linux/mm/vmalloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1993  Linus Torvalds
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   6 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   7 *  Numa awareness, Christoph Lameter, SGI, June 2005
   8 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/set_memory.h>
  22#include <linux/debugobjects.h>
  23#include <linux/kallsyms.h>
  24#include <linux/list.h>
  25#include <linux/notifier.h>
  26#include <linux/rbtree.h>
  27#include <linux/xarray.h>
  28#include <linux/io.h>
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
  34#include <linux/memcontrol.h>
  35#include <linux/llist.h>
  36#include <linux/bitops.h>
  37#include <linux/rbtree_augmented.h>
  38#include <linux/overflow.h>
  39#include <linux/pgtable.h>
  40#include <linux/uaccess.h>
  41#include <linux/hugetlb.h>
  42#include <linux/sched/mm.h>
  43#include <asm/tlbflush.h>
  44#include <asm/shmparam.h>
  45
  46#include "internal.h"
  47#include "pgalloc-track.h"
  48
  49#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
  50static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
  51
  52static int __init set_nohugeiomap(char *str)
  53{
  54        ioremap_max_page_shift = PAGE_SHIFT;
  55        return 0;
  56}
  57early_param("nohugeiomap", set_nohugeiomap);
  58#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
  59static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
  60#endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
  61
  62#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
  63static bool __ro_after_init vmap_allow_huge = true;
  64
  65static int __init set_nohugevmalloc(char *str)
  66{
  67        vmap_allow_huge = false;
  68        return 0;
  69}
  70early_param("nohugevmalloc", set_nohugevmalloc);
  71#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  72static const bool vmap_allow_huge = false;
  73#endif  /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  74
  75bool is_vmalloc_addr(const void *x)
  76{
  77        unsigned long addr = (unsigned long)kasan_reset_tag(x);
  78
  79        return addr >= VMALLOC_START && addr < VMALLOC_END;
  80}
  81EXPORT_SYMBOL(is_vmalloc_addr);
  82
  83struct vfree_deferred {
  84        struct llist_head list;
  85        struct work_struct wq;
  86};
  87static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  88
  89static void __vunmap(const void *, int);
  90
  91static void free_work(struct work_struct *w)
  92{
  93        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  94        struct llist_node *t, *llnode;
  95
  96        llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  97                __vunmap((void *)llnode, 1);
  98}
  99
 100/*** Page table manipulation functions ***/
 101static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 102                        phys_addr_t phys_addr, pgprot_t prot,
 103                        unsigned int max_page_shift, pgtbl_mod_mask *mask)
 104{
 105        pte_t *pte;
 106        u64 pfn;
 107        unsigned long size = PAGE_SIZE;
 108
 109        pfn = phys_addr >> PAGE_SHIFT;
 110        pte = pte_alloc_kernel_track(pmd, addr, mask);
 111        if (!pte)
 112                return -ENOMEM;
 113        do {
 114                BUG_ON(!pte_none(*pte));
 115
 116#ifdef CONFIG_HUGETLB_PAGE
 117                size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
 118                if (size != PAGE_SIZE) {
 119                        pte_t entry = pfn_pte(pfn, prot);
 120
 121                        entry = arch_make_huge_pte(entry, ilog2(size), 0);
 122                        set_huge_pte_at(&init_mm, addr, pte, entry);
 123                        pfn += PFN_DOWN(size);
 124                        continue;
 125                }
 126#endif
 127                set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
 128                pfn++;
 129        } while (pte += PFN_DOWN(size), addr += size, addr != end);
 130        *mask |= PGTBL_PTE_MODIFIED;
 131        return 0;
 132}
 133
 134static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
 135                        phys_addr_t phys_addr, pgprot_t prot,
 136                        unsigned int max_page_shift)
 137{
 138        if (max_page_shift < PMD_SHIFT)
 139                return 0;
 140
 141        if (!arch_vmap_pmd_supported(prot))
 142                return 0;
 143
 144        if ((end - addr) != PMD_SIZE)
 145                return 0;
 146
 147        if (!IS_ALIGNED(addr, PMD_SIZE))
 148                return 0;
 149
 150        if (!IS_ALIGNED(phys_addr, PMD_SIZE))
 151                return 0;
 152
 153        if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
 154                return 0;
 155
 156        return pmd_set_huge(pmd, phys_addr, prot);
 157}
 158
 159static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 160                        phys_addr_t phys_addr, pgprot_t prot,
 161                        unsigned int max_page_shift, pgtbl_mod_mask *mask)
 162{
 163        pmd_t *pmd;
 164        unsigned long next;
 165
 166        pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 167        if (!pmd)
 168                return -ENOMEM;
 169        do {
 170                next = pmd_addr_end(addr, end);
 171
 172                if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
 173                                        max_page_shift)) {
 174                        *mask |= PGTBL_PMD_MODIFIED;
 175                        continue;
 176                }
 177
 178                if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
 179                        return -ENOMEM;
 180        } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
 181        return 0;
 182}
 183
 184static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
 185                        phys_addr_t phys_addr, pgprot_t prot,
 186                        unsigned int max_page_shift)
 187{
 188        if (max_page_shift < PUD_SHIFT)
 189                return 0;
 190
 191        if (!arch_vmap_pud_supported(prot))
 192                return 0;
 193
 194        if ((end - addr) != PUD_SIZE)
 195                return 0;
 196
 197        if (!IS_ALIGNED(addr, PUD_SIZE))
 198                return 0;
 199
 200        if (!IS_ALIGNED(phys_addr, PUD_SIZE))
 201                return 0;
 202
 203        if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
 204                return 0;
 205
 206        return pud_set_huge(pud, phys_addr, prot);
 207}
 208
 209static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 210                        phys_addr_t phys_addr, pgprot_t prot,
 211                        unsigned int max_page_shift, pgtbl_mod_mask *mask)
 212{
 213        pud_t *pud;
 214        unsigned long next;
 215
 216        pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 217        if (!pud)
 218                return -ENOMEM;
 219        do {
 220                next = pud_addr_end(addr, end);
 221
 222                if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
 223                                        max_page_shift)) {
 224                        *mask |= PGTBL_PUD_MODIFIED;
 225                        continue;
 226                }
 227
 228                if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
 229                                        max_page_shift, mask))
 230                        return -ENOMEM;
 231        } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
 232        return 0;
 233}
 234
 235static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
 236                        phys_addr_t phys_addr, pgprot_t prot,
 237                        unsigned int max_page_shift)
 238{
 239        if (max_page_shift < P4D_SHIFT)
 240                return 0;
 241
 242        if (!arch_vmap_p4d_supported(prot))
 243                return 0;
 244
 245        if ((end - addr) != P4D_SIZE)
 246                return 0;
 247
 248        if (!IS_ALIGNED(addr, P4D_SIZE))
 249                return 0;
 250
 251        if (!IS_ALIGNED(phys_addr, P4D_SIZE))
 252                return 0;
 253
 254        if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
 255                return 0;
 256
 257        return p4d_set_huge(p4d, phys_addr, prot);
 258}
 259
 260static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 261                        phys_addr_t phys_addr, pgprot_t prot,
 262                        unsigned int max_page_shift, pgtbl_mod_mask *mask)
 263{
 264        p4d_t *p4d;
 265        unsigned long next;
 266
 267        p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 268        if (!p4d)
 269                return -ENOMEM;
 270        do {
 271                next = p4d_addr_end(addr, end);
 272
 273                if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
 274                                        max_page_shift)) {
 275                        *mask |= PGTBL_P4D_MODIFIED;
 276                        continue;
 277                }
 278
 279                if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
 280                                        max_page_shift, mask))
 281                        return -ENOMEM;
 282        } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
 283        return 0;
 284}
 285
 286static int vmap_range_noflush(unsigned long addr, unsigned long end,
 287                        phys_addr_t phys_addr, pgprot_t prot,
 288                        unsigned int max_page_shift)
 289{
 290        pgd_t *pgd;
 291        unsigned long start;
 292        unsigned long next;
 293        int err;
 294        pgtbl_mod_mask mask = 0;
 295
 296        might_sleep();
 297        BUG_ON(addr >= end);
 298
 299        start = addr;
 300        pgd = pgd_offset_k(addr);
 301        do {
 302                next = pgd_addr_end(addr, end);
 303                err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
 304                                        max_page_shift, &mask);
 305                if (err)
 306                        break;
 307        } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
 308
 309        if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 310                arch_sync_kernel_mappings(start, end);
 311
 312        return err;
 313}
 314
 315int ioremap_page_range(unsigned long addr, unsigned long end,
 316                phys_addr_t phys_addr, pgprot_t prot)
 317{
 318        int err;
 319
 320        err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
 321                                 ioremap_max_page_shift);
 322        flush_cache_vmap(addr, end);
 323        return err;
 324}
 325
 326static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 327                             pgtbl_mod_mask *mask)
 328{
 329        pte_t *pte;
 330
 331        pte = pte_offset_kernel(pmd, addr);
 332        do {
 333                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 334                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 335        } while (pte++, addr += PAGE_SIZE, addr != end);
 336        *mask |= PGTBL_PTE_MODIFIED;
 337}
 338
 339static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 340                             pgtbl_mod_mask *mask)
 341{
 342        pmd_t *pmd;
 343        unsigned long next;
 344        int cleared;
 345
 346        pmd = pmd_offset(pud, addr);
 347        do {
 348                next = pmd_addr_end(addr, end);
 349
 350                cleared = pmd_clear_huge(pmd);
 351                if (cleared || pmd_bad(*pmd))
 352                        *mask |= PGTBL_PMD_MODIFIED;
 353
 354                if (cleared)
 355                        continue;
 356                if (pmd_none_or_clear_bad(pmd))
 357                        continue;
 358                vunmap_pte_range(pmd, addr, next, mask);
 359
 360                cond_resched();
 361        } while (pmd++, addr = next, addr != end);
 362}
 363
 364static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 365                             pgtbl_mod_mask *mask)
 366{
 367        pud_t *pud;
 368        unsigned long next;
 369        int cleared;
 370
 371        pud = pud_offset(p4d, addr);
 372        do {
 373                next = pud_addr_end(addr, end);
 374
 375                cleared = pud_clear_huge(pud);
 376                if (cleared || pud_bad(*pud))
 377                        *mask |= PGTBL_PUD_MODIFIED;
 378
 379                if (cleared)
 380                        continue;
 381                if (pud_none_or_clear_bad(pud))
 382                        continue;
 383                vunmap_pmd_range(pud, addr, next, mask);
 384        } while (pud++, addr = next, addr != end);
 385}
 386
 387static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 388                             pgtbl_mod_mask *mask)
 389{
 390        p4d_t *p4d;
 391        unsigned long next;
 392
 393        p4d = p4d_offset(pgd, addr);
 394        do {
 395                next = p4d_addr_end(addr, end);
 396
 397                p4d_clear_huge(p4d);
 398                if (p4d_bad(*p4d))
 399                        *mask |= PGTBL_P4D_MODIFIED;
 400
 401                if (p4d_none_or_clear_bad(p4d))
 402                        continue;
 403                vunmap_pud_range(p4d, addr, next, mask);
 404        } while (p4d++, addr = next, addr != end);
 405}
 406
 407/*
 408 * vunmap_range_noflush is similar to vunmap_range, but does not
 409 * flush caches or TLBs.
 410 *
 411 * The caller is responsible for calling flush_cache_vmap() before calling
 412 * this function, and flush_tlb_kernel_range after it has returned
 413 * successfully (and before the addresses are expected to cause a page fault
 414 * or be re-mapped for something else, if TLB flushes are being delayed or
 415 * coalesced).
 416 *
 417 * This is an internal function only. Do not use outside mm/.
 418 */
 419void vunmap_range_noflush(unsigned long start, unsigned long end)
 420{
 421        unsigned long next;
 422        pgd_t *pgd;
 423        unsigned long addr = start;
 424        pgtbl_mod_mask mask = 0;
 425
 426        BUG_ON(addr >= end);
 427        pgd = pgd_offset_k(addr);
 428        do {
 429                next = pgd_addr_end(addr, end);
 430                if (pgd_bad(*pgd))
 431                        mask |= PGTBL_PGD_MODIFIED;
 432                if (pgd_none_or_clear_bad(pgd))
 433                        continue;
 434                vunmap_p4d_range(pgd, addr, next, &mask);
 435        } while (pgd++, addr = next, addr != end);
 436
 437        if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 438                arch_sync_kernel_mappings(start, end);
 439}
 440
 441/**
 442 * vunmap_range - unmap kernel virtual addresses
 443 * @addr: start of the VM area to unmap
 444 * @end: end of the VM area to unmap (non-inclusive)
 445 *
 446 * Clears any present PTEs in the virtual address range, flushes TLBs and
 447 * caches. Any subsequent access to the address before it has been re-mapped
 448 * is a kernel bug.
 449 */
 450void vunmap_range(unsigned long addr, unsigned long end)
 451{
 452        flush_cache_vunmap(addr, end);
 453        vunmap_range_noflush(addr, end);
 454        flush_tlb_kernel_range(addr, end);
 455}
 456
 457static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
 458                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 459                pgtbl_mod_mask *mask)
 460{
 461        pte_t *pte;
 462
 463        /*
 464         * nr is a running index into the array which helps higher level
 465         * callers keep track of where we're up to.
 466         */
 467
 468        pte = pte_alloc_kernel_track(pmd, addr, mask);
 469        if (!pte)
 470                return -ENOMEM;
 471        do {
 472                struct page *page = pages[*nr];
 473
 474                if (WARN_ON(!pte_none(*pte)))
 475                        return -EBUSY;
 476                if (WARN_ON(!page))
 477                        return -ENOMEM;
 478                if (WARN_ON(!pfn_valid(page_to_pfn(page))))
 479                        return -EINVAL;
 480
 481                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 482                (*nr)++;
 483        } while (pte++, addr += PAGE_SIZE, addr != end);
 484        *mask |= PGTBL_PTE_MODIFIED;
 485        return 0;
 486}
 487
 488static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
 489                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 490                pgtbl_mod_mask *mask)
 491{
 492        pmd_t *pmd;
 493        unsigned long next;
 494
 495        pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 496        if (!pmd)
 497                return -ENOMEM;
 498        do {
 499                next = pmd_addr_end(addr, end);
 500                if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
 501                        return -ENOMEM;
 502        } while (pmd++, addr = next, addr != end);
 503        return 0;
 504}
 505
 506static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
 507                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 508                pgtbl_mod_mask *mask)
 509{
 510        pud_t *pud;
 511        unsigned long next;
 512
 513        pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 514        if (!pud)
 515                return -ENOMEM;
 516        do {
 517                next = pud_addr_end(addr, end);
 518                if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
 519                        return -ENOMEM;
 520        } while (pud++, addr = next, addr != end);
 521        return 0;
 522}
 523
 524static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
 525                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 526                pgtbl_mod_mask *mask)
 527{
 528        p4d_t *p4d;
 529        unsigned long next;
 530
 531        p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 532        if (!p4d)
 533                return -ENOMEM;
 534        do {
 535                next = p4d_addr_end(addr, end);
 536                if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
 537                        return -ENOMEM;
 538        } while (p4d++, addr = next, addr != end);
 539        return 0;
 540}
 541
 542static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
 543                pgprot_t prot, struct page **pages)
 544{
 545        unsigned long start = addr;
 546        pgd_t *pgd;
 547        unsigned long next;
 548        int err = 0;
 549        int nr = 0;
 550        pgtbl_mod_mask mask = 0;
 551
 552        BUG_ON(addr >= end);
 553        pgd = pgd_offset_k(addr);
 554        do {
 555                next = pgd_addr_end(addr, end);
 556                if (pgd_bad(*pgd))
 557                        mask |= PGTBL_PGD_MODIFIED;
 558                err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 559                if (err)
 560                        return err;
 561        } while (pgd++, addr = next, addr != end);
 562
 563        if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 564                arch_sync_kernel_mappings(start, end);
 565
 566        return 0;
 567}
 568
 569/*
 570 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
 571 * flush caches.
