpu_size_to_slot(size);
 244}
 245
 246static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 247{
 248        const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 249
 250        if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
 251            chunk_md->contig_hint == 0)
 252                return 0;
 253
 254        return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
 255}
 256
 257/* set the pointer to a chunk in a page struct */
 258static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 259{
 260        page->index = (unsigned long)pcpu;
 261}
 262
 263/* obtain pointer to a chunk from a page struct */
 264static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 265{
 266        return (struct pcpu_chunk *)page->index;
 267}
 268
 269static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 270{
 271        return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 272}
 273
 274static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
 275{
 276        return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
 277}
 278
 279static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 280                                     unsigned int cpu, int page_idx)
 281{
 282        return (unsigned long)chunk->base_addr +
 283               pcpu_unit_page_offset(cpu, page_idx);
 284}
 285
 286/*
 287 * The following are helper functions to help access bitmaps and convert
 288 * between bitmap offsets to address offsets.
 289 */
 290static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
 291{
 292        return chunk->alloc_map +
 293               (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
 294}
 295
 296static unsigned long pcpu_off_to_block_index(int off)
 297{
 298        return off / PCPU_BITMAP_BLOCK_BITS;
 299}
 300
 301static unsigned long pcpu_off_to_block_off(int off)
 302{
 303        return off & (PCPU_BITMAP_BLOCK_BITS - 1);
 304}
 305
 306static unsigned long pcpu_block_off_to_off(int index, int off)
 307{
 308        return index * PCPU_BITMAP_BLOCK_BITS + off;
 309}
 310
 311/**
 312 * pcpu_check_block_hint - check against the contig hint
 313 * @block: block of interest
 314 * @bits: size of allocation
 315 * @align: alignment of area (max PAGE_SIZE)
 316 *
 317 * Check to see if the allocation can fit in the block's contig hint.
 318 * Note, a chunk uses the same hints as a block so this can also check against
 319 * the chunk's contig hint.
 320 */
 321static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
 322                                  size_t align)
 323{
 324        int bit_off = ALIGN(block->contig_hint_start, align) -
 325                block->contig_hint_start;
 326
 327        return bit_off + bits <= block->contig_hint;
 328}
 329
 330/*
 331 * pcpu_next_hint - determine which hint to use
 332 * @block: block of interest
 333 * @alloc_bits: size of allocation
 334 *
 335 * This determines if we should scan based on the scan_hint or first_free.
 336 * In general, we want to scan from first_free to fulfill allocations by
 337 * first fit.  However, if we know a scan_hint at position scan_hint_start
 338 * cannot fulfill an allocation, we can begin scanning from there knowing
 339 * the contig_hint will be our fallback.
 340 */
 341static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
 342{
 343        /*
 344         * The three conditions below determine if we can skip past the
 345         * scan_hint.  First, does the scan hint exist.  Second, is the
 346         * contig_hint after the scan_hint (possibly not true iff
 347         * contig_hint == scan_hint).  Third, is the allocation request
 348         * larger than the scan_hint.
 349         */
 350        if (block->scan_hint &&
 351            block->contig_hint_start > block->scan_hint_start &&
 352            alloc_bits > block->scan_hint)
 353                return block->scan_hint_start + block->scan_hint;
 354
 355        return block->first_free;
 356}
 357
 358/**
 359 * pcpu_next_md_free_region - finds the next hint free area
 360 * @chunk: chunk of interest
 361 * @bit_off: chunk offset
 362 * @bits: size of free area
 363 *
 364 * Helper function for pcpu_for_each_md_free_region.  It checks
 365 * block->contig_hint and performs aggregation across blocks to find the
 366 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 367 * loop.
 368 */
 369static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
 370                                     int *bits)
 371{
 372        int i = pcpu_off_to_block_index(*bit_off);
 373        int block_off = pcpu_off_to_block_off(*bit_off);
 374        struct pcpu_block_md *block;
 375
 376        *bits = 0;
 377        for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 378             block++, i++) {
 379                /* handles contig area across blocks */
 380                if (*bits) {
 381                        *bits += block->left_free;
 382                        if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 383                                continue;
 384                        return;
 385                }
 386
 387                /*
 388                 * This checks three things.  First is there a contig_hint to
 389                 * check.  Second, have we checked this hint before by
 390                 * comparing the block_off.  Third, is this the same as the
 391                 * right contig hint.  In the last case, it spills over into
 392                 * the next block and should be handled by the contig area
 393                 * across blocks code.
 394                 */
 395                *bits = block->contig_hint;
 396                if (*bits && block->contig_hint_start >= block_off &&
 397                    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
 398                        *bit_off = pcpu_block_off_to_off(i,
 399                                        block->contig_hint_start);
 400                        return;
 401                }
 402                /* reset to satisfy the second predicate above */
 403                block_off = 0;
 404
 405                *bits = block->right_free;
 406                *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
 407        }
 408}
 409
 410/**
 411 * pcpu_next_fit_region - finds fit areas for a given allocation request
 412 * @chunk: chunk of interest
 413 * @alloc_bits: size of allocation
 414 * @align: alignment of area (max PAGE_SIZE)
 415 * @bit_off: chunk offset
 416 * @bits: size of free area
 417 *
 418 * Finds the next free region that is viable for use with a given size and
 419 * alignment.  This only returns if there is a valid area to be used for this
 420 * allocation.  block->first_free is returned if the allocation request fits
 421 * within the block to see if the request can be fulfilled prior to the contig
 422 * hint.
 423 */
 424static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
 425                                 int align, int *bit_off, int *bits)
 426{
 427        int i = pcpu_off_to_block_index(*bit_off);
 428        int block_off = pcpu_off_to_block_off(*bit_off);
 429        struct pcpu_block_md *block;
 430
 431        *bits = 0;
 432        for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 433             block++, i++) {
 434                /* handles contig area across blocks */
 435                if (*bits) {
 436                        *bits += block->left_free;
 437                        if (*bits >= alloc_bits)
 438                                return;
 439                        if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 440                                continue;
 441                }
 442
 443                /* check block->contig_hint */
 444                *bits = ALIGN(block->contig_hint_start, align) -
 445                        block->contig_hint_start;
 446                /*
 447                 * This uses the block offset to determine if this has been
 448                 * checked in the prior iteration.
 449                 */
 450                if (block->contig_hint &&
 451                    block->contig_hint_start >= block_off &&
 452                    block->contig_hint >= *bits + alloc_bits) {
 453                        int start = pcpu_next_hint(block, alloc_bits);
 454
 455                        *bits += alloc_bits + block->contig_hint_start -
 456                                 start;
 457                        *bit_off = pcpu_block_off_to_off(i, start);
 458                        return;
 459                }
 460                /* reset to satisfy the second predicate above */
 461                block_off = 0;
 462
 463                *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
 464                                 align);
 465                *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
 466                *bit_off = pcpu_block_off_to_off(i, *bit_off);
 467                if (*bits >= alloc_bits)
 468                        return;
 469        }
 470
 471        /* no valid offsets were found - fail condition */
 472        *bit_off = pcpu_chunk_map_bits(chunk);
 473}
 474
 475/*
 476 * Metadata free area iterators.  These perform aggregation of free areas
 477 * based on the metadata blocks and return the offset @bit_off and size in
 478 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 479 * a fit is found for the allocation request.
 480 */
 481#define pcpu_for_each_md_free_region(chunk, bit_off, bits)              \
 482        for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));    \
 483             (bit_off) < pcpu_chunk_map_bits((chunk));                  \
 484             (bit_off) += (bits) + 1,                                   \
 485             pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
 486
 487#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
 488        for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 489                                  &(bits));                                   \
 490             (bit_off) < pcpu_chunk_map_bits((chunk));                        \
 491             (bit_off) += (bits),                                             \
 492             pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 493                                  &(bits)))
 494
 495/**
 496 * pcpu_mem_zalloc - allocate memory
 497 * @size: bytes to allocate
 498 * @gfp: allocation flags
 499 *
 500 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 501 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 502 * This is to facilitate passing through whitelisted flags.  The
 503 * returned memory is always zeroed.
 504 *
 505 * RETURNS:
 506 * Pointer to the allocated area on success, NULL on failure.
 507 */
 508static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
 509{
 510        if (WARN_ON_ONCE(!slab_is_available()))
 511                return NULL;
 512
 513        if (size <= PAGE_SIZE)
 514                return kzalloc(size, gfp);
 515        else
 516                return __vmalloc(size, gfp | __GFP_ZERO);
 517}
 518
 519/**
 520 * pcpu_mem_free - free memory
 521 * @ptr: memory to free
 522 *
 523 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 524 */
 525static void pcpu_mem_free(void *ptr)
 526{
 527        kvfree(ptr);
 528}
 529
 530static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
 531                              bool move_front)
 532{
 533        if (chunk != pcpu_reserved_chunk) {
 534                if (move_front)
 535                        list_move(&chunk->list, &pcpu_chunk_lists[slot]);
 536                else
 537                        list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
 538        }
 539}
 540
 541static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
 542{
 543        __pcpu_chunk_move(chunk, slot, true);
 544}
 545
 546/**
 547 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 548 * @chunk: chunk of interest
 549 * @oslot: the previous slot it was on
 550 *
 551 * This function is called after an allocation or free changed @chunk.
 552 * New slot according to the changed state is determined and @chunk is
 553 * moved to the slot.  Note that the reserved chunk is never put on
 554 * chunk slots.
 555 *
 556 * CONTEXT:
 557 * pcpu_lock.
 558 */
 559static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 560{
 561        int nslot = pcpu_chunk_slot(chunk);
 562
 563        /* leave isolated chunks in-place */
 564        if (chunk->isolated)
 565                return;
 566
 567        if (oslot != nslot)
 568                __pcpu_chunk_move(chunk, nslot, oslot < nslot);
 569}
 570
 571static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
 572{
 573        lockdep_assert_held(&pcpu_lock);
 574
 575        if (!chunk->isolated) {
 576                chunk->isolated = true;
 577                pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
 578        }
 579        list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
 580}
 581
 582static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
 583{
 584        lockdep_assert_held(&pcpu_lock);
 585
 586        if (chunk->isolated) {
 587                chunk->isolated = false;
 588                pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
 589                pcpu_chunk_relocate(chunk, -1);
 590        }
 591}
 592
 593/*
 594 * pcpu_update_empty_pages - update empty page counters
 595 * @chunk: chunk of interest
 596 * @nr: nr of empty pages
 597 *
 598 * This is used to keep track of the empty pages now based on the premise
 599 * a md_block covers a page.  The hint update functions recognize if a block
 600 * is made full or broken to calculate deltas for keeping track of free pages.
 601 */
 602static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
 603{
 604        chunk->nr_empty_pop_pages += nr;
 605        if (chunk != pcpu_reserved_chunk && !chunk->isolated)
 606                pcpu_nr_empty_pop_pages += nr;
 607}
 608
 609/*
 610 * pcpu_region_overlap - determines if two regions overlap
 611 * @a: start of first region, inclusive
 612 * @b: end of first region, exclusive
 613 * @x: start of second region, inclusive
 614 * @y: end of second region, exclusive
 615 *
 616 * This is used to determine if the hint region [a, b) overlaps with the
 617 * allocated region [x, y).
 618 */
 619static inline bool pcpu_region_overlap(int a, int b, int x, int y)
 620{
 621        return (a < y) && (x < b);
 622}
 623
 624/**
 625 * pcpu_block_update - updates a block given a free area
 626 * @block: block of interest
 627 * @start: start offset in block
 628 * @end: end offset in block
 629 *
 630 * Updates a block given a known free area.  The region [start, end) is
 631 * expected to be the entirety of the free area within a block.  Chooses
 632 * the best starting offset if the contig hints are equal.
 633 */
 634static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
 635{
 636        int contig = end - start;
 637
 638        block->first_free = min(block->first_free, start);
 639        if (start == 0)
 640                block->left_free = contig;
 641
 642        if (end == block->nr_bits)
 643                block->right_free = contig;
 644
 645        if (contig > block->contig_hint) {
 646                /* promote the old contig_hint to be the new scan_hint */
 647                if (start > block->contig_hint_start) {
 648                        if (block->contig_hint > block->scan_hint) {
 649                                block->scan_hint_start =
 650                                        block->contig_hint_start;
 651                                block->scan_hint = block->contig_hint;
 652                        } else if (start < block->scan_hint_start) {
 653                                /*
 654                                 * The old contig_hint == scan_hint.  But, the
 655                                 * new contig is larger so hold the invariant
 656                                 * scan_hint_start < contig_hint_start.
 657                                 */
 658                                block->scan_hint = 0;
 659                        }
 660                } else {
 661                        block->scan_hint = 0;
 662                }
 663                block->contig_hint_start = start;
 664                block->contig_hint = contig;
 665        } else if (contig == block->contig_hint) {
 666                if (block->contig_hint_start &&
 667                    (!start ||
 668                     __ffs(start) > __ffs(block->contig_hint_start))) {
 669                        /* start has a better alignment so use it */
 670                        block->contig_hint_start = start;
 671                        if (start < block->scan_hint_start &&
 672                            block->contig_hint > block->scan_hint)
 673                                block->scan_hint = 0;
 674                } else if (start > block->scan_hint_start ||
 675                           block->contig_hint > block->scan_hint) {
 676                        /*
 677                         * Knowing contig == contig_hint, update the scan_hint
 678                         * if it is farther than or larger than the current
 679                         * scan_hint.
