linux/mm/sparse-vmemmap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Virtual Memory Map support
   4 *
   5 * (C) 2007 sgi. Christoph Lameter.
   6 *
   7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
   8 * virt_to_page, page_address() to be implemented as a base offset
   9 * calculation without memory access.
  10 *
  11 * However, virtual mappings need a page table and TLBs. Many Linux
  12 * architectures already map their physical space using 1-1 mappings
  13 * via TLBs. For those arches the virtual memory map is essentially
  14 * for free if we use the same page size as the 1-1 mappings. In that
  15 * case the overhead consists of a few additional pages that are
  16 * allocated to create a view of memory for vmemmap.
  17 *
  18 * The architecture is expected to provide a vmemmap_populate() function
  19 * to instantiate the mapping.
  20 */
  21#include <linux/mm.h>
  22#include <linux/mmzone.h>
  23#include <linux/memblock.h>
  24#include <linux/memremap.h>
  25#include <linux/highmem.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28#include <linux/vmalloc.h>
  29#include <linux/sched.h>
  30#include <linux/pgtable.h>
  31#include <linux/bootmem_info.h>
  32
  33#include <asm/dma.h>
  34#include <asm/pgalloc.h>
  35#include <asm/tlbflush.h>
  36
  37#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
  38/**
  39 * struct vmemmap_remap_walk - walk vmemmap page table
  40 *
  41 * @remap_pte:          called for each lowest-level entry (PTE).
  42 * @nr_walked:          the number of walked pte.
  43 * @reuse_page:         the page which is reused for the tail vmemmap pages.
  44 * @reuse_addr:         the virtual address of the @reuse_page page.
  45 * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
  46 *                      or is mapped from.
  47 */
  48struct vmemmap_remap_walk {
  49        void (*remap_pte)(pte_t *pte, unsigned long addr,
  50                          struct vmemmap_remap_walk *walk);
  51        unsigned long nr_walked;
  52        struct page *reuse_page;
  53        unsigned long reuse_addr;
  54        struct list_head *vmemmap_pages;
  55};
  56
  57static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
  58{
  59        pmd_t __pmd;
  60        int i;
  61        unsigned long addr = start;
  62        struct page *page = pmd_page(*pmd);
  63        pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
  64
  65        if (!pgtable)
  66                return -ENOMEM;
  67
  68        pmd_populate_kernel(&init_mm, &__pmd, pgtable);
  69
  70        for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
  71                pte_t entry, *pte;
  72                pgprot_t pgprot = PAGE_KERNEL;
  73
  74                entry = mk_pte(page + i, pgprot);
  75                pte = pte_offset_kernel(&__pmd, addr);
  76                set_pte_at(&init_mm, addr, pte, entry);
  77        }
  78
  79        spin_lock(&init_mm.page_table_lock);
  80        if (likely(pmd_leaf(*pmd))) {
  81                /*
  82                 * Higher order allocations from buddy allocator must be able to
  83                 * be treated as indepdenent small pages (as they can be freed
  84                 * individually).
  85                 */
  86                if (!PageReserved(page))
  87                        split_page(page, get_order(PMD_SIZE));
  88
  89                /* Make pte visible before pmd. See comment in pmd_install(). */
  90                smp_wmb();
  91                pmd_populate_kernel(&init_mm, pmd, pgtable);
  92                flush_tlb_kernel_range(start, start + PMD_SIZE);
  93        } else {
  94                pte_free_kernel(&init_mm, pgtable);
  95        }
  96        spin_unlock(&init_mm.page_table_lock);
  97
  98        return 0;
  99}
 100
 101static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
 102{
 103        int leaf;
 104
 105        spin_lock(&init_mm.page_table_lock);
 106        leaf = pmd_leaf(*pmd);
 107        spin_unlock(&init_mm.page_table_lock);
 108
 109        if (!leaf)
 110                return 0;
 111
 112        return __split_vmemmap_huge_pmd(pmd, start);
 113}
 114
 115static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
 116                              unsigned long end,
 117                              struct vmemmap_remap_walk *walk)
 118{
 119        pte_t *pte = pte_offset_kernel(pmd, addr);
 120
 121        /*
 122         * The reuse_page is found 'first' in table walk before we start
 123         * remapping (which is calling @walk->remap_pte).
