linux/mm/slob.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLOB Allocator: Simple List Of Blocks
   4 *
   5 * Matt Mackall <mpm@selenic.com> 12/30/03
   6 *
   7 * NUMA support by Paul Mundt, 2007.
   8 *
   9 * How SLOB works:
  10 *
  11 * The core of SLOB is a traditional K&R style heap allocator, with
  12 * support for returning aligned objects. The granularity of this
  13 * allocator is as little as 2 bytes, however typically most architectures
  14 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
  15 *
  16 * The slob heap is a set of linked list of pages from alloc_pages(),
  17 * and within each page, there is a singly-linked list of free blocks
  18 * (slob_t). The heap is grown on demand. To reduce fragmentation,
  19 * heap pages are segregated into three lists, with objects less than
  20 * 256 bytes, objects less than 1024 bytes, and all other objects.
  21 *
  22 * Allocation from heap involves first searching for a page with
  23 * sufficient free blocks (using a next-fit-like approach) followed by
  24 * a first-fit scan of the page. Deallocation inserts objects back
  25 * into the free list in address order, so this is effectively an
  26 * address-ordered first fit.
  27 *
  28 * Above this is an implementation of kmalloc/kfree. Blocks returned
  29 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
  30 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
  31 * alloc_pages() directly, allocating compound pages so the page order
  32 * does not have to be separately tracked.
  33 * These objects are detected in kfree() because folio_test_slab()
  34 * is false for them.
  35 *
  36 * SLAB is emulated on top of SLOB by simply calling constructors and
  37 * destructors for every SLAB allocation. Objects are returned with the
  38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
  39 * case the low-level allocator will fragment blocks to create the proper
  40 * alignment. Again, objects of page-size or greater are allocated by
  41 * calling alloc_pages(). As SLAB objects know their size, no separate
  42 * size bookkeeping is necessary and there is essentially no allocation
  43 * space overhead, and compound pages aren't needed for multi-page
  44 * allocations.
  45 *
  46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
  47 * logic down to the page allocator, and simply doing the node accounting
  48 * on the upper levels. In the event that a node id is explicitly
  49 * provided, __alloc_pages_node() with the specified node id is used
  50 * instead. The common case (or when the node id isn't explicitly provided)
  51 * will default to the current node, as per numa_node_id().
  52 *
  53 * Node aware pages are still inserted in to the global freelist, and
  54 * these are scanned for by matching against the node id encoded in the
  55 * page flags. As a result, block allocations that can be satisfied from
  56 * the freelist will only be done so on pages residing on the same node,
  57 * in order to prevent random node placement.
  58 */
  59
  60#include <linux/kernel.h>
  61#include <linux/slab.h>
  62
  63#include <linux/mm.h>
  64#include <linux/swap.h> /* struct reclaim_state */
  65#include <linux/cache.h>
  66#include <linux/init.h>
  67#include <linux/export.h>
  68#include <linux/rcupdate.h>
  69#include <linux/list.h>
  70#include <linux/kmemleak.h>
  71
  72#include <trace/events/kmem.h>
  73
  74#include <linux/atomic.h>
  75
  76#include "slab.h"
  77/*
  78 * slob_block has a field 'units', which indicates size of block if +ve,
  79 * or offset of next block if -ve (in SLOB_UNITs).
  80 *
  81 * Free blocks of size 1 unit simply contain the offset of the next block.
  82 * Those with larger size contain their size in the first SLOB_UNIT of
  83 * memory, and the offset of the next free block in the second SLOB_UNIT.
  84 */
  85#if PAGE_SIZE <= (32767 * 2)
  86typedef s16 slobidx_t;
  87#else
  88typedef s32 slobidx_t;
  89#endif
  90
  91struct slob_block {
  92        slobidx_t units;
  93};
  94typedef struct slob_block slob_t;
  95
  96/*
  97 * All partially free slob pages go on these lists.
