linux/mm/swap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? */
  47int page_cluster;
  48
  49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
  50struct lru_rotate {
  51        local_lock_t lock;
  52        struct pagevec pvec;
  53};
  54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  55        .lock = INIT_LOCAL_LOCK(lock),
  56};
  57
  58/*
  59 * The following struct pagevec are grouped together because they are protected
  60 * by disabling preemption (and interrupts remain enabled).
  61 */
  62struct lru_pvecs {
  63        local_lock_t lock;
  64        struct pagevec lru_add;
  65        struct pagevec lru_deactivate_file;
  66        struct pagevec lru_deactivate;
  67        struct pagevec lru_lazyfree;
  68#ifdef CONFIG_SMP
  69        struct pagevec activate_page;
  70#endif
  71};
  72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
  73        .lock = INIT_LOCAL_LOCK(lock),
  74};
  75
  76/*
  77 * This path almost never happens for VM activity - pages are normally freed
  78 * via pagevecs.  But it gets used by networking - and for compound pages.
  79 */
  80static void __page_cache_release(struct page *page)
  81{
  82        if (PageLRU(page)) {
  83                struct folio *folio = page_folio(page);
  84                struct lruvec *lruvec;
  85                unsigned long flags;
  86
  87                lruvec = folio_lruvec_lock_irqsave(folio, &flags);
  88                del_page_from_lru_list(page, lruvec);
  89                __clear_page_lru_flags(page);
  90                unlock_page_lruvec_irqrestore(lruvec, flags);
  91        }
  92        /* See comment on PageMlocked in release_pages() */
  93        if (unlikely(PageMlocked(page))) {
  94                int nr_pages = thp_nr_pages(page);
  95
  96                __ClearPageMlocked(page);
  97                mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
  98                count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
  99        }
 100}
 101
 102static void __put_single_page(struct page *page)
 103{
 104        __page_cache_release(page);
 105        mem_cgroup_uncharge(page_folio(page));
 106        free_unref_page(page, 0);
 107}
 108
 109static void __put_compound_page(struct page *page)
 110{
 111        /*
 112         * __page_cache_release() is supposed to be called for thp, not for
 113         * hugetlb. This is because hugetlb page does never have PageLRU set
 114         * (it's never listed to any LRU lists) and no memcg routines should
 115         * be called for hugetlb (it has a separate hugetlb_cgroup.)
 116         */
 117        if (!PageHuge(page))
 118                __page_cache_release(page);
 119        destroy_compound_page(page);
 120}
 121
 122void __put_page(struct page *page)
 123{
 124        if (unlikely(is_zone_device_page(page)))
 125                free_zone_device_page(page);
 126        else if (unlikely(PageCompound(page)))
 127                __put_compound_page(page);
 128        else
 129                __put_single_page(page);
 130}
 131EXPORT_SYMBOL(__put_page);
 132
 133/**
 134 * put_pages_list() - release a list of pages
 135 * @pages: list of pages threaded on page->lru
 136 *
 137 * Release a list of pages which are strung together on page.lru.
 138 */
 139void put_pages_list(struct list_head *pages)
 140{
 141        struct page *page, *next;
 142
 143        list_for_each_entry_safe(page, next, pages, lru) {
 144                if (!put_page_testzero(page)) {
 145                        list_del(&page->lru);
 146                        continue;
 147                }
 148                if (PageHead(page)) {
 149                        list_del(&page->lru);
 150                        __put_compound_page(page);
 151                        continue;
 152                }
 153                /* Cannot be PageLRU because it's passed to us using the lru */
 154        }
 155
 156        free_unref_page_list(pages);
 157        INIT_LIST_HEAD(pages);
 158}
 159EXPORT_SYMBOL(put_pages_list);
 160
 161/*
 162 * get_kernel_pages() - pin kernel pages in memory
 163 * @kiov:       An array of struct kvec structures
 164 * @nr_segs:    number of segments to pin
 165 * @write:      pinning for read/write, currently ignored
 166 * @pages:      array that receives pointers to the pages pinned.
 167 *              Should be at least nr_segs long.
 168 *
 169 * Returns number of pages pinned. This may be fewer than the number requested.
 170 * If nr_segs is 0 or negative, returns 0.  If no pages were pinned, returns 0.
 171 * Each page returned must be released with a put_page() call when it is
 172 * finished with.