 572 *
 573 * The caller is responsible for calling flush_cache_vmap() after this
 574 * function returns successfully and before the addresses are accessed.
 575 *
 576 * This is an internal function only. Do not use outside mm/.
 577 */
 578int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 579                pgprot_t prot, struct page **pages, unsigned int page_shift)
 580{
 581        unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
 582
 583        WARN_ON(page_shift < PAGE_SHIFT);
 584
 585        if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
 586                        page_shift == PAGE_SHIFT)
 587                return vmap_small_pages_range_noflush(addr, end, prot, pages);
 588
 589        for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
 590                int err;
 591
 592                err = vmap_range_noflush(addr, addr + (1UL << page_shift),
 593                                        __pa(page_address(pages[i])), prot,
 594                                        page_shift);
 595                if (err)
 596                        return err;
 597
 598                addr += 1UL << page_shift;
 599        }
 600
 601        return 0;
 602}
 603
 604/**
 605 * vmap_pages_range - map pages to a kernel virtual address
 606 * @addr: start of the VM area to map
 607 * @end: end of the VM area to map (non-inclusive)
 608 * @prot: page protection flags to use
 609 * @pages: pages to map (always PAGE_SIZE pages)
 610 * @page_shift: maximum shift that the pages may be mapped with, @pages must
 611 * be aligned and contiguous up to at least this shift.
 612 *
 613 * RETURNS:
 614 * 0 on success, -errno on failure.
 615 */
 616static int vmap_pages_range(unsigned long addr, unsigned long end,
 617                pgprot_t prot, struct page **pages, unsigned int page_shift)
 618{
 619        int err;
 620
 621        err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 622        flush_cache_vmap(addr, end);
 623        return err;
 624}
 625
 626int is_vmalloc_or_module_addr(const void *x)
 627{
 628        /*
 629         * ARM, x86-64 and sparc64 put modules in a special place,
 630         * and fall back on vmalloc() if that fails. Others
 631         * just put it in the vmalloc space.
 632         */
 633#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 634        unsigned long addr = (unsigned long)kasan_reset_tag(x);
 635        if (addr >= MODULES_VADDR && addr < MODULES_END)
 636                return 1;
 637#endif
 638        return is_vmalloc_addr(x);
 639}
 640
 641/*
 642 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
 643 * return the tail page that corresponds to the base page address, which
 644 * matches small vmap mappings.
 645 */
 646struct page *vmalloc_to_page(const void *vmalloc_addr)
 647{
 648        unsigned long addr = (unsigned long) vmalloc_addr;
 649        struct page *page = NULL;
 650        pgd_t *pgd = pgd_offset_k(addr);
 651        p4d_t *p4d;
 652        pud_t *pud;
 653        pmd_t *pmd;
 654        pte_t *ptep, pte;
 655
 656        /*
 657         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 658         * architectures that do not vmalloc module space
 659         */
 660        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 661
 662        if (pgd_none(*pgd))
 663                return NULL;
 664        if (WARN_ON_ONCE(pgd_leaf(*pgd)))
 665                return NULL; /* XXX: no allowance for huge pgd */
 666        if (WARN_ON_ONCE(pgd_bad(*pgd)))
 667                return NULL;
 668
 669        p4d = p4d_offset(pgd, addr);
 670        if (p4d_none(*p4d))
 671                return NULL;
 672        if (p4d_leaf(*p4d))
 673                return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
 674        if (WARN_ON_ONCE(p4d_bad(*p4d)))
 675                return NULL;
 676
 677        pud = pud_offset(p4d, addr);
 678        if (pud_none(*pud))
 679                return NULL;
 680        if (pud_leaf(*pud))
 681                return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 682        if (WARN_ON_ONCE(pud_bad(*pud)))
 683                return NULL;
 684
 685        pmd = pmd_offset(pud, addr);
 686        if (pmd_none(*pmd))
 687                return NULL;
 688        if (pmd_leaf(*pmd))
 689                return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 690        if (WARN_ON_ONCE(pmd_bad(*pmd)))
 691                return NULL;
 692
 693        ptep = pte_offset_map(pmd, addr);
 694        pte = *ptep;
 695        if (pte_present(pte))
 696                page = pte_page(pte);
 697        pte_unmap(ptep);
 698
 699        return page;
 700}
 701EXPORT_SYMBOL(vmalloc_to_page);
 702
 703/*
 704 * Map a vmalloc()-space virtual address to the physical page frame number.
 705 */
 706unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 707{
 708        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 709}
 710EXPORT_SYMBOL(vmalloc_to_pfn);
 711
 712
 713/*** Global kva allocator ***/
 714
 715#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 716#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 717
 718
 719static DEFINE_SPINLOCK(vmap_area_lock);
 720static DEFINE_SPINLOCK(free_vmap_area_lock);
 721/* Export for kexec only */
 722LIST_HEAD(vmap_area_list);
 723static struct rb_root vmap_area_root = RB_ROOT;
 724static bool vmap_initialized __read_mostly;
 725
 726static struct rb_root purge_vmap_area_root = RB_ROOT;
 727static LIST_HEAD(purge_vmap_area_list);
 728static DEFINE_SPINLOCK(purge_vmap_area_lock);
 729
 730/*
 731 * This kmem_cache is used for vmap_area objects. Instead of
 732 * allocating from slab we reuse an object from this cache to
 733 * make things faster. Especially in "no edge" splitting of
 734 * free block.
 735 */
 736static struct kmem_cache *vmap_area_cachep;
 737
 738/*
 739 * This linked list is used in pair with free_vmap_area_root.
 740 * It gives O(1) access to prev/next to perform fast coalescing.
 741 */
 742static LIST_HEAD(free_vmap_area_list);
 743
 744/*
 745 * This augment red-black tree represents the free vmap space.
 746 * All vmap_area objects in this tree are sorted by va->va_start
 747 * address. It is used for allocation and merging when a vmap
 748 * object is released.
 749 *
 750 * Each vmap_area node contains a maximum available free block
 751 * of its sub-tree, right or left. Therefore it is possible to
 752 * find a lowest match of free area.
 753 */
 754static struct rb_root free_vmap_area_root = RB_ROOT;
 755
 756/*
 757 * Preload a CPU with one object for "no edge" split case. The
 758 * aim is to get rid of allocations from the atomic context, thus
 759 * to use more permissive allocation masks.
 760 */
 761static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 762
 763static __always_inline unsigned long
 764va_size(struct vmap_area *va)
 765{
 766        return (va->va_end - va->va_start);
 767}
 768
 769static __always_inline unsigned long
 770get_subtree_max_size(struct rb_node *node)
 771{
 772        struct vmap_area *va;
 773
 774        va = rb_entry_safe(node, struct vmap_area, rb_node);
 775        return va ? va->subtree_max_size : 0;
 776}
 777
 778RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 779        struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 780
 781static void purge_vmap_area_lazy(void);
 782static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 783static void drain_vmap_area_work(struct work_struct *work);
 784static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
 785
 786static atomic_long_t nr_vmalloc_pages;
 787
 788unsigned long vmalloc_nr_pages(void)
 789{
 790        return atomic_long_read(&nr_vmalloc_pages);
 791}
 792
 793static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
 794{
 795        struct vmap_area *va = NULL;
 796        struct rb_node *n = vmap_area_root.rb_node;
 797
 798        addr = (unsigned long)kasan_reset_tag((void *)addr);
 799
 800        while (n) {
 801                struct vmap_area *tmp;
 802
 803                tmp = rb_entry(n, struct vmap_area, rb_node);
 804                if (tmp->va_end > addr) {
 805                        va = tmp;
 806                        if (tmp->va_start <= addr)
 807                                break;
 808
 809                        n = n->rb_left;
 810                } else
 811                        n = n->rb_right;
 812        }
 813
 814        return va;
 815}
 816
 817static struct vmap_area *__find_vmap_area(unsigned long addr)
 818{
 819        struct rb_node *n = vmap_area_root.rb_node;
 820
 821        addr = (unsigned long)kasan_reset_tag((void *)addr);
 822
 823        while (n) {
 824                struct vmap_area *va;
 825
 826                va = rb_entry(n, struct vmap_area, rb_node);
 827                if (addr < va->va_start)
 828                        n = n->rb_left;
 829                else if (addr >= va->va_end)
 830                        n = n->rb_right;
 831                else
 832                        return va;
 833        }
 834
 835        return NULL;
 836}
 837
 838/*
 839 * This function returns back addresses of parent node
 840 * and its left or right link for further processing.
 841 *
 842 * Otherwise NULL is returned. In that case all further
 843 * steps regarding inserting of conflicting overlap range
 844 * have to be declined and actually considered as a bug.
 845 */
 846static __always_inline struct rb_node **
 847find_va_links(struct vmap_area *va,
 848        struct rb_root *root, struct rb_node *from,
 849        struct rb_node **parent)
 850{
 851        struct vmap_area *tmp_va;
 852        struct rb_node **link;
 853
 854        if (root) {
 855                link = &root->rb_node;
 856                if (unlikely(!*link)) {
 857                        *parent = NULL;
 858                        return link;
 859                }
 860        } else {
 861                link = &from;
 862        }
 863
 864        /*
 865         * Go to the bottom of the tree. When we hit the last point
 866         * we end up with parent rb_node and correct direction, i name
 867         * it link, where the new va->rb_node will be attached to.
 868         */
 869        do {
 870                tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 871
 872                /*
 873                 * During the traversal we also do some sanity check.
 874                 * Trigger the BUG() if there are sides(left/right)
 875                 * or full overlaps.
 876                 */
 877                if (va->va_start < tmp_va->va_end &&
 878                                va->va_end <= tmp_va->va_start)
 879                        link = &(*link)->rb_left;
 880                else if (va->va_end > tmp_va->va_start &&
 881                                va->va_start >= tmp_va->va_end)
 882                        link = &(*link)->rb_right;
 883                else {
 884                        WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 885                                va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 886
 887                        return NULL;
 888                }
 889        } while (*link);
 890
 891        *parent = &tmp_va->rb_node;
 892        return link;
 893}
 894
 895static __always_inline struct list_head *
 896get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 897{
 898        struct list_head *list;
 899
 900        if (unlikely(!parent))
 901                /*
 902                 * The red-black tree where we try to find VA neighbors
 903                 * before merging or inserting is empty, i.e. it means
 904                 * there is no free vmap space. Normally it does not
 905                 * happen but we handle this case anyway.
 906                 */
 907                return NULL;
 908
 909        list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 910        return (&parent->rb_right == link ? list->next : list);
 911}
 912
 913static __always_inline void
 914link_va(struct vmap_area *va, struct rb_root *root,
 915        struct rb_node *parent, struct rb_node **link, struct list_head *head)
 916{
 917        /*
 918         * VA is still not in the list, but we can
 919         * identify its future previous list_head node.
 920         */
 921        if (likely(parent)) {
 922                head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 923                if (&parent->rb_right != link)
 924                        head = head->prev;
 925        }
 926
 927        /* Insert to the rb-tree */
 928        rb_link_node(&va->rb_node, parent, link);
 929        if (root == &free_vmap_area_root) {
 930                /*
 931                 * Some explanation here. Just perform simple insertion
 932                 * to the tree. We do not set va->subtree_max_size to
 933                 * its current size before calling rb_insert_augmented().
 934                 * It is because of we populate the tree from the bottom
 935                 * to parent levels when the node _is_ in the tree.
 936                 *
 937                 * Therefore we set subtree_max_size to zero after insertion,
 938                 * to let __augment_tree_propagate_from() puts everything to
 939                 * the correct order later on.
 940                 */
 941                rb_insert_augmented(&va->rb_node,
 942                        root, &free_vmap_area_rb_augment_cb);
 943                va->subtree_max_size = 0;
 944        } else {
 945                rb_insert_color(&va->rb_node, root);
 946        }
 947
 948        /* Address-sort this list */
 949        list_add(&va->list, head);
 950}
 951
 952static __always_inline void
 953unlink_va(struct vmap_area *va, struct rb_root *root)
 954{
 955        if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 956                return;
 957
 958        if (root == &free_vmap_area_root)
 959                rb_erase_augmented(&va->rb_node,
 960                        root, &free_vmap_area_rb_augment_cb);
 961        else
 962                rb_erase(&va->rb_node, root);
 963
 964        list_del(&va->list);
 965        RB_CLEAR_NODE(&va->rb_node);
 966}
 967
 968#if DEBUG_AUGMENT_PROPAGATE_CHECK
 969/*
 970 * Gets called when remove the node and rotate.
 971 */
 972static __always_inline unsigned long
 973compute_subtree_max_size(struct vmap_area *va)
 974{
 975        return max3(va_size(va),
 976                get_subtree_max_size(va->rb_node.rb_left),
 977                get_subtree_max_size(va->rb_node.rb_right));
 978}
 979
 980static void
 981augment_tree_propagate_check(void)
 982{
 983        struct vmap_area *va;
 984        unsigned long computed_size;
 985
 986        list_for_each_entry(va, &free_vmap_area_list, list) {
 987                computed_size = compute_subtree_max_size(va);
 988                if (computed_size != va->subtree_max_size)
 989                        pr_emerg("tree is corrupted: %lu, %lu\n",
 990                                va_size(va), va->subtree_max_size);
 991        }
 992}
 993#endif
 994
 995/*
 996 * This function populates subtree_max_size from bottom to upper
 997 * levels starting from VA point. The propagation must be done
 998 * when VA size is modified by changing its va_start/va_end. Or
 999 * in case of newly inserting of VA to the tree.
1000 *
1001 * It means that __augment_tree_propagate_from() must be called:
1002 * - After VA has been inserted to the tree(free path);
1003 * - After VA has been shrunk(allocation path);
1004 * - After VA has been increased(merging path).
1005 *
1006 * Please note that, it does not mean that upper parent nodes
1007 * and their subtree_max_size are recalculated all the time up
1008 * to the root node.
1009 *
1010 *       4--8
1011 *        /\
1012 *       /  \
1013 *      /    \
1014 *    2--2  8--8
1015 *
1016 * For example if we modify the node 4, shrinking it to 2, then
1017 * no any modification is required. If we shrink the node 2 to 1
1018 * its subtree_max_size is updated only, and set to 1. If we shrink
1019 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1020 * node becomes 4--6.
1021 */
1022static __always_inline void
1023augment_tree_propagate_from(struct vmap_area *va)
1024{
1025        /*
1026         * Populate the tree from bottom towards the root until
1027         * the calculated maximum available size of checked node
1028         * is equal to its current one.
1029         */
1030        free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1031
1032#if DEBUG_AUGMENT_PROPAGATE_CHECK
1033        augment_tree_propagate_check();
1034#endif
1035}
1036
1037static void
1038insert_vmap_area(struct vmap_area *va,
1039        struct rb_root *root, struct list_head *head)
1040{
1041        struct rb_node **link;
1042        struct rb_node *parent;
1043
1044        link = find_va_links(va, root, NULL, &parent);
1045        if (link)
1046                link_va(va, root, parent, link, head);
1047}
1048
1049static void
1050insert_vmap_area_augment(struct vmap_area *va,
1051        struct rb_node *from, struct rb_root *root,
1052        struct list_head *head)
1053{
1054        struct rb_node **link;
1055        struct rb_node *parent;
1056
1057        if (from)
1058                link = find_va_links(va, NULL, from, &parent);
1059        else
1060                link = find_va_links(va, root, NULL, &parent);
1061
1062        if (link) {
1063                link_va(va, root, parent, link, head);
1064                augment_tree_propagate_from(va);
1065        }
1066}
1067
1068/*
1069 * Merge de-allocated chunk of VA memory with previous
1070 * and next free blocks. If coalesce is not done a new
1071 * free area is inserted. If VA has been merged, it is
1072 * freed.