  98 */
  99#define SLOB_BREAK1 256
 100#define SLOB_BREAK2 1024
 101static LIST_HEAD(free_slob_small);
 102static LIST_HEAD(free_slob_medium);
 103static LIST_HEAD(free_slob_large);
 104
 105/*
 106 * slob_page_free: true for pages on free_slob_pages list.
 107 */
 108static inline int slob_page_free(struct slab *slab)
 109{
 110        return PageSlobFree(slab_page(slab));
 111}
 112
 113static void set_slob_page_free(struct slab *slab, struct list_head *list)
 114{
 115        list_add(&slab->slab_list, list);
 116        __SetPageSlobFree(slab_page(slab));
 117}
 118
 119static inline void clear_slob_page_free(struct slab *slab)
 120{
 121        list_del(&slab->slab_list);
 122        __ClearPageSlobFree(slab_page(slab));
 123}
 124
 125#define SLOB_UNIT sizeof(slob_t)
 126#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
 127
 128/*
 129 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 130 * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
 131 * the block using call_rcu.
 132 */
 133struct slob_rcu {
 134        struct rcu_head head;
 135        int size;
 136};
 137
 138/*
 139 * slob_lock protects all slob allocator structures.
 140 */
 141static DEFINE_SPINLOCK(slob_lock);
 142
 143/*
 144 * Encode the given size and next info into a free slob block s.
 145 */
 146static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
 147{
 148        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 149        slobidx_t offset = next - base;
 150
 151        if (size > 1) {
 152                s[0].units = size;
 153                s[1].units = offset;
 154        } else
 155                s[0].units = -offset;
 156}
 157
 158/*
 159 * Return the size of a slob block.
 160 */
 161static slobidx_t slob_units(slob_t *s)
 162{
 163        if (s->units > 0)
 164                return s->units;
 165        return 1;
 166}
 167
 168/*
 169 * Return the next free slob block pointer after this one.
 170 */
 171static slob_t *slob_next(slob_t *s)
 172{
 173        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 174        slobidx_t next;
 175
 176        if (s[0].units < 0)
 177                next = -s[0].units;
 178        else
 179                next = s[1].units;
 180        return base+next;
 181}
 182
 183/*
 184 * Returns true if s is the last free block in its page.
 185 */
 186static int slob_last(slob_t *s)
 187{
 188        return !((unsigned long)slob_next(s) & ~PAGE_MASK);
 189}
 190
 191static void *slob_new_pages(gfp_t gfp, int order, int node)
 192{
 193        struct page *page;
 194
 195#ifdef CONFIG_NUMA
 196        if (node != NUMA_NO_NODE)
 197                page = __alloc_pages_node(node, gfp, order);
 198        else
 199#endif
 200                page = alloc_pages(gfp, order);
 201
 202        if (!page)
 203                return NULL;
 204
 205        mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
 206                            PAGE_SIZE << order);
 207        return page_address(page);
 208}
 209
 210static void slob_free_pages(void *b, int order)
 211{
 212        struct page *sp = virt_to_page(b);
 213
 214        if (current->reclaim_state)
 215                current->reclaim_state->reclaimed_slab += 1 << order;
 216
 217        mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
 218                            -(PAGE_SIZE << order));
 219        __free_pages(sp, order);
 220}
 221
 222/*
 223 * slob_page_alloc() - Allocate a slob block within a given slob_page sp.
 224 * @sp: Page to look in.
 225 * @size: Size of the allocation.
 226 * @align: Allocation alignment.
 227 * @align_offset: Offset in the allocated block that will be aligned.
 228 * @page_removed_from_list: Return parameter.
 229 *
 230 * Tries to find a chunk of memory at least @size bytes big within @page.
 231 *
 232 * Return: Pointer to memory if allocated, %NULL otherwise.  If the
 233 *         allocation fills up @page then the page is removed from the
 234 *         freelist, in this case @page_removed_from_list will be set to
 235 *         true (set to false otherwise).