 680                         */
 681                        block->scan_hint_start = start;
 682                        block->scan_hint = contig;
 683                }
 684        } else {
 685                /*
 686                 * The region is smaller than the contig_hint.  So only update
 687                 * the scan_hint if it is larger than or equal and farther than
 688                 * the current scan_hint.
 689                 */
 690                if ((start < block->contig_hint_start &&
 691                     (contig > block->scan_hint ||
 692                      (contig == block->scan_hint &&
 693                       start > block->scan_hint_start)))) {
 694                        block->scan_hint_start = start;
 695                        block->scan_hint = contig;
 696                }
 697        }
 698}
 699
 700/*
 701 * pcpu_block_update_scan - update a block given a free area from a scan
 702 * @chunk: chunk of interest
 703 * @bit_off: chunk offset
 704 * @bits: size of free area
 705 *
 706 * Finding the final allocation spot first goes through pcpu_find_block_fit()
 707 * to find a block that can hold the allocation and then pcpu_alloc_area()
 708 * where a scan is used.  When allocations require specific alignments,
 709 * we can inadvertently create holes which will not be seen in the alloc
 710 * or free paths.
 711 *
 712 * This takes a given free area hole and updates a block as it may change the
 713 * scan_hint.  We need to scan backwards to ensure we don't miss free bits
 714 * from alignment.
 715 */
 716static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
 717                                   int bits)
 718{
 719        int s_off = pcpu_off_to_block_off(bit_off);
 720        int e_off = s_off + bits;
 721        int s_index, l_bit;
 722        struct pcpu_block_md *block;
 723
 724        if (e_off > PCPU_BITMAP_BLOCK_BITS)
 725                return;
 726
 727        s_index = pcpu_off_to_block_index(bit_off);
 728        block = chunk->md_blocks + s_index;
 729
 730        /* scan backwards in case of alignment skipping free bits */
 731        l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
 732        s_off = (s_off == l_bit) ? 0 : l_bit + 1;
 733
 734        pcpu_block_update(block, s_off, e_off);
 735}
 736
 737/**
 738 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 739 * @chunk: chunk of interest
 740 * @full_scan: if we should scan from the beginning
 741 *
 742 * Iterates over the metadata blocks to find the largest contig area.
 743 * A full scan can be avoided on the allocation path as this is triggered
 744 * if we broke the contig_hint.  In doing so, the scan_hint will be before
 745 * the contig_hint or after if the scan_hint == contig_hint.  This cannot
 746 * be prevented on freeing as we want to find the largest area possibly
 747 * spanning blocks.
 748 */
 749static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
 750{
 751        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 752        int bit_off, bits;
 753
 754        /* promote scan_hint to contig_hint */
 755        if (!full_scan && chunk_md->scan_hint) {
 756                bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
 757                chunk_md->contig_hint_start = chunk_md->scan_hint_start;
 758                chunk_md->contig_hint = chunk_md->scan_hint;
 759                chunk_md->scan_hint = 0;
 760        } else {
 761                bit_off = chunk_md->first_free;
 762                chunk_md->contig_hint = 0;
 763        }
 764
 765        bits = 0;
 766        pcpu_for_each_md_free_region(chunk, bit_off, bits)
 767                pcpu_block_update(chunk_md, bit_off, bit_off + bits);
 768}
 769
 770/**
 771 * pcpu_block_refresh_hint
 772 * @chunk: chunk of interest
 773 * @index: index of the metadata block
 774 *
 775 * Scans over the block beginning at first_free and updates the block
 776 * metadata accordingly.
 777 */
 778static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
 779{
 780        struct pcpu_block_md *block = chunk->md_blocks + index;
 781        unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
 782        unsigned int start, end;        /* region start, region end */
 783
 784        /* promote scan_hint to contig_hint */
 785        if (block->scan_hint) {
 786                start = block->scan_hint_start + block->scan_hint;
 787                block->contig_hint_start = block->scan_hint_start;
 788                block->contig_hint = block->scan_hint;
 789                block->scan_hint = 0;
 790        } else {
 791                start = block->first_free;
 792                block->contig_hint = 0;
 793        }
 794
 795        block->right_free = 0;
 796
 797        /* iterate over free areas and update the contig hints */
 798        for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
 799                pcpu_block_update(block, start, end);
 800}
 801
 802/**
 803 * pcpu_block_update_hint_alloc - update hint on allocation path
 804 * @chunk: chunk of interest
 805 * @bit_off: chunk offset
 806 * @bits: size of request
 807 *
 808 * Updates metadata for the allocation path.  The metadata only has to be
 809 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 810 * scans are required if the block's contig hint is broken.
 811 */
 812static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
 813                                         int bits)
 814{
 815        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 816        int nr_empty_pages = 0;
 817        struct pcpu_block_md *s_block, *e_block, *block;
 818        int s_index, e_index;   /* block indexes of the freed allocation */
 819        int s_off, e_off;       /* block offsets of the freed allocation */
 820
 821        /*
 822         * Calculate per block offsets.
 823         * The calculation uses an inclusive range, but the resulting offsets
 824         * are [start, end).  e_index always points to the last block in the
 825         * range.
 826         */
 827        s_index = pcpu_off_to_block_index(bit_off);
 828        e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 829        s_off = pcpu_off_to_block_off(bit_off);
 830        e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 831
 832        s_block = chunk->md_blocks + s_index;
 833        e_block = chunk->md_blocks + e_index;
 834
 835        /*
 836         * Update s_block.
 837         * block->first_free must be updated if the allocation takes its place.
 838         * If the allocation breaks the contig_hint, a scan is required to
 839         * restore this hint.
 840         */
 841        if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 842                nr_empty_pages++;
 843
 844        if (s_off == s_block->first_free)
 845                s_block->first_free = find_next_zero_bit(
 846                                        pcpu_index_alloc_map(chunk, s_index),
 847                                        PCPU_BITMAP_BLOCK_BITS,
 848                                        s_off + bits);
 849
 850        if (pcpu_region_overlap(s_block->scan_hint_start,
 851                                s_block->scan_hint_start + s_block->scan_hint,
 852                                s_off,
 853                                s_off + bits))
 854                s_block->scan_hint = 0;
 855
 856        if (pcpu_region_overlap(s_block->contig_hint_start,
 857                                s_block->contig_hint_start +
 858                                s_block->contig_hint,
 859                                s_off,
 860                                s_off + bits)) {
 861                /* block contig hint is broken - scan to fix it */
 862                if (!s_off)
 863                        s_block->left_free = 0;
 864                pcpu_block_refresh_hint(chunk, s_index);
 865        } else {
 866                /* update left and right contig manually */
 867                s_block->left_free = min(s_block->left_free, s_off);
 868                if (s_index == e_index)
 869                        s_block->right_free = min_t(int, s_block->right_free,
 870                                        PCPU_BITMAP_BLOCK_BITS - e_off);
 871                else
 872                        s_block->right_free = 0;
 873        }
 874
 875        /*
 876         * Update e_block.
 877         */
 878        if (s_index != e_index) {
 879                if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 880                        nr_empty_pages++;
 881
 882                /*
 883                 * When the allocation is across blocks, the end is along
 884                 * the left part of the e_block.
 885                 */
 886                e_block->first_free = find_next_zero_bit(
 887                                pcpu_index_alloc_map(chunk, e_index),
 888                                PCPU_BITMAP_BLOCK_BITS, e_off);
 889
 890                if (e_off == PCPU_BITMAP_BLOCK_BITS) {
 891                        /* reset the block */
 892                        e_block++;
 893                } else {
 894                        if (e_off > e_block->scan_hint_start)
 895                                e_block->scan_hint = 0;
 896
 897                        e_block->left_free = 0;
 898                        if (e_off > e_block->contig_hint_start) {
 899                                /* contig hint is broken - scan to fix it */
 900                                pcpu_block_refresh_hint(chunk, e_index);
 901                        } else {
 902                                e_block->right_free =
 903                                        min_t(int, e_block->right_free,
 904                                              PCPU_BITMAP_BLOCK_BITS - e_off);
 905                        }
 906                }
 907
 908                /* update in-between md_blocks */
 909                nr_empty_pages += (e_index - s_index - 1);
 910                for (block = s_block + 1; block < e_block; block++) {
 911                        block->scan_hint = 0;
 912                        block->contig_hint = 0;
 913                        block->left_free = 0;
 914                        block->right_free = 0;
 915                }
 916        }
 917
 918        if (nr_empty_pages)
 919                pcpu_update_empty_pages(chunk, -nr_empty_pages);
 920
 921        if (pcpu_region_overlap(chunk_md->scan_hint_start,
 922                                chunk_md->scan_hint_start +
 923                                chunk_md->scan_hint,
 924                                bit_off,
 925                                bit_off + bits))
 926                chunk_md->scan_hint = 0;
 927
 928        /*
 929         * The only time a full chunk scan is required is if the chunk
 930         * contig hint is broken.  Otherwise, it means a smaller space
 931         * was used and therefore the chunk contig hint is still correct.
 932         */
 933        if (pcpu_region_overlap(chunk_md->contig_hint_start,
 934                                chunk_md->contig_hint_start +
 935                                chunk_md->contig_hint,
 936                                bit_off,
 937                                bit_off + bits))
 938                pcpu_chunk_refresh_hint(chunk, false);
 939}
 940
 941/**
 942 * pcpu_block_update_hint_free - updates the block hints on the free path
 943 * @chunk: chunk of interest
 944 * @bit_off: chunk offset
 945 * @bits: size of request
 946 *
 947 * Updates metadata for the allocation path.  This avoids a blind block
 948 * refresh by making use of the block contig hints.  If this fails, it scans
 949 * forward and backward to determine the extent of the free area.  This is
 950 * capped at the boundary of blocks.
 951 *
 952 * A chunk update is triggered if a page becomes free, a block becomes free,
 953 * or the free spans across blocks.  This tradeoff is to minimize iterating
 954 * over the block metadata to update chunk_md->contig_hint.
 955 * chunk_md->contig_hint may be off by up to a page, but it will never be more
 956 * than the available space.  If the contig hint is contained in one block, it
 957 * will be accurate.
 958 */
 959static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
 960                                        int bits)
 961{
 962        int nr_empty_pages = 0;
 963        struct pcpu_block_md *s_block, *e_block, *block;
 964        int s_index, e_index;   /* block indexes of the freed allocation */
 965        int s_off, e_off;       /* block offsets of the freed allocation */
 966        int start, end;         /* start and end of the whole free area */
 967
 968        /*
 969         * Calculate per block offsets.
 970         * The calculation uses an inclusive range, but the resulting offsets
 971         * are [start, end).  e_index always points to the last block in the
 972         * range.
 973         */
 974        s_index = pcpu_off_to_block_index(bit_off);
 975        e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 976        s_off = pcpu_off_to_block_off(bit_off);
 977        e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 978
 979        s_block = chunk->md_blocks + s_index;
 980        e_block = chunk->md_blocks + e_index;
 981
 982        /*
 983         * Check if the freed area aligns with the block->contig_hint.
 984         * If it does, then the scan to find the beginning/end of the
 985         * larger free area can be avoided.
 986         *
 987         * start and end refer to beginning and end of the free area
 988         * within each their respective blocks.  This is not necessarily
 989         * the entire free area as it may span blocks past the beginning
 990         * or end of the block.
 991         */
 992        start = s_off;
 993        if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
 994                start = s_block->contig_hint_start;
 995        } else {
 996                /*
 997                 * Scan backwards to find the extent of the free area.
 998                 * find_last_bit returns the starting bit, so if the start bit
 999                 * is returned, that means there was no last bit and the
1000                 * remainder of the chunk is free.
1001                 */
1002                int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1003                                          start);
1004                start = (start == l_bit) ? 0 : l_bit + 1;
1005        }
1006
1007        end = e_off;
1008        if (e_off == e_block->contig_hint_start)
1009                end = e_block->contig_hint_start + e_block->contig_hint;
1010        else
1011                end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1012                                    PCPU_BITMAP_BLOCK_BITS, end);
1013
1014        /* update s_block */
1015        e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1016        if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1017                nr_empty_pages++;
1018        pcpu_block_update(s_block, start, e_off);
1019
1020        /* freeing in the same block */
1021        if (s_index != e_index) {
1022                /* update e_block */
1023                if (end == PCPU_BITMAP_BLOCK_BITS)
1024                        nr_empty_pages++;
1025                pcpu_block_update(e_block, 0, end);
1026
1027                /* reset md_blocks in the middle */
1028                nr_empty_pages += (e_index - s_index - 1);
1029                for (block = s_block + 1; block < e_block; block++) {
1030                        block->first_free = 0;
1031                        block->scan_hint = 0;
1032                        block->contig_hint_start = 0;
1033                        block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1034                        block->left_free = PCPU_BITMAP_BLOCK_BITS;
1035                        block->right_free = PCPU_BITMAP_BLOCK_BITS;
1036                }
1037        }
1038
1039        if (nr_empty_pages)
1040                pcpu_update_empty_pages(chunk, nr_empty_pages);
1041
1042        /*
1043         * Refresh chunk metadata when the free makes a block free or spans
1044         * across blocks.  The contig_hint may be off by up to a page, but if
1045         * the contig_hint is contained in a block, it will be accurate with
1046         * the else condition below.