 124         */
 125        if (!walk->reuse_page) {
 126                walk->reuse_page = pte_page(*pte);
 127                /*
 128                 * Because the reuse address is part of the range that we are
 129                 * walking, skip the reuse address range.
 130                 */
 131                addr += PAGE_SIZE;
 132                pte++;
 133                walk->nr_walked++;
 134        }
 135
 136        for (; addr != end; addr += PAGE_SIZE, pte++) {
 137                walk->remap_pte(pte, addr, walk);
 138                walk->nr_walked++;
 139        }
 140}
 141
 142static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
 143                             unsigned long end,
 144                             struct vmemmap_remap_walk *walk)
 145{
 146        pmd_t *pmd;
 147        unsigned long next;
 148
 149        pmd = pmd_offset(pud, addr);
 150        do {
 151                int ret;
 152
 153                ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
 154                if (ret)
 155                        return ret;
 156
 157                next = pmd_addr_end(addr, end);
 158                vmemmap_pte_range(pmd, addr, next, walk);
 159        } while (pmd++, addr = next, addr != end);
 160
 161        return 0;
 162}
 163
 164static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
 165                             unsigned long end,
 166                             struct vmemmap_remap_walk *walk)
 167{
 168        pud_t *pud;
 169        unsigned long next;
 170
 171        pud = pud_offset(p4d, addr);
 172        do {
 173                int ret;
 174
 175                next = pud_addr_end(addr, end);
 176                ret = vmemmap_pmd_range(pud, addr, next, walk);
 177                if (ret)
 178                        return ret;
 179        } while (pud++, addr = next, addr != end);
 180
 181        return 0;
 182}
 183
 184static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
 185                             unsigned long end,
 186                             struct vmemmap_remap_walk *walk)
 187{
 188        p4d_t *p4d;
 189        unsigned long next;
 190
 191        p4d = p4d_offset(pgd, addr);
 192        do {
 193                int ret;
 194
 195                next = p4d_addr_end(addr, end);
 196                ret = vmemmap_pud_range(p4d, addr, next, walk);
 197                if (ret)
 198                        return ret;
 199        } while (p4d++, addr = next, addr != end);
 200
 201        return 0;
 202}
 203
 204static int vmemmap_remap_range(unsigned long start, unsigned long end,
 205                               struct vmemmap_remap_walk *walk)
 206{
 207        unsigned long addr = start;
 208        unsigned long next;
 209        pgd_t *pgd;
 210
 211        VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
 212        VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
 213
 214        pgd = pgd_offset_k(addr);
 215        do {
 216                int ret;
 217
 218                next = pgd_addr_end(addr, end);
 219                ret = vmemmap_p4d_range(pgd, addr, next, walk);
 220                if (ret)
 221                        return ret;
 222        } while (pgd++, addr = next, addr != end);
 223
 224        /*
 225         * We only change the mapping of the vmemmap virtual address range
 226         * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
 227         * belongs to the range.
 228         */
 229        flush_tlb_kernel_range(start + PAGE_SIZE, end);
 230
 231        return 0;
 232}
 233
 234/*
 235 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
 236 * allocator or buddy allocator. If the PG_reserved flag is set, it means
 237 * that it allocated from the memblock allocator, just free it via the
 238 * free_bootmem_page(). Otherwise, use __free_page().
 239 */
 240static inline void free_vmemmap_page(struct page *page)
 241{
 242        if (PageReserved(page))
 243                free_bootmem_page(page);
 244        else
 245                __free_page(page);
 246}
 247
 248/* Free a list of the vmemmap pages */
 249static void free_vmemmap_page_list(struct list_head *list)
 250{
 251        struct page *page, *next;
 252
 253        list_for_each_entry_safe(page, next, list, lru) {
 254                list_del(&page->lru);
 255                free_vmemmap_page(page);
 256        }
 257}
 258
 259static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
 260                              struct vmemmap_remap_walk *walk)
 261{
 262        /*
 263         * Remap the tail pages as read-only to catch illegal write operation
 264         * to the tail pages.