 236 */
 237static void *slob_page_alloc(struct slab *sp, size_t size, int align,
 238                              int align_offset, bool *page_removed_from_list)
 239{
 240        slob_t *prev, *cur, *aligned = NULL;
 241        int delta = 0, units = SLOB_UNITS(size);
 242
 243        *page_removed_from_list = false;
 244        for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
 245                slobidx_t avail = slob_units(cur);
 246
 247                /*
 248                 * 'aligned' will hold the address of the slob block so that the
 249                 * address 'aligned'+'align_offset' is aligned according to the
 250                 * 'align' parameter. This is for kmalloc() which prepends the
 251                 * allocated block with its size, so that the block itself is
 252                 * aligned when needed.
 253                 */
 254                if (align) {
 255                        aligned = (slob_t *)
 256                                (ALIGN((unsigned long)cur + align_offset, align)
 257                                 - align_offset);
 258                        delta = aligned - cur;
 259                }
 260                if (avail >= units + delta) { /* room enough? */
 261                        slob_t *next;
 262
 263                        if (delta) { /* need to fragment head to align? */
 264                                next = slob_next(cur);
 265                                set_slob(aligned, avail - delta, next);
 266                                set_slob(cur, delta, aligned);
 267                                prev = cur;
 268                                cur = aligned;
 269                                avail = slob_units(cur);
 270                        }
 271
 272                        next = slob_next(cur);
 273                        if (avail == units) { /* exact fit? unlink. */
 274                                if (prev)
 275                                        set_slob(prev, slob_units(prev), next);
 276                                else
 277                                        sp->freelist = next;
 278                        } else { /* fragment */
 279                                if (prev)
 280                                        set_slob(prev, slob_units(prev), cur + units);
 281                                else
 282                                        sp->freelist = cur + units;
 283                                set_slob(cur + units, avail - units, next);
 284                        }
 285
 286                        sp->units -= units;
 287                        if (!sp->units) {
 288                                clear_slob_page_free(sp);
 289                                *page_removed_from_list = true;
 290                        }
 291                        return cur;
 292                }
 293                if (slob_last(cur))
 294                        return NULL;
 295        }
 296}
 297
 298/*
 299 * slob_alloc: entry point into the slob allocator.
 300 */
 301static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
 302                                                        int align_offset)
 303{
 304        struct folio *folio;
 305        struct slab *sp;
 306        struct list_head *slob_list;
 307        slob_t *b = NULL;
 308        unsigned long flags;
 309        bool _unused;
 310
 311        if (size < SLOB_BREAK1)
 312                slob_list = &free_slob_small;
 313        else if (size < SLOB_BREAK2)
 314                slob_list = &free_slob_medium;
 315        else
 316                slob_list = &free_slob_large;
 317
 318        spin_lock_irqsave(&slob_lock, flags);
 319        /* Iterate through each partially free page, try to find room */
 320        list_for_each_entry(sp, slob_list, slab_list) {
 321                bool page_removed_from_list = false;
 322#ifdef CONFIG_NUMA
 323                /*
 324                 * If there's a node specification, search for a partial
 325                 * page with a matching node id in the freelist.
 326                 */
 327                if (node != NUMA_NO_NODE && slab_nid(sp) != node)
 328                        continue;
 329#endif
 330                /* Enough room on this page? */
 331                if (sp->units < SLOB_UNITS(size))
 332                        continue;
 333
 334                b = slob_page_alloc(sp, size, align, align_offset, &page_removed_from_list);
 335                if (!b)
 336                        continue;
 337
 338                /*
 339                 * If slob_page_alloc() removed sp from the list then we
 340                 * cannot call list functions on sp.  If so allocation
 341                 * did not fragment the page anyway so optimisation is
 342                 * unnecessary.