 173 */
 174int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 175                struct page **pages)
 176{
 177        int seg;
 178
 179        for (seg = 0; seg < nr_segs; seg++) {
 180                if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 181                        return seg;
 182
 183                pages[seg] = kmap_to_page(kiov[seg].iov_base);
 184                get_page(pages[seg]);
 185        }
 186
 187        return seg;
 188}
 189EXPORT_SYMBOL_GPL(get_kernel_pages);
 190
 191static void pagevec_lru_move_fn(struct pagevec *pvec,
 192        void (*move_fn)(struct page *page, struct lruvec *lruvec))
 193{
 194        int i;
 195        struct lruvec *lruvec = NULL;
 196        unsigned long flags = 0;
 197
 198        for (i = 0; i < pagevec_count(pvec); i++) {
 199                struct page *page = pvec->pages[i];
 200                struct folio *folio = page_folio(page);
 201
 202                /* block memcg migration during page moving between lru */
 203                if (!TestClearPageLRU(page))
 204                        continue;
 205
 206                lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
 207                (*move_fn)(page, lruvec);
 208
 209                SetPageLRU(page);
 210        }
 211        if (lruvec)
 212                unlock_page_lruvec_irqrestore(lruvec, flags);
 213        release_pages(pvec->pages, pvec->nr);
 214        pagevec_reinit(pvec);
 215}
 216
 217static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
 218{
 219        struct folio *folio = page_folio(page);
 220
 221        if (!folio_test_unevictable(folio)) {
 222                lruvec_del_folio(lruvec, folio);
 223                folio_clear_active(folio);
 224                lruvec_add_folio_tail(lruvec, folio);
 225                __count_vm_events(PGROTATED, folio_nr_pages(folio));
 226        }
 227}
 228
 229/* return true if pagevec needs to drain */
 230static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
 231{
 232        bool ret = false;
 233
 234        if (!pagevec_add(pvec, page) || PageCompound(page) ||
 235                        lru_cache_disabled())
 236                ret = true;
 237
 238        return ret;
 239}
 240
 241/*
 242 * Writeback is about to end against a folio which has been marked for
 243 * immediate reclaim.  If it still appears to be reclaimable, move it
 244 * to the tail of the inactive list.
 245 *
 246 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
 247 */
 248void folio_rotate_reclaimable(struct folio *folio)
 249{
 250        if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
 251            !folio_test_unevictable(folio) && folio_test_lru(folio)) {
 252                struct pagevec *pvec;
 253                unsigned long flags;
 254
 255                folio_get(folio);
 256                local_lock_irqsave(&lru_rotate.lock, flags);
 257                pvec = this_cpu_ptr(&lru_rotate.pvec);
 258                if (pagevec_add_and_need_flush(pvec, &folio->page))
 259                        pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 260                local_unlock_irqrestore(&lru_rotate.lock, flags);
 261        }
 262}
 263
 264void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
 265{
 266        do {
 267                unsigned long lrusize;
 268
 269                /*
 270                 * Hold lruvec->lru_lock is safe here, since
 271                 * 1) The pinned lruvec in reclaim, or
 272                 * 2) From a pre-LRU page during refault (which also holds the
 273                 *    rcu lock, so would be safe even if the page was on the LRU
 274                 *    and could move simultaneously to a new lruvec).
 275                 */
 276                spin_lock_irq(&lruvec->lru_lock);
 277                /* Record cost event */
 278                if (file)
 279                        lruvec->file_cost += nr_pages;
 280                else
 281                        lruvec->anon_cost += nr_pages;
 282
 283                /*
 284                 * Decay previous events
 285                 *
 286                 * Because workloads change over time (and to avoid
 287                 * overflow) we keep these statistics as a floating
 288                 * average, which ends up weighing recent refaults
 289                 * more than old ones.