 265         */
 266        pgprot_t pgprot = PAGE_KERNEL_RO;
 267        pte_t entry = mk_pte(walk->reuse_page, pgprot);
 268        struct page *page = pte_page(*pte);
 269
 270        list_add_tail(&page->lru, walk->vmemmap_pages);
 271        set_pte_at(&init_mm, addr, pte, entry);
 272}
 273
 274/*
 275 * How many struct page structs need to be reset. When we reuse the head
 276 * struct page, the special metadata (e.g. page->flags or page->mapping)
 277 * cannot copy to the tail struct page structs. The invalid value will be
 278 * checked in the free_tail_pages_check(). In order to avoid the message
 279 * of "corrupted mapping in tail page". We need to reset at least 3 (one
 280 * head struct page struct and two tail struct page structs) struct page
 281 * structs.
 282 */
 283#define NR_RESET_STRUCT_PAGE            3
 284
 285static inline void reset_struct_pages(struct page *start)
 286{
 287        int i;
 288        struct page *from = start + NR_RESET_STRUCT_PAGE;
 289
 290        for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
 291                memcpy(start + i, from, sizeof(*from));
 292}
 293
 294static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
 295                                struct vmemmap_remap_walk *walk)
 296{
 297        pgprot_t pgprot = PAGE_KERNEL;
 298        struct page *page;
 299        void *to;
 300
 301        BUG_ON(pte_page(*pte) != walk->reuse_page);
 302
 303        page = list_first_entry(walk->vmemmap_pages, struct page, lru);
 304        list_del(&page->lru);
 305        to = page_to_virt(page);
 306        copy_page(to, (void *)walk->reuse_addr);
 307        reset_struct_pages(to);
 308
 309        set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
 310}
 311
 312/**
 313 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
 314 *                      to the page which @reuse is mapped to, then free vmemmap
 315 *                      which the range are mapped to.
 316 * @start:      start address of the vmemmap virtual address range that we want
 317 *              to remap.
 318 * @end:        end address of the vmemmap virtual address range that we want to
 319 *              remap.
 320 * @reuse:      reuse address.
 321 *
 322 * Return: %0 on success, negative error code otherwise.
 323 */
 324int vmemmap_remap_free(unsigned long start, unsigned long end,
 325                       unsigned long reuse)
 326{
 327        int ret;
 328        LIST_HEAD(vmemmap_pages);
 329        struct vmemmap_remap_walk walk = {
 330                .remap_pte      = vmemmap_remap_pte,
 331                .reuse_addr     = reuse,
 332                .vmemmap_pages  = &vmemmap_pages,
 333        };
 334
 335        /*
 336         * In order to make remapping routine most efficient for the huge pages,
 337         * the routine of vmemmap page table walking has the following rules
 338         * (see more details from the vmemmap_pte_range()):
 339         *
 340         * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
 341         *   should be continuous.
 342         * - The @reuse address is part of the range [@reuse, @end) that we are
 343         *   walking which is passed to vmemmap_remap_range().
 344         * - The @reuse address is the first in the complete range.
 345         *
 346         * So we need to make sure that @start and @reuse meet the above rules.
 347         */
 348        BUG_ON(start - reuse != PAGE_SIZE);
 349
 350        mmap_read_lock(&init_mm);
 351        ret = vmemmap_remap_range(reuse, end, &walk);
 352        if (ret && walk.nr_walked) {
 353                end = reuse + walk.nr_walked * PAGE_SIZE;
 354                /*
 355                 * vmemmap_pages contains pages from the previous
 356                 * vmemmap_remap_range call which failed.  These
 357                 * are pages which were removed from the vmemmap.
 358                 * They will be restored in the following call.
 359                 */
 360                walk = (struct vmemmap_remap_walk) {
 361                        .remap_pte      = vmemmap_restore_pte,
 362                        .reuse_addr     = reuse,
 363                        .vmemmap_pages  = &vmemmap_pages,
 364                };
 365
 366                vmemmap_remap_range(reuse, end, &walk);
 367        }
 368        mmap_read_unlock(&init_mm);
 369
 370        free_vmemmap_page_list(&vmemmap_pages);
 371
 372        return ret;
 373}
 374
 375static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
 376                                   gfp_t gfp_mask, struct list_head *list)
 377{
 378        unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
 379        int nid = page_to_nid((struct page *)start);
 380        struct page *page, *next;
 381
 382        while (nr_pages--) {
 383                page = alloc_pages_node(nid, gfp_mask, 0);
 384                if (!page)
 385                        goto out;
 386                list_add_tail(&page->lru, list);
 387        }
 388
 389        return 0;
 390out:
 391        list_for_each_entry_safe(page, next, list, lru)
 392                __free_pages(page, 0);
 393        return -ENOMEM;
 394}
 395
 396/**
 397 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
 398 *                       to the page which is from the @vmemmap_pages
 399 *                       respectively.