 343                 */
 344                if (!page_removed_from_list) {
 345                        /*
 346                         * Improve fragment distribution and reduce our average
 347                         * search time by starting our next search here. (see
 348                         * Knuth vol 1, sec 2.5, pg 449)
 349                         */
 350                        if (!list_is_first(&sp->slab_list, slob_list))
 351                                list_rotate_to_front(&sp->slab_list, slob_list);
 352                }
 353                break;
 354        }
 355        spin_unlock_irqrestore(&slob_lock, flags);
 356
 357        /* Not enough space: must allocate a new page */
 358        if (!b) {
 359                b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
 360                if (!b)
 361                        return NULL;
 362                folio = virt_to_folio(b);
 363                __folio_set_slab(folio);
 364                sp = folio_slab(folio);
 365
 366                spin_lock_irqsave(&slob_lock, flags);
 367                sp->units = SLOB_UNITS(PAGE_SIZE);
 368                sp->freelist = b;
 369                INIT_LIST_HEAD(&sp->slab_list);
 370                set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
 371                set_slob_page_free(sp, slob_list);
 372                b = slob_page_alloc(sp, size, align, align_offset, &_unused);
 373                BUG_ON(!b);
 374                spin_unlock_irqrestore(&slob_lock, flags);
 375        }
 376        if (unlikely(gfp & __GFP_ZERO))
 377                memset(b, 0, size);
 378        return b;
 379}
 380
 381/*
 382 * slob_free: entry point into the slob allocator.
 383 */
 384static void slob_free(void *block, int size)
 385{
 386        struct slab *sp;
 387        slob_t *prev, *next, *b = (slob_t *)block;
 388        slobidx_t units;
 389        unsigned long flags;
 390        struct list_head *slob_list;
 391
 392        if (unlikely(ZERO_OR_NULL_PTR(block)))
 393                return;
 394        BUG_ON(!size);
 395
 396        sp = virt_to_slab(block);
 397        units = SLOB_UNITS(size);
 398
 399        spin_lock_irqsave(&slob_lock, flags);
 400
 401        if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
 402                /* Go directly to page allocator. Do not pass slob allocator */
 403                if (slob_page_free(sp))
 404                        clear_slob_page_free(sp);
 405                spin_unlock_irqrestore(&slob_lock, flags);
 406                __folio_clear_slab(slab_folio(sp));
 407                slob_free_pages(b, 0);
 408                return;
 409        }
 410
 411        if (!slob_page_free(sp)) {
 412                /* This slob page is about to become partially free. Easy! */
 413                sp->units = units;
 414                sp->freelist = b;
 415                set_slob(b, units,
 416                        (void *)((unsigned long)(b +
 417                                        SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
 418                if (size < SLOB_BREAK1)
 419                        slob_list = &free_slob_small;
 420                else if (size < SLOB_BREAK2)
 421                        slob_list = &free_slob_medium;
 422                else
 423                        slob_list = &free_slob_large;
 424                set_slob_page_free(sp, slob_list);
 425                goto out;
 426        }
 427
 428        /*
 429         * Otherwise the page is already partially free, so find reinsertion
 430         * point.
 431         */
 432        sp->units += units;
 433
 434        if (b < (slob_t *)sp->freelist) {
 435                if (b + units == sp->freelist) {
 436                        units += slob_units(sp->freelist);
 437                        sp->freelist = slob_next(sp->freelist);
 438                }
 439                set_slob(b, units, sp->freelist);
 440                sp->freelist = b;
 441        } else {
 442                prev = sp->freelist;
 443                next = slob_next(prev);
 444                while (b > next) {
 445                        prev = next;
 446                        next = slob_next(prev);
 447                }
 448
 449                if (!slob_last(prev) && b + units == next) {
 450                        units += slob_units(next);
 451                        set_slob(b, units, slob_next(next));
 452                } else
 453                        set_slob(b, units, next);
 454
 455                if (prev + slob_units(prev) == b) {
 456                        units = slob_units(b) + slob_units(prev);
 457                        set_slob(prev, units, slob_next(b));
 458                } else
 459                        set_slob(prev, slob_units(prev), b);
 460        }
 461out:
 462        spin_unlock_irqrestore(&slob_lock, flags);
 463}
 464
 465#ifdef CONFIG_PRINTK
 466void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 467{
 468        kpp->kp_ptr = object;
 469        kpp->kp_slab = slab;
 470}
 471#endif
 472
 473/*
 474 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 475 */
 476
 477static __always_inline void *
 478__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
 479{
 480        unsigned int *m;
 481        unsigned int minalign;
 482        void *ret;
 483
 484        minalign = max_t(unsigned int, ARCH_KMALLOC_MINALIGN,
 485                         arch_slab_minalign());
 486        gfp &= gfp_allowed_mask;
 487
 488        might_alloc(gfp);
 489
 490        if (size < PAGE_SIZE - minalign) {
 491                int align = minalign;
 492
 493                /*
 494                 * For power of two sizes, guarantee natural alignment for
 495                 * kmalloc()'d objects.