 290                 */
 291                lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 292                          lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 293                          lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 294                          lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 295
 296                if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 297                        lruvec->file_cost /= 2;
 298                        lruvec->anon_cost /= 2;
 299                }
 300                spin_unlock_irq(&lruvec->lru_lock);
 301        } while ((lruvec = parent_lruvec(lruvec)));
 302}
 303
 304void lru_note_cost_folio(struct folio *folio)
 305{
 306        lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
 307                        folio_nr_pages(folio));
 308}
 309
 310static void __folio_activate(struct folio *folio, struct lruvec *lruvec)
 311{
 312        if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
 313                long nr_pages = folio_nr_pages(folio);
 314
 315                lruvec_del_folio(lruvec, folio);
 316                folio_set_active(folio);
 317                lruvec_add_folio(lruvec, folio);
 318                trace_mm_lru_activate(folio);
 319
 320                __count_vm_events(PGACTIVATE, nr_pages);
 321                __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 322                                     nr_pages);
 323        }
 324}
 325
 326#ifdef CONFIG_SMP
 327static void __activate_page(struct page *page, struct lruvec *lruvec)
 328{
 329        return __folio_activate(page_folio(page), lruvec);
 330}
 331
 332static void activate_page_drain(int cpu)
 333{
 334        struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
 335
 336        if (pagevec_count(pvec))
 337                pagevec_lru_move_fn(pvec, __activate_page);
 338}
 339
 340static bool need_activate_page_drain(int cpu)
 341{
 342        return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
 343}
 344
 345static void folio_activate(struct folio *folio)
 346{
 347        if (folio_test_lru(folio) && !folio_test_active(folio) &&
 348            !folio_test_unevictable(folio)) {
 349                struct pagevec *pvec;
 350
 351                folio_get(folio);
 352                local_lock(&lru_pvecs.lock);
 353                pvec = this_cpu_ptr(&lru_pvecs.activate_page);
 354                if (pagevec_add_and_need_flush(pvec, &folio->page))
 355                        pagevec_lru_move_fn(pvec, __activate_page);
 356                local_unlock(&lru_pvecs.lock);
 357        }
 358}
 359
 360#else
 361static inline void activate_page_drain(int cpu)
 362{
 363}
 364
 365static void folio_activate(struct folio *folio)
 366{
 367        struct lruvec *lruvec;
 368
 369        if (folio_test_clear_lru(folio)) {
 370                lruvec = folio_lruvec_lock_irq(folio);
 371                __folio_activate(folio, lruvec);
 372                unlock_page_lruvec_irq(lruvec);
 373                folio_set_lru(folio);
 374        }
 375}
 376#endif
 377
 378static void __lru_cache_activate_folio(struct folio *folio)
 379{
 380        struct pagevec *pvec;
 381        int i;
 382
 383        local_lock(&lru_pvecs.lock);
 384        pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 385
 386        /*
 387         * Search backwards on the optimistic assumption that the page being
 388         * activated has just been added to this pagevec. Note that only
 389         * the local pagevec is examined as a !PageLRU page could be in the
 390         * process of being released, reclaimed, migrated or on a remote
 391         * pagevec that is currently being drained. Furthermore, marking
 392         * a remote pagevec's page PageActive potentially hits a race where
 393         * a page is marked PageActive just after it is added to the inactive
 394         * list causing accounting errors and BUG_ON checks to trigger.
 395         */
 396        for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 397                struct page *pagevec_page = pvec->pages[i];
 398
 399                if (pagevec_page == &folio->page) {
 400                        folio_set_active(folio);
 401                        break;
 402                }
 403        }
 404
 405        local_unlock(&lru_pvecs.lock);
 406}
 407
 408/*
 409 * Mark a page as having seen activity.
 410 *
 411 * inactive,unreferenced        ->      inactive,referenced
 412 * inactive,referenced          ->      active,unreferenced
 413 * active,unreferenced          ->      active,referenced
 414 *
 415 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 416 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 417 */
 418void folio_mark_accessed(struct folio *folio)
 419{
 420        if (!folio_test_referenced(folio)) {
 421                folio_set_referenced(folio);
 422        } else if (folio_test_unevictable(folio)) {
 423                /*
 424                 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 425                 * this list is never rotated or maintained, so marking an
 426                 * unevictable page accessed has no effect.
 427                 */
 428        } else if (!folio_test_active(folio)) {
 429                /*
 430                 * If the page is on the LRU, queue it for activation via
 431                 * lru_pvecs.activate_page. Otherwise, assume the page is on a
 432                 * pagevec, mark it active and it'll be moved to the active
 433                 * LRU on the next drain.
 434                 */
 435                if (folio_test_lru(folio))
 436                        folio_activate(folio);
 437                else
 438                        __lru_cache_activate_folio(folio);
 439                folio_clear_referenced(folio);
 440                workingset_activation(folio);
 441        }
 442        if (folio_test_idle(folio))
 443                folio_clear_idle(folio);
 444}
 445EXPORT_SYMBOL(folio_mark_accessed);
 446
 447/**
 448 * folio_add_lru - Add a folio to an LRU list.
 449 * @folio: The folio to be added to the LRU.
 450 *
 451 * Queue the folio for addition to the LRU. The decision on whether
 452 * to add the page to the [in]active [file|anon] list is deferred until the
 453 * pagevec is drained. This gives a chance for the caller of folio_add_lru()
 454 * have the folio added to the active list using folio_mark_accessed().