 400 * @start:      start address of the vmemmap virtual address range that we want
 401 *              to remap.
 402 * @end:        end address of the vmemmap virtual address range that we want to
 403 *              remap.
 404 * @reuse:      reuse address.
 405 * @gfp_mask:   GFP flag for allocating vmemmap pages.
 406 *
 407 * Return: %0 on success, negative error code otherwise.
 408 */
 409int vmemmap_remap_alloc(unsigned long start, unsigned long end,
 410                        unsigned long reuse, gfp_t gfp_mask)
 411{
 412        LIST_HEAD(vmemmap_pages);
 413        struct vmemmap_remap_walk walk = {
 414                .remap_pte      = vmemmap_restore_pte,
 415                .reuse_addr     = reuse,
 416                .vmemmap_pages  = &vmemmap_pages,
 417        };
 418
 419        /* See the comment in the vmemmap_remap_free(). */
 420        BUG_ON(start - reuse != PAGE_SIZE);
 421
 422        if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
 423                return -ENOMEM;
 424
 425        mmap_read_lock(&init_mm);
 426        vmemmap_remap_range(reuse, end, &walk);
 427        mmap_read_unlock(&init_mm);
 428
 429        return 0;
 430}
 431#endif /* CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP */
 432
 433/*
 434 * Allocate a block of memory to be used to back the virtual memory map
 435 * or to back the page tables that are used to create the mapping.
 436 * Uses the main allocators if they are available, else bootmem.
 437 */
 438
 439static void * __ref __earlyonly_bootmem_alloc(int node,
 440                                unsigned long size,
 441                                unsigned long align,
 442                                unsigned long goal)
 443{
 444        return memblock_alloc_try_nid_raw(size, align, goal,
 445                                               MEMBLOCK_ALLOC_ACCESSIBLE, node);
 446}
 447
 448void * __meminit vmemmap_alloc_block(unsigned long size, int node)
 449{
 450        /* If the main allocator is up use that, fallback to bootmem. */
 451        if (slab_is_available()) {
 452                gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
 453                int order = get_order(size);
 454                static bool warned;
 455                struct page *page;
 456
 457                page = alloc_pages_node(node, gfp_mask, order);
 458                if (page)
 459                        return page_address(page);
 460
 461                if (!warned) {
 462                        warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
 463                                   "vmemmap alloc failure: order:%u", order);
 464                        warned = true;
 465                }
 466                return NULL;
 467        } else
 468                return __earlyonly_bootmem_alloc(node, size, size,
 469                                __pa(MAX_DMA_ADDRESS));
 470}
 471
 472static void * __meminit altmap_alloc_block_buf(unsigned long size,
 473                                               struct vmem_altmap *altmap);
 474
 475/* need to make sure size is all the same during early stage */
 476void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
 477                                         struct vmem_altmap *altmap)
 478{
 479        void *ptr;
 480
 481        if (altmap)
 482                return altmap_alloc_block_buf(size, altmap);
 483
 484        ptr = sparse_buffer_alloc(size);
 485        if (!ptr)
 486                ptr = vmemmap_alloc_block(size, node);
 487        return ptr;
 488}
 489
 490static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
 491{
 492        return altmap->base_pfn + altmap->reserve + altmap->alloc
 493                + altmap->align;
 494}
 495
 496static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
 497{
 498        unsigned long allocated = altmap->alloc + altmap->align;
 499
 500        if (altmap->free > allocated)
 501                return altmap->free - allocated;
 502        return 0;
 503}
 504
 505static void * __meminit altmap_alloc_block_buf(unsigned long size,
 506                                               struct vmem_altmap *altmap)
 507{
 508        unsigned long pfn, nr_pfns, nr_align;
 509
 510        if (size & ~PAGE_MASK) {
 511                pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
 512                                __func__, size);
 513                return NULL;
 514        }
 515
 516        pfn = vmem_altmap_next_pfn(altmap);
 517        nr_pfns = size >> PAGE_SHIFT;
 518        nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
 519        nr_align = ALIGN(pfn, nr_align) - pfn;
 520        if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
 521                return NULL;
 522
 523        altmap->alloc += nr_pfns;
 524        altmap->align += nr_align;
 525        pfn += nr_align;
 526
 527        pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
 528                        __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
 529        return __va(__pfn_to_phys(pfn));
 530}
 531
 532void __meminit vmemmap_verify(pte_t *pte, int node,
 533                                unsigned long start, unsigned long end)
 534{
 535        unsigned long pfn = pte_pfn(*pte);
 536        int actual_node = early_pfn_to_nid(pfn);
 537
 538        if (node_distance(actual_node, node) > LOCAL_DISTANCE)
 539                pr_warn("[%lx-%lx] potential offnode page_structs\n",