 496                 */
 497                if (is_power_of_2(size))
 498                        align = max_t(unsigned int, minalign, size);
 499
 500                if (!size)
 501                        return ZERO_SIZE_PTR;
 502
 503                m = slob_alloc(size + minalign, gfp, align, node, minalign);
 504
 505                if (!m)
 506                        return NULL;
 507                *m = size;
 508                ret = (void *)m + minalign;
 509
 510                trace_kmalloc_node(caller, ret,
 511                                   size, size + minalign, gfp, node);
 512        } else {
 513                unsigned int order = get_order(size);
 514
 515                if (likely(order))
 516                        gfp |= __GFP_COMP;
 517                ret = slob_new_pages(gfp, order, node);
 518
 519                trace_kmalloc_node(caller, ret,
 520                                   size, PAGE_SIZE << order, gfp, node);
 521        }
 522
 523        kmemleak_alloc(ret, size, 1, gfp);
 524        return ret;
 525}
 526
 527void *__kmalloc(size_t size, gfp_t gfp)
 528{
 529        return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
 530}
 531EXPORT_SYMBOL(__kmalloc);
 532
 533void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
 534{
 535        return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
 536}
 537EXPORT_SYMBOL(__kmalloc_track_caller);
 538
 539#ifdef CONFIG_NUMA
 540void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
 541                                        int node, unsigned long caller)
 542{
 543        return __do_kmalloc_node(size, gfp, node, caller);
 544}
 545EXPORT_SYMBOL(__kmalloc_node_track_caller);
 546#endif
 547
 548void kfree(const void *block)
 549{
 550        struct folio *sp;
 551
 552        trace_kfree(_RET_IP_, block);
 553
 554        if (unlikely(ZERO_OR_NULL_PTR(block)))
 555                return;
 556        kmemleak_free(block);
 557
 558        sp = virt_to_folio(block);
 559        if (folio_test_slab(sp)) {
 560                unsigned int align = max_t(unsigned int,
 561                                           ARCH_KMALLOC_MINALIGN,
 562                                           arch_slab_minalign());
 563                unsigned int *m = (unsigned int *)(block - align);
 564
 565                slob_free(m, *m + align);
 566        } else {
 567                unsigned int order = folio_order(sp);
 568
 569                mod_node_page_state(folio_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
 570                                    -(PAGE_SIZE << order));
 571                __free_pages(folio_page(sp, 0), order);
 572
 573        }
 574}
 575EXPORT_SYMBOL(kfree);
 576
 577/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
 578size_t __ksize(const void *block)
 579{
 580        struct folio *folio;
 581        unsigned int align;
 582        unsigned int *m;
 583
 584        BUG_ON(!block);
 585        if (unlikely(block == ZERO_SIZE_PTR))
 586                return 0;
 587
 588        folio = virt_to_folio(block);
 589        if (unlikely(!folio_test_slab(folio)))
 590                return folio_size(folio);
 591
 592        align = max_t(unsigned int, ARCH_KMALLOC_MINALIGN,
 593                      arch_slab_minalign());
 594        m = (unsigned int *)(block - align);
 595        return SLOB_UNITS(*m) * SLOB_UNIT;
 596}
 597EXPORT_SYMBOL(__ksize);
 598
 599int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
 600{
 601        if (flags & SLAB_TYPESAFE_BY_RCU) {
 602                /* leave room for rcu footer at the end of object */
 603                c->size += sizeof(struct slob_rcu);
 604        }
 605        c->flags = flags;
 606        return 0;
 607}
 608
 609static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
 610{
 611        void *b;
 612
 613        flags &= gfp_allowed_mask;
 614
 615        might_alloc(flags);