1073 *
1074 * Please note, it can return NULL in case of overlap
1075 * ranges, followed by WARN() report. Despite it is a
1076 * buggy behaviour, a system can be alive and keep
1077 * ongoing.
1078 */
1079static __always_inline struct vmap_area *
1080merge_or_add_vmap_area(struct vmap_area *va,
1081        struct rb_root *root, struct list_head *head)
1082{
1083        struct vmap_area *sibling;
1084        struct list_head *next;
1085        struct rb_node **link;
1086        struct rb_node *parent;
1087        bool merged = false;
1088
1089        /*
1090         * Find a place in the tree where VA potentially will be
1091         * inserted, unless it is merged with its sibling/siblings.
1092         */
1093        link = find_va_links(va, root, NULL, &parent);
1094        if (!link)
1095                return NULL;
1096
1097        /*
1098         * Get next node of VA to check if merging can be done.
1099         */
1100        next = get_va_next_sibling(parent, link);
1101        if (unlikely(next == NULL))
1102                goto insert;
1103
1104        /*
1105         * start            end
1106         * |                |
1107         * |<------VA------>|<-----Next----->|
1108         *                  |                |
1109         *                  start            end
1110         */
1111        if (next != head) {
1112                sibling = list_entry(next, struct vmap_area, list);
1113                if (sibling->va_start == va->va_end) {
1114                        sibling->va_start = va->va_start;
1115
1116                        /* Free vmap_area object. */
1117                        kmem_cache_free(vmap_area_cachep, va);
1118
1119                        /* Point to the new merged area. */
1120                        va = sibling;
1121                        merged = true;
1122                }
1123        }
1124
1125        /*
1126         * start            end
1127         * |                |
1128         * |<-----Prev----->|<------VA------>|
1129         *                  |                |
1130         *                  start            end
1131         */
1132        if (next->prev != head) {
1133                sibling = list_entry(next->prev, struct vmap_area, list);
1134                if (sibling->va_end == va->va_start) {
1135                        /*
1136                         * If both neighbors are coalesced, it is important
1137                         * to unlink the "next" node first, followed by merging
1138                         * with "previous" one. Otherwise the tree might not be
1139                         * fully populated if a sibling's augmented value is
1140                         * "normalized" because of rotation operations.
1141                         */
1142                        if (merged)
1143                                unlink_va(va, root);
1144
1145                        sibling->va_end = va->va_end;
1146
1147                        /* Free vmap_area object. */
1148                        kmem_cache_free(vmap_area_cachep, va);
1149
1150                        /* Point to the new merged area. */
1151                        va = sibling;
1152                        merged = true;
1153                }
1154        }
1155
1156insert:
1157        if (!merged)
1158                link_va(va, root, parent, link, head);
1159
1160        return va;
1161}
1162
1163static __always_inline struct vmap_area *
1164merge_or_add_vmap_area_augment(struct vmap_area *va,
1165        struct rb_root *root, struct list_head *head)
1166{
1167        va = merge_or_add_vmap_area(va, root, head);
1168        if (va)
1169                augment_tree_propagate_from(va);
1170
1171        return va;
1172}
1173
1174static __always_inline bool
1175is_within_this_va(struct vmap_area *va, unsigned long size,
1176        unsigned long align, unsigned long vstart)
1177{
1178        unsigned long nva_start_addr;
1179
1180        if (va->va_start > vstart)
1181                nva_start_addr = ALIGN(va->va_start, align);
1182        else
1183                nva_start_addr = ALIGN(vstart, align);
1184
1185        /* Can be overflowed due to big size or alignment. */
1186        if (nva_start_addr + size < nva_start_addr ||
1187                        nva_start_addr < vstart)
1188                return false;
1189
1190        return (nva_start_addr + size <= va->va_end);
1191}
1192
1193/*
1194 * Find the first free block(lowest start address) in the tree,
1195 * that will accomplish the request corresponding to passing
1196 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1197 * a search length is adjusted to account for worst case alignment
1198 * overhead.
1199 */
1200static __always_inline struct vmap_area *
1201find_vmap_lowest_match(unsigned long size, unsigned long align,
1202        unsigned long vstart, bool adjust_search_size)
1203{
1204        struct vmap_area *va;
1205        struct rb_node *node;
1206        unsigned long length;
1207
1208        /* Start from the root. */
1209        node = free_vmap_area_root.rb_node;
1210
1211        /* Adjust the search size for alignment overhead. */
1212        length = adjust_search_size ? size + align - 1 : size;
1213
1214        while (node) {
1215                va = rb_entry(node, struct vmap_area, rb_node);
1216
1217                if (get_subtree_max_size(node->rb_left) >= length &&
1218                                vstart < va->va_start) {
1219                        node = node->rb_left;
1220                } else {
1221                        if (is_within_this_va(va, size, align, vstart))
1222                                return va;
1223
1224                        /*
1225                         * Does not make sense to go deeper towards the right
1226                         * sub-tree if it does not have a free block that is
1227                         * equal or bigger to the requested search length.
1228                         */
1229                        if (get_subtree_max_size(node->rb_right) >= length) {
1230                                node = node->rb_right;
1231                                continue;
1232                        }
1233
1234                        /*
1235                         * OK. We roll back and find the first right sub-tree,
1236                         * that will satisfy the search criteria. It can happen
1237                         * due to "vstart" restriction or an alignment overhead
1238                         * that is bigger then PAGE_SIZE.
1239                         */
1240                        while ((node = rb_parent(node))) {
1241                                va = rb_entry(node, struct vmap_area, rb_node);
1242                                if (is_within_this_va(va, size, align, vstart))
1243                                        return va;
1244
1245                                if (get_subtree_max_size(node->rb_right) >= length &&
1246                                                vstart <= va->va_start) {
1247                                        /*
1248                                         * Shift the vstart forward. Please note, we update it with
1249                                         * parent's start address adding "1" because we do not want
1250                                         * to enter same sub-tree after it has already been checked
1251                                         * and no suitable free block found there.
1252                                         */
1253                                        vstart = va->va_start + 1;
1254                                        node = node->rb_right;
1255                                        break;
1256                                }
1257                        }
1258                }
1259        }
1260
1261        return NULL;
1262}
1263
1264#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1265#include <linux/random.h>
1266
1267static struct vmap_area *
1268find_vmap_lowest_linear_match(unsigned long size,
1269        unsigned long align, unsigned long vstart)
1270{
1271        struct vmap_area *va;
1272
1273        list_for_each_entry(va, &free_vmap_area_list, list) {
1274                if (!is_within_this_va(va, size, align, vstart))
1275                        continue;
1276
1277                return va;
1278        }
1279
1280        return NULL;
1281}
1282
1283static void
1284find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1285{
1286        struct vmap_area *va_1, *va_2;
1287        unsigned long vstart;
1288        unsigned int rnd;
1289
1290        get_random_bytes(&rnd, sizeof(rnd));
1291        vstart = VMALLOC_START + rnd;
1292
1293        va_1 = find_vmap_lowest_match(size, align, vstart, false);
1294        va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1295
1296        if (va_1 != va_2)
1297                pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1298                        va_1, va_2, vstart);
1299}
1300#endif
1301
1302enum fit_type {
1303        NOTHING_FIT = 0,
1304        FL_FIT_TYPE = 1,        /* full fit */
1305        LE_FIT_TYPE = 2,        /* left edge fit */
1306        RE_FIT_TYPE = 3,        /* right edge fit */
1307        NE_FIT_TYPE = 4         /* no edge fit */
1308};
1309
1310static __always_inline enum fit_type
1311classify_va_fit_type(struct vmap_area *va,
1312        unsigned long nva_start_addr, unsigned long size)
1313{
1314        enum fit_type type;
1315
1316        /* Check if it is within VA. */
1317        if (nva_start_addr < va->va_start ||
1318                        nva_start_addr + size > va->va_end)
1319                return NOTHING_FIT;
1320
1321        /* Now classify. */
1322        if (va->va_start == nva_start_addr) {
1323                if (va->va_end == nva_start_addr + size)
1324                        type = FL_FIT_TYPE;
1325                else
1326                        type = LE_FIT_TYPE;
1327        } else if (va->va_end == nva_start_addr + size) {
1328                type = RE_FIT_TYPE;
1329        } else {
1330                type = NE_FIT_TYPE;
1331        }
1332
1333        return type;
1334}
1335
1336static __always_inline int
1337adjust_va_to_fit_type(struct vmap_area *va,
1338        unsigned long nva_start_addr, unsigned long size,
1339        enum fit_type type)
1340{
1341        struct vmap_area *lva = NULL;
1342
1343        if (type == FL_FIT_TYPE) {
1344                /*
1345                 * No need to split VA, it fully fits.
1346                 *
1347                 * |               |
1348                 * V      NVA      V
1349                 * |---------------|
1350                 */
1351                unlink_va(va, &free_vmap_area_root);
1352                kmem_cache_free(vmap_area_cachep, va);
1353        } else if (type == LE_FIT_TYPE) {
1354                /*
1355                 * Split left edge of fit VA.
1356                 *
1357                 * |       |
1358                 * V  NVA  V   R
1359                 * |-------|-------|
1360                 */
1361                va->va_start += size;
1362        } else if (type == RE_FIT_TYPE) {
1363                /*
1364                 * Split right edge of fit VA.
1365                 *
1366                 *         |       |
1367                 *     L   V  NVA  V
1368                 * |-------|-------|
1369                 */
1370                va->va_end = nva_start_addr;
1371        } else if (type == NE_FIT_TYPE) {
1372                /*
1373                 * Split no edge of fit VA.
1374                 *
1375                 *     |       |
1376                 *   L V  NVA  V R
1377                 * |---|-------|---|
1378                 */
1379                lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1380                if (unlikely(!lva)) {
1381                        /*
1382                         * For percpu allocator we do not do any pre-allocation
1383                         * and leave it as it is. The reason is it most likely
1384                         * never ends up with NE_FIT_TYPE splitting. In case of
1385                         * percpu allocations offsets and sizes are aligned to
1386                         * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1387                         * are its main fitting cases.
1388                         *
1389                         * There are a few exceptions though, as an example it is
1390                         * a first allocation (early boot up) when we have "one"
1391                         * big free space that has to be split.
1392                         *
1393                         * Also we can hit this path in case of regular "vmap"
1394                         * allocations, if "this" current CPU was not preloaded.
1395                         * See the comment in alloc_vmap_area() why. If so, then
1396                         * GFP_NOWAIT is used instead to get an extra object for
1397                         * split purpose. That is rare and most time does not
1398                         * occur.
1399                         *
1400                         * What happens if an allocation gets failed. Basically,
1401                         * an "overflow" path is triggered to purge lazily freed
1402                         * areas to free some memory, then, the "retry" path is
1403                         * triggered to repeat one more time. See more details
1404                         * in alloc_vmap_area() function.
1405                         */
1406                        lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1407                        if (!lva)
1408                                return -1;
1409                }
1410
1411                /*
1412                 * Build the remainder.
1413                 */
1414                lva->va_start = va->va_start;
1415                lva->va_end = nva_start_addr;
1416
1417                /*
1418                 * Shrink this VA to remaining size.
1419                 */
1420                va->va_start = nva_start_addr + size;
1421        } else {
1422                return -1;
1423        }
1424
1425        if (type != FL_FIT_TYPE) {
1426                augment_tree_propagate_from(va);
1427
1428                if (lva)        /* type == NE_FIT_TYPE */
1429                        insert_vmap_area_augment(lva, &va->rb_node,
1430                                &free_vmap_area_root, &free_vmap_area_list);
1431        }
1432
1433        return 0;
1434}
1435
1436/*
1437 * Returns a start address of the newly allocated area, if success.
1438 * Otherwise a vend is returned that indicates failure.
1439 */
1440static __always_inline unsigned long
1441__alloc_vmap_area(unsigned long size, unsigned long align,
1442        unsigned long vstart, unsigned long vend)
1443{
1444        bool adjust_search_size = true;
1445        unsigned long nva_start_addr;
1446        struct vmap_area *va;
1447        enum fit_type type;
1448        int ret;
1449
1450        /*
1451         * Do not adjust when:
1452         *   a) align <= PAGE_SIZE, because it does not make any sense.
1453         *      All blocks(their start addresses) are at least PAGE_SIZE
1454         *      aligned anyway;
1455         *   b) a short range where a requested size corresponds to exactly
1456         *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1457         *      With adjusted search length an allocation would not succeed.
1458         */
1459        if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1460                adjust_search_size = false;
1461
1462        va = find_vmap_lowest_match(size, align, vstart, adjust_search_size);
1463        if (unlikely(!va))
1464                return vend;
1465
1466        if (va->va_start > vstart)
1467                nva_start_addr = ALIGN(va->va_start, align);
1468        else
1469                nva_start_addr = ALIGN(vstart, align);
1470
1471        /* Check the "vend" restriction. */
1472        if (nva_start_addr + size > vend)
1473                return vend;
1474
1475        /* Classify what we have found. */
1476        type = classify_va_fit_type(va, nva_start_addr, size);
1477        if (WARN_ON_ONCE(type == NOTHING_FIT))
1478                return vend;
1479
1480        /* Update the free vmap_area. */
1481        ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1482        if (ret)
1483                return vend;
1484
1485#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1486        find_vmap_lowest_match_check(size, align);
1487#endif
1488
1489        return nva_start_addr;
1490}
1491
1492/*
1493 * Free a region of KVA allocated by alloc_vmap_area
1494 */
1495static void free_vmap_area(struct vmap_area *va)
1496{
1497        /*
1498         * Remove from the busy tree/list.
1499         */
1500        spin_lock(&vmap_area_lock);
1501        unlink_va(va, &vmap_area_root);
1502        spin_unlock(&vmap_area_lock);
1503
1504        /*
1505         * Insert/Merge it back to the free tree/list.
1506         */
1507        spin_lock(&free_vmap_area_lock);
1508        merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1509        spin_unlock(&free_vmap_area_lock);
1510}
1511
1512static inline void
1513preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1514{
1515        struct vmap_area *va = NULL;
1516
1517        /*
1518         * Preload this CPU with one extra vmap_area object. It is used
1519         * when fit type of free area is NE_FIT_TYPE. It guarantees that
1520         * a CPU that does an allocation is preloaded.
1521         *
1522         * We do it in non-atomic context, thus it allows us to use more
1523         * permissive allocation masks to be more stable under low memory
1524         * condition and high memory pressure.
1525         */
1526        if (!this_cpu_read(ne_fit_preload_node))
1527                va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1528
1529        spin_lock(lock);
1530
1531        if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1532                kmem_cache_free(vmap_area_cachep, va);
1533}
1534
1535/*
1536 * Allocate a region of KVA of the specified size and alignment, within the
1537 * vstart and vend.
1538 */
1539static struct vmap_area *alloc_vmap_area(unsigned long size,
1540                                unsigned long align,
1541                                unsigned long vstart, unsigned long vend,
1542                                int node, gfp_t gfp_mask)
1543{
1544        struct vmap_area *va;
1545        unsigned long freed;
1546        unsigned long addr;
1547        int purged = 0;
1548        int ret;
1549
1550        BUG_ON(!size);
1551        BUG_ON(offset_in_page(size));
1552        BUG_ON(!is_power_of_2(align));
1553
1554        if (unlikely(!vmap_initialized))
1555                return ERR_PTR(-EBUSY);
1556
1557        might_sleep();
1558        gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1559
1560        va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1561        if (unlikely(!va))
1562                return ERR_PTR(-ENOMEM);
1563
1564        /*
1565         * Only scan the relevant parts containing pointers to other objects
1566         * to avoid false negatives.