1047         */
1048        if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1049                pcpu_chunk_refresh_hint(chunk, true);
1050        else
1051                pcpu_block_update(&chunk->chunk_md,
1052                                  pcpu_block_off_to_off(s_index, start),
1053                                  end);
1054}
1055
1056/**
1057 * pcpu_is_populated - determines if the region is populated
1058 * @chunk: chunk of interest
1059 * @bit_off: chunk offset
1060 * @bits: size of area
1061 * @next_off: return value for the next offset to start searching
1062 *
1063 * For atomic allocations, check if the backing pages are populated.
1064 *
1065 * RETURNS:
1066 * Bool if the backing pages are populated.
1067 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1068 */
1069static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1070                              int *next_off)
1071{
1072        unsigned int start, end;
1073
1074        start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1075        end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1076
1077        start = find_next_zero_bit(chunk->populated, end, start);
1078        if (start >= end)
1079                return true;
1080
1081        end = find_next_bit(chunk->populated, end, start + 1);
1082
1083        *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1084        return false;
1085}
1086
1087/**
1088 * pcpu_find_block_fit - finds the block index to start searching
1089 * @chunk: chunk of interest
1090 * @alloc_bits: size of request in allocation units
1091 * @align: alignment of area (max PAGE_SIZE bytes)
1092 * @pop_only: use populated regions only
1093 *
1094 * Given a chunk and an allocation spec, find the offset to begin searching
1095 * for a free region.  This iterates over the bitmap metadata blocks to
1096 * find an offset that will be guaranteed to fit the requirements.  It is
1097 * not quite first fit as if the allocation does not fit in the contig hint
1098 * of a block or chunk, it is skipped.  This errs on the side of caution
1099 * to prevent excess iteration.  Poor alignment can cause the allocator to
1100 * skip over blocks and chunks that have valid free areas.
1101 *
1102 * RETURNS:
1103 * The offset in the bitmap to begin searching.
1104 * -1 if no offset is found.
1105 */
1106static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1107                               size_t align, bool pop_only)
1108{
1109        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1110        int bit_off, bits, next_off;
1111
1112        /*
1113         * This is an optimization to prevent scanning by assuming if the
1114         * allocation cannot fit in the global hint, there is memory pressure
1115         * and creating a new chunk would happen soon.
1116         */
1117        if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
1118                return -1;
1119
1120        bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1121        bits = 0;
1122        pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1123                if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1124                                                   &next_off))
1125                        break;
1126
1127                bit_off = next_off;
1128                bits = 0;
1129        }
1130
1131        if (bit_off == pcpu_chunk_map_bits(chunk))
1132                return -1;
1133
1134        return bit_off;
1135}
1136
1137/*
1138 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1139 * @map: the address to base the search on
1140 * @size: the bitmap size in bits
1141 * @start: the bitnumber to start searching at
1142 * @nr: the number of zeroed bits we're looking for
1143 * @align_mask: alignment mask for zero area
1144 * @largest_off: offset of the largest area skipped
1145 * @largest_bits: size of the largest area skipped
1146 *
1147 * The @align_mask should be one less than a power of 2.
1148 *
1149 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1150 * the largest area that was skipped.  This is imperfect, but in general is
1151 * good enough.  The largest remembered region is the largest failed region
1152 * seen.  This does not include anything we possibly skipped due to alignment.
1153 * pcpu_block_update_scan() does scan backwards to try and recover what was
1154 * lost to alignment.  While this can cause scanning to miss earlier possible
1155 * free areas, smaller allocations will eventually fill those holes.
1156 */
1157static unsigned long pcpu_find_zero_area(unsigned long *map,
1158                                         unsigned long size,
1159                                         unsigned long start,
1160                                         unsigned long nr,
1161                                         unsigned long align_mask,
1162                                         unsigned long *largest_off,
1163                                         unsigned long *largest_bits)
1164{
1165        unsigned long index, end, i, area_off, area_bits;
1166again:
1167        index = find_next_zero_bit(map, size, start);
1168
1169        /* Align allocation */
1170        index = __ALIGN_MASK(index, align_mask);
1171        area_off = index;
1172
1173        end = index + nr;
1174        if (end > size)
1175                return end;
1176        i = find_next_bit(map, end, index);
1177        if (i < end) {
1178                area_bits = i - area_off;
1179                /* remember largest unused area with best alignment */
1180                if (area_bits > *largest_bits ||
1181                    (area_bits == *largest_bits && *largest_off &&
1182                     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1183                        *largest_off = area_off;
1184                        *largest_bits = area_bits;
1185                }
1186
1187                start = i + 1;
1188                goto again;
1189        }
1190        return index;
1191}
1192
1193/**
1194 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1195 * @chunk: chunk of interest
1196 * @alloc_bits: size of request in allocation units
1197 * @align: alignment of area (max PAGE_SIZE)
1198 * @start: bit_off to start searching
1199 *
1200 * This function takes in a @start offset to begin searching to fit an
1201 * allocation of @alloc_bits with alignment @align.  It needs to scan
1202 * the allocation map because if it fits within the block's contig hint,
1203 * @start will be block->first_free. This is an attempt to fill the
1204 * allocation prior to breaking the contig hint.  The allocation and
1205 * boundary maps are updated accordingly if it confirms a valid
1206 * free area.
1207 *
1208 * RETURNS:
1209 * Allocated addr offset in @chunk on success.
1210 * -1 if no matching area is found.
1211 */
1212static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1213                           size_t align, int start)
1214{
1215        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1216        size_t align_mask = (align) ? (align - 1) : 0;
1217        unsigned long area_off = 0, area_bits = 0;
1218        int bit_off, end, oslot;
1219
1220        lockdep_assert_held(&pcpu_lock);
1221
1222        oslot = pcpu_chunk_slot(chunk);
1223
1224        /*
1225         * Search to find a fit.
1226         */
1227        end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1228                    pcpu_chunk_map_bits(chunk));
1229        bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1230                                      align_mask, &area_off, &area_bits);
1231        if (bit_off >= end)
1232                return -1;
1233
1234        if (area_bits)
1235                pcpu_block_update_scan(chunk, area_off, area_bits);
1236
1237        /* update alloc map */
1238        bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1239
1240        /* update boundary map */
1241        set_bit(bit_off, chunk->bound_map);
1242        bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1243        set_bit(bit_off + alloc_bits, chunk->bound_map);
1244
1245        chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1246
1247        /* update first free bit */
1248        if (bit_off == chunk_md->first_free)
1249                chunk_md->first_free = find_next_zero_bit(
1250                                        chunk->alloc_map,
1251                                        pcpu_chunk_map_bits(chunk),
1252                                        bit_off + alloc_bits);
1253
1254        pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1255
1256        pcpu_chunk_relocate(chunk, oslot);
1257
1258        return bit_off * PCPU_MIN_ALLOC_SIZE;
1259}
1260
1261/**
1262 * pcpu_free_area - frees the corresponding offset
1263 * @chunk: chunk of interest
1264 * @off: addr offset into chunk
1265 *
1266 * This function determines the size of an allocation to free using
1267 * the boundary bitmap and clears the allocation map.
1268 *
1269 * RETURNS:
1270 * Number of freed bytes.
1271 */
1272static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1273{
1274        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1275        int bit_off, bits, end, oslot, freed;
1276
1277        lockdep_assert_held(&pcpu_lock);
1278        pcpu_stats_area_dealloc(chunk);
1279
1280        oslot = pcpu_chunk_slot(chunk);
1281
1282        bit_off = off / PCPU_MIN_ALLOC_SIZE;
1283
1284        /* find end index */
1285        end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1286                            bit_off + 1);
1287        bits = end - bit_off;
1288        bitmap_clear(chunk->alloc_map, bit_off, bits);
1289
1290        freed = bits * PCPU_MIN_ALLOC_SIZE;
1291
1292        /* update metadata */
1293        chunk->free_bytes += freed;
1294
1295        /* update first free bit */
1296        chunk_md->first_free = min(chunk_md->first_free, bit_off);
1297
1298        pcpu_block_update_hint_free(chunk, bit_off, bits);
1299
1300        pcpu_chunk_relocate(chunk, oslot);
1301
1302        return freed;
1303}
1304
1305static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1306{
1307        block->scan_hint = 0;
1308        block->contig_hint = nr_bits;
1309        block->left_free = nr_bits;
1310        block->right_free = nr_bits;
1311        block->first_free = 0;
1312        block->nr_bits = nr_bits;
1313}
1314
1315static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1316{
1317        struct pcpu_block_md *md_block;
1318
1319        /* init the chunk's block */
1320        pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1321
1322        for (md_block = chunk->md_blocks;
1323             md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1324             md_block++)
1325                pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1326}
1327
1328/**
1329 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1330 * @tmp_addr: the start of the region served
1331 * @map_size: size of the region served
1332 *
1333 * This is responsible for creating the chunks that serve the first chunk.  The
1334 * base_addr is page aligned down of @tmp_addr while the region end is page
1335 * aligned up.  Offsets are kept track of to determine the region served. All
1336 * this is done to appease the bitmap allocator in avoiding partial blocks.
1337 *
1338 * RETURNS:
1339 * Chunk serving the region at @tmp_addr of @map_size.
1340 */
1341static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1342                                                         int map_size)
1343{
1344        struct pcpu_chunk *chunk;
1345        unsigned long aligned_addr, lcm_align;
1346        int start_offset, offset_bits, region_size, region_bits;
1347        size_t alloc_size;
1348
1349        /* region calculations */
1350        aligned_addr = tmp_addr & PAGE_MASK;
1351
1352        start_offset = tmp_addr - aligned_addr;
1353
1354        /*
1355         * Align the end of the region with the LCM of PAGE_SIZE and
1356         * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1357         * the other.
1358         */
1359        lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1360        region_size = ALIGN(start_offset + map_size, lcm_align);
1361
1362        /* allocate chunk */
1363        alloc_size = struct_size(chunk, populated,
1364                                 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1365        chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1366        if (!chunk)
1367                panic("%s: Failed to allocate %zu bytes\n", __func__,
1368                      alloc_size);
1369
1370        INIT_LIST_HEAD(&chunk->list);
1371
1372        chunk->base_addr = (void *)aligned_addr;
1373        chunk->start_offset = start_offset;
1374        chunk->end_offset = region_size - chunk->start_offset - map_size;
1375
1376        chunk->nr_pages = region_size >> PAGE_SHIFT;
1377        region_bits = pcpu_chunk_map_bits(chunk);
1378
1379        alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1380        chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1381        if (!chunk->alloc_map)
1382                panic("%s: Failed to allocate %zu bytes\n", __func__,
1383                      alloc_size);
1384
1385        alloc_size =
1386                BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1387        chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1388        if (!chunk->bound_map)
1389                panic("%s: Failed to allocate %zu bytes\n", __func__,
1390                      alloc_size);
1391
1392        alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1393        chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1394        if (!chunk->md_blocks)
1395                panic("%s: Failed to allocate %zu bytes\n", __func__,
1396                      alloc_size);
1397
1398#ifdef CONFIG_MEMCG_KMEM
1399        /* first chunk is free to use */
1400        chunk->obj_cgroups = NULL;
1401#endif
1402        pcpu_init_md_blocks(chunk);
1403
1404        /* manage populated page bitmap */
1405        chunk->immutable = true;
1406        bitmap_fill(chunk->populated, chunk->nr_pages);
1407        chunk->nr_populated = chunk->nr_pages;
1408        chunk->nr_empty_pop_pages = chunk->nr_pages;
1409
1410        chunk->free_bytes = map_size;
1411
1412        if (chunk->start_offset) {
1413                /* hide the beginning of the bitmap */
1414                offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1415                bitmap_set(chunk->alloc_map, 0, offset_bits);
1416                set_bit(0, chunk->bound_map);
1417                set_bit(offset_bits, chunk->bound_map);
1418
1419                chunk->chunk_md.first_free = offset_bits;
1420
1421                pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1422        }
1423
1424        if (chunk->end_offset) {
1425                /* hide the end of the bitmap */
1426                offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1427                bitmap_set(chunk->alloc_map,
1428                           pcpu_chunk_map_bits(chunk) - offset_bits,
1429                           offset_bits);
1430                set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1431                        chunk->bound_map);
1432                set_bit(region_bits, chunk->bound_map);
1433
1434                pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1435                                             - offset_bits, offset_bits);
1436        }
1437
1438        return chunk;
1439}
1440
1441static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1442{
1443        struct pcpu_chunk *chunk;
1444        int region_bits;
1445
1446        chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1447        if (!chunk)
1448                return NULL;
1449
1450        INIT_LIST_HEAD(&chunk->list);
1451        chunk->nr_pages = pcpu_unit_pages;
1452        region_bits = pcpu_chunk_map_bits(chunk);
1453
1454        chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1455                                           sizeof(chunk->alloc_map[0]), gfp);
1456        if (!chunk->alloc_map)
1457                goto alloc_map_fail;
1458
1459        chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1460                                           sizeof(chunk->bound_map[0]), gfp);
1461        if (!chunk->bound_map)
1462                goto bound_map_fail;
1463
1464        chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1465                                           sizeof(chunk->md_blocks[0]), gfp);
1466        if (!chunk->md_blocks)
1467                goto md_blocks_fail;
1468
1469#ifdef CONFIG_MEMCG_KMEM
1470        if (!mem_cgroup_kmem_disabled()) {
1471                chunk->obj_cgroups =
1472                        pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1473                                        sizeof(struct obj_cgroup *), gfp);
1474                if (!chunk->obj_cgroups)
1475                        goto objcg_fail;
1476        }
1477#endif
1478
1479        pcpu_init_md_blocks(chunk);
1480
1481        /* init metadata */
1482        chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1483
1484        return chunk;
1485
1486#ifdef CONFIG_MEMCG_KMEM
1487objcg_fail:
1488        pcpu_mem_free(chunk->md_blocks);
1489#endif
1490md_blocks_fail:
1491        pcpu_mem_free(chunk->bound_map);
1492bound_map_fail:
1493        pcpu_mem_free(chunk->alloc_map);
1494alloc_map_fail:
1495        pcpu_mem_free(chunk);
1496
1497        return NULL;
1498}
1499
1500static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1501{
1502        if (!chunk)
1503                return;
1504#ifdef CONFIG_MEMCG_KMEM
1505        pcpu_mem_free(chunk->obj_cgroups);
1506#endif
1507        pcpu_mem_free(chunk->md_blocks);
1508        pcpu_mem_free(chunk->bound_map);
1509        pcpu_mem_free(chunk->alloc_map);
1510        pcpu_mem_free(chunk);
1511}
1512
1513/**
1514 * pcpu_chunk_populated - post-population bookkeeping
1515 * @chunk: pcpu_chunk which got populated
1516 * @page_start: the start page
1517 * @page_end: the end page
1518 *
1519 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1520 * the bookkeeping information accordingly.  Must be called after each
1521 * successful population.