 616
 617        if (c->size < PAGE_SIZE) {
 618                b = slob_alloc(c->size, flags, c->align, node, 0);
 619                trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 620                                            SLOB_UNITS(c->size) * SLOB_UNIT,
 621                                            flags, node);
 622        } else {
 623                b = slob_new_pages(flags, get_order(c->size), node);
 624                trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 625                                            PAGE_SIZE << get_order(c->size),
 626                                            flags, node);
 627        }
 628
 629        if (b && c->ctor) {
 630                WARN_ON_ONCE(flags & __GFP_ZERO);
 631                c->ctor(b);
 632        }
 633
 634        kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
 635        return b;
 636}
 637
 638void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 639{
 640        return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
 641}
 642EXPORT_SYMBOL(kmem_cache_alloc);
 643
 644
 645void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags)
 646{
 647        return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
 648}
 649EXPORT_SYMBOL(kmem_cache_alloc_lru);
 650#ifdef CONFIG_NUMA
 651void *__kmalloc_node(size_t size, gfp_t gfp, int node)
 652{
 653        return __do_kmalloc_node(size, gfp, node, _RET_IP_);
 654}
 655EXPORT_SYMBOL(__kmalloc_node);
 656
 657void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
 658{
 659        return slob_alloc_node(cachep, gfp, node);
 660}
 661EXPORT_SYMBOL(kmem_cache_alloc_node);
 662#endif
 663
 664static void __kmem_cache_free(void *b, int size)
 665{
 666        if (size < PAGE_SIZE)
 667                slob_free(b, size);
 668        else
 669                slob_free_pages(b, get_order(size));
 670}
 671
 672static void kmem_rcu_free(struct rcu_head *head)
 673{
 674        struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
 675        void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
 676
 677        __kmem_cache_free(b, slob_rcu->size);
 678}
 679
 680void kmem_cache_free(struct kmem_cache *c, void *b)
 681{
 682        kmemleak_free_recursive(b, c->flags);
 683        trace_kmem_cache_free(_RET_IP_, b, c->name);
 684        if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
 685                struct slob_rcu *slob_rcu;
 686                slob_rcu = b + (c->size - sizeof(struct slob_rcu));
 687                slob_rcu->size = c->size;
 688                call_rcu(&slob_rcu->head, kmem_rcu_free);
 689        } else {
 690                __kmem_cache_free(b, c->size);
 691        }
 692}
 693EXPORT_SYMBOL(kmem_cache_free);
 694
 695void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
 696{
 697        __kmem_cache_free_bulk(s, size, p);
 698}
 699EXPORT_SYMBOL(kmem_cache_free_bulk);
 700
 701int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
 702                                                                void **p)
 703{
 704        return __kmem_cache_alloc_bulk(s, flags, size, p);
 705}
 706EXPORT_SYMBOL(kmem_cache_alloc_bulk);
 707
 708int __kmem_cache_shutdown(struct kmem_cache *c)
 709{
 710        /* No way to check for remaining objects */
 711        return 0;
 712}
 713
 714void __kmem_cache_release(struct kmem_cache *c)
 715{
 716}
 717
 718int __kmem_cache_shrink(struct kmem_cache *d)
 719{
 720        return 0;
 721}
 722
 723static struct kmem_cache kmem_cache_boot = {
 724        .name = "kmem_cache",
 725        .size = sizeof(struct kmem_cache),
 726        .flags = SLAB_PANIC,
 727        .align = ARCH_KMALLOC_MINALIGN,
 728};
 729
 730void __init kmem_cache_init(void)
 731{
 732        kmem_cache = &kmem_cache_boot;
 733        slab_state = UP;
 734}
 735
 736void __init kmem_cache_init_late(void)
 737{
 738        slab_state = FULL;
 739}
 740