1567         */
1568        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1569
1570retry:
1571        preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1572        addr = __alloc_vmap_area(size, align, vstart, vend);
1573        spin_unlock(&free_vmap_area_lock);
1574
1575        /*
1576         * If an allocation fails, the "vend" address is
1577         * returned. Therefore trigger the overflow path.
1578         */
1579        if (unlikely(addr == vend))
1580                goto overflow;
1581
1582        va->va_start = addr;
1583        va->va_end = addr + size;
1584        va->vm = NULL;
1585
1586        spin_lock(&vmap_area_lock);
1587        insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1588        spin_unlock(&vmap_area_lock);
1589
1590        BUG_ON(!IS_ALIGNED(va->va_start, align));
1591        BUG_ON(va->va_start < vstart);
1592        BUG_ON(va->va_end > vend);
1593
1594        ret = kasan_populate_vmalloc(addr, size);
1595        if (ret) {
1596                free_vmap_area(va);
1597                return ERR_PTR(ret);
1598        }
1599
1600        return va;
1601
1602overflow:
1603        if (!purged) {
1604                purge_vmap_area_lazy();
1605                purged = 1;
1606                goto retry;
1607        }
1608
1609        freed = 0;
1610        blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1611
1612        if (freed > 0) {
1613                purged = 0;
1614                goto retry;
1615        }
1616
1617        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1618                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1619                        size);
1620
1621        kmem_cache_free(vmap_area_cachep, va);
1622        return ERR_PTR(-EBUSY);
1623}
1624
1625int register_vmap_purge_notifier(struct notifier_block *nb)
1626{
1627        return blocking_notifier_chain_register(&vmap_notify_list, nb);
1628}
1629EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1630
1631int unregister_vmap_purge_notifier(struct notifier_block *nb)
1632{
1633        return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1634}
1635EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1636
1637/*
1638 * lazy_max_pages is the maximum amount of virtual address space we gather up
1639 * before attempting to purge with a TLB flush.
1640 *
1641 * There is a tradeoff here: a larger number will cover more kernel page tables
1642 * and take slightly longer to purge, but it will linearly reduce the number of
1643 * global TLB flushes that must be performed. It would seem natural to scale
1644 * this number up linearly with the number of CPUs (because vmapping activity
1645 * could also scale linearly with the number of CPUs), however it is likely
1646 * that in practice, workloads might be constrained in other ways that mean
1647 * vmap activity will not scale linearly with CPUs. Also, I want to be
1648 * conservative and not introduce a big latency on huge systems, so go with
1649 * a less aggressive log scale. It will still be an improvement over the old
1650 * code, and it will be simple to change the scale factor if we find that it
1651 * becomes a problem on bigger systems.
1652 */
1653static unsigned long lazy_max_pages(void)
1654{
1655        unsigned int log;
1656
1657        log = fls(num_online_cpus());
1658
1659        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1660}
1661
1662static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1663
1664/*
1665 * Serialize vmap purging.  There is no actual critical section protected
1666 * by this look, but we want to avoid concurrent calls for performance
1667 * reasons and to make the pcpu_get_vm_areas more deterministic.
1668 */
1669static DEFINE_MUTEX(vmap_purge_lock);
1670
1671/* for per-CPU blocks */
1672static void purge_fragmented_blocks_allcpus(void);
1673
1674/*
1675 * Purges all lazily-freed vmap areas.
1676 */
1677static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1678{
1679        unsigned long resched_threshold;
1680        struct list_head local_pure_list;
1681        struct vmap_area *va, *n_va;
1682
1683        lockdep_assert_held(&vmap_purge_lock);
1684
1685        spin_lock(&purge_vmap_area_lock);
1686        purge_vmap_area_root = RB_ROOT;
1687        list_replace_init(&purge_vmap_area_list, &local_pure_list);
1688        spin_unlock(&purge_vmap_area_lock);
1689
1690        if (unlikely(list_empty(&local_pure_list)))
1691                return false;
1692
1693        start = min(start,
1694                list_first_entry(&local_pure_list,
1695                        struct vmap_area, list)->va_start);
1696
1697        end = max(end,
1698                list_last_entry(&local_pure_list,
1699                        struct vmap_area, list)->va_end);
1700
1701        flush_tlb_kernel_range(start, end);
1702        resched_threshold = lazy_max_pages() << 1;
1703
1704        spin_lock(&free_vmap_area_lock);
1705        list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1706                unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1707                unsigned long orig_start = va->va_start;
1708                unsigned long orig_end = va->va_end;
1709
1710                /*
1711                 * Finally insert or merge lazily-freed area. It is
1712                 * detached and there is no need to "unlink" it from
1713                 * anything.
1714                 */
1715                va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1716                                &free_vmap_area_list);
1717
1718                if (!va)
1719                        continue;
1720
1721                if (is_vmalloc_or_module_addr((void *)orig_start))
1722                        kasan_release_vmalloc(orig_start, orig_end,
1723                                              va->va_start, va->va_end);
1724
1725                atomic_long_sub(nr, &vmap_lazy_nr);
1726
1727                if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1728                        cond_resched_lock(&free_vmap_area_lock);
1729        }
1730        spin_unlock(&free_vmap_area_lock);
1731        return true;
1732}
1733
1734/*
1735 * Kick off a purge of the outstanding lazy areas.
1736 */
1737static void purge_vmap_area_lazy(void)
1738{
1739        mutex_lock(&vmap_purge_lock);
1740        purge_fragmented_blocks_allcpus();
1741        __purge_vmap_area_lazy(ULONG_MAX, 0);
1742        mutex_unlock(&vmap_purge_lock);
1743}
1744
1745static void drain_vmap_area_work(struct work_struct *work)
1746{
1747        unsigned long nr_lazy;
1748
1749        do {
1750                mutex_lock(&vmap_purge_lock);
1751                __purge_vmap_area_lazy(ULONG_MAX, 0);
1752                mutex_unlock(&vmap_purge_lock);
1753
1754                /* Recheck if further work is required. */
1755                nr_lazy = atomic_long_read(&vmap_lazy_nr);
1756        } while (nr_lazy > lazy_max_pages());
1757}
1758
1759/*
1760 * Free a vmap area, caller ensuring that the area has been unmapped
1761 * and flush_cache_vunmap had been called for the correct range
1762 * previously.
1763 */
1764static void free_vmap_area_noflush(struct vmap_area *va)
1765{
1766        unsigned long nr_lazy;
1767
1768        spin_lock(&vmap_area_lock);
1769        unlink_va(va, &vmap_area_root);
1770        spin_unlock(&vmap_area_lock);
1771
1772        nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1773                                PAGE_SHIFT, &vmap_lazy_nr);
1774
1775        /*
1776         * Merge or place it to the purge tree/list.
1777         */
1778        spin_lock(&purge_vmap_area_lock);
1779        merge_or_add_vmap_area(va,
1780                &purge_vmap_area_root, &purge_vmap_area_list);
1781        spin_unlock(&purge_vmap_area_lock);
1782
1783        /* After this point, we may free va at any time */
1784        if (unlikely(nr_lazy > lazy_max_pages()))
1785                schedule_work(&drain_vmap_work);
1786}
1787
1788/*
1789 * Free and unmap a vmap area
1790 */
1791static void free_unmap_vmap_area(struct vmap_area *va)
1792{
1793        flush_cache_vunmap(va->va_start, va->va_end);
1794        vunmap_range_noflush(va->va_start, va->va_end);
1795        if (debug_pagealloc_enabled_static())
1796                flush_tlb_kernel_range(va->va_start, va->va_end);
1797
1798        free_vmap_area_noflush(va);
1799}
1800
1801struct vmap_area *find_vmap_area(unsigned long addr)
1802{
1803        struct vmap_area *va;
1804
1805        spin_lock(&vmap_area_lock);
1806        va = __find_vmap_area(addr);
1807        spin_unlock(&vmap_area_lock);
1808
1809        return va;
1810}
1811
1812/*** Per cpu kva allocator ***/
1813
1814/*
1815 * vmap space is limited especially on 32 bit architectures. Ensure there is
1816 * room for at least 16 percpu vmap blocks per CPU.
1817 */
1818/*
1819 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1820 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
1821 * instead (we just need a rough idea)
1822 */
1823#if BITS_PER_LONG == 32
1824#define VMALLOC_SPACE           (128UL*1024*1024)
1825#else
1826#define VMALLOC_SPACE           (128UL*1024*1024*1024)
1827#endif
1828
1829#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
1830#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
1831#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
1832#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
1833#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
1834#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
1835#define VMAP_BBMAP_BITS         \
1836                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
1837                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
1838                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1839
1840#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
1841
1842struct vmap_block_queue {
1843        spinlock_t lock;
1844        struct list_head free;
1845};
1846
1847struct vmap_block {
1848        spinlock_t lock;
1849        struct vmap_area *va;
1850        unsigned long free, dirty;
1851        unsigned long dirty_min, dirty_max; /*< dirty range */
1852        struct list_head free_list;
1853        struct rcu_head rcu_head;
1854        struct list_head purge;
1855};
1856
1857/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1858static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1859
1860/*
1861 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1862 * in the free path. Could get rid of this if we change the API to return a
1863 * "cookie" from alloc, to be passed to free. But no big deal yet.
1864 */
1865static DEFINE_XARRAY(vmap_blocks);
1866
1867/*
1868 * We should probably have a fallback mechanism to allocate virtual memory
1869 * out of partially filled vmap blocks. However vmap block sizing should be
1870 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1871 * big problem.
1872 */
1873
1874static unsigned long addr_to_vb_idx(unsigned long addr)
1875{
1876        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1877        addr /= VMAP_BLOCK_SIZE;
1878        return addr;
1879}
1880
1881static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1882{
1883        unsigned long addr;
1884
1885        addr = va_start + (pages_off << PAGE_SHIFT);
1886        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1887        return (void *)addr;
1888}
1889
1890/**
1891 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1892 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1893 * @order:    how many 2^order pages should be occupied in newly allocated block
1894 * @gfp_mask: flags for the page level allocator
1895 *
1896 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1897 */
1898static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1899{
1900        struct vmap_block_queue *vbq;
1901        struct vmap_block *vb;
1902        struct vmap_area *va;
1903        unsigned long vb_idx;
1904        int node, err;
1905        void *vaddr;
1906
1907        node = numa_node_id();
1908
1909        vb = kmalloc_node(sizeof(struct vmap_block),
1910                        gfp_mask & GFP_RECLAIM_MASK, node);
1911        if (unlikely(!vb))
1912                return ERR_PTR(-ENOMEM);
1913
1914        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1915                                        VMALLOC_START, VMALLOC_END,
1916                                        node, gfp_mask);
1917        if (IS_ERR(va)) {
1918                kfree(vb);
1919                return ERR_CAST(va);
1920        }
1921
1922        vaddr = vmap_block_vaddr(va->va_start, 0);
1923        spin_lock_init(&vb->lock);
1924        vb->va = va;
1925        /* At least something should be left free */
1926        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1927        vb->free = VMAP_BBMAP_BITS - (1UL << order);
1928        vb->dirty = 0;
1929        vb->dirty_min = VMAP_BBMAP_BITS;
1930        vb->dirty_max = 0;
1931        INIT_LIST_HEAD(&vb->free_list);
1932
1933        vb_idx = addr_to_vb_idx(va->va_start);
1934        err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1935        if (err) {
1936                kfree(vb);
1937                free_vmap_area(va);
1938                return ERR_PTR(err);
1939        }
1940
1941        vbq = raw_cpu_ptr(&vmap_block_queue);
1942        spin_lock(&vbq->lock);
1943        list_add_tail_rcu(&vb->free_list, &vbq->free);
1944        spin_unlock(&vbq->lock);
1945
1946        return vaddr;
1947}
1948
1949static void free_vmap_block(struct vmap_block *vb)
1950{
1951        struct vmap_block *tmp;
1952
1953        tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1954        BUG_ON(tmp != vb);
1955
1956        free_vmap_area_noflush(vb->va);
1957        kfree_rcu(vb, rcu_head);
1958}
1959
1960static void purge_fragmented_blocks(int cpu)
1961{
1962        LIST_HEAD(purge);
1963        struct vmap_block *vb;
1964        struct vmap_block *n_vb;
1965        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1966
1967        rcu_read_lock();
1968        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1969
1970                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1971                        continue;
1972
1973                spin_lock(&vb->lock);
1974                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1975                        vb->free = 0; /* prevent further allocs after releasing lock */
1976                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1977                        vb->dirty_min = 0;
1978                        vb->dirty_max = VMAP_BBMAP_BITS;
1979                        spin_lock(&vbq->lock);
1980                        list_del_rcu(&vb->free_list);
1981                        spin_unlock(&vbq->lock);
1982                        spin_unlock(&vb->lock);
1983                        list_add_tail(&vb->purge, &purge);
1984                } else
1985                        spin_unlock(&vb->lock);
1986        }
1987        rcu_read_unlock();
1988
1989        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1990                list_del(&vb->purge);
1991                free_vmap_block(vb);
1992        }
1993}
1994
1995static void purge_fragmented_blocks_allcpus(void)
1996{
1997        int cpu;
1998
1999        for_each_possible_cpu(cpu)
2000                purge_fragmented_blocks(cpu);
2001}
2002
2003static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2004{
2005        struct vmap_block_queue *vbq;
2006        struct vmap_block *vb;
2007        void *vaddr = NULL;
2008        unsigned int order;
2009
2010        BUG_ON(offset_in_page(size));
2011        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2012        if (WARN_ON(size == 0)) {
2013                /*
2014                 * Allocating 0 bytes isn't what caller wants since
2015                 * get_order(0) returns funny result. Just warn and terminate
2016                 * early.
2017                 */
2018                return NULL;
2019        }
2020        order = get_order(size);
2021
2022        rcu_read_lock();
2023        vbq = raw_cpu_ptr(&vmap_block_queue);
2024        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2025                unsigned long pages_off;
2026
2027                spin_lock(&vb->lock);
2028                if (vb->free < (1UL << order)) {
2029                        spin_unlock(&vb->lock);
2030                        continue;
2031                }
2032
2033                pages_off = VMAP_BBMAP_BITS - vb->free;
2034                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2035                vb->free -= 1UL << order;
2036                if (vb->free == 0) {
2037                        spin_lock(&vbq->lock);
2038                        list_del_rcu(&vb->free_list);
2039                        spin_unlock(&vbq->lock);
2040                }
2041
2042                spin_unlock(&vb->lock);
2043                break;
2044        }
2045
2046        rcu_read_unlock();
2047
2048        /* Allocate new block if nothing was found */
2049        if (!vaddr)
2050                vaddr = new_vmap_block(order, gfp_mask);
2051
2052        return vaddr;
2053}
2054
2055static void vb_free(unsigned long addr, unsigned long size)
2056{
2057        unsigned long offset;
2058        unsigned int order;
2059        struct vmap_block *vb;
2060
2061        BUG_ON(offset_in_page(size));
2062        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2063
2064        flush_cache_vunmap(addr, addr + size);
2065
2066        order = get_order(size);
2067        offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2068        vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2069
2070        vunmap_range_noflush(addr, addr + size);
2071
2072        if (debug_pagealloc_enabled_static())
2073                flush_tlb_kernel_range(addr, addr + size);
2074
2075        spin_lock(&vb->lock);
2076
2077        /* Expand dirty range */
2078        vb->dirty_min = min(vb->dirty_min, offset);
2079        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2080
2081        vb->dirty += 1UL << order;
2082        if (vb->dirty == VMAP_BBMAP_BITS) {
2083                BUG_ON(vb->free);
2084                spin_unlock(&vb->lock);
2085                free_vmap_block(vb);
2086        } else
2087                spin_unlock(&vb->lock);
2088}
2089
2090static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2091{
2092        int cpu;
2093
2094        if (unlikely(!vmap_initialized))
2095                return;
2096
2097        might_sleep();
2098
2099        for_each_possible_cpu(cpu) {
2100                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2101                struct vmap_block *vb;
2102
2103                rcu_read_lock();
2104                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2105                        spin_lock(&vb->lock);
2106                        if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2107                                unsigned long va_start = vb->va->va_start;
2108                                unsigned long s, e;
2109
2110                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
2111                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
2112
2113                                start = min(s, start);
2114                                end   = max(e, end);
2115
2116                                flush = 1;
2117                        }
2118                        spin_unlock(&vb->lock);
2119                }
2120                rcu_read_unlock();
2121        }
2122
2123        mutex_lock(&vmap_purge_lock);
2124        purge_fragmented_blocks_allcpus();
2125        if (!__purge_vmap_area_lazy(start, end) && flush)
2126                flush_tlb_kernel_range(start, end);
2127        mutex_unlock(&vmap_purge_lock);
2128}
2129
2130/**
2131 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2132 *
2133 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2134 * to amortize TLB flushing overheads. What this means is that any page you
2135 * have now, may, in a former life, have been mapped into kernel virtual
2136 * address by the vmap layer and so there might be some CPUs with TLB entries
2137 * still referencing that page (additional to the regular 1:1 kernel mapping).