 540                        start, end - 1);
 541}
 542
 543pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
 544                                       struct vmem_altmap *altmap,
 545                                       struct page *reuse)
 546{
 547        pte_t *pte = pte_offset_kernel(pmd, addr);
 548        if (pte_none(*pte)) {
 549                pte_t entry;
 550                void *p;
 551
 552                if (!reuse) {
 553                        p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
 554                        if (!p)
 555                                return NULL;
 556                } else {
 557                        /*
 558                         * When a PTE/PMD entry is freed from the init_mm
 559                         * there's a a free_pages() call to this page allocated
 560                         * above. Thus this get_page() is paired with the
 561                         * put_page_testzero() on the freeing path.
 562                         * This can only called by certain ZONE_DEVICE path,
 563                         * and through vmemmap_populate_compound_pages() when
 564                         * slab is available.
 565                         */
 566                        get_page(reuse);
 567                        p = page_to_virt(reuse);
 568                }
 569                entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
 570                set_pte_at(&init_mm, addr, pte, entry);
 571        }
 572        return pte;
 573}
 574
 575static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
 576{
 577        void *p = vmemmap_alloc_block(size, node);
 578
 579        if (!p)
 580                return NULL;
 581        memset(p, 0, size);
 582
 583        return p;
 584}
 585
 586pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
 587{
 588        pmd_t *pmd = pmd_offset(pud, addr);
 589        if (pmd_none(*pmd)) {
 590                void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
 591                if (!p)
 592                        return NULL;
 593                pmd_populate_kernel(&init_mm, pmd, p);
 594        }
 595        return pmd;
 596}
 597
 598pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
 599{
 600        pud_t *pud = pud_offset(p4d, addr);
 601        if (pud_none(*pud)) {
 602                void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
 603                if (!p)
 604                        return NULL;
 605                pud_populate(&init_mm, pud, p);
 606        }
 607        return pud;
 608}
 609
 610p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
 611{
 612        p4d_t *p4d = p4d_offset(pgd, addr);
 613        if (p4d_none(*p4d)) {
 614                void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
 615                if (!p)
 616                        return NULL;
 617                p4d_populate(&init_mm, p4d, p);
 618        }
 619        return p4d;
 620}
 621
 622pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
 623{
 624        pgd_t *pgd = pgd_offset_k(addr);
 625        if (pgd_none(*pgd)) {
 626                void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
 627                if (!p)
 628                        return NULL;
 629                pgd_populate(&init_mm, pgd, p);
 630        }
 631        return pgd;
 632}
 633
 634static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
 635                                              struct vmem_altmap *altmap,
 636                                              struct page *reuse)
 637{
 638        pgd_t *pgd;
 639        p4d_t *p4d;
 640        pud_t *pud;
 641        pmd_t *pmd;
 642        pte_t *pte;
 643
 644        pgd = vmemmap_pgd_populate(addr, node);
 645        if (!pgd)
 646                return NULL;
 647        p4d = vmemmap_p4d_populate(pgd, addr, node);
 648        if (!p4d)
 649                return NULL;
 650        pud = vmemmap_pud_populate(p4d, addr, node);
 651        if (!pud)
 652                return NULL;
 653        pmd = vmemmap_pmd_populate(pud, addr, node);
 654        if (!pmd)
 655                return NULL;
 656        pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
 657        if (!pte)
 658                return NULL;
 659        vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
 660
 661        return pte;
 662}
 663
 664static int __meminit vmemmap_populate_range(unsigned long start,
 665                                            unsigned long end, int node,
 666                                            struct vmem_altmap *altmap,
 667                                            struct page *reuse)
 668{
 669        unsigned long addr = start;
 670        pte_t *pte;
 671
 672        for (; addr < end; addr += PAGE_SIZE) {
 673                pte = vmemmap_populate_address(addr, node, altmap, reuse);
 674                if (!pte)
 675                        return -ENOMEM;
 676        }
 677
 678        return 0;
 679}
 680
 681int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
 682                                         int node, struct vmem_altmap *altmap)
 683{
 684        return vmemmap_populate_range(start, end, node, altmap, NULL);
 685}
 686
 687/*
 688 * For compound pages bigger than section size (e.g. x86 1G compound
 689 * pages with 2M subsection size) fill the rest of sections as tail
 690 * pages.