 455 */
 456void folio_add_lru(struct folio *folio)
 457{
 458        struct pagevec *pvec;
 459
 460        VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
 461        VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 462
 463        folio_get(folio);
 464        local_lock(&lru_pvecs.lock);
 465        pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 466        if (pagevec_add_and_need_flush(pvec, &folio->page))
 467                __pagevec_lru_add(pvec);
 468        local_unlock(&lru_pvecs.lock);
 469}
 470EXPORT_SYMBOL(folio_add_lru);
 471
 472/**
 473 * lru_cache_add_inactive_or_unevictable
 474 * @page:  the page to be added to LRU
 475 * @vma:   vma in which page is mapped for determining reclaimability
 476 *
 477 * Place @page on the inactive or unevictable LRU list, depending on its
 478 * evictability.
 479 */
 480void lru_cache_add_inactive_or_unevictable(struct page *page,
 481                                         struct vm_area_struct *vma)
 482{
 483        VM_BUG_ON_PAGE(PageLRU(page), page);
 484
 485        if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
 486                mlock_new_page(page);
 487        else
 488                lru_cache_add(page);
 489}
 490
 491/*
 492 * If the page can not be invalidated, it is moved to the
 493 * inactive list to speed up its reclaim.  It is moved to the
 494 * head of the list, rather than the tail, to give the flusher
 495 * threads some time to write it out, as this is much more
 496 * effective than the single-page writeout from reclaim.
 497 *
 498 * If the page isn't page_mapped and dirty/writeback, the page
 499 * could reclaim asap using PG_reclaim.
 500 *
 501 * 1. active, mapped page -> none
 502 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 503 * 3. inactive, mapped page -> none
 504 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 505 * 5. inactive, clean -> inactive, tail
 506 * 6. Others -> none
 507 *
 508 * In 4, why it moves inactive's head, the VM expects the page would
 509 * be write it out by flusher threads as this is much more effective
 510 * than the single-page writeout from reclaim.
 511 */
 512static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
 513{
 514        bool active = PageActive(page);
 515        int nr_pages = thp_nr_pages(page);
 516
 517        if (PageUnevictable(page))
 518                return;
 519
 520        /* Some processes are using the page */
 521        if (page_mapped(page))
 522                return;
 523
 524        del_page_from_lru_list(page, lruvec);
 525        ClearPageActive(page);
 526        ClearPageReferenced(page);
 527
 528        if (PageWriteback(page) || PageDirty(page)) {
 529                /*
 530                 * PG_reclaim could be raced with end_page_writeback
 531                 * It can make readahead confusing.  But race window
 532                 * is _really_ small and  it's non-critical problem.
 533                 */
 534                add_page_to_lru_list(page, lruvec);
 535                SetPageReclaim(page);
 536        } else {
 537                /*
 538                 * The page's writeback ends up during pagevec
 539                 * We move that page into tail of inactive.
 540                 */
 541                add_page_to_lru_list_tail(page, lruvec);
 542                __count_vm_events(PGROTATED, nr_pages);
 543        }
 544
 545        if (active) {
 546                __count_vm_events(PGDEACTIVATE, nr_pages);
 547                __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 548                                     nr_pages);
 549        }
 550}
 551
 552static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
 553{
 554        if (PageActive(page) && !PageUnevictable(page)) {
 555                int nr_pages = thp_nr_pages(page);
 556
 557                del_page_from_lru_list(page, lruvec);
 558                ClearPageActive(page);
 559                ClearPageReferenced(page);
 560                add_page_to_lru_list(page, lruvec);
 561
 562                __count_vm_events(PGDEACTIVATE, nr_pages);
 563                __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 564                                     nr_pages);
 565        }
 566}
 567
 568static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
 569{
 570        if (PageAnon(page) && PageSwapBacked(page) &&
 571            !PageSwapCache(page) && !PageUnevictable(page)) {
 572                int nr_pages = thp_nr_pages(page);
 573
 574                del_page_from_lru_list(page, lruvec);
 575                ClearPageActive(page);
 576                ClearPageReferenced(page);
 577                /*
 578                 * Lazyfree pages are clean anonymous pages.  They have
 579                 * PG_swapbacked flag cleared, to distinguish them from normal
 580                 * anonymous pages
 581                 */
 582                ClearPageSwapBacked(page);
 583                add_page_to_lru_list(page, lruvec);
 584
 585                __count_vm_events(PGLAZYFREE, nr_pages);
 586                __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 587                                     nr_pages);
 588        }
 589}
 590
 591/*
 592 * Drain pages out of the cpu's pagevecs.