1522 */
1523static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1524                                 int page_end)
1525{
1526        int nr = page_end - page_start;
1527
1528        lockdep_assert_held(&pcpu_lock);
1529
1530        bitmap_set(chunk->populated, page_start, nr);
1531        chunk->nr_populated += nr;
1532        pcpu_nr_populated += nr;
1533
1534        pcpu_update_empty_pages(chunk, nr);
1535}
1536
1537/**
1538 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1539 * @chunk: pcpu_chunk which got depopulated
1540 * @page_start: the start page
1541 * @page_end: the end page
1542 *
1543 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1544 * Update the bookkeeping information accordingly.  Must be called after
1545 * each successful depopulation.
1546 */
1547static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1548                                   int page_start, int page_end)
1549{
1550        int nr = page_end - page_start;
1551
1552        lockdep_assert_held(&pcpu_lock);
1553
1554        bitmap_clear(chunk->populated, page_start, nr);
1555        chunk->nr_populated -= nr;
1556        pcpu_nr_populated -= nr;
1557
1558        pcpu_update_empty_pages(chunk, -nr);
1559}
1560
1561/*
1562 * Chunk management implementation.
1563 *
1564 * To allow different implementations, chunk alloc/free and
1565 * [de]population are implemented in a separate file which is pulled
1566 * into this file and compiled together.  The following functions
1567 * should be implemented.
1568 *
1569 * pcpu_populate_chunk          - populate the specified range of a chunk
1570 * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
1571 * pcpu_post_unmap_tlb_flush    - flush tlb for the specified range of a chunk
1572 * pcpu_create_chunk            - create a new chunk
1573 * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
1574 * pcpu_addr_to_page            - translate address to physical address
1575 * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
1576 */
1577static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1578                               int page_start, int page_end, gfp_t gfp);
1579static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1580                                  int page_start, int page_end);
1581static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1582                                      int page_start, int page_end);
1583static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1584static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1585static struct page *pcpu_addr_to_page(void *addr);
1586static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1587
1588#ifdef CONFIG_NEED_PER_CPU_KM
1589#include "percpu-km.c"
1590#else
1591#include "percpu-vm.c"
1592#endif
1593
1594/**
1595 * pcpu_chunk_addr_search - determine chunk containing specified address
1596 * @addr: address for which the chunk needs to be determined.
1597 *
1598 * This is an internal function that handles all but static allocations.
1599 * Static percpu address values should never be passed into the allocator.
1600 *
1601 * RETURNS:
1602 * The address of the found chunk.
1603 */
1604static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1605{
1606        /* is it in the dynamic region (first chunk)? */
1607        if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1608                return pcpu_first_chunk;
1609
1610        /* is it in the reserved region? */
1611        if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1612                return pcpu_reserved_chunk;
1613
1614        /*
1615         * The address is relative to unit0 which might be unused and
1616         * thus unmapped.  Offset the address to the unit space of the
1617         * current processor before looking it up in the vmalloc
1618         * space.  Note that any possible cpu id can be used here, so
1619         * there's no need to worry about preemption or cpu hotplug.
1620         */
1621        addr += pcpu_unit_offsets[raw_smp_processor_id()];
1622        return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1623}
1624
1625#ifdef CONFIG_MEMCG_KMEM
1626static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1627                                      struct obj_cgroup **objcgp)
1628{
1629        struct obj_cgroup *objcg;
1630
1631        if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
1632                return true;
1633
1634        objcg = get_obj_cgroup_from_current();
1635        if (!objcg)
1636                return true;
1637
1638        if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) {
1639                obj_cgroup_put(objcg);
1640                return false;
1641        }
1642
1643        *objcgp = objcg;
1644        return true;
1645}
1646
1647static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1648                                       struct pcpu_chunk *chunk, int off,
1649                                       size_t size)
1650{
1651        if (!objcg)
1652                return;
1653
1654        if (likely(chunk && chunk->obj_cgroups)) {
1655                chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1656
1657                rcu_read_lock();
1658                mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1659                                pcpu_obj_full_size(size));
1660                rcu_read_unlock();
1661        } else {
1662                obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1663                obj_cgroup_put(objcg);
1664        }
1665}
1666
1667static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1668{
1669        struct obj_cgroup *objcg;
1670
1671        if (unlikely(!chunk->obj_cgroups))
1672                return;
1673
1674        objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1675        if (!objcg)
1676                return;
1677        chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1678
1679        obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1680
1681        rcu_read_lock();
1682        mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1683                        -pcpu_obj_full_size(size));
1684        rcu_read_unlock();
1685
1686        obj_cgroup_put(objcg);
1687}
1688
1689#else /* CONFIG_MEMCG_KMEM */
1690static bool
1691pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1692{
1693        return true;
1694}
1695
1696static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1697                                       struct pcpu_chunk *chunk, int off,
1698                                       size_t size)
1699{
1700}
1701
1702static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1703{
1704}
1705#endif /* CONFIG_MEMCG_KMEM */
1706
1707/**
1708 * pcpu_alloc - the percpu allocator
1709 * @size: size of area to allocate in bytes
1710 * @align: alignment of area (max PAGE_SIZE)
1711 * @reserved: allocate from the reserved chunk if available
1712 * @gfp: allocation flags
1713 *
1714 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1715 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1716 * then no warning will be triggered on invalid or failed allocation
1717 * requests.
1718 *
1719 * RETURNS:
1720 * Percpu pointer to the allocated area on success, NULL on failure.
1721 */
1722static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1723                                 gfp_t gfp)
1724{
1725        gfp_t pcpu_gfp;
1726        bool is_atomic;
1727        bool do_warn;
1728        struct obj_cgroup *objcg = NULL;
1729        static int warn_limit = 10;
1730        struct pcpu_chunk *chunk, *next;
1731        const char *err;
1732        int slot, off, cpu, ret;
1733        unsigned long flags;
1734        void __percpu *ptr;
1735        size_t bits, bit_align;
1736
1737        gfp = current_gfp_context(gfp);
1738        /* whitelisted flags that can be passed to the backing allocators */
1739        pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1740        is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1741        do_warn = !(gfp & __GFP_NOWARN);
1742
1743        /*
1744         * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1745         * therefore alignment must be a minimum of that many bytes.
1746         * An allocation may have internal fragmentation from rounding up
1747         * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1748         */
1749        if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1750                align = PCPU_MIN_ALLOC_SIZE;
1751
1752        size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1753        bits = size >> PCPU_MIN_ALLOC_SHIFT;
1754        bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1755
1756        if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1757                     !is_power_of_2(align))) {
1758                WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1759                     size, align);
1760                return NULL;
1761        }
1762
1763        if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
1764                return NULL;
1765
1766        if (!is_atomic) {
1767                /*
1768                 * pcpu_balance_workfn() allocates memory under this mutex,
1769                 * and it may wait for memory reclaim. Allow current task
1770                 * to become OOM victim, in case of memory pressure.
1771                 */
1772                if (gfp & __GFP_NOFAIL) {
1773                        mutex_lock(&pcpu_alloc_mutex);
1774                } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1775                        pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1776                        return NULL;
1777                }
1778        }
1779
1780        spin_lock_irqsave(&pcpu_lock, flags);
1781
1782        /* serve reserved allocations from the reserved chunk if available */
1783        if (reserved && pcpu_reserved_chunk) {
1784                chunk = pcpu_reserved_chunk;
1785
1786                off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1787                if (off < 0) {
1788                        err = "alloc from reserved chunk failed";
1789                        goto fail_unlock;
1790                }
1791
1792                off = pcpu_alloc_area(chunk, bits, bit_align, off);
1793                if (off >= 0)
1794                        goto area_found;
1795
1796                err = "alloc from reserved chunk failed";
1797                goto fail_unlock;
1798        }
1799
1800restart:
1801        /* search through normal chunks */
1802        for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1803                list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1804                                         list) {
1805                        off = pcpu_find_block_fit(chunk, bits, bit_align,
1806                                                  is_atomic);
1807                        if (off < 0) {
1808                                if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1809                                        pcpu_chunk_move(chunk, 0);
1810                                continue;
1811                        }
1812
1813                        off = pcpu_alloc_area(chunk, bits, bit_align, off);
1814                        if (off >= 0) {
1815                                pcpu_reintegrate_chunk(chunk);
1816                                goto area_found;
1817                        }
1818                }
1819        }
1820
1821        spin_unlock_irqrestore(&pcpu_lock, flags);
1822
1823        /*
1824         * No space left.  Create a new chunk.  We don't want multiple
1825         * tasks to create chunks simultaneously.  Serialize and create iff
1826         * there's still no empty chunk after grabbing the mutex.
1827         */
1828        if (is_atomic) {
1829                err = "atomic alloc failed, no space left";
1830                goto fail;
1831        }
1832
1833        if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1834                chunk = pcpu_create_chunk(pcpu_gfp);
1835                if (!chunk) {
1836                        err = "failed to allocate new chunk";
1837                        goto fail;
1838                }
1839
1840                spin_lock_irqsave(&pcpu_lock, flags);
1841                pcpu_chunk_relocate(chunk, -1);
1842        } else {
1843                spin_lock_irqsave(&pcpu_lock, flags);
1844        }
1845
1846        goto restart;
1847
1848area_found:
1849        pcpu_stats_area_alloc(chunk, size);
1850        spin_unlock_irqrestore(&pcpu_lock, flags);
1851
1852        /* populate if not all pages are already there */
1853        if (!is_atomic) {
1854                unsigned int page_end, rs, re;
1855
1856                rs = PFN_DOWN(off);
1857                page_end = PFN_UP(off + size);
1858
1859                for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
1860                        WARN_ON(chunk->immutable);
1861
1862                        ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1863
1864                        spin_lock_irqsave(&pcpu_lock, flags);
1865                        if (ret) {
1866                                pcpu_free_area(chunk, off);
1867                                err = "failed to populate";
1868                                goto fail_unlock;
1869                        }
1870                        pcpu_chunk_populated(chunk, rs, re);
1871                        spin_unlock_irqrestore(&pcpu_lock, flags);
1872                }
1873
1874                mutex_unlock(&pcpu_alloc_mutex);
1875        }
1876
1877        if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1878                pcpu_schedule_balance_work();
1879
1880        /* clear the areas and return address relative to base address */
1881        for_each_possible_cpu(cpu)
1882                memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1883
1884        ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1885        kmemleak_alloc_percpu(ptr, size, gfp);
1886
1887        trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
1888                                  chunk->base_addr, off, ptr,
1889                                  pcpu_obj_full_size(size), gfp);
1890
1891        pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1892
1893        return ptr;
1894
1895fail_unlock:
1896        spin_unlock_irqrestore(&pcpu_lock, flags);
1897fail:
1898        trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1899
1900        if (!is_atomic && do_warn && warn_limit) {
1901                pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1902                        size, align, is_atomic, err);
1903                dump_stack();
1904                if (!--warn_limit)
1905                        pr_info("limit reached, disable warning\n");
1906        }
1907        if (is_atomic) {
1908                /* see the flag handling in pcpu_balance_workfn() */
1909                pcpu_atomic_alloc_failed = true;
1910                pcpu_schedule_balance_work();
1911        } else {
1912                mutex_unlock(&pcpu_alloc_mutex);
1913        }
1914
1915        pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1916
1917        return NULL;
1918}
1919
1920/**
1921 * __alloc_percpu_gfp - allocate dynamic percpu area
1922 * @size: size of area to allocate in bytes
1923 * @align: alignment of area (max PAGE_SIZE)
1924 * @gfp: allocation flags
1925 *
1926 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1927 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1928 * be called from any context but is a lot more likely to fail. If @gfp
1929 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1930 * allocation requests.