2138 *
2139 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2140 * be sure that none of the pages we have control over will have any aliases
2141 * from the vmap layer.
2142 */
2143void vm_unmap_aliases(void)
2144{
2145        unsigned long start = ULONG_MAX, end = 0;
2146        int flush = 0;
2147
2148        _vm_unmap_aliases(start, end, flush);
2149}
2150EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2151
2152/**
2153 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2154 * @mem: the pointer returned by vm_map_ram
2155 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2156 */
2157void vm_unmap_ram(const void *mem, unsigned int count)
2158{
2159        unsigned long size = (unsigned long)count << PAGE_SHIFT;
2160        unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2161        struct vmap_area *va;
2162
2163        might_sleep();
2164        BUG_ON(!addr);
2165        BUG_ON(addr < VMALLOC_START);
2166        BUG_ON(addr > VMALLOC_END);
2167        BUG_ON(!PAGE_ALIGNED(addr));
2168
2169        kasan_poison_vmalloc(mem, size);
2170
2171        if (likely(count <= VMAP_MAX_ALLOC)) {
2172                debug_check_no_locks_freed(mem, size);
2173                vb_free(addr, size);
2174                return;
2175        }
2176
2177        va = find_vmap_area(addr);
2178        BUG_ON(!va);
2179        debug_check_no_locks_freed((void *)va->va_start,
2180                                    (va->va_end - va->va_start));
2181        free_unmap_vmap_area(va);
2182}
2183EXPORT_SYMBOL(vm_unmap_ram);
2184
2185/**
2186 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2187 * @pages: an array of pointers to the pages to be mapped
2188 * @count: number of pages
2189 * @node: prefer to allocate data structures on this node
2190 *
2191 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2192 * faster than vmap so it's good.  But if you mix long-life and short-life
2193 * objects with vm_map_ram(), it could consume lots of address space through
2194 * fragmentation (especially on a 32bit machine).  You could see failures in
2195 * the end.  Please use this function for short-lived objects.
2196 *
2197 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2198 */
2199void *vm_map_ram(struct page **pages, unsigned int count, int node)
2200{
2201        unsigned long size = (unsigned long)count << PAGE_SHIFT;
2202        unsigned long addr;
2203        void *mem;
2204
2205        if (likely(count <= VMAP_MAX_ALLOC)) {
2206                mem = vb_alloc(size, GFP_KERNEL);
2207                if (IS_ERR(mem))
2208                        return NULL;
2209                addr = (unsigned long)mem;
2210        } else {
2211                struct vmap_area *va;
2212                va = alloc_vmap_area(size, PAGE_SIZE,
2213                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2214                if (IS_ERR(va))
2215                        return NULL;
2216
2217                addr = va->va_start;
2218                mem = (void *)addr;
2219        }
2220
2221        if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2222                                pages, PAGE_SHIFT) < 0) {
2223                vm_unmap_ram(mem, count);
2224                return NULL;
2225        }
2226
2227        /*
2228         * Mark the pages as accessible, now that they are mapped.
2229         * With hardware tag-based KASAN, marking is skipped for
2230         * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2231         */
2232        mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2233
2234        return mem;
2235}
2236EXPORT_SYMBOL(vm_map_ram);
2237
2238static struct vm_struct *vmlist __initdata;
2239
2240static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2241{
2242#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2243        return vm->page_order;
2244#else
2245        return 0;
2246#endif
2247}
2248
2249static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2250{
2251#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2252        vm->page_order = order;
2253#else
2254        BUG_ON(order != 0);
2255#endif
2256}
2257
2258/**
2259 * vm_area_add_early - add vmap area early during boot
2260 * @vm: vm_struct to add
2261 *
2262 * This function is used to add fixed kernel vm area to vmlist before
2263 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2264 * should contain proper values and the other fields should be zero.
2265 *
2266 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2267 */
2268void __init vm_area_add_early(struct vm_struct *vm)
2269{
2270        struct vm_struct *tmp, **p;
2271
2272        BUG_ON(vmap_initialized);
2273        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2274                if (tmp->addr >= vm->addr) {
2275                        BUG_ON(tmp->addr < vm->addr + vm->size);
2276                        break;
2277                } else
2278                        BUG_ON(tmp->addr + tmp->size > vm->addr);
2279        }
2280        vm->next = *p;
2281        *p = vm;
2282}
2283
2284/**
2285 * vm_area_register_early - register vmap area early during boot
2286 * @vm: vm_struct to register
2287 * @align: requested alignment
2288 *
2289 * This function is used to register kernel vm area before
2290 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2291 * proper values on entry and other fields should be zero.  On return,
2292 * vm->addr contains the allocated address.
2293 *
2294 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2295 */
2296void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2297{
2298        unsigned long addr = ALIGN(VMALLOC_START, align);
2299        struct vm_struct *cur, **p;
2300
2301        BUG_ON(vmap_initialized);
2302
2303        for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2304                if ((unsigned long)cur->addr - addr >= vm->size)
2305                        break;
2306                addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2307        }
2308
2309        BUG_ON(addr > VMALLOC_END - vm->size);
2310        vm->addr = (void *)addr;
2311        vm->next = *p;
2312        *p = vm;
2313        kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2314}
2315
2316static void vmap_init_free_space(void)
2317{
2318        unsigned long vmap_start = 1;
2319        const unsigned long vmap_end = ULONG_MAX;
2320        struct vmap_area *busy, *free;
2321
2322        /*
2323         *     B     F     B     B     B     F
2324         * -|-----|.....|-----|-----|-----|.....|-
2325         *  |           The KVA space           |
2326         *  |<--------------------------------->|
2327         */
2328        list_for_each_entry(busy, &vmap_area_list, list) {
2329                if (busy->va_start - vmap_start > 0) {
2330                        free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2331                        if (!WARN_ON_ONCE(!free)) {
2332                                free->va_start = vmap_start;
2333                                free->va_end = busy->va_start;
2334
2335                                insert_vmap_area_augment(free, NULL,
2336                                        &free_vmap_area_root,
2337                                                &free_vmap_area_list);
2338                        }
2339                }
2340
2341                vmap_start = busy->va_end;
2342        }
2343
2344        if (vmap_end - vmap_start > 0) {
2345                free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2346                if (!WARN_ON_ONCE(!free)) {
2347                        free->va_start = vmap_start;
2348                        free->va_end = vmap_end;
2349
2350                        insert_vmap_area_augment(free, NULL,
2351                                &free_vmap_area_root,
2352                                        &free_vmap_area_list);
2353                }
2354        }
2355}
2356
2357void __init vmalloc_init(void)
2358{
2359        struct vmap_area *va;
2360        struct vm_struct *tmp;
2361        int i;
2362
2363        /*
2364         * Create the cache for vmap_area objects.
2365         */
2366        vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2367
2368        for_each_possible_cpu(i) {
2369                struct vmap_block_queue *vbq;
2370                struct vfree_deferred *p;
2371
2372                vbq = &per_cpu(vmap_block_queue, i);
2373                spin_lock_init(&vbq->lock);
2374                INIT_LIST_HEAD(&vbq->free);
2375                p = &per_cpu(vfree_deferred, i);
2376                init_llist_head(&p->list);
2377                INIT_WORK(&p->wq, free_work);
2378        }
2379
2380        /* Import existing vmlist entries. */
2381        for (tmp = vmlist; tmp; tmp = tmp->next) {
2382                va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2383                if (WARN_ON_ONCE(!va))
2384                        continue;
2385
2386                va->va_start = (unsigned long)tmp->addr;
2387                va->va_end = va->va_start + tmp->size;
2388                va->vm = tmp;
2389                insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2390        }
2391
2392        /*
2393         * Now we can initialize a free vmap space.
2394         */
2395        vmap_init_free_space();
2396        vmap_initialized = true;
2397}
2398
2399static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2400        struct vmap_area *va, unsigned long flags, const void *caller)
2401{
2402        vm->flags = flags;
2403        vm->addr = (void *)va->va_start;
2404        vm->size = va->va_end - va->va_start;
2405        vm->caller = caller;
2406        va->vm = vm;
2407}
2408
2409static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2410                              unsigned long flags, const void *caller)
2411{
2412        spin_lock(&vmap_area_lock);
2413        setup_vmalloc_vm_locked(vm, va, flags, caller);
2414        spin_unlock(&vmap_area_lock);
2415}
2416
2417static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2418{
2419        /*
2420         * Before removing VM_UNINITIALIZED,
2421         * we should make sure that vm has proper values.
2422         * Pair with smp_rmb() in show_numa_info().
2423         */
2424        smp_wmb();
2425        vm->flags &= ~VM_UNINITIALIZED;
2426}
2427
2428static struct vm_struct *__get_vm_area_node(unsigned long size,
2429                unsigned long align, unsigned long shift, unsigned long flags,
2430                unsigned long start, unsigned long end, int node,
2431                gfp_t gfp_mask, const void *caller)
2432{
2433        struct vmap_area *va;
2434        struct vm_struct *area;
2435        unsigned long requested_size = size;
2436
2437        BUG_ON(in_interrupt());
2438        size = ALIGN(size, 1ul << shift);
2439        if (unlikely(!size))
2440                return NULL;
2441
2442        if (flags & VM_IOREMAP)
2443                align = 1ul << clamp_t(int, get_count_order_long(size),
2444                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2445
2446        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2447        if (unlikely(!area))
2448                return NULL;
2449
2450        if (!(flags & VM_NO_GUARD))
2451                size += PAGE_SIZE;
2452
2453        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2454        if (IS_ERR(va)) {
2455                kfree(area);
2456                return NULL;
2457        }
2458
2459        setup_vmalloc_vm(area, va, flags, caller);
2460
2461        /*
2462         * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2463         * best-effort approach, as they can be mapped outside of vmalloc code.
2464         * For VM_ALLOC mappings, the pages are marked as accessible after
2465         * getting mapped in __vmalloc_node_range().
2466         * With hardware tag-based KASAN, marking is skipped for
2467         * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2468         */
2469        if (!(flags & VM_ALLOC))
2470                area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2471                                                    KASAN_VMALLOC_PROT_NORMAL);
2472
2473        return area;
2474}
2475
2476struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2477                                       unsigned long start, unsigned long end,
2478                                       const void *caller)
2479{
2480        return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2481                                  NUMA_NO_NODE, GFP_KERNEL, caller);
2482}
2483
2484/**
2485 * get_vm_area - reserve a contiguous kernel virtual area
2486 * @size:        size of the area
2487 * @flags:       %VM_IOREMAP for I/O mappings or VM_ALLOC
2488 *
2489 * Search an area of @size in the kernel virtual mapping area,
2490 * and reserved it for out purposes.  Returns the area descriptor
2491 * on success or %NULL on failure.
2492 *
2493 * Return: the area descriptor on success or %NULL on failure.
2494 */
2495struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2496{
2497        return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2498                                  VMALLOC_START, VMALLOC_END,
2499                                  NUMA_NO_NODE, GFP_KERNEL,
2500                                  __builtin_return_address(0));
2501}
2502
2503struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2504                                const void *caller)
2505{
2506        return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2507                                  VMALLOC_START, VMALLOC_END,
2508                                  NUMA_NO_NODE, GFP_KERNEL, caller);
2509}
2510
2511/**
2512 * find_vm_area - find a continuous kernel virtual area
2513 * @addr:         base address
2514 *
2515 * Search for the kernel VM area starting at @addr, and return it.
2516 * It is up to the caller to do all required locking to keep the returned
2517 * pointer valid.
2518 *
2519 * Return: the area descriptor on success or %NULL on failure.
2520 */
2521struct vm_struct *find_vm_area(const void *addr)
2522{
2523        struct vmap_area *va;
2524
2525        va = find_vmap_area((unsigned long)addr);
2526        if (!va)
2527                return NULL;
2528
2529        return va->vm;
2530}
2531
2532/**
2533 * remove_vm_area - find and remove a continuous kernel virtual area
2534 * @addr:           base address
2535 *
2536 * Search for the kernel VM area starting at @addr, and remove it.
2537 * This function returns the found VM area, but using it is NOT safe
2538 * on SMP machines, except for its size or flags.
2539 *
2540 * Return: the area descriptor on success or %NULL on failure.
2541 */
2542struct vm_struct *remove_vm_area(const void *addr)
2543{
2544        struct vmap_area *va;
2545
2546        might_sleep();
2547
2548        spin_lock(&vmap_area_lock);
2549        va = __find_vmap_area((unsigned long)addr);
2550        if (va && va->vm) {
2551                struct vm_struct *vm = va->vm;
2552
2553                va->vm = NULL;
2554                spin_unlock(&vmap_area_lock);
2555
2556                kasan_free_module_shadow(vm);
2557                free_unmap_vmap_area(va);
2558
2559                return vm;
2560        }
2561
2562        spin_unlock(&vmap_area_lock);
2563        return NULL;
2564}
2565
2566static inline void set_area_direct_map(const struct vm_struct *area,
2567                                       int (*set_direct_map)(struct page *page))
2568{
2569        int i;
2570
2571        /* HUGE_VMALLOC passes small pages to set_direct_map */
2572        for (i = 0; i < area->nr_pages; i++)
2573                if (page_address(area->pages[i]))
2574                        set_direct_map(area->pages[i]);
2575}
2576
2577/* Handle removing and resetting vm mappings related to the vm_struct. */
2578static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2579{
2580        unsigned long start = ULONG_MAX, end = 0;
2581        unsigned int page_order = vm_area_page_order(area);
2582        int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2583        int flush_dmap = 0;
2584        int i;
2585
2586        remove_vm_area(area->addr);
2587
2588        /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2589        if (!flush_reset)
2590                return;
2591
2592        /*
2593         * If not deallocating pages, just do the flush of the VM area and
2594         * return.
2595         */
2596        if (!deallocate_pages) {
2597                vm_unmap_aliases();
2598                return;
2599        }
2600
2601        /*
2602         * If execution gets here, flush the vm mapping and reset the direct
2603         * map. Find the start and end range of the direct mappings to make sure
2604         * the vm_unmap_aliases() flush includes the direct map.