 593 * Either "cpu" is the current CPU, and preemption has already been
 594 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 595 */
 596void lru_add_drain_cpu(int cpu)
 597{
 598        struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
 599
 600        if (pagevec_count(pvec))
 601                __pagevec_lru_add(pvec);
 602
 603        pvec = &per_cpu(lru_rotate.pvec, cpu);
 604        /* Disabling interrupts below acts as a compiler barrier. */
 605        if (data_race(pagevec_count(pvec))) {
 606                unsigned long flags;
 607
 608                /* No harm done if a racing interrupt already did this */
 609                local_lock_irqsave(&lru_rotate.lock, flags);
 610                pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 611                local_unlock_irqrestore(&lru_rotate.lock, flags);
 612        }
 613
 614        pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
 615        if (pagevec_count(pvec))
 616                pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 617
 618        pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
 619        if (pagevec_count(pvec))
 620                pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 621
 622        pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
 623        if (pagevec_count(pvec))
 624                pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 625
 626        activate_page_drain(cpu);
 627}
 628
 629/**
 630 * deactivate_file_folio() - Forcefully deactivate a file folio.
 631 * @folio: Folio to deactivate.
 632 *
 633 * This function hints to the VM that @folio is a good reclaim candidate,
 634 * for example if its invalidation fails due to the folio being dirty
 635 * or under writeback.
 636 *
 637 * Context: Caller holds a reference on the page.
 638 */
 639void deactivate_file_folio(struct folio *folio)
 640{
 641        struct pagevec *pvec;
 642
 643        /*
 644         * In a workload with many unevictable pages such as mprotect,
 645         * unevictable folio deactivation for accelerating reclaim is pointless.
 646         */
 647        if (folio_test_unevictable(folio))
 648                return;
 649
 650        folio_get(folio);
 651        local_lock(&lru_pvecs.lock);
 652        pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
 653
 654        if (pagevec_add_and_need_flush(pvec, &folio->page))
 655                pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 656        local_unlock(&lru_pvecs.lock);
 657}
 658
 659/*
 660 * deactivate_page - deactivate a page
 661 * @page: page to deactivate
 662 *
 663 * deactivate_page() moves @page to the inactive list if @page was on the active
 664 * list and was not an unevictable page.  This is done to accelerate the reclaim
 665 * of @page.
 666 */
 667void deactivate_page(struct page *page)
 668{
 669        if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 670                struct pagevec *pvec;
 671
 672                local_lock(&lru_pvecs.lock);
 673                pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
 674                get_page(page);
 675                if (pagevec_add_and_need_flush(pvec, page))
 676                        pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 677                local_unlock(&lru_pvecs.lock);
 678        }
 679}
 680
 681/**
 682 * mark_page_lazyfree - make an anon page lazyfree
 683 * @page: page to deactivate
 684 *
 685 * mark_page_lazyfree() moves @page to the inactive file list.
 686 * This is done to accelerate the reclaim of @page.
 687 */
 688void mark_page_lazyfree(struct page *page)
 689{
 690        if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 691            !PageSwapCache(page) && !PageUnevictable(page)) {
 692                struct pagevec *pvec;
 693
 694                local_lock(&lru_pvecs.lock);
 695                pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
 696                get_page(page);
 697                if (pagevec_add_and_need_flush(pvec, page))
 698                        pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 699                local_unlock(&lru_pvecs.lock);
 700        }
 701}
 702
 703void lru_add_drain(void)
 704{
 705        local_lock(&lru_pvecs.lock);
 706        lru_add_drain_cpu(smp_processor_id());
 707        local_unlock(&lru_pvecs.lock);
 708        mlock_page_drain_local();
 709}
 710
 711/*
 712 * It's called from per-cpu workqueue context in SMP case so
 713 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
 714 * the same cpu. It shouldn't be a problem in !SMP case since
 715 * the core is only one and the locks will disable preemption.
 716 */
 717static void lru_add_and_bh_lrus_drain(void)
 718{
 719        local_lock(&lru_pvecs.lock);
 720        lru_add_drain_cpu(smp_processor_id());
 721        local_unlock(&lru_pvecs.lock);
 722        invalidate_bh_lrus_cpu();
 723        mlock_page_drain_local();
 724}
 725
 726void lru_add_drain_cpu_zone(struct zone *zone)
 727{
 728        local_lock(&lru_pvecs.lock);
 729        lru_add_drain_cpu(smp_processor_id());
 730        drain_local_pages(zone);
 731        local_unlock(&lru_pvecs.lock);
 732        mlock_page_drain_local();
 733}
 734
 735#ifdef CONFIG_SMP
 736
 737static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 738
 739static void lru_add_drain_per_cpu(struct work_struct *dummy)
 740{
 741        lru_add_and_bh_lrus_drain();
 742}
 743
 744/*
 745 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 746 * kworkers being shut down before our page_alloc_cpu_dead callback is
 747 * executed on the offlined cpu.