1931 *
1932 * RETURNS:
1933 * Percpu pointer to the allocated area on success, NULL on failure.
1934 */
1935void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1936{
1937        return pcpu_alloc(size, align, false, gfp);
1938}
1939EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1940
1941/**
1942 * __alloc_percpu - allocate dynamic percpu area
1943 * @size: size of area to allocate in bytes
1944 * @align: alignment of area (max PAGE_SIZE)
1945 *
1946 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1947 */
1948void __percpu *__alloc_percpu(size_t size, size_t align)
1949{
1950        return pcpu_alloc(size, align, false, GFP_KERNEL);
1951}
1952EXPORT_SYMBOL_GPL(__alloc_percpu);
1953
1954/**
1955 * __alloc_reserved_percpu - allocate reserved percpu area
1956 * @size: size of area to allocate in bytes
1957 * @align: alignment of area (max PAGE_SIZE)
1958 *
1959 * Allocate zero-filled percpu area of @size bytes aligned at @align
1960 * from reserved percpu area if arch has set it up; otherwise,
1961 * allocation is served from the same dynamic area.  Might sleep.
1962 * Might trigger writeouts.
1963 *
1964 * CONTEXT:
1965 * Does GFP_KERNEL allocation.
1966 *
1967 * RETURNS:
1968 * Percpu pointer to the allocated area on success, NULL on failure.
1969 */
1970void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1971{
1972        return pcpu_alloc(size, align, true, GFP_KERNEL);
1973}
1974
1975/**
1976 * pcpu_balance_free - manage the amount of free chunks
1977 * @empty_only: free chunks only if there are no populated pages
1978 *
1979 * If empty_only is %false, reclaim all fully free chunks regardless of the
1980 * number of populated pages.  Otherwise, only reclaim chunks that have no
1981 * populated pages.
1982 *
1983 * CONTEXT:
1984 * pcpu_lock (can be dropped temporarily)
1985 */
1986static void pcpu_balance_free(bool empty_only)
1987{
1988        LIST_HEAD(to_free);
1989        struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1990        struct pcpu_chunk *chunk, *next;
1991
1992        lockdep_assert_held(&pcpu_lock);
1993
1994        /*
1995         * There's no reason to keep around multiple unused chunks and VM
1996         * areas can be scarce.  Destroy all free chunks except for one.
1997         */
1998        list_for_each_entry_safe(chunk, next, free_head, list) {
1999                WARN_ON(chunk->immutable);
2000
2001                /* spare the first one */
2002                if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
2003                        continue;
2004
2005                if (!empty_only || chunk->nr_empty_pop_pages == 0)
2006                        list_move(&chunk->list, &to_free);
2007        }
2008
2009        if (list_empty(&to_free))
2010                return;
2011
2012        spin_unlock_irq(&pcpu_lock);
2013        list_for_each_entry_safe(chunk, next, &to_free, list) {
2014                unsigned int rs, re;
2015
2016                for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2017                        pcpu_depopulate_chunk(chunk, rs, re);
2018                        spin_lock_irq(&pcpu_lock);
2019                        pcpu_chunk_depopulated(chunk, rs, re);
2020                        spin_unlock_irq(&pcpu_lock);
2021                }
2022                pcpu_destroy_chunk(chunk);
2023                cond_resched();
2024        }
2025        spin_lock_irq(&pcpu_lock);
2026}
2027
2028/**
2029 * pcpu_balance_populated - manage the amount of populated pages
2030 *
2031 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2032 * It is possible that this is called when physical memory is scarce causing
2033 * OOM killer to be triggered.  We should avoid doing so until an actual
2034 * allocation causes the failure as it is possible that requests can be
2035 * serviced from already backed regions.
2036 *
2037 * CONTEXT:
2038 * pcpu_lock (can be dropped temporarily)
2039 */
2040static void pcpu_balance_populated(void)
2041{
2042        /* gfp flags passed to underlying allocators */
2043        const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2044        struct pcpu_chunk *chunk;
2045        int slot, nr_to_pop, ret;
2046
2047        lockdep_assert_held(&pcpu_lock);
2048
2049        /*
2050         * Ensure there are certain number of free populated pages for
2051         * atomic allocs.  Fill up from the most packed so that atomic
2052         * allocs don't increase fragmentation.  If atomic allocation
2053         * failed previously, always populate the maximum amount.  This
2054         * should prevent atomic allocs larger than PAGE_SIZE from keeping
2055         * failing indefinitely; however, large atomic allocs are not
2056         * something we support properly and can be highly unreliable and
2057         * inefficient.
2058         */
2059retry_pop:
2060        if (pcpu_atomic_alloc_failed) {
2061                nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2062                /* best effort anyway, don't worry about synchronization */
2063                pcpu_atomic_alloc_failed = false;
2064        } else {
2065                nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2066                                  pcpu_nr_empty_pop_pages,
2067                                  0, PCPU_EMPTY_POP_PAGES_HIGH);
2068        }
2069
2070        for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2071                unsigned int nr_unpop = 0, rs, re;
2072
2073                if (!nr_to_pop)
2074                        break;
2075
2076                list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
2077                        nr_unpop = chunk->nr_pages - chunk->nr_populated;
2078                        if (nr_unpop)
2079                                break;
2080                }
2081
2082                if (!nr_unpop)
2083                        continue;
2084
2085                /* @chunk can't go away while pcpu_alloc_mutex is held */
2086                for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2087                        int nr = min_t(int, re - rs, nr_to_pop);
2088
2089                        spin_unlock_irq(&pcpu_lock);
2090                        ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2091                        cond_resched();
2092                        spin_lock_irq(&pcpu_lock);
2093                        if (!ret) {
2094                                nr_to_pop -= nr;
2095                                pcpu_chunk_populated(chunk, rs, rs + nr);
2096                        } else {
2097                                nr_to_pop = 0;
2098                        }
2099
2100                        if (!nr_to_pop)
2101                                break;
2102                }
2103        }
2104
2105        if (nr_to_pop) {
2106                /* ran out of chunks to populate, create a new one and retry */
2107                spin_unlock_irq(&pcpu_lock);
2108                chunk = pcpu_create_chunk(gfp);
2109                cond_resched();
2110                spin_lock_irq(&pcpu_lock);
2111                if (chunk) {
2112                        pcpu_chunk_relocate(chunk, -1);
2113                        goto retry_pop;
2114                }
2115        }
2116}
2117
2118/**
2119 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2120 *
2121 * Scan over chunks in the depopulate list and try to release unused populated
2122 * pages back to the system.  Depopulated chunks are sidelined to prevent
2123 * repopulating these pages unless required.  Fully free chunks are reintegrated
2124 * and freed accordingly (1 is kept around).  If we drop below the empty
2125 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2126 * Each chunk is scanned in the reverse order to keep populated pages close to
2127 * the beginning of the chunk.
2128 *
2129 * CONTEXT:
2130 * pcpu_lock (can be dropped temporarily)
2131 *
2132 */
2133static void pcpu_reclaim_populated(void)
2134{
2135        struct pcpu_chunk *chunk;
2136        struct pcpu_block_md *block;
2137        int freed_page_start, freed_page_end;
2138        int i, end;
2139        bool reintegrate;
2140
2141        lockdep_assert_held(&pcpu_lock);
2142
2143        /*
2144         * Once a chunk is isolated to the to_depopulate list, the chunk is no
2145         * longer discoverable to allocations whom may populate pages.  The only
2146         * other accessor is the free path which only returns area back to the
2147         * allocator not touching the populated bitmap.
2148         */
2149        while (!list_empty(&pcpu_chunk_lists[pcpu_to_depopulate_slot])) {
2150                chunk = list_first_entry(&pcpu_chunk_lists[pcpu_to_depopulate_slot],
2151                                         struct pcpu_chunk, list);
2152                WARN_ON(chunk->immutable);
2153
2154                /*
2155                 * Scan chunk's pages in the reverse order to keep populated
2156                 * pages close to the beginning of the chunk.
2157                 */
2158                freed_page_start = chunk->nr_pages;
2159                freed_page_end = 0;
2160                reintegrate = false;
2161                for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2162                        /* no more work to do */
2163                        if (chunk->nr_empty_pop_pages == 0)
2164                                break;
2165
2166                        /* reintegrate chunk to prevent atomic alloc failures */
2167                        if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2168                                reintegrate = true;
2169                                goto end_chunk;
2170                        }
2171
2172                        /*
2173                         * If the page is empty and populated, start or
2174                         * extend the (i, end) range.  If i == 0, decrease
2175                         * i and perform the depopulation to cover the last
2176                         * (first) page in the chunk.
2177                         */
2178                        block = chunk->md_blocks + i;
2179                        if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2180                            test_bit(i, chunk->populated)) {
2181                                if (end == -1)
2182                                        end = i;
2183                                if (i > 0)
2184                                        continue;
2185                                i--;
2186                        }
2187
2188                        /* depopulate if there is an active range */
2189                        if (end == -1)
2190                                continue;
2191
2192                        spin_unlock_irq(&pcpu_lock);
2193                        pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2194                        cond_resched();
2195                        spin_lock_irq(&pcpu_lock);
2196
2197                        pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2198                        freed_page_start = min(freed_page_start, i + 1);
2199                        freed_page_end = max(freed_page_end, end + 1);
2200
2201                        /* reset the range and continue */
2202                        end = -1;
2203                }
2204
2205end_chunk:
2206                /* batch tlb flush per chunk to amortize cost */
2207                if (freed_page_start < freed_page_end) {
2208                        spin_unlock_irq(&pcpu_lock);
2209                        pcpu_post_unmap_tlb_flush(chunk,
2210                                                  freed_page_start,
2211                                                  freed_page_end);
2212                        cond_resched();
2213                        spin_lock_irq(&pcpu_lock);
2214                }
2215
2216                if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2217                        pcpu_reintegrate_chunk(chunk);
2218                else
2219                        list_move_tail(&chunk->list,
2220                                       &pcpu_chunk_lists[pcpu_sidelined_slot]);
2221        }
2222}
2223
2224/**
2225 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2226 * @work: unused
2227 *
2228 * For each chunk type, manage the number of fully free chunks and the number of
2229 * populated pages.  An important thing to consider is when pages are freed and
2230 * how they contribute to the global counts.
2231 */
2232static void pcpu_balance_workfn(struct work_struct *work)
2233{
2234        /*
2235         * pcpu_balance_free() is called twice because the first time we may
2236         * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2237         * to grow other chunks.  This then gives pcpu_reclaim_populated() time
2238         * to move fully free chunks to the active list to be freed if
2239         * appropriate.
2240         */
2241        mutex_lock(&pcpu_alloc_mutex);
2242        spin_lock_irq(&pcpu_lock);
2243
2244        pcpu_balance_free(false);
2245        pcpu_reclaim_populated();
2246        pcpu_balance_populated();
2247        pcpu_balance_free(true);
2248
2249        spin_unlock_irq(&pcpu_lock);
2250        mutex_unlock(&pcpu_alloc_mutex);
2251}
2252
2253/**
2254 * free_percpu - free percpu area
2255 * @ptr: pointer to area to free
2256 *
2257 * Free percpu area @ptr.
2258 *
2259 * CONTEXT:
2260 * Can be called from atomic context.
2261 */
2262void free_percpu(void __percpu *ptr)
2263{
2264        void *addr;
2265        struct pcpu_chunk *chunk;
2266        unsigned long flags;
2267        int size, off;
2268        bool need_balance = false;
2269
2270        if (!ptr)
2271                return;
2272
2273        kmemleak_free_percpu(ptr);
2274
2275        addr = __pcpu_ptr_to_addr(ptr);
2276
2277        spin_lock_irqsave(&pcpu_lock, flags);
2278
2279        chunk = pcpu_chunk_addr_search(addr);
2280        off = addr - chunk->base_addr;
2281
2282        size = pcpu_free_area(chunk, off);
2283
2284        pcpu_memcg_free_hook(chunk, off, size);
2285
2286        /*
2287         * If there are more than one fully free chunks, wake up grim reaper.