2605         */
2606        for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2607                unsigned long addr = (unsigned long)page_address(area->pages[i]);
2608                if (addr) {
2609                        unsigned long page_size;
2610
2611                        page_size = PAGE_SIZE << page_order;
2612                        start = min(addr, start);
2613                        end = max(addr + page_size, end);
2614                        flush_dmap = 1;
2615                }
2616        }
2617
2618        /*
2619         * Set direct map to something invalid so that it won't be cached if
2620         * there are any accesses after the TLB flush, then flush the TLB and
2621         * reset the direct map permissions to the default.
2622         */
2623        set_area_direct_map(area, set_direct_map_invalid_noflush);
2624        _vm_unmap_aliases(start, end, flush_dmap);
2625        set_area_direct_map(area, set_direct_map_default_noflush);
2626}
2627
2628static void __vunmap(const void *addr, int deallocate_pages)
2629{
2630        struct vm_struct *area;
2631
2632        if (!addr)
2633                return;
2634
2635        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2636                        addr))
2637                return;
2638
2639        area = find_vm_area(addr);
2640        if (unlikely(!area)) {
2641                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2642                                addr);
2643                return;
2644        }
2645
2646        debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2647        debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2648
2649        kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2650
2651        vm_remove_mappings(area, deallocate_pages);
2652
2653        if (deallocate_pages) {
2654                int i;
2655
2656                for (i = 0; i < area->nr_pages; i++) {
2657                        struct page *page = area->pages[i];
2658
2659                        BUG_ON(!page);
2660                        mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2661                        /*
2662                         * High-order allocs for huge vmallocs are split, so
2663                         * can be freed as an array of order-0 allocations
2664                         */
2665                        __free_pages(page, 0);
2666                        cond_resched();
2667                }
2668                atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2669
2670                kvfree(area->pages);
2671        }
2672
2673        kfree(area);
2674}
2675
2676static inline void __vfree_deferred(const void *addr)
2677{
2678        /*
2679         * Use raw_cpu_ptr() because this can be called from preemptible
2680         * context. Preemption is absolutely fine here, because the llist_add()
2681         * implementation is lockless, so it works even if we are adding to
2682         * another cpu's list. schedule_work() should be fine with this too.
2683         */
2684        struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2685
2686        if (llist_add((struct llist_node *)addr, &p->list))
2687                schedule_work(&p->wq);
2688}
2689
2690/**
2691 * vfree_atomic - release memory allocated by vmalloc()
2692 * @addr:         memory base address
2693 *
2694 * This one is just like vfree() but can be called in any atomic context
2695 * except NMIs.
2696 */
2697void vfree_atomic(const void *addr)
2698{
2699        BUG_ON(in_nmi());
2700
2701        kmemleak_free(addr);
2702
2703        if (!addr)
2704                return;
2705        __vfree_deferred(addr);
2706}
2707
2708static void __vfree(const void *addr)
2709{
2710        if (unlikely(in_interrupt()))
2711                __vfree_deferred(addr);
2712        else
2713                __vunmap(addr, 1);
2714}
2715
2716/**
2717 * vfree - Release memory allocated by vmalloc()
2718 * @addr:  Memory base address
2719 *
2720 * Free the virtually continuous memory area starting at @addr, as obtained
2721 * from one of the vmalloc() family of APIs.  This will usually also free the
2722 * physical memory underlying the virtual allocation, but that memory is
2723 * reference counted, so it will not be freed until the last user goes away.
2724 *
2725 * If @addr is NULL, no operation is performed.
2726 *
2727 * Context:
2728 * May sleep if called *not* from interrupt context.
2729 * Must not be called in NMI context (strictly speaking, it could be
2730 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2731 * conventions for vfree() arch-dependent would be a really bad idea).
2732 */
2733void vfree(const void *addr)
2734{
2735        BUG_ON(in_nmi());
2736
2737        kmemleak_free(addr);
2738
2739        might_sleep_if(!in_interrupt());
2740
2741        if (!addr)
2742                return;
2743
2744        __vfree(addr);
2745}
2746EXPORT_SYMBOL(vfree);
2747
2748/**
2749 * vunmap - release virtual mapping obtained by vmap()
2750 * @addr:   memory base address
2751 *
2752 * Free the virtually contiguous memory area starting at @addr,
2753 * which was created from the page array passed to vmap().
2754 *
2755 * Must not be called in interrupt context.
2756 */
2757void vunmap(const void *addr)
2758{
2759        BUG_ON(in_interrupt());
2760        might_sleep();
2761        if (addr)
2762                __vunmap(addr, 0);
2763}
2764EXPORT_SYMBOL(vunmap);
2765
2766/**
2767 * vmap - map an array of pages into virtually contiguous space
2768 * @pages: array of page pointers
2769 * @count: number of pages to map
2770 * @flags: vm_area->flags
2771 * @prot: page protection for the mapping
2772 *
2773 * Maps @count pages from @pages into contiguous kernel virtual space.
2774 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2775 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2776 * are transferred from the caller to vmap(), and will be freed / dropped when
2777 * vfree() is called on the return value.
2778 *
2779 * Return: the address of the area or %NULL on failure
2780 */
2781void *vmap(struct page **pages, unsigned int count,
2782           unsigned long flags, pgprot_t prot)
2783{
2784        struct vm_struct *area;
2785        unsigned long addr;
2786        unsigned long size;             /* In bytes */
2787
2788        might_sleep();
2789
2790        /*
2791         * Your top guard is someone else's bottom guard. Not having a top
2792         * guard compromises someone else's mappings too.
2793         */
2794        if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2795                flags &= ~VM_NO_GUARD;
2796
2797        if (count > totalram_pages())
2798                return NULL;
2799
2800        size = (unsigned long)count << PAGE_SHIFT;
2801        area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2802        if (!area)
2803                return NULL;
2804
2805        addr = (unsigned long)area->addr;
2806        if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2807                                pages, PAGE_SHIFT) < 0) {
2808                vunmap(area->addr);
2809                return NULL;
2810        }
2811
2812        if (flags & VM_MAP_PUT_PAGES) {
2813                area->pages = pages;
2814                area->nr_pages = count;
2815        }
2816        return area->addr;
2817}
2818EXPORT_SYMBOL(vmap);
2819
2820#ifdef CONFIG_VMAP_PFN
2821struct vmap_pfn_data {
2822        unsigned long   *pfns;
2823        pgprot_t        prot;
2824        unsigned int    idx;
2825};
2826
2827static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2828{
2829        struct vmap_pfn_data *data = private;
2830
2831        if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2832                return -EINVAL;
2833        *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2834        return 0;
2835}
2836
2837/**
2838 * vmap_pfn - map an array of PFNs into virtually contiguous space
2839 * @pfns: array of PFNs
2840 * @count: number of pages to map
2841 * @prot: page protection for the mapping
2842 *
2843 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2844 * the start address of the mapping.
2845 */
2846void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2847{
2848        struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2849        struct vm_struct *area;
2850
2851        area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2852                        __builtin_return_address(0));
2853        if (!area)
2854                return NULL;
2855        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2856                        count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2857                free_vm_area(area);
2858                return NULL;
2859        }
2860        return area->addr;
2861}
2862EXPORT_SYMBOL_GPL(vmap_pfn);
2863#endif /* CONFIG_VMAP_PFN */
2864
2865static inline unsigned int
2866vm_area_alloc_pages(gfp_t gfp, int nid,
2867                unsigned int order, unsigned int nr_pages, struct page **pages)
2868{
2869        unsigned int nr_allocated = 0;
2870        struct page *page;
2871        int i;
2872
2873        /*
2874         * For order-0 pages we make use of bulk allocator, if
2875         * the page array is partly or not at all populated due
2876         * to fails, fallback to a single page allocator that is
2877         * more permissive.
2878         */
2879        if (!order) {
2880                gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2881
2882                while (nr_allocated < nr_pages) {
2883                        unsigned int nr, nr_pages_request;
2884
2885                        /*
2886                         * A maximum allowed request is hard-coded and is 100
2887                         * pages per call. That is done in order to prevent a
2888                         * long preemption off scenario in the bulk-allocator
2889                         * so the range is [1:100].
2890                         */
2891                        nr_pages_request = min(100U, nr_pages - nr_allocated);
2892
2893                        /* memory allocation should consider mempolicy, we can't
2894                         * wrongly use nearest node when nid == NUMA_NO_NODE,
2895                         * otherwise memory may be allocated in only one node,
2896                         * but mempolicy wants to alloc memory by interleaving.
2897                         */
2898                        if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2899                                nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2900                                                        nr_pages_request,
2901                                                        pages + nr_allocated);
2902
2903                        else
2904                                nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2905                                                        nr_pages_request,
2906                                                        pages + nr_allocated);
2907
2908                        nr_allocated += nr;
2909                        cond_resched();
2910
2911                        /*
2912                         * If zero or pages were obtained partly,
2913                         * fallback to a single page allocator.
2914                         */
2915                        if (nr != nr_pages_request)
2916                                break;
2917                }
2918        }
2919
2920        /* High-order pages or fallback path if "bulk" fails. */
2921
2922        while (nr_allocated < nr_pages) {
2923                if (fatal_signal_pending(current))
2924                        break;
2925
2926                if (nid == NUMA_NO_NODE)
2927                        page = alloc_pages(gfp, order);
2928                else
2929                        page = alloc_pages_node(nid, gfp, order);
2930                if (unlikely(!page))
2931                        break;
2932                /*
2933                 * Higher order allocations must be able to be treated as
2934                 * indepdenent small pages by callers (as they can with
2935                 * small-page vmallocs). Some drivers do their own refcounting
2936                 * on vmalloc_to_page() pages, some use page->mapping,
2937                 * page->lru, etc.
2938                 */
2939                if (order)
2940                        split_page(page, order);
2941
2942                /*
2943                 * Careful, we allocate and map page-order pages, but
2944                 * tracking is done per PAGE_SIZE page so as to keep the
2945                 * vm_struct APIs independent of the physical/mapped size.
2946                 */
2947                for (i = 0; i < (1U << order); i++)
2948                        pages[nr_allocated + i] = page + i;
2949
2950                cond_resched();
2951                nr_allocated += 1U << order;
2952        }
2953
2954        return nr_allocated;
2955}
2956
2957static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2958                                 pgprot_t prot, unsigned int page_shift,
2959                                 int node)
2960{
2961        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2962        bool nofail = gfp_mask & __GFP_NOFAIL;
2963        unsigned long addr = (unsigned long)area->addr;
2964        unsigned long size = get_vm_area_size(area);
2965        unsigned long array_size;
2966        unsigned int nr_small_pages = size >> PAGE_SHIFT;
2967        unsigned int page_order;
2968        unsigned int flags;
2969        int ret;
2970
2971        array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2972        gfp_mask |= __GFP_NOWARN;
2973        if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2974                gfp_mask |= __GFP_HIGHMEM;
2975
2976        /* Please note that the recursion is strictly bounded. */
2977        if (array_size > PAGE_SIZE) {
2978                area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2979                                        area->caller);
2980        } else {
2981                area->pages = kmalloc_node(array_size, nested_gfp, node);
2982        }
2983
2984        if (!area->pages) {
2985                warn_alloc(gfp_mask, NULL,
2986                        "vmalloc error: size %lu, failed to allocated page array size %lu",
2987                        nr_small_pages * PAGE_SIZE, array_size);
2988                free_vm_area(area);
2989                return NULL;
2990        }
2991
2992        set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2993        page_order = vm_area_page_order(area);
2994
2995        area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
2996                node, page_order, nr_small_pages, area->pages);
2997
2998        atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2999        if (gfp_mask & __GFP_ACCOUNT) {
3000                int i;
3001
3002                for (i = 0; i < area->nr_pages; i++)
3003                        mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3004        }
3005
3006        /*
3007         * If not enough pages were obtained to accomplish an
3008         * allocation request, free them via __vfree() if any.
3009         */
3010        if (area->nr_pages != nr_small_pages) {
3011                warn_alloc(gfp_mask, NULL,
3012                        "vmalloc error: size %lu, page order %u, failed to allocate pages",
3013                        area->nr_pages * PAGE_SIZE, page_order);
3014                goto fail;
3015        }
3016
3017        /*
3018         * page tables allocations ignore external gfp mask, enforce it
3019         * by the scope API
3020         */
3021        if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3022                flags = memalloc_nofs_save();
3023        else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3024                flags = memalloc_noio_save();
3025
3026        do {
3027                ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3028                        page_shift);
3029                if (nofail && (ret < 0))
3030                        schedule_timeout_uninterruptible(1);
3031        } while (nofail && (ret < 0));
3032
3033        if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3034                memalloc_nofs_restore(flags);
3035        else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3036                memalloc_noio_restore(flags);
3037
3038        if (ret < 0) {
3039                warn_alloc(gfp_mask, NULL,
3040                        "vmalloc error: size %lu, failed to map pages",
3041                        area->nr_pages * PAGE_SIZE);
3042                goto fail;
3043        }
3044
3045        return area->addr;
3046
3047fail:
3048        __vfree(area->addr);
3049        return NULL;
3050}
3051
3052/**
3053 * __vmalloc_node_range - allocate virtually contiguous memory
3054 * @size:                 allocation size
3055 * @align:                desired alignment
3056 * @start:                vm area range start
3057 * @end:                  vm area range end
3058 * @gfp_mask:             flags for the page level allocator
3059 * @prot:                 protection mask for the allocated pages
3060 * @vm_flags:             additional vm area flags (e.g. %VM_NO_GUARD)
3061 * @node:                 node to use for allocation or NUMA_NO_NODE
3062 * @caller:               caller's return address
3063 *
3064 * Allocate enough pages to cover @size from the page level
3065 * allocator with @gfp_mask flags. Please note that the full set of gfp
3066 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3067 * supported.
3068 * Zone modifiers are not supported. From the reclaim modifiers
3069 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3070 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3071 * __GFP_RETRY_MAYFAIL are not supported).
3072 *
3073 * __GFP_NOWARN can be used to suppress failures messages.
3074 *
3075 * Map them into contiguous kernel virtual space, using a pagetable
3076 * protection of @prot.
3077 *
3078 * Return: the address of the area or %NULL on failure
3079 */
3080void *__vmalloc_node_range(unsigned long size, unsigned long align,
3081                        unsigned long start, unsigned long end, gfp_t gfp_mask,
3082                        pgprot_t prot, unsigned long vm_flags, int node,
3083                        const void *caller)
3084{
3085        struct vm_struct *area;
3086        void *ret;
3087        kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3088        unsigned long real_size = size;
3089        unsigned long real_align = align;
3090        unsigned int shift = PAGE_SHIFT;
3091
3092        if (WARN_ON_ONCE(!size))
3093                return NULL;
3094
3095        if ((size >> PAGE_SHIFT) > totalram_pages()) {
3096                warn_alloc(gfp_mask, NULL,
3097                        "vmalloc error: size %lu, exceeds total pages",
3098                        real_size);
3099                return NULL;
3100        }
3101
3102        if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3103                unsigned long size_per_node;
3104
3105                /*
3106                 * Try huge pages. Only try for PAGE_KERNEL allocations,
3107                 * others like modules don't yet expect huge pages in
3108                 * their allocations due to apply_to_page_range not
3109                 * supporting them.
3110                 */
3111
3112                size_per_node = size;
3113                if (node == NUMA_NO_NODE)
3114                        size_per_node /= num_online_nodes();
3115                if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3116                        shift = PMD_SHIFT;
3117                else
3118                        shift = arch_vmap_pte_supported_shift(size_per_node);
3119
3120                align = max(real_align, 1UL << shift);
3121                size = ALIGN(real_size, 1UL << shift);
3122        }
3123
3124again:
3125        area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3126                                  VM_UNINITIALIZED | vm_flags, start, end, node,
3127                                  gfp_mask, caller);
3128        if (!area) {
3129                bool nofail = gfp_mask & __GFP_NOFAIL;
3130                warn_alloc(gfp_mask, NULL,
3131                        "vmalloc error: size %lu, vm_struct allocation failed%s",
3132                        real_size, (nofail) ? ". Retrying." : "");
3133                if (nofail) {
3134                        schedule_timeout_uninterruptible(1);
3135                        goto again;
3136                }
3137                goto fail;
3138        }
3139
3140        /*
3141         * Prepare arguments for __vmalloc_area_node() and
3142         * kasan_unpoison_vmalloc().