 748 * Calling this function with cpu hotplug locks held can actually lead
 749 * to obscure indirect dependencies via WQ context.
 750 */
 751static inline void __lru_add_drain_all(bool force_all_cpus)
 752{
 753        /*
 754         * lru_drain_gen - Global pages generation number
 755         *
 756         * (A) Definition: global lru_drain_gen = x implies that all generations
 757         *     0 < n <= x are already *scheduled* for draining.
 758         *
 759         * This is an optimization for the highly-contended use case where a
 760         * user space workload keeps constantly generating a flow of pages for
 761         * each CPU.
 762         */
 763        static unsigned int lru_drain_gen;
 764        static struct cpumask has_work;
 765        static DEFINE_MUTEX(lock);
 766        unsigned cpu, this_gen;
 767
 768        /*
 769         * Make sure nobody triggers this path before mm_percpu_wq is fully
 770         * initialized.
 771         */
 772        if (WARN_ON(!mm_percpu_wq))
 773                return;
 774
 775        /*
 776         * Guarantee pagevec counter stores visible by this CPU are visible to
 777         * other CPUs before loading the current drain generation.
 778         */
 779        smp_mb();
 780
 781        /*
 782         * (B) Locally cache global LRU draining generation number
 783         *
 784         * The read barrier ensures that the counter is loaded before the mutex
 785         * is taken. It pairs with smp_mb() inside the mutex critical section
 786         * at (D).
 787         */
 788        this_gen = smp_load_acquire(&lru_drain_gen);
 789
 790        mutex_lock(&lock);
 791
 792        /*
 793         * (C) Exit the draining operation if a newer generation, from another
 794         * lru_add_drain_all(), was already scheduled for draining. Check (A).
 795         */
 796        if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 797                goto done;
 798
 799        /*
 800         * (D) Increment global generation number
 801         *
 802         * Pairs with smp_load_acquire() at (B), outside of the critical
 803         * section. Use a full memory barrier to guarantee that the new global
 804         * drain generation number is stored before loading pagevec counters.
 805         *
 806         * This pairing must be done here, before the for_each_online_cpu loop
 807         * below which drains the page vectors.
 808         *
 809         * Let x, y, and z represent some system CPU numbers, where x < y < z.
 810         * Assume CPU #z is in the middle of the for_each_online_cpu loop
 811         * below and has already reached CPU #y's per-cpu data. CPU #x comes
 812         * along, adds some pages to its per-cpu vectors, then calls
 813         * lru_add_drain_all().
 814         *
 815         * If the paired barrier is done at any later step, e.g. after the
 816         * loop, CPU #x will just exit at (C) and miss flushing out all of its
 817         * added pages.
 818         */
 819        WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 820        smp_mb();
 821
 822        cpumask_clear(&has_work);
 823        for_each_online_cpu(cpu) {
 824                struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 825
 826                if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
 827                    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
 828                    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
 829                    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
 830                    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
 831                    need_activate_page_drain(cpu) ||
 832                    need_mlock_page_drain(cpu) ||
 833                    has_bh_in_lru(cpu, NULL)) {
 834                        INIT_WORK(work, lru_add_drain_per_cpu);
 835                        queue_work_on(cpu, mm_percpu_wq, work);
 836                        __cpumask_set_cpu(cpu, &has_work);
 837                }
 838        }
 839
 840        for_each_cpu(cpu, &has_work)
 841                flush_work(&per_cpu(lru_add_drain_work, cpu));
 842
 843done:
 844        mutex_unlock(&lock);
 845}
 846
 847void lru_add_drain_all(void)
 848{
 849        __lru_add_drain_all(false);
 850}
 851#else
 852void lru_add_drain_all(void)
 853{
 854        lru_add_drain();
 855}
 856#endif /* CONFIG_SMP */
 857
 858atomic_t lru_disable_count = ATOMIC_INIT(0);
 859
 860/*
 861 * lru_cache_disable() needs to be called before we start compiling
 862 * a list of pages to be migrated using isolate_lru_page().
 863 * It drains pages on LRU cache and then disable on all cpus until
 864 * lru_cache_enable is called.
 865 *
 866 * Must be paired with a call to lru_cache_enable().