2288         * If the chunk is isolated, it may be in the process of being
2289         * reclaimed.  Let reclaim manage cleaning up of that chunk.
2290         */
2291        if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2292                struct pcpu_chunk *pos;
2293
2294                list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2295                        if (pos != chunk) {
2296                                need_balance = true;
2297                                break;
2298                        }
2299        } else if (pcpu_should_reclaim_chunk(chunk)) {
2300                pcpu_isolate_chunk(chunk);
2301                need_balance = true;
2302        }
2303
2304        trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2305
2306        spin_unlock_irqrestore(&pcpu_lock, flags);
2307
2308        if (need_balance)
2309                pcpu_schedule_balance_work();
2310}
2311EXPORT_SYMBOL_GPL(free_percpu);
2312
2313bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2314{
2315#ifdef CONFIG_SMP
2316        const size_t static_size = __per_cpu_end - __per_cpu_start;
2317        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2318        unsigned int cpu;
2319
2320        for_each_possible_cpu(cpu) {
2321                void *start = per_cpu_ptr(base, cpu);
2322                void *va = (void *)addr;
2323
2324                if (va >= start && va < start + static_size) {
2325                        if (can_addr) {
2326                                *can_addr = (unsigned long) (va - start);
2327                                *can_addr += (unsigned long)
2328                                        per_cpu_ptr(base, get_boot_cpu_id());
2329                        }
2330                        return true;
2331                }
2332        }
2333#endif
2334        /* on UP, can't distinguish from other static vars, always false */
2335        return false;
2336}
2337
2338/**
2339 * is_kernel_percpu_address - test whether address is from static percpu area
2340 * @addr: address to test
2341 *
2342 * Test whether @addr belongs to in-kernel static percpu area.  Module
2343 * static percpu areas are not considered.  For those, use
2344 * is_module_percpu_address().
2345 *
2346 * RETURNS:
2347 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2348 */
2349bool is_kernel_percpu_address(unsigned long addr)
2350{
2351        return __is_kernel_percpu_address(addr, NULL);
2352}
2353
2354/**
2355 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2356 * @addr: the address to be converted to physical address
2357 *
2358 * Given @addr which is dereferenceable address obtained via one of
2359 * percpu access macros, this function translates it into its physical
2360 * address.  The caller is responsible for ensuring @addr stays valid
2361 * until this function finishes.
2362 *
2363 * percpu allocator has special setup for the first chunk, which currently
2364 * supports either embedding in linear address space or vmalloc mapping,
2365 * and, from the second one, the backing allocator (currently either vm or
2366 * km) provides translation.
2367 *
2368 * The addr can be translated simply without checking if it falls into the
2369 * first chunk. But the current code reflects better how percpu allocator
2370 * actually works, and the verification can discover both bugs in percpu
2371 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2372 * code.
2373 *
2374 * RETURNS:
2375 * The physical address for @addr.
2376 */
2377phys_addr_t per_cpu_ptr_to_phys(void *addr)
2378{
2379        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2380        bool in_first_chunk = false;
2381        unsigned long first_low, first_high;
2382        unsigned int cpu;
2383
2384        /*
2385         * The following test on unit_low/high isn't strictly
2386         * necessary but will speed up lookups of addresses which
2387         * aren't in the first chunk.
2388         *
2389         * The address check is against full chunk sizes.  pcpu_base_addr
2390         * points to the beginning of the first chunk including the
2391         * static region.  Assumes good intent as the first chunk may
2392         * not be full (ie. < pcpu_unit_pages in size).
2393         */
2394        first_low = (unsigned long)pcpu_base_addr +
2395                    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2396        first_high = (unsigned long)pcpu_base_addr +
2397                     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2398        if ((unsigned long)addr >= first_low &&
2399            (unsigned long)addr < first_high) {
2400                for_each_possible_cpu(cpu) {
2401                        void *start = per_cpu_ptr(base, cpu);
2402
2403                        if (addr >= start && addr < start + pcpu_unit_size) {
2404                                in_first_chunk = true;
2405                                break;
2406                        }
2407                }
2408        }
2409
2410        if (in_first_chunk) {
2411                if (!is_vmalloc_addr(addr))
2412                        return __pa(addr);
2413                else
2414                        return page_to_phys(vmalloc_to_page(addr)) +
2415                               offset_in_page(addr);
2416        } else
2417                return page_to_phys(pcpu_addr_to_page(addr)) +
2418                       offset_in_page(addr);
2419}
2420
2421/**
2422 * pcpu_alloc_alloc_info - allocate percpu allocation info
2423 * @nr_groups: the number of groups
2424 * @nr_units: the number of units
2425 *
2426 * Allocate ai which is large enough for @nr_groups groups containing
2427 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2428 * cpu_map array which is long enough for @nr_units and filled with
2429 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2430 * pointer of other groups.
2431 *
2432 * RETURNS:
2433 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2434 * failure.
2435 */
2436struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2437                                                      int nr_units)
2438{
2439        struct pcpu_alloc_info *ai;
2440        size_t base_size, ai_size;
2441        void *ptr;
2442        int unit;
2443
2444        base_size = ALIGN(struct_size(ai, groups, nr_groups),
2445                          __alignof__(ai->groups[0].cpu_map[0]));
2446        ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2447
2448        ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2449        if (!ptr)
2450                return NULL;
2451        ai = ptr;
2452        ptr += base_size;
2453
2454        ai->groups[0].cpu_map = ptr;
2455
2456        for (unit = 0; unit < nr_units; unit++)
2457                ai->groups[0].cpu_map[unit] = NR_CPUS;
2458
2459        ai->nr_groups = nr_groups;
2460        ai->__ai_size = PFN_ALIGN(ai_size);
2461
2462        return ai;
2463}
2464
2465/**
2466 * pcpu_free_alloc_info - free percpu allocation info
2467 * @ai: pcpu_alloc_info to free
2468 *
2469 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2470 */
2471void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2472{
2473        memblock_free(ai, ai->__ai_size);
2474}
2475
2476/**
2477 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2478 * @lvl: loglevel
2479 * @ai: allocation info to dump
2480 *
2481 * Print out information about @ai using loglevel @lvl.
2482 */
2483static void pcpu_dump_alloc_info(const char *lvl,
2484                                 const struct pcpu_alloc_info *ai)
2485{
2486        int group_width = 1, cpu_width = 1, width;
2487        char empty_str[] = "--------";
2488        int alloc = 0, alloc_end = 0;
2489        int group, v;
2490        int upa, apl;   /* units per alloc, allocs per line */
2491
2492        v = ai->nr_groups;
2493        while (v /= 10)
2494                group_width++;
2495
2496        v = num_possible_cpus();
2497        while (v /= 10)
2498                cpu_width++;
2499        empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2500
2501        upa = ai->alloc_size / ai->unit_size;
2502        width = upa * (cpu_width + 1) + group_width + 3;
2503        apl = rounddown_pow_of_two(max(60 / width, 1));
2504
2505        printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2506               lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2507               ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2508
2509        for (group = 0; group < ai->nr_groups; group++) {
2510                const struct pcpu_group_info *gi = &ai->groups[group];
2511                int unit = 0, unit_end = 0;
2512
2513                BUG_ON(gi->nr_units % upa);
2514                for (alloc_end += gi->nr_units / upa;
2515                     alloc < alloc_end; alloc++) {
2516                        if (!(alloc % apl)) {
2517                                pr_cont("\n");
2518                                printk("%spcpu-alloc: ", lvl);
2519                        }
2520                        pr_cont("[%0*d] ", group_width, group);
2521
2522                        for (unit_end += upa; unit < unit_end; unit++)
2523                                if (gi->cpu_map[unit] != NR_CPUS)
2524                                        pr_cont("%0*d ",
2525                                                cpu_width, gi->cpu_map[unit]);
2526                                else
2527                                        pr_cont("%s ", empty_str);
2528                }
2529        }
2530        pr_cont("\n");
2531}
2532
2533/**
2534 * pcpu_setup_first_chunk - initialize the first percpu chunk
2535 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2536 * @base_addr: mapped address
2537 *
2538 * Initialize the first percpu chunk which contains the kernel static
2539 * percpu area.  This function is to be called from arch percpu area
2540 * setup path.
2541 *
2542 * @ai contains all information necessary to initialize the first
2543 * chunk and prime the dynamic percpu allocator.
2544 *
2545 * @ai->static_size is the size of static percpu area.
2546 *
2547 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2548 * reserve after the static area in the first chunk.  This reserves
2549 * the first chunk such that it's available only through reserved
2550 * percpu allocation.  This is primarily used to serve module percpu
2551 * static areas on architectures where the addressing model has
2552 * limited offset range for symbol relocations to guarantee module
2553 * percpu symbols fall inside the relocatable range.
2554 *
2555 * @ai->dyn_size determines the number of bytes available for dynamic
2556 * allocation in the first chunk.  The area between @ai->static_size +
2557 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2558 *
2559 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2560 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2561 * @ai->dyn_size.
2562 *
2563 * @ai->atom_size is the allocation atom size and used as alignment
2564 * for vm areas.
2565 *
2566 * @ai->alloc_size is the allocation size and always multiple of
2567 * @ai->atom_size.  This is larger than @ai->atom_size if
2568 * @ai->unit_size is larger than @ai->atom_size.
2569 *
2570 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2571 * percpu areas.  Units which should be colocated are put into the
2572 * same group.  Dynamic VM areas will be allocated according to these
2573 * groupings.  If @ai->nr_groups is zero, a single group containing
2574 * all units is assumed.
2575 *
2576 * The caller should have mapped the first chunk at @base_addr and
2577 * copied static data to each unit.
2578 *
2579 * The first chunk will always contain a static and a dynamic region.
2580 * However, the static region is not managed by any chunk.  If the first
2581 * chunk also contains a reserved region, it is served by two chunks -
2582 * one for the reserved region and one for the dynamic region.  They
2583 * share the same vm, but use offset regions in the area allocation map.
2584 * The chunk serving the dynamic region is circulated in the chunk slots
2585 * and available for dynamic allocation like any other chunk.
2586 */
2587void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2588                                   void *base_addr)
2589{
2590        size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2591        size_t static_size, dyn_size;
2592        struct pcpu_chunk *chunk;
2593        unsigned long *group_offsets;
2594        size_t *group_sizes;
2595        unsigned long *unit_off;
2596        unsigned int cpu;
2597        int *unit_map;
2598        int group, unit, i;
2599        int map_size;
2600        unsigned long tmp_addr;
2601        size_t alloc_size;
2602
2603#define PCPU_SETUP_BUG_ON(cond) do {                                    \
2604        if (unlikely(cond)) {                                           \
2605                pr_emerg("failed to initialize, %s\n", #cond);          \
2606                pr_emerg("cpu_possible_mask=%*pb\n",                    \
2607                         cpumask_pr_args(cpu_possible_mask));           \
2608                pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
2609                BUG();                                                  \
2610        }                                                               \
2611} while (0)
2612
2613        /* sanity checks */
2614        PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2615#ifdef CONFIG_SMP
2616        PCPU_SETUP_BUG_ON(!ai->static_size);
2617        PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2618#endif
2619        PCPU_SETUP_BUG_ON(!base_addr);
2620        PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2621        PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2622        PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2623        PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2624        PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2625        PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2626        PCPU_SETUP_BUG_ON(!ai->dyn_size);
2627        PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2628        PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2629                            IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2630        PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2631
2632        /* process group information and build config tables accordingly */
2633        alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2634        group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2635        if (!group_offsets)
2636                panic("%s: Failed to allocate %zu bytes\n", __func__,
2637                      alloc_size);
2638
2639        alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2640        group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2641        if (!group_sizes)
2642                panic("%s: Failed to allocate %zu bytes\n", __func__,
2643                      alloc_size);
2644
2645        alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2646        unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2647        if (!unit_map)
2648                panic("%s: Failed to allocate %zu bytes\n", __func__,
2649                      alloc_size);
2650
2651        alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2652        unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2653        if (!unit_off)
2654                panic("%s: Failed to allocate %zu bytes\n", __func__,
2655                      alloc_size);
2656
2657        for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2658                unit_map[cpu] = UINT_MAX;
2659
2660        pcpu_low_unit_cpu = NR_CPUS;
2661        pcpu_high_unit_cpu = NR_CPUS;
2662
2663        for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2664                const struct pcpu_group_info *gi = &ai->groups[group];
2665
2666                group_offsets[group] = gi->base_offset;
2667                group_sizes[group] = gi->nr_units * ai->unit_size;
2668
2669                for (i = 0; i < gi->nr_units; i++) {
2670                        cpu = gi->cpu_map[i];
2671                        if (cpu == NR_CPUS)
2672                                continue;
2673
2674                        PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2675                        PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2676                        PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2677
2678                        unit_map[cpu] = unit + i;
2679                        unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2680
2681                        /* determine low/high unit_cpu */
2682                        if (pcpu_low_unit_cpu == NR_CPUS ||
2683                            unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2684                                pcpu_low_unit_cpu = cpu;
2685                        if (pcpu_high_unit_cpu == NR_CPUS ||
2686                            unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2687                                pcpu_high_unit_cpu = cpu;
2688                }
2689        }
2690        pcpu_nr_units = unit;
2691
2692        for_each_possible_cpu(cpu)
2693                PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2694
2695        /* we're done parsing the input, undefine BUG macro and dump config */
2696#undef PCPU_SETUP_BUG_ON
2697        pcpu_dump_alloc_info(KERN_DEBUG, ai);
2698
2699        pcpu_nr_groups = ai->nr_groups;
2700        pcpu_group_offsets = group_offsets;
2701        pcpu_group_sizes = group_sizes;
2702        pcpu_unit_map = unit_map;
2703        pcpu_unit_offsets = unit_off;
2704
2705        /* determine basic parameters */
2706        pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2707        pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2708        pcpu_atom_size = ai->atom_size;
2709        pcpu_chunk_struct_size = struct_size(chunk, populated,
2710                                             BITS_TO_LONGS(pcpu_unit_pages));
2711
2712        pcpu_stats_save_ai(ai);
2713
2714        /*
2715         * Allocate chunk slots.  The slots after the active slots are:
2716         *   sidelined_slot - isolated, depopulated chunks
2717         *   free_slot - fully free chunks
2718         *   to_depopulate_slot - isolated, chunks to depopulate
2719         */
2720        pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2721        pcpu_free_slot = pcpu_sidelined_slot + 1;
2722        pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2723        pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2724        pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2725                                          sizeof(pcpu_chunk_lists[0]),
2726                                          SMP_CACHE_BYTES);
2727        if (!pcpu_chunk_lists)
2728                panic("%s: Failed to allocate %zu bytes\n", __func__,
2729                      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
2730
2731        for (i = 0; i < pcpu_nr_slots; i++)
2732                INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2733
2734        /*
2735         * The end of the static region needs to be aligned with the
2736         * minimum allocation size as this offsets the reserved and
2737         * dynamic region.  The first chunk ends page aligned by
2738         * expanding the dynamic region, therefore the dynamic region
2739         * can be shrunk to compensate while still staying above the
2740         * configured sizes.