3143         */
3144        if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3145                if (kasan_hw_tags_enabled()) {
3146                        /*
3147                         * Modify protection bits to allow tagging.
3148                         * This must be done before mapping.
3149                         */
3150                        prot = arch_vmap_pgprot_tagged(prot);
3151
3152                        /*
3153                         * Skip page_alloc poisoning and zeroing for physical
3154                         * pages backing VM_ALLOC mapping. Memory is instead
3155                         * poisoned and zeroed by kasan_unpoison_vmalloc().
3156                         */
3157                        gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3158                }
3159
3160                /* Take note that the mapping is PAGE_KERNEL. */
3161                kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3162        }
3163
3164        /* Allocate physical pages and map them into vmalloc space. */
3165        ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3166        if (!ret)
3167                goto fail;
3168
3169        /*
3170         * Mark the pages as accessible, now that they are mapped.
3171         * The init condition should match the one in post_alloc_hook()
3172         * (except for the should_skip_init() check) to make sure that memory
3173         * is initialized under the same conditions regardless of the enabled
3174         * KASAN mode.
3175         * Tag-based KASAN modes only assign tags to normal non-executable
3176         * allocations, see __kasan_unpoison_vmalloc().
3177         */
3178        kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3179        if (!want_init_on_free() && want_init_on_alloc(gfp_mask))
3180                kasan_flags |= KASAN_VMALLOC_INIT;
3181        /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3182        area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3183
3184        /*
3185         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3186         * flag. It means that vm_struct is not fully initialized.
3187         * Now, it is fully initialized, so remove this flag here.
3188         */
3189        clear_vm_uninitialized_flag(area);
3190
3191        size = PAGE_ALIGN(size);
3192        if (!(vm_flags & VM_DEFER_KMEMLEAK))
3193                kmemleak_vmalloc(area, size, gfp_mask);
3194
3195        return area->addr;
3196
3197fail:
3198        if (shift > PAGE_SHIFT) {
3199                shift = PAGE_SHIFT;
3200                align = real_align;
3201                size = real_size;
3202                goto again;
3203        }
3204
3205        return NULL;
3206}
3207
3208/**
3209 * __vmalloc_node - allocate virtually contiguous memory
3210 * @size:           allocation size
3211 * @align:          desired alignment
3212 * @gfp_mask:       flags for the page level allocator
3213 * @node:           node to use for allocation or NUMA_NO_NODE
3214 * @caller:         caller's return address
3215 *
3216 * Allocate enough pages to cover @size from the page level allocator with
3217 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3218 *
3219 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3220 * and __GFP_NOFAIL are not supported
3221 *
3222 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3223 * with mm people.
3224 *
3225 * Return: pointer to the allocated memory or %NULL on error
3226 */
3227void *__vmalloc_node(unsigned long size, unsigned long align,
3228                            gfp_t gfp_mask, int node, const void *caller)
3229{
3230        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3231                                gfp_mask, PAGE_KERNEL, 0, node, caller);
3232}
3233/*
3234 * This is only for performance analysis of vmalloc and stress purpose.
3235 * It is required by vmalloc test module, therefore do not use it other
3236 * than that.
3237 */
3238#ifdef CONFIG_TEST_VMALLOC_MODULE
3239EXPORT_SYMBOL_GPL(__vmalloc_node);
3240#endif
3241
3242void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3243{
3244        return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3245                                __builtin_return_address(0));
3246}
3247EXPORT_SYMBOL(__vmalloc);
3248
3249/**
3250 * vmalloc - allocate virtually contiguous memory
3251 * @size:    allocation size
3252 *
3253 * Allocate enough pages to cover @size from the page level
3254 * allocator and map them into contiguous kernel virtual space.
3255 *
3256 * For tight control over page level allocator and protection flags
3257 * use __vmalloc() instead.
3258 *
3259 * Return: pointer to the allocated memory or %NULL on error
3260 */
3261void *vmalloc(unsigned long size)
3262{
3263        return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3264                                __builtin_return_address(0));
3265}
3266EXPORT_SYMBOL(vmalloc);
3267
3268/**
3269 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3270 * @size:      allocation size
3271 * @gfp_mask:  flags for the page level allocator
3272 *
3273 * Allocate enough pages to cover @size from the page level
3274 * allocator and map them into contiguous kernel virtual space.
3275 * If @size is greater than or equal to PMD_SIZE, allow using
3276 * huge pages for the memory
3277 *
3278 * Return: pointer to the allocated memory or %NULL on error
3279 */
3280void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3281{
3282        return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3283                                    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3284                                    NUMA_NO_NODE, __builtin_return_address(0));
3285}
3286EXPORT_SYMBOL_GPL(vmalloc_huge);
3287
3288/**
3289 * vzalloc - allocate virtually contiguous memory with zero fill
3290 * @size:    allocation size
3291 *
3292 * Allocate enough pages to cover @size from the page level
3293 * allocator and map them into contiguous kernel virtual space.
3294 * The memory allocated is set to zero.
3295 *
3296 * For tight control over page level allocator and protection flags
3297 * use __vmalloc() instead.
3298 *
3299 * Return: pointer to the allocated memory or %NULL on error
3300 */
3301void *vzalloc(unsigned long size)
3302{
3303        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3304                                __builtin_return_address(0));
3305}
3306EXPORT_SYMBOL(vzalloc);
3307
3308/**
3309 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3310 * @size: allocation size
3311 *
3312 * The resulting memory area is zeroed so it can be mapped to userspace
3313 * without leaking data.
3314 *
3315 * Return: pointer to the allocated memory or %NULL on error
3316 */
3317void *vmalloc_user(unsigned long size)
3318{
3319        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3320                                    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3321                                    VM_USERMAP, NUMA_NO_NODE,
3322                                    __builtin_return_address(0));
3323}
3324EXPORT_SYMBOL(vmalloc_user);
3325
3326/**
3327 * vmalloc_node - allocate memory on a specific node
3328 * @size:         allocation size
3329 * @node:         numa node
3330 *
3331 * Allocate enough pages to cover @size from the page level
3332 * allocator and map them into contiguous kernel virtual space.
3333 *
3334 * For tight control over page level allocator and protection flags
3335 * use __vmalloc() instead.
3336 *
3337 * Return: pointer to the allocated memory or %NULL on error
3338 */
3339void *vmalloc_node(unsigned long size, int node)
3340{
3341        return __vmalloc_node(size, 1, GFP_KERNEL, node,
3342                        __builtin_return_address(0));
3343}
3344EXPORT_SYMBOL(vmalloc_node);
3345
3346/**
3347 * vzalloc_node - allocate memory on a specific node with zero fill
3348 * @size:       allocation size
3349 * @node:       numa node
3350 *
3351 * Allocate enough pages to cover @size from the page level
3352 * allocator and map them into contiguous kernel virtual space.
3353 * The memory allocated is set to zero.
3354 *
3355 * Return: pointer to the allocated memory or %NULL on error
3356 */
3357void *vzalloc_node(unsigned long size, int node)
3358{
3359        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3360                                __builtin_return_address(0));
3361}
3362EXPORT_SYMBOL(vzalloc_node);
3363
3364#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3365#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3366#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3367#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3368#else
3369/*
3370 * 64b systems should always have either DMA or DMA32 zones. For others
3371 * GFP_DMA32 should do the right thing and use the normal zone.
3372 */
3373#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3374#endif
3375
3376/**
3377 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3378 * @size:       allocation size
3379 *
3380 * Allocate enough 32bit PA addressable pages to cover @size from the
3381 * page level allocator and map them into contiguous kernel virtual space.
3382 *
3383 * Return: pointer to the allocated memory or %NULL on error
3384 */
3385void *vmalloc_32(unsigned long size)
3386{
3387        return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3388                        __builtin_return_address(0));
3389}
3390EXPORT_SYMBOL(vmalloc_32);
3391
3392/**
3393 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3394 * @size:            allocation size
3395 *
3396 * The resulting memory area is 32bit addressable and zeroed so it can be
3397 * mapped to userspace without leaking data.
3398 *
3399 * Return: pointer to the allocated memory or %NULL on error
3400 */
3401void *vmalloc_32_user(unsigned long size)
3402{
3403        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3404                                    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3405                                    VM_USERMAP, NUMA_NO_NODE,
3406                                    __builtin_return_address(0));
3407}
3408EXPORT_SYMBOL(vmalloc_32_user);
3409
3410/*
3411 * small helper routine , copy contents to buf from addr.
3412 * If the page is not present, fill zero.
3413 */
3414
3415static int aligned_vread(char *buf, char *addr, unsigned long count)
3416{
3417        struct page *p;
3418        int copied = 0;
3419
3420        while (count) {
3421                unsigned long offset, length;
3422
3423                offset = offset_in_page(addr);
3424                length = PAGE_SIZE - offset;
3425                if (length > count)
3426                        length = count;
3427                p = vmalloc_to_page(addr);
3428                /*
3429                 * To do safe access to this _mapped_ area, we need
3430                 * lock. But adding lock here means that we need to add
3431                 * overhead of vmalloc()/vfree() calls for this _debug_
3432                 * interface, rarely used. Instead of that, we'll use
3433                 * kmap() and get small overhead in this access function.
3434                 */
3435                if (p) {
3436                        /* We can expect USER0 is not used -- see vread() */
3437                        void *map = kmap_atomic(p);
3438                        memcpy(buf, map + offset, length);
3439                        kunmap_atomic(map);
3440                } else
3441                        memset(buf, 0, length);
3442
3443                addr += length;
3444                buf += length;
3445                copied += length;
3446                count -= length;
3447        }
3448        return copied;
3449}
3450
3451/**
3452 * vread() - read vmalloc area in a safe way.
3453 * @buf:     buffer for reading data
3454 * @addr:    vm address.
3455 * @count:   number of bytes to be read.
3456 *
3457 * This function checks that addr is a valid vmalloc'ed area, and
3458 * copy data from that area to a given buffer. If the given memory range
3459 * of [addr...addr+count) includes some valid address, data is copied to
3460 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3461 * IOREMAP area is treated as memory hole and no copy is done.
3462 *
3463 * If [addr...addr+count) doesn't includes any intersects with alive
3464 * vm_struct area, returns 0. @buf should be kernel's buffer.
3465 *
3466 * Note: In usual ops, vread() is never necessary because the caller
3467 * should know vmalloc() area is valid and can use memcpy().
3468 * This is for routines which have to access vmalloc area without
3469 * any information, as /proc/kcore.
3470 *
3471 * Return: number of bytes for which addr and buf should be increased
3472 * (same number as @count) or %0 if [addr...addr+count) doesn't
3473 * include any intersection with valid vmalloc area
3474 */
3475long vread(char *buf, char *addr, unsigned long count)
3476{
3477        struct vmap_area *va;
3478        struct vm_struct *vm;
3479        char *vaddr, *buf_start = buf;
3480        unsigned long buflen = count;
3481        unsigned long n;
3482
3483        addr = kasan_reset_tag(addr);
3484
3485        /* Don't allow overflow */
3486        if ((unsigned long) addr + count < count)
3487                count = -(unsigned long) addr;
3488
3489        spin_lock(&vmap_area_lock);
3490        va = find_vmap_area_exceed_addr((unsigned long)addr);
3491        if (!va)
3492                goto finished;
3493
3494        /* no intersects with alive vmap_area */
3495        if ((unsigned long)addr + count <= va->va_start)
3496                goto finished;
3497
3498        list_for_each_entry_from(va, &vmap_area_list, list) {
3499                if (!count)
3500                        break;
3501
3502                if (!va->vm)
3503                        continue;
3504
3505                vm = va->vm;
3506                vaddr = (char *) vm->addr;
3507                if (addr >= vaddr + get_vm_area_size(vm))
3508                        continue;
3509                while (addr < vaddr) {
3510                        if (count == 0)
3511                                goto finished;
3512                        *buf = '\0';
3513                        buf++;
3514                        addr++;
3515                        count--;
3516                }
3517                n = vaddr + get_vm_area_size(vm) - addr;
3518                if (n > count)
3519                        n = count;
3520                if (!(vm->flags & VM_IOREMAP))
3521                        aligned_vread(buf, addr, n);
3522                else /* IOREMAP area is treated as memory hole */
3523                        memset(buf, 0, n);
3524                buf += n;
3525                addr += n;
3526                count -= n;
3527        }
3528finished:
3529        spin_unlock(&vmap_area_lock);
3530
3531        if (buf == buf_start)
3532                return 0;
3533        /* zero-fill memory holes */
3534        if (buf != buf_start + buflen)
3535                memset(buf, 0, buflen - (buf - buf_start));
3536
3537        return buflen;
3538}
3539
3540/**
3541 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3542 * @vma:                vma to cover
3543 * @uaddr:              target user address to start at
3544 * @kaddr:              virtual address of vmalloc kernel memory
3545 * @pgoff:              offset from @kaddr to start at
3546 * @size:               size of map area
3547 *
3548 * Returns:     0 for success, -Exxx on failure
3549 *
3550 * This function checks that @kaddr is a valid vmalloc'ed area,
3551 * and that it is big enough to cover the range starting at
3552 * @uaddr in @vma. Will return failure if that criteria isn't
3553 * met.
3554 *
3555 * Similar to remap_pfn_range() (see mm/memory.c)
3556 */
3557int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3558                                void *kaddr, unsigned long pgoff,
3559                                unsigned long size)
3560{
3561        struct vm_struct *area;
3562        unsigned long off;
3563        unsigned long end_index;
3564
3565        if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3566                return -EINVAL;
3567
3568        size = PAGE_ALIGN(size);
3569
3570        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3571                return -EINVAL;
3572
3573        area = find_vm_area(kaddr);
3574        if (!area)
3575                return -EINVAL;
3576
3577        if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3578                return -EINVAL;
3579
3580        if (check_add_overflow(size, off, &end_index) ||
3581            end_index > get_vm_area_size(area))
3582                return -EINVAL;
3583        kaddr += off;
3584
3585        do {
3586                struct page *page = vmalloc_to_page(kaddr);
3587                int ret;
3588
3589                ret = vm_insert_page(vma, uaddr, page);
3590                if (ret)
3591                        return ret;
3592
3593                uaddr += PAGE_SIZE;
3594                kaddr += PAGE_SIZE;
3595                size -= PAGE_SIZE;
3596        } while (size > 0);
3597
3598        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3599
3600        return 0;
3601}
3602
3603/**
3604 * remap_vmalloc_range - map vmalloc pages to userspace
3605 * @vma:                vma to cover (map full range of vma)
3606 * @addr:               vmalloc memory
3607 * @pgoff:              number of pages into addr before first page to map
3608 *
3609 * Returns:     0 for success, -Exxx on failure
3610 *
3611 * This function checks that addr is a valid vmalloc'ed area, and
3612 * that it is big enough to cover the vma. Will return failure if
3613 * that criteria isn't met.