 867 */
 868void lru_cache_disable(void)
 869{
 870        atomic_inc(&lru_disable_count);
 871        /*
 872         * Readers of lru_disable_count are protected by either disabling
 873         * preemption or rcu_read_lock:
 874         *
 875         * preempt_disable, local_irq_disable  [bh_lru_lock()]
 876         * rcu_read_lock                       [rt_spin_lock CONFIG_PREEMPT_RT]
 877         * preempt_disable                     [local_lock !CONFIG_PREEMPT_RT]
 878         *
 879         * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
 880         * preempt_disable() regions of code. So any CPU which sees
 881         * lru_disable_count = 0 will have exited the critical
 882         * section when synchronize_rcu() returns.
 883         */
 884        synchronize_rcu_expedited();
 885#ifdef CONFIG_SMP
 886        __lru_add_drain_all(true);
 887#else
 888        lru_add_and_bh_lrus_drain();
 889#endif
 890}
 891
 892/**
 893 * release_pages - batched put_page()
 894 * @pages: array of pages to release
 895 * @nr: number of pages
 896 *
 897 * Decrement the reference count on all the pages in @pages.  If it
 898 * fell to zero, remove the page from the LRU and free it.
 899 */
 900void release_pages(struct page **pages, int nr)
 901{
 902        int i;
 903        LIST_HEAD(pages_to_free);
 904        struct lruvec *lruvec = NULL;
 905        unsigned long flags = 0;
 906        unsigned int lock_batch;
 907
 908        for (i = 0; i < nr; i++) {
 909                struct page *page = pages[i];
 910                struct folio *folio = page_folio(page);
 911
 912                /*
 913                 * Make sure the IRQ-safe lock-holding time does not get
 914                 * excessive with a continuous string of pages from the
 915                 * same lruvec. The lock is held only if lruvec != NULL.
 916                 */
 917                if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
 918                        unlock_page_lruvec_irqrestore(lruvec, flags);
 919                        lruvec = NULL;
 920                }
 921
 922                page = &folio->page;
 923                if (is_huge_zero_page(page))
 924                        continue;
 925
 926                if (is_zone_device_page(page)) {
 927                        if (lruvec) {
 928                                unlock_page_lruvec_irqrestore(lruvec, flags);
 929                                lruvec = NULL;
 930                        }
 931                        if (put_devmap_managed_page(page))
 932                                continue;
 933                        if (put_page_testzero(page))
 934                                free_zone_device_page(page);
 935                        continue;
 936                }
 937
 938                if (!put_page_testzero(page))
 939                        continue;
 940
 941                if (PageCompound(page)) {
 942                        if (lruvec) {
 943                                unlock_page_lruvec_irqrestore(lruvec, flags);
 944                                lruvec = NULL;
 945                        }
 946                        __put_compound_page(page);
 947                        continue;
 948                }
 949
 950                if (PageLRU(page)) {
 951                        struct lruvec *prev_lruvec = lruvec;
 952
 953                        lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
 954                                                                        &flags);
 955                        if (prev_lruvec != lruvec)
 956                                lock_batch = 0;
 957
 958                        del_page_from_lru_list(page, lruvec);
 959                        __clear_page_lru_flags(page);
 960                }
 961
 962                /*
 963                 * In rare cases, when truncation or holepunching raced with
 964                 * munlock after VM_LOCKED was cleared, Mlocked may still be
 965                 * found set here.  This does not indicate a problem, unless
 966                 * "unevictable_pgs_cleared" appears worryingly large.
 967                 */
 968                if (unlikely(PageMlocked(page))) {
 969                        __ClearPageMlocked(page);
 970                        dec_zone_page_state(page, NR_MLOCK);
 971                        count_vm_event(UNEVICTABLE_PGCLEARED);
 972                }
 973
 974                list_add(&page->lru, &pages_to_free);
 975        }
 976        if (lruvec)
 977                unlock_page_lruvec_irqrestore(lruvec, flags);
 978
 979        mem_cgroup_uncharge_list(&pages_to_free);
 980        free_unref_page_list(&pages_to_free);
 981}
 982EXPORT_SYMBOL(release_pages);
 983
 984/*
 985 * The pages which we're about to release may be in the deferred lru-addition
 986 * queues.  That would prevent them from really being freed right now.  That's
 987 * OK from a correctness point of view but is inefficient - those pages may be
 988 * cache-warm and we want to give them back to the page allocator ASAP.
 989 *
 990 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 991 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 992 * mutual recursion.