2741         */
2742        static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2743        dyn_size = ai->dyn_size - (static_size - ai->static_size);
2744
2745        /*
2746         * Initialize first chunk.
2747         * If the reserved_size is non-zero, this initializes the reserved
2748         * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2749         * and the dynamic region is initialized here.  The first chunk,
2750         * pcpu_first_chunk, will always point to the chunk that serves
2751         * the dynamic region.
2752         */
2753        tmp_addr = (unsigned long)base_addr + static_size;
2754        map_size = ai->reserved_size ?: dyn_size;
2755        chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2756
2757        /* init dynamic chunk if necessary */
2758        if (ai->reserved_size) {
2759                pcpu_reserved_chunk = chunk;
2760
2761                tmp_addr = (unsigned long)base_addr + static_size +
2762                           ai->reserved_size;
2763                map_size = dyn_size;
2764                chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2765        }
2766
2767        /* link the first chunk in */
2768        pcpu_first_chunk = chunk;
2769        pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2770        pcpu_chunk_relocate(pcpu_first_chunk, -1);
2771
2772        /* include all regions of the first chunk */
2773        pcpu_nr_populated += PFN_DOWN(size_sum);
2774
2775        pcpu_stats_chunk_alloc();
2776        trace_percpu_create_chunk(base_addr);
2777
2778        /* we're done */
2779        pcpu_base_addr = base_addr;
2780}
2781
2782#ifdef CONFIG_SMP
2783
2784const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2785        [PCPU_FC_AUTO]  = "auto",
2786        [PCPU_FC_EMBED] = "embed",
2787        [PCPU_FC_PAGE]  = "page",
2788};
2789
2790enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2791
2792static int __init percpu_alloc_setup(char *str)
2793{
2794        if (!str)
2795                return -EINVAL;
2796
2797        if (0)
2798                /* nada */;
2799#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2800        else if (!strcmp(str, "embed"))
2801                pcpu_chosen_fc = PCPU_FC_EMBED;
2802#endif
2803#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2804        else if (!strcmp(str, "page"))
2805                pcpu_chosen_fc = PCPU_FC_PAGE;
2806#endif
2807        else
2808                pr_warn("unknown allocator %s specified\n", str);
2809
2810        return 0;
2811}
2812early_param("percpu_alloc", percpu_alloc_setup);
2813
2814/*
2815 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2816 * Build it if needed by the arch config or the generic setup is going
2817 * to be used.
2818 */
2819#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2820        !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2821#define BUILD_EMBED_FIRST_CHUNK
2822#endif
2823
2824/* build pcpu_page_first_chunk() iff needed by the arch config */
2825#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2826#define BUILD_PAGE_FIRST_CHUNK
2827#endif
2828
2829/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2830#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2831/**
2832 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2833 * @reserved_size: the size of reserved percpu area in bytes
2834 * @dyn_size: minimum free size for dynamic allocation in bytes
2835 * @atom_size: allocation atom size
2836 * @cpu_distance_fn: callback to determine distance between cpus, optional
2837 *
2838 * This function determines grouping of units, their mappings to cpus
2839 * and other parameters considering needed percpu size, allocation
2840 * atom size and distances between CPUs.
2841 *
2842 * Groups are always multiples of atom size and CPUs which are of
2843 * LOCAL_DISTANCE both ways are grouped together and share space for
2844 * units in the same group.  The returned configuration is guaranteed
2845 * to have CPUs on different nodes on different groups and >=75% usage
2846 * of allocated virtual address space.
2847 *
2848 * RETURNS:
2849 * On success, pointer to the new allocation_info is returned.  On
2850 * failure, ERR_PTR value is returned.
2851 */
2852static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2853                                size_t reserved_size, size_t dyn_size,
2854                                size_t atom_size,
2855                                pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2856{
2857        static int group_map[NR_CPUS] __initdata;
2858        static int group_cnt[NR_CPUS] __initdata;
2859        static struct cpumask mask __initdata;
2860        const size_t static_size = __per_cpu_end - __per_cpu_start;
2861        int nr_groups = 1, nr_units = 0;
2862        size_t size_sum, min_unit_size, alloc_size;
2863        int upa, max_upa, best_upa;     /* units_per_alloc */
2864        int last_allocs, group, unit;
2865        unsigned int cpu, tcpu;
2866        struct pcpu_alloc_info *ai;
2867        unsigned int *cpu_map;
2868
2869        /* this function may be called multiple times */
2870        memset(group_map, 0, sizeof(group_map));
2871        memset(group_cnt, 0, sizeof(group_cnt));
2872        cpumask_clear(&mask);
2873
2874        /* calculate size_sum and ensure dyn_size is enough for early alloc */
2875        size_sum = PFN_ALIGN(static_size + reserved_size +
2876                            max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2877        dyn_size = size_sum - static_size - reserved_size;
2878
2879        /*
2880         * Determine min_unit_size, alloc_size and max_upa such that
2881         * alloc_size is multiple of atom_size and is the smallest
2882         * which can accommodate 4k aligned segments which are equal to
2883         * or larger than min_unit_size.
2884         */
2885        min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2886
2887        /* determine the maximum # of units that can fit in an allocation */
2888        alloc_size = roundup(min_unit_size, atom_size);
2889        upa = alloc_size / min_unit_size;
2890        while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2891                upa--;
2892        max_upa = upa;
2893
2894        cpumask_copy(&mask, cpu_possible_mask);
2895
2896        /* group cpus according to their proximity */
2897        for (group = 0; !cpumask_empty(&mask); group++) {
2898                /* pop the group's first cpu */
2899                cpu = cpumask_first(&mask);
2900                group_map[cpu] = group;
2901                group_cnt[group]++;
2902                cpumask_clear_cpu(cpu, &mask);
2903
2904                for_each_cpu(tcpu, &mask) {
2905                        if (!cpu_distance_fn ||
2906                            (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2907                             cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2908                                group_map[tcpu] = group;
2909                                group_cnt[group]++;
2910                                cpumask_clear_cpu(tcpu, &mask);
2911                        }
2912                }
2913        }
2914        nr_groups = group;
2915
2916        /*
2917         * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2918         * Expand the unit_size until we use >= 75% of the units allocated.
2919         * Related to atom_size, which could be much larger than the unit_size.
2920         */
2921        last_allocs = INT_MAX;
2922        best_upa = 0;
2923        for (upa = max_upa; upa; upa--) {
2924                int allocs = 0, wasted = 0;
2925
2926                if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2927                        continue;
2928
2929                for (group = 0; group < nr_groups; group++) {
2930                        int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2931                        allocs += this_allocs;
2932                        wasted += this_allocs * upa - group_cnt[group];
2933                }
2934
2935                /*
2936                 * Don't accept if wastage is over 1/3.  The
2937                 * greater-than comparison ensures upa==1 always
2938                 * passes the following check.
2939                 */
2940                if (wasted > num_possible_cpus() / 3)
2941                        continue;
2942
2943                /* and then don't consume more memory */
2944                if (allocs > last_allocs)
2945                        break;
2946                last_allocs = allocs;
2947                best_upa = upa;
2948        }
2949        BUG_ON(!best_upa);
2950        upa = best_upa;
2951
2952        /* allocate and fill alloc_info */
2953        for (group = 0; group < nr_groups; group++)
2954                nr_units += roundup(group_cnt[group], upa);
2955
2956        ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2957        if (!ai)
2958                return ERR_PTR(-ENOMEM);
2959        cpu_map = ai->groups[0].cpu_map;
2960
2961        for (group = 0; group < nr_groups; group++) {
2962                ai->groups[group].cpu_map = cpu_map;
2963                cpu_map += roundup(group_cnt[group], upa);
2964        }
2965
2966        ai->static_size = static_size;
2967        ai->reserved_size = reserved_size;
2968        ai->dyn_size = dyn_size;
2969        ai->unit_size = alloc_size / upa;
2970        ai->atom_size = atom_size;
2971        ai->alloc_size = alloc_size;
2972
2973        for (group = 0, unit = 0; group < nr_groups; group++) {
2974                struct pcpu_group_info *gi = &ai->groups[group];
2975
2976                /*
2977                 * Initialize base_offset as if all groups are located
2978                 * back-to-back.  The caller should update this to
2979                 * reflect actual allocation.
2980                 */
2981                gi->base_offset = unit * ai->unit_size;
2982
2983                for_each_possible_cpu(cpu)
2984                        if (group_map[cpu] == group)
2985                                gi->cpu_map[gi->nr_units++] = cpu;
2986                gi->nr_units = roundup(gi->nr_units, upa);
2987                unit += gi->nr_units;
2988        }
2989        BUG_ON(unit != nr_units);
2990
2991        return ai;
2992}
2993
2994static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
2995                                   pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
2996{
2997        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
2998#ifdef CONFIG_NUMA
2999        int node = NUMA_NO_NODE;
3000        void *ptr;
3001
3002        if (cpu_to_nd_fn)
3003                node = cpu_to_nd_fn(cpu);
3004
3005        if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
3006                ptr = memblock_alloc_from(size, align, goal);
3007                pr_info("cpu %d has no node %d or node-local memory\n",
3008                        cpu, node);
3009                pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
3010                         cpu, size, (u64)__pa(ptr));
3011        } else {
3012                ptr = memblock_alloc_try_nid(size, align, goal,
3013                                             MEMBLOCK_ALLOC_ACCESSIBLE,
3014                                             node);
3015
3016                pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
3017                         cpu, size, node, (u64)__pa(ptr));
3018        }
3019        return ptr;
3020#else
3021        return memblock_alloc_from(size, align, goal);
3022#endif
3023}
3024
3025static void __init pcpu_fc_free(void *ptr, size_t size)
3026{
3027        memblock_free(ptr, size);
3028}
3029#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
3030
3031#if defined(BUILD_EMBED_FIRST_CHUNK)
3032/**
3033 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
3034 * @reserved_size: the size of reserved percpu area in bytes
3035 * @dyn_size: minimum free size for dynamic allocation in bytes
3036 * @atom_size: allocation atom size
3037 * @cpu_distance_fn: callback to determine distance between cpus, optional
3038 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3039 *
3040 * This is a helper to ease setting up embedded first percpu chunk and
3041 * can be called where pcpu_setup_first_chunk() is expected.
3042 *
3043 * If this function is used to setup the first chunk, it is allocated
3044 * by calling pcpu_fc_alloc and used as-is without being mapped into
3045 * vmalloc area.  Allocations are always whole multiples of @atom_size
3046 * aligned to @atom_size.
3047 *
3048 * This enables the first chunk to piggy back on the linear physical
3049 * mapping which often uses larger page size.  Please note that this
3050 * can result in very sparse cpu->unit mapping on NUMA machines thus
3051 * requiring large vmalloc address space.  Don't use this allocator if
3052 * vmalloc space is not orders of magnitude larger than distances
3053 * between node memory addresses (ie. 32bit NUMA machines).
3054 *
3055 * @dyn_size specifies the minimum dynamic area size.