3614 *
3615 * Similar to remap_pfn_range() (see mm/memory.c)
3616 */
3617int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3618                                                unsigned long pgoff)
3619{
3620        return remap_vmalloc_range_partial(vma, vma->vm_start,
3621                                           addr, pgoff,
3622                                           vma->vm_end - vma->vm_start);
3623}
3624EXPORT_SYMBOL(remap_vmalloc_range);
3625
3626void free_vm_area(struct vm_struct *area)
3627{
3628        struct vm_struct *ret;
3629        ret = remove_vm_area(area->addr);
3630        BUG_ON(ret != area);
3631        kfree(area);
3632}
3633EXPORT_SYMBOL_GPL(free_vm_area);
3634
3635#ifdef CONFIG_SMP
3636static struct vmap_area *node_to_va(struct rb_node *n)
3637{
3638        return rb_entry_safe(n, struct vmap_area, rb_node);
3639}
3640
3641/**
3642 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3643 * @addr: target address
3644 *
3645 * Returns: vmap_area if it is found. If there is no such area
3646 *   the first highest(reverse order) vmap_area is returned
3647 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3648 *   if there are no any areas before @addr.
3649 */
3650static struct vmap_area *
3651pvm_find_va_enclose_addr(unsigned long addr)
3652{
3653        struct vmap_area *va, *tmp;
3654        struct rb_node *n;
3655
3656        n = free_vmap_area_root.rb_node;
3657        va = NULL;
3658
3659        while (n) {
3660                tmp = rb_entry(n, struct vmap_area, rb_node);
3661                if (tmp->va_start <= addr) {
3662                        va = tmp;
3663                        if (tmp->va_end >= addr)
3664                                break;
3665
3666                        n = n->rb_right;
3667                } else {
3668                        n = n->rb_left;
3669                }
3670        }
3671
3672        return va;
3673}
3674
3675/**
3676 * pvm_determine_end_from_reverse - find the highest aligned address
3677 * of free block below VMALLOC_END
3678 * @va:
3679 *   in - the VA we start the search(reverse order);
3680 *   out - the VA with the highest aligned end address.
3681 * @align: alignment for required highest address
3682 *
3683 * Returns: determined end address within vmap_area
3684 */
3685static unsigned long
3686pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3687{
3688        unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3689        unsigned long addr;
3690
3691        if (likely(*va)) {
3692                list_for_each_entry_from_reverse((*va),
3693                                &free_vmap_area_list, list) {
3694                        addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3695                        if ((*va)->va_start < addr)
3696                                return addr;
3697                }
3698        }
3699
3700        return 0;
3701}
3702
3703/**
3704 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3705 * @offsets: array containing offset of each area
3706 * @sizes: array containing size of each area
3707 * @nr_vms: the number of areas to allocate
3708 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3709 *
3710 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3711 *          vm_structs on success, %NULL on failure
3712 *
3713 * Percpu allocator wants to use congruent vm areas so that it can
3714 * maintain the offsets among percpu areas.  This function allocates
3715 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3716 * be scattered pretty far, distance between two areas easily going up
3717 * to gigabytes.  To avoid interacting with regular vmallocs, these
3718 * areas are allocated from top.
3719 *
3720 * Despite its complicated look, this allocator is rather simple. It
3721 * does everything top-down and scans free blocks from the end looking
3722 * for matching base. While scanning, if any of the areas do not fit the
3723 * base address is pulled down to fit the area. Scanning is repeated till
3724 * all the areas fit and then all necessary data structures are inserted
3725 * and the result is returned.
3726 */
3727struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3728                                     const size_t *sizes, int nr_vms,
3729                                     size_t align)
3730{
3731        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3732        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3733        struct vmap_area **vas, *va;
3734        struct vm_struct **vms;
3735        int area, area2, last_area, term_area;
3736        unsigned long base, start, size, end, last_end, orig_start, orig_end;
3737        bool purged = false;
3738        enum fit_type type;
3739
3740        /* verify parameters and allocate data structures */
3741        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3742        for (last_area = 0, area = 0; area < nr_vms; area++) {
3743                start = offsets[area];
3744                end = start + sizes[area];
3745
3746                /* is everything aligned properly? */
3747                BUG_ON(!IS_ALIGNED(offsets[area], align));
3748                BUG_ON(!IS_ALIGNED(sizes[area], align));
3749
3750                /* detect the area with the highest address */
3751                if (start > offsets[last_area])
3752                        last_area = area;
3753
3754                for (area2 = area + 1; area2 < nr_vms; area2++) {
3755                        unsigned long start2 = offsets[area2];
3756                        unsigned long end2 = start2 + sizes[area2];
3757
3758                        BUG_ON(start2 < end && start < end2);
3759                }
3760        }
3761        last_end = offsets[last_area] + sizes[last_area];
3762
3763        if (vmalloc_end - vmalloc_start < last_end) {
3764                WARN_ON(true);
3765                return NULL;
3766        }
3767
3768        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3769        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3770        if (!vas || !vms)
3771                goto err_free2;
3772
3773        for (area = 0; area < nr_vms; area++) {
3774                vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3775                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3776                if (!vas[area] || !vms[area])
3777                        goto err_free;
3778        }
3779retry:
3780        spin_lock(&free_vmap_area_lock);
3781
3782        /* start scanning - we scan from the top, begin with the last area */
3783        area = term_area = last_area;
3784        start = offsets[area];
3785        end = start + sizes[area];
3786
3787        va = pvm_find_va_enclose_addr(vmalloc_end);
3788        base = pvm_determine_end_from_reverse(&va, align) - end;
3789
3790        while (true) {
3791                /*
3792                 * base might have underflowed, add last_end before
3793                 * comparing.
3794                 */
3795                if (base + last_end < vmalloc_start + last_end)
3796                        goto overflow;
3797
3798                /*
3799                 * Fitting base has not been found.
3800                 */
3801                if (va == NULL)
3802                        goto overflow;
3803
3804                /*
3805                 * If required width exceeds current VA block, move
3806                 * base downwards and then recheck.
3807                 */
3808                if (base + end > va->va_end) {
3809                        base = pvm_determine_end_from_reverse(&va, align) - end;
3810                        term_area = area;
3811                        continue;
3812                }
3813
3814                /*
3815                 * If this VA does not fit, move base downwards and recheck.
3816                 */
3817                if (base + start < va->va_start) {
3818                        va = node_to_va(rb_prev(&va->rb_node));
3819                        base = pvm_determine_end_from_reverse(&va, align) - end;
3820                        term_area = area;
3821                        continue;
3822                }
3823
3824                /*
3825                 * This area fits, move on to the previous one.  If
3826                 * the previous one is the terminal one, we're done.
3827                 */
3828                area = (area + nr_vms - 1) % nr_vms;
3829                if (area == term_area)
3830                        break;
3831
3832                start = offsets[area];
3833                end = start + sizes[area];
3834                va = pvm_find_va_enclose_addr(base + end);
3835        }
3836
3837        /* we've found a fitting base, insert all va's */
3838        for (area = 0; area < nr_vms; area++) {
3839                int ret;
3840
3841                start = base + offsets[area];
3842                size = sizes[area];
3843
3844                va = pvm_find_va_enclose_addr(start);
3845                if (WARN_ON_ONCE(va == NULL))
3846                        /* It is a BUG(), but trigger recovery instead. */
3847                        goto recovery;
3848
3849                type = classify_va_fit_type(va, start, size);
3850                if (WARN_ON_ONCE(type == NOTHING_FIT))
3851                        /* It is a BUG(), but trigger recovery instead. */
3852                        goto recovery;
3853
3854                ret = adjust_va_to_fit_type(va, start, size, type);
3855                if (unlikely(ret))
3856                        goto recovery;
3857
3858                /* Allocated area. */
3859                va = vas[area];
3860                va->va_start = start;
3861                va->va_end = start + size;
3862        }
3863
3864        spin_unlock(&free_vmap_area_lock);
3865
3866        /* populate the kasan shadow space */
3867        for (area = 0; area < nr_vms; area++) {
3868                if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3869                        goto err_free_shadow;
3870        }
3871
3872        /* insert all vm's */
3873        spin_lock(&vmap_area_lock);
3874        for (area = 0; area < nr_vms; area++) {
3875                insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3876
3877                setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3878                                 pcpu_get_vm_areas);
3879        }
3880        spin_unlock(&vmap_area_lock);
3881
3882        /*
3883         * Mark allocated areas as accessible. Do it now as a best-effort
3884         * approach, as they can be mapped outside of vmalloc code.
3885         * With hardware tag-based KASAN, marking is skipped for
3886         * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3887         */
3888        for (area = 0; area < nr_vms; area++)
3889                vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3890                                vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3891
3892        kfree(vas);
3893        return vms;
3894
3895recovery:
3896        /*
3897         * Remove previously allocated areas. There is no
3898         * need in removing these areas from the busy tree,
3899         * because they are inserted only on the final step
3900         * and when pcpu_get_vm_areas() is success.
3901         */
3902        while (area--) {
3903                orig_start = vas[area]->va_start;
3904                orig_end = vas[area]->va_end;
3905                va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3906                                &free_vmap_area_list);
3907                if (va)
3908                        kasan_release_vmalloc(orig_start, orig_end,
3909                                va->va_start, va->va_end);
3910                vas[area] = NULL;
3911        }
3912
3913overflow:
3914        spin_unlock(&free_vmap_area_lock);
3915        if (!purged) {
3916                purge_vmap_area_lazy();
3917                purged = true;
3918
3919                /* Before "retry", check if we recover. */
3920                for (area = 0; area < nr_vms; area++) {
3921                        if (vas[area])
3922                                continue;
3923
3924                        vas[area] = kmem_cache_zalloc(
3925                                vmap_area_cachep, GFP_KERNEL);
3926                        if (!vas[area])
3927                                goto err_free;
3928                }
3929
3930                goto retry;
3931        }
3932
3933err_free:
3934        for (area = 0; area < nr_vms; area++) {
3935                if (vas[area])
3936                        kmem_cache_free(vmap_area_cachep, vas[area]);
3937
3938                kfree(vms[area]);
3939        }
3940err_free2:
3941        kfree(vas);
3942        kfree(vms);
3943        return NULL;
3944
3945err_free_shadow:
3946        spin_lock(&free_vmap_area_lock);
3947        /*
3948         * We release all the vmalloc shadows, even the ones for regions that
3949         * hadn't been successfully added. This relies on kasan_release_vmalloc
3950         * being able to tolerate this case.
3951         */
3952        for (area = 0; area < nr_vms; area++) {
3953                orig_start = vas[area]->va_start;
3954                orig_end = vas[area]->va_end;
3955                va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3956                                &free_vmap_area_list);
3957                if (va)
3958                        kasan_release_vmalloc(orig_start, orig_end,
3959                                va->va_start, va->va_end);
3960                vas[area] = NULL;
3961                kfree(vms[area]);
3962        }
3963        spin_unlock(&free_vmap_area_lock);
3964        kfree(vas);
3965        kfree(vms);
3966        return NULL;
3967}
3968
3969/**
3970 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3971 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3972 * @nr_vms: the number of allocated areas
3973 *
3974 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3975 */
3976void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3977{
3978        int i;
3979
3980        for (i = 0; i < nr_vms; i++)
3981                free_vm_area(vms[i]);
3982        kfree(vms);
3983}
3984#endif  /* CONFIG_SMP */
3985
3986#ifdef CONFIG_PRINTK
3987bool vmalloc_dump_obj(void *object)
3988{
3989        struct vm_struct *vm;
3990        void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3991
3992        vm = find_vm_area(objp);
3993        if (!vm)
3994                return false;
3995        pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3996                vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3997        return true;
3998}
3999#endif
4000
4001#ifdef CONFIG_PROC_FS
4002static void *s_start(struct seq_file *m, loff_t *pos)
4003        __acquires(&vmap_purge_lock)
4004        __acquires(&vmap_area_lock)
4005{
4006        mutex_lock(&vmap_purge_lock);
4007        spin_lock(&vmap_area_lock);
4008
4009        return seq_list_start(&vmap_area_list, *pos);
4010}
4011
4012static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4013{
4014        return seq_list_next(p, &vmap_area_list, pos);
4015}
4016
4017static void s_stop(struct seq_file *m, void *p)
4018        __releases(&vmap_area_lock)
4019        __releases(&vmap_purge_lock)
4020{
4021        spin_unlock(&vmap_area_lock);
4022        mutex_unlock(&vmap_purge_lock);
4023}
4024
4025static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4026{
4027        if (IS_ENABLED(CONFIG_NUMA)) {
4028                unsigned int nr, *counters = m->private;
4029                unsigned int step = 1U << vm_area_page_order(v);
4030
4031                if (!counters)
4032                        return;
4033
4034                if (v->flags & VM_UNINITIALIZED)
4035                        return;
4036                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4037                smp_rmb();
4038
4039                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4040
4041                for (nr = 0; nr < v->nr_pages; nr += step)
4042                        counters[page_to_nid(v->pages[nr])] += step;
4043                for_each_node_state(nr, N_HIGH_MEMORY)
4044                        if (counters[nr])
4045                                seq_printf(m, " N%u=%u", nr, counters[nr]);
4046        }
4047}
4048
4049static void show_purge_info(struct seq_file *m)
4050{
4051        struct vmap_area *va;
4052
4053        spin_lock(&purge_vmap_area_lock);
4054        list_for_each_entry(va, &purge_vmap_area_list, list) {
4055                seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4056                        (void *)va->va_start, (void *)va->va_end,
4057                        va->va_end - va->va_start);
4058        }
4059        spin_unlock(&purge_vmap_area_lock);
4060}
4061
4062static int s_show(struct seq_file *m, void *p)
4063{
4064        struct vmap_area *va;
4065        struct vm_struct *v;
4066
4067        va = list_entry(p, struct vmap_area, list);
4068
4069        /*
4070         * s_show can encounter race with remove_vm_area, !vm on behalf
4071         * of vmap area is being tear down or vm_map_ram allocation.
4072         */
4073        if (!va->vm) {
4074                seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4075                        (void *)va->va_start, (void *)va->va_end,
4076                        va->va_end - va->va_start);
4077
4078                goto final;
4079        }
4080
4081        v = va->vm;
4082
4083        seq_printf(m, "0x%pK-0x%pK %7ld",
4084                v->addr, v->addr + v->size, v->size);
4085
4086        if (v->caller)
4087                seq_printf(m, " %pS", v->caller);
4088
4089        if (v->nr_pages)
4090                seq_printf(m, " pages=%d", v->nr_pages);
4091
4092        if (v->phys_addr)
4093                seq_printf(m, " phys=%pa", &v->phys_addr);
4094
4095        if (v->flags & VM_IOREMAP)
4096                seq_puts(m, " ioremap");
4097
4098        if (v->flags & VM_ALLOC)
4099                seq_puts(m, " vmalloc");
4100
4101        if (v->flags & VM_MAP)
4102                seq_puts(m, " vmap");
4103
4104        if (v->flags & VM_USERMAP)
4105                seq_puts(m, " user");
4106
4107        if (v->flags & VM_DMA_COHERENT)
4108                seq_puts(m, " dma-coherent");
4109
4110        if (is_vmalloc_addr(v->pages))
4111                seq_puts(m, " vpages");
4112
4113        show_numa_info(m, v);
4114        seq_putc(m, '\n');
4115
4116        /*
4117         * As a final step, dump "unpurged" areas.
4118         */
4119final:
4120        if (list_is_last(&va->list, &vmap_area_list))
4121                show_purge_info(m);
4122
4123        return 0;
4124}
4125
4126static const struct seq_operations vmalloc_op = {
4127        .start = s_start,
4128        .next = s_next,
4129        .stop = s_stop,
4130        .show = s_show,
4131};
4132
4133static int __init proc_vmalloc_init(void)
4134{
4135        if (IS_ENABLED(CONFIG_NUMA))
4136                proc_create_seq_private("vmallocinfo", 0400, NULL,
4137                                &vmalloc_op,
4138                                nr_node_ids * sizeof(unsigned int), NULL);
4139        else
4140                proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4141        return 0;
4142}
4143module_init(proc_vmalloc_init);
4144
4145#endif
4146