 691 *
 692 * Note that memremap_pages() resets @nr_range value and will increment
 693 * it after each range successful onlining. Thus the value or @nr_range
 694 * at section memmap populate corresponds to the in-progress range
 695 * being onlined here.
 696 */
 697static bool __meminit reuse_compound_section(unsigned long start_pfn,
 698                                             struct dev_pagemap *pgmap)
 699{
 700        unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
 701        unsigned long offset = start_pfn -
 702                PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
 703
 704        return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
 705}
 706
 707static pte_t * __meminit compound_section_tail_page(unsigned long addr)
 708{
 709        pte_t *pte;
 710
 711        addr -= PAGE_SIZE;
 712
 713        /*
 714         * Assuming sections are populated sequentially, the previous section's
 715         * page data can be reused.
 716         */
 717        pte = pte_offset_kernel(pmd_off_k(addr), addr);
 718        if (!pte)
 719                return NULL;
 720
 721        return pte;
 722}
 723
 724static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
 725                                                     unsigned long start,
 726                                                     unsigned long end, int node,
 727                                                     struct dev_pagemap *pgmap)
 728{
 729        unsigned long size, addr;
 730        pte_t *pte;
 731        int rc;
 732
 733        if (reuse_compound_section(start_pfn, pgmap)) {
 734                pte = compound_section_tail_page(start);
 735                if (!pte)
 736                        return -ENOMEM;
 737
 738                /*
 739                 * Reuse the page that was populated in the prior iteration
 740                 * with just tail struct pages.
 741                 */
 742                return vmemmap_populate_range(start, end, node, NULL,
 743                                              pte_page(*pte));
 744        }
 745
 746        size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
 747        for (addr = start; addr < end; addr += size) {
 748                unsigned long next = addr, last = addr + size;
 749
 750                /* Populate the head page vmemmap page */
 751                pte = vmemmap_populate_address(addr, node, NULL, NULL);
 752                if (!pte)
 753                        return -ENOMEM;
 754
 755                /* Populate the tail pages vmemmap page */
 756                next = addr + PAGE_SIZE;
 757                pte = vmemmap_populate_address(next, node, NULL, NULL);
 758                if (!pte)
 759                        return -ENOMEM;
 760
 761                /*
 762                 * Reuse the previous page for the rest of tail pages
 763                 * See layout diagram in Documentation/vm/vmemmap_dedup.rst
 764                 */
 765                next += PAGE_SIZE;
 766                rc = vmemmap_populate_range(next, last, node, NULL,
 767                                            pte_page(*pte));
 768                if (rc)
 769                        return -ENOMEM;
 770        }
 771
 772        return 0;
 773}
 774
 775struct page * __meminit __populate_section_memmap(unsigned long pfn,
 776                unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
 777                struct dev_pagemap *pgmap)
 778{
 779        unsigned long start = (unsigned long) pfn_to_page(pfn);
 780        unsigned long end = start + nr_pages * sizeof(struct page);
 781        int r;
 782
 783        if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
 784                !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
 785                return NULL;
 786
 787        if (is_power_of_2(sizeof(struct page)) &&
 788            pgmap && pgmap_vmemmap_nr(pgmap) > 1 && !altmap)
 789                r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
 790        else
 791                r = vmemmap_populate(start, end, nid, altmap);
 792
 793        if (r < 0)
 794                return NULL;
 795
 796        return pfn_to_page(pfn);
 797}
 798