3056 *
3057 * If the needed size is smaller than the minimum or specified unit
3058 * size, the leftover is returned using pcpu_fc_free.
3059 *
3060 * RETURNS:
3061 * 0 on success, -errno on failure.
3062 */
3063int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
3064                                  size_t atom_size,
3065                                  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3066                                  pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3067{
3068        void *base = (void *)ULONG_MAX;
3069        void **areas = NULL;
3070        struct pcpu_alloc_info *ai;
3071        size_t size_sum, areas_size;
3072        unsigned long max_distance;
3073        int group, i, highest_group, rc = 0;
3074
3075        ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3076                                   cpu_distance_fn);
3077        if (IS_ERR(ai))
3078                return PTR_ERR(ai);
3079
3080        size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3081        areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3082
3083        areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3084        if (!areas) {
3085                rc = -ENOMEM;
3086                goto out_free;
3087        }
3088
3089        /* allocate, copy and determine base address & max_distance */
3090        highest_group = 0;
3091        for (group = 0; group < ai->nr_groups; group++) {
3092                struct pcpu_group_info *gi = &ai->groups[group];
3093                unsigned int cpu = NR_CPUS;
3094                void *ptr;
3095
3096                for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3097                        cpu = gi->cpu_map[i];
3098                BUG_ON(cpu == NR_CPUS);
3099
3100                /* allocate space for the whole group */
3101                ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
3102                if (!ptr) {
3103                        rc = -ENOMEM;
3104                        goto out_free_areas;
3105                }
3106                /* kmemleak tracks the percpu allocations separately */
3107                kmemleak_free(ptr);
3108                areas[group] = ptr;
3109
3110                base = min(ptr, base);
3111                if (ptr > areas[highest_group])
3112                        highest_group = group;
3113        }
3114        max_distance = areas[highest_group] - base;
3115        max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3116
3117        /* warn if maximum distance is further than 75% of vmalloc space */
3118        if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3119                pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3120                                max_distance, VMALLOC_TOTAL);
3121#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3122                /* and fail if we have fallback */
3123                rc = -EINVAL;
3124                goto out_free_areas;
3125#endif
3126        }
3127
3128        /*
3129         * Copy data and free unused parts.  This should happen after all
3130         * allocations are complete; otherwise, we may end up with
3131         * overlapping groups.
3132         */
3133        for (group = 0; group < ai->nr_groups; group++) {
3134                struct pcpu_group_info *gi = &ai->groups[group];
3135                void *ptr = areas[group];
3136
3137                for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3138                        if (gi->cpu_map[i] == NR_CPUS) {
3139                                /* unused unit, free whole */
3140                                pcpu_fc_free(ptr, ai->unit_size);
3141                                continue;
3142                        }
3143                        /* copy and return the unused part */
3144                        memcpy(ptr, __per_cpu_load, ai->static_size);
3145                        pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
3146                }
3147        }
3148
3149        /* base address is now known, determine group base offsets */
3150        for (group = 0; group < ai->nr_groups; group++) {
3151                ai->groups[group].base_offset = areas[group] - base;
3152        }
3153
3154        pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3155                PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3156                ai->dyn_size, ai->unit_size);
3157
3158        pcpu_setup_first_chunk(ai, base);
3159        goto out_free;
3160
3161out_free_areas:
3162        for (group = 0; group < ai->nr_groups; group++)
3163                if (areas[group])
3164                        pcpu_fc_free(areas[group],
3165                                ai->groups[group].nr_units * ai->unit_size);
3166out_free:
3167        pcpu_free_alloc_info(ai);
3168        if (areas)
3169                memblock_free(areas, areas_size);
3170        return rc;
3171}
3172#endif /* BUILD_EMBED_FIRST_CHUNK */
3173
3174#ifdef BUILD_PAGE_FIRST_CHUNK
3175#include <asm/pgalloc.h>
3176
3177#ifndef P4D_TABLE_SIZE
3178#define P4D_TABLE_SIZE PAGE_SIZE
3179#endif
3180
3181#ifndef PUD_TABLE_SIZE
3182#define PUD_TABLE_SIZE PAGE_SIZE
3183#endif
3184
3185#ifndef PMD_TABLE_SIZE
3186#define PMD_TABLE_SIZE PAGE_SIZE
3187#endif
3188
3189#ifndef PTE_TABLE_SIZE
3190#define PTE_TABLE_SIZE PAGE_SIZE
3191#endif
3192void __init __weak pcpu_populate_pte(unsigned long addr)
3193{
3194        pgd_t *pgd = pgd_offset_k(addr);
3195        p4d_t *p4d;
3196        pud_t *pud;
3197        pmd_t *pmd;
3198
3199        if (pgd_none(*pgd)) {
3200                p4d_t *new;
3201
3202                new = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
3203                if (!new)
3204                        goto err_alloc;
3205                pgd_populate(&init_mm, pgd, new);
3206        }
3207
3208        p4d = p4d_offset(pgd, addr);
3209        if (p4d_none(*p4d)) {
3210                pud_t *new;
3211
3212                new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
3213                if (!new)
3214                        goto err_alloc;
3215                p4d_populate(&init_mm, p4d, new);
3216        }
3217
3218        pud = pud_offset(p4d, addr);
3219        if (pud_none(*pud)) {
3220                pmd_t *new;
3221
3222                new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
3223                if (!new)
3224                        goto err_alloc;
3225                pud_populate(&init_mm, pud, new);
3226        }
3227
3228        pmd = pmd_offset(pud, addr);
3229        if (!pmd_present(*pmd)) {
3230                pte_t *new;
3231
3232                new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
3233                if (!new)
3234                        goto err_alloc;
3235                pmd_populate_kernel(&init_mm, pmd, new);
3236        }
3237
3238        return;
3239
3240err_alloc:
3241        panic("%s: Failed to allocate memory\n", __func__);
3242}
3243
3244/**
3245 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3246 * @reserved_size: the size of reserved percpu area in bytes
3247 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3248 *
3249 * This is a helper to ease setting up page-remapped first percpu
3250 * chunk and can be called where pcpu_setup_first_chunk() is expected.
3251 *
3252 * This is the basic allocator.  Static percpu area is allocated
3253 * page-by-page into vmalloc area.
3254 *
3255 * RETURNS:
3256 * 0 on success, -errno on failure.
3257 */
3258int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3259{
3260        static struct vm_struct vm;
3261        struct pcpu_alloc_info *ai;
3262        char psize_str[16];
3263        int unit_pages;
3264        size_t pages_size;
3265        struct page **pages;
3266        int unit, i, j, rc = 0;
3267        int upa;
3268        int nr_g0_units;
3269
3270        snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3271
3272        ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3273        if (IS_ERR(ai))
3274                return PTR_ERR(ai);
3275        BUG_ON(ai->nr_groups != 1);
3276        upa = ai->alloc_size/ai->unit_size;
3277        nr_g0_units = roundup(num_possible_cpus(), upa);
3278        if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3279                pcpu_free_alloc_info(ai);
3280                return -EINVAL;
3281        }
3282
3283        unit_pages = ai->unit_size >> PAGE_SHIFT;
3284
3285        /* unaligned allocations can't be freed, round up to page size */
3286        pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3287                               sizeof(pages[0]));
3288        pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3289        if (!pages)
3290                panic("%s: Failed to allocate %zu bytes\n", __func__,
3291                      pages_size);
3292
3293        /* allocate pages */
3294        j = 0;
3295        for (unit = 0; unit < num_possible_cpus(); unit++) {
3296                unsigned int cpu = ai->groups[0].cpu_map[unit];
3297                for (i = 0; i < unit_pages; i++) {
3298                        void *ptr;
3299
3300                        ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
3301                        if (!ptr) {
3302                                pr_warn("failed to allocate %s page for cpu%u\n",
3303                                                psize_str, cpu);
3304                                goto enomem;
3305                        }
3306                        /* kmemleak tracks the percpu allocations separately */
3307                        kmemleak_free(ptr);
3308                        pages[j++] = virt_to_page(ptr);
3309                }
3310        }
3311
3312        /* allocate vm area, map the pages and copy static data */
3313        vm.flags = VM_ALLOC;
3314        vm.size = num_possible_cpus() * ai->unit_size;
3315        vm_area_register_early(&vm, PAGE_SIZE);
3316
3317        for (unit = 0; unit < num_possible_cpus(); unit++) {
3318                unsigned long unit_addr =
3319                        (unsigned long)vm.addr + unit * ai->unit_size;
3320
3321                for (i = 0; i < unit_pages; i++)
3322                        pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
3323
3324                /* pte already populated, the following shouldn't fail */
3325                rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3326                                      unit_pages);
3327                if (rc < 0)
3328                        panic("failed to map percpu area, err=%d\n", rc);
3329
3330                /*
3331                 * FIXME: Archs with virtual cache should flush local
3332                 * cache for the linear mapping here - something
3333                 * equivalent to flush_cache_vmap() on the local cpu.
3334                 * flush_cache_vmap() can't be used as most supporting
3335                 * data structures are not set up yet.
3336                 */
3337
3338                /* copy static data */
3339                memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3340        }
3341
3342        /* we're ready, commit */
3343        pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3344                unit_pages, psize_str, ai->static_size,
3345                ai->reserved_size, ai->dyn_size);
3346
3347        pcpu_setup_first_chunk(ai, vm.addr);
3348        goto out_free_ar;
3349
3350enomem:
3351        while (--j >= 0)
3352                pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
3353        rc = -ENOMEM;
3354out_free_ar:
3355        memblock_free(pages, pages_size);
3356        pcpu_free_alloc_info(ai);
3357        return rc;
3358}
3359#endif /* BUILD_PAGE_FIRST_CHUNK */
3360
3361#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
3362/*
3363 * Generic SMP percpu area setup.
3364 *
3365 * The embedding helper is used because its behavior closely resembles
3366 * the original non-dynamic generic percpu area setup.  This is
3367 * important because many archs have addressing restrictions and might
3368 * fail if the percpu area is located far away from the previous
3369 * location.  As an added bonus, in non-NUMA cases, embedding is
3370 * generally a good idea TLB-wise because percpu area can piggy back
3371 * on the physical linear memory mapping which uses large page
3372 * mappings on applicable archs.
3373 */
3374unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3375EXPORT_SYMBOL(__per_cpu_offset);
3376
3377void __init setup_per_cpu_areas(void)
3378{
3379        unsigned long delta;
3380        unsigned int cpu;
3381        int rc;
3382
3383        /*
3384         * Always reserve area for module percpu variables.  That's
3385         * what the legacy allocator did.
3386         */
3387        rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
3388                                    PAGE_SIZE, NULL, NULL);
3389        if (rc < 0)
3390                panic("Failed to initialize percpu areas.");
3391
3392        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3393        for_each_possible_cpu(cpu)
3394                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3395}
3396#endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3397
3398#else   /* CONFIG_SMP */
3399
3400/*
3401 * UP percpu area setup.
3402 *
3403 * UP always uses km-based percpu allocator with identity mapping.
3404 * Static percpu variables are indistinguishable from the usual static
3405 * variables and don't require any special preparation.
3406 */
3407void __init setup_per_cpu_areas(void)
3408{
3409        const size_t unit_size =
3410                roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3411                                         PERCPU_DYNAMIC_RESERVE));
3412        struct pcpu_alloc_info *ai;
3413        void *fc;
3414
3415        ai = pcpu_alloc_alloc_info(1, 1);
3416        fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3417        if (!ai || !fc)
3418                panic("Failed to allocate memory for percpu areas.");
3419        /* kmemleak tracks the percpu allocations separately */
3420        kmemleak_free(fc);
3421
3422        ai->dyn_size = unit_size;
3423        ai->unit_size = unit_size;
3424        ai->atom_size = unit_size;
3425        ai->alloc_size = unit_size;
3426        ai->groups[0].nr_units = 1;
3427        ai->groups[0].cpu_map[0] = 0;
3428
3429        pcpu_setup_first_chunk(ai, fc);
3430        pcpu_free_alloc_info(ai);
3431}
3432
3433#endif  /* CONFIG_SMP */
3434
3435/*
3436 * pcpu_nr_pages - calculate total number of populated backing pages
3437 *
3438 * This reflects the number of pages populated to back chunks.  Metadata is
3439 * excluded in the number exposed in meminfo as the number of backing pages
3440 * scales with the number of cpus and can quickly outweigh the memory used for
3441 * metadata.  It also keeps this calculation nice and simple.
3442 *
3443 * RETURNS:
3444 * Total number of populated backing pages in use by the allocator.
3445 */
3446unsigned long pcpu_nr_pages(void)
3447{
3448        return pcpu_nr_populated * pcpu_nr_units;
3449}
3450
3451/*
3452 * Percpu allocator is initialized early during boot when neither slab or
3453 * workqueue is available.  Plug async management until everything is up
3454 * and running.
3455 */
3456static int __init percpu_enable_async(void)
3457{
3458        pcpu_async_enabled = true;
3459        return 0;
3460}
3461subsys_initcall(percpu_enable_async);
3462