 993 */
 994void __pagevec_release(struct pagevec *pvec)
 995{
 996        if (!pvec->percpu_pvec_drained) {
 997                lru_add_drain();
 998                pvec->percpu_pvec_drained = true;
 999        }
1000        release_pages(pvec->pages, pagevec_count(pvec));
1001        pagevec_reinit(pvec);
1002}
1003EXPORT_SYMBOL(__pagevec_release);
1004
1005static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec)
1006{
1007        int was_unevictable = folio_test_clear_unevictable(folio);
1008        long nr_pages = folio_nr_pages(folio);
1009
1010        VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1011
1012        folio_set_lru(folio);
1013        /*
1014         * Is an smp_mb__after_atomic() still required here, before
1015         * folio_evictable() tests PageMlocked, to rule out the possibility
1016         * of stranding an evictable folio on an unevictable LRU?  I think
1017         * not, because __munlock_page() only clears PageMlocked while the LRU
1018         * lock is held.
1019         *
1020         * (That is not true of __page_cache_release(), and not necessarily
1021         * true of release_pages(): but those only clear PageMlocked after
1022         * put_page_testzero() has excluded any other users of the page.)
1023         */
1024        if (folio_evictable(folio)) {
1025                if (was_unevictable)
1026                        __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1027        } else {
1028                folio_clear_active(folio);
1029                folio_set_unevictable(folio);
1030                /*
1031                 * folio->mlock_count = !!folio_test_mlocked(folio)?
1032                 * But that leaves __mlock_page() in doubt whether another
1033                 * actor has already counted the mlock or not.  Err on the
1034                 * safe side, underestimate, let page reclaim fix it, rather
1035                 * than leaving a page on the unevictable LRU indefinitely.
1036                 */
1037                folio->mlock_count = 0;
1038                if (!was_unevictable)
1039                        __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1040        }
1041
1042        lruvec_add_folio(lruvec, folio);
1043        trace_mm_lru_insertion(folio);
1044}
1045
1046/*
1047 * Add the passed pages to the LRU, then drop the caller's refcount
1048 * on them.  Reinitialises the caller's pagevec.
1049 */
1050void __pagevec_lru_add(struct pagevec *pvec)
1051{
1052        int i;
1053        struct lruvec *lruvec = NULL;
1054        unsigned long flags = 0;
1055
1056        for (i = 0; i < pagevec_count(pvec); i++) {
1057                struct folio *folio = page_folio(pvec->pages[i]);
1058
1059                lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
1060                __pagevec_lru_add_fn(folio, lruvec);
1061        }
1062        if (lruvec)
1063                unlock_page_lruvec_irqrestore(lruvec, flags);
1064        release_pages(pvec->pages, pvec->nr);
1065        pagevec_reinit(pvec);
1066}
1067
1068/**
1069 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1070 * @fbatch: The batch to prune
1071 *
1072 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1073 * entries.  This function prunes all the non-folio entries from @fbatch
1074 * without leaving holes, so that it can be passed on to folio-only batch
1075 * operations.
1076 */
1077void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1078{
1079        unsigned int i, j;
1080
1081        for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1082                struct folio *folio = fbatch->folios[i];
1083                if (!xa_is_value(folio))
1084                        fbatch->folios[j++] = folio;
1085        }
1086        fbatch->nr = j;
1087}
1088
1089/**
1090 * pagevec_lookup_range - gang pagecache lookup
1091 * @pvec:       Where the resulting pages are placed
1092 * @mapping:    The address_space to search
1093 * @start:      The starting page index
1094 * @end:        The final page index
1095 *
1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1099 * reference against the pages in @pvec.
1100 *
1101 * The search returns a group of mapping-contiguous pages with ascending
1102 * indexes.  There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1104 *
1105 * pagevec_lookup_range() returns the number of pages which were found. If this
1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1107 * reached.
1108 */
1109unsigned pagevec_lookup_range(struct pagevec *pvec,
1110                struct address_space *mapping, pgoff_t *start, pgoff_t end)
1111{
1112        pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1113                                        pvec->pages);
1114        return pagevec_count(pvec);
1115}
1116EXPORT_SYMBOL(pagevec_lookup_range);
1117
1118unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119                struct address_space *mapping, pgoff_t *index, pgoff_t end,
1120                xa_mark_t tag)
1121{
1122        pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1123                                        PAGEVEC_SIZE, pvec->pages);
1124        return pagevec_count(pvec);
1125}
1126EXPORT_SYMBOL(pagevec_lookup_range_tag);
1127
1128/*
1129 * Perform any setup for the swap system
1130 */
1131void __init swap_setup(void)
1132{
1133        unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1134
1135        /* Use a smaller cluster for small-memory machines */
1136        if (megs < 16)
1137                page_cluster = 2;
1138        else
1139                page_cluster = 3;
1140        /*
1141         * Right now other parts of the system means that we
1142         * _really_ don't want to cluster much more
1143         */
1144}
1145