linux/net/core/skbuff.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Routines having to do with the 'struct sk_buff' memory handlers.
   4 *
   5 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   6 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   7 *
   8 *      Fixes:
   9 *              Alan Cox        :       Fixed the worst of the load
  10 *                                      balancer bugs.
  11 *              Dave Platt      :       Interrupt stacking fix.
  12 *      Richard Kooijman        :       Timestamp fixes.
  13 *              Alan Cox        :       Changed buffer format.
  14 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  15 *              Linus Torvalds  :       Better skb_clone.
  16 *              Alan Cox        :       Added skb_copy.
  17 *              Alan Cox        :       Added all the changed routines Linus
  18 *                                      only put in the headers
  19 *              Ray VanTassle   :       Fixed --skb->lock in free
  20 *              Alan Cox        :       skb_copy copy arp field
  21 *              Andi Kleen      :       slabified it.
  22 *              Robert Olsson   :       Removed skb_head_pool
  23 *
  24 *      NOTE:
  25 *              The __skb_ routines should be called with interrupts
  26 *      disabled, or you better be *real* sure that the operation is atomic
  27 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  28 *      or via disabling bottom half handlers, etc).
  29 */
  30
  31/*
  32 *      The functions in this file will not compile correctly with gcc 2.4.x
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/slab.h>
  45#include <linux/tcp.h>
  46#include <linux/udp.h>
  47#include <linux/sctp.h>
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
  61#include <linux/if_vlan.h>
  62#include <linux/mpls.h>
  63#include <linux/kcov.h>
  64
  65#include <net/protocol.h>
  66#include <net/dst.h>
  67#include <net/sock.h>
  68#include <net/checksum.h>
  69#include <net/ip6_checksum.h>
  70#include <net/xfrm.h>
  71#include <net/mpls.h>
  72#include <net/mptcp.h>
  73#include <net/mctp.h>
  74#include <net/page_pool.h>
  75
  76#include <linux/uaccess.h>
  77#include <trace/events/skb.h>
  78#include <linux/highmem.h>
  79#include <linux/capability.h>
  80#include <linux/user_namespace.h>
  81#include <linux/indirect_call_wrapper.h>
  82
  83#include "dev.h"
  84#include "sock_destructor.h"
  85
  86struct kmem_cache *skbuff_head_cache __ro_after_init;
  87static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
  88#ifdef CONFIG_SKB_EXTENSIONS
  89static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  90#endif
  91int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  92EXPORT_SYMBOL(sysctl_max_skb_frags);
  93
  94/**
  95 *      skb_panic - private function for out-of-line support
  96 *      @skb:   buffer
  97 *      @sz:    size
  98 *      @addr:  address
  99 *      @msg:   skb_over_panic or skb_under_panic
 100 *
 101 *      Out-of-line support for skb_put() and skb_push().
 102 *      Called via the wrapper skb_over_panic() or skb_under_panic().
 103 *      Keep out of line to prevent kernel bloat.
 104 *      __builtin_return_address is not used because it is not always reliable.
 105 */
 106static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 107                      const char msg[])
 108{
 109        pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
 110                 msg, addr, skb->len, sz, skb->head, skb->data,
 111                 (unsigned long)skb->tail, (unsigned long)skb->end,
 112                 skb->dev ? skb->dev->name : "<NULL>");
 113        BUG();
 114}
 115
 116static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 117{
 118        skb_panic(skb, sz, addr, __func__);
 119}
 120
 121static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 122{
 123        skb_panic(skb, sz, addr, __func__);
 124}
 125
 126#define NAPI_SKB_CACHE_SIZE     64
 127#define NAPI_SKB_CACHE_BULK     16
 128#define NAPI_SKB_CACHE_HALF     (NAPI_SKB_CACHE_SIZE / 2)
 129
 130struct napi_alloc_cache {
 131        struct page_frag_cache page;
 132        unsigned int skb_count;
 133        void *skb_cache[NAPI_SKB_CACHE_SIZE];
 134};
 135
 136static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 137static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 138
 139void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
 140{
 141        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 142
 143        fragsz = SKB_DATA_ALIGN(fragsz);
 144
 145        return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
 146}
 147EXPORT_SYMBOL(__napi_alloc_frag_align);
 148
 149void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
 150{
 151        void *data;
 152
 153        fragsz = SKB_DATA_ALIGN(fragsz);
 154        if (in_hardirq() || irqs_disabled()) {
 155                struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
 156
 157                data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
 158        } else {
 159                struct napi_alloc_cache *nc;
 160
 161                local_bh_disable();
 162                nc = this_cpu_ptr(&napi_alloc_cache);
 163                data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
 164                local_bh_enable();
 165        }
 166        return data;
 167}
 168EXPORT_SYMBOL(__netdev_alloc_frag_align);
 169
 170static struct sk_buff *napi_skb_cache_get(void)
 171{
 172        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 173        struct sk_buff *skb;
 174
 175        if (unlikely(!nc->skb_count))
 176                nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
 177                                                      GFP_ATOMIC,
 178                                                      NAPI_SKB_CACHE_BULK,
 179                                                      nc->skb_cache);
 180        if (unlikely(!nc->skb_count))
 181                return NULL;
 182
 183        skb = nc->skb_cache[--nc->skb_count];
 184        kasan_unpoison_object_data(skbuff_head_cache, skb);
 185
 186        return skb;
 187}
 188
 189/* Caller must provide SKB that is memset cleared */
 190static void __build_skb_around(struct sk_buff *skb, void *data,
 191                               unsigned int frag_size)
 192{
 193        struct skb_shared_info *shinfo;
 194        unsigned int size = frag_size ? : ksize(data);
 195
 196        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 197
 198        /* Assumes caller memset cleared SKB */
 199        skb->truesize = SKB_TRUESIZE(size);
 200        refcount_set(&skb->users, 1);
 201        skb->head = data;
 202        skb->data = data;
 203        skb_reset_tail_pointer(skb);
 204        skb_set_end_offset(skb, size);
 205        skb->mac_header = (typeof(skb->mac_header))~0U;
 206        skb->transport_header = (typeof(skb->transport_header))~0U;
 207        skb->alloc_cpu = raw_smp_processor_id();
 208        /* make sure we initialize shinfo sequentially */
 209        shinfo = skb_shinfo(skb);
 210        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 211        atomic_set(&shinfo->dataref, 1);
 212
 213        skb_set_kcov_handle(skb, kcov_common_handle());
 214}
 215
 216/**
 217 * __build_skb - build a network buffer
 218 * @data: data buffer provided by caller
 219 * @frag_size: size of data, or 0 if head was kmalloced
 220 *
 221 * Allocate a new &sk_buff. Caller provides space holding head and
 222 * skb_shared_info. @data must have been allocated by kmalloc() only if
 223 * @frag_size is 0, otherwise data should come from the page allocator
 224 *  or vmalloc()
 225 * The return is the new skb buffer.
 226 * On a failure the return is %NULL, and @data is not freed.
 227 * Notes :
 228 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 229 *  Driver should add room at head (NET_SKB_PAD) and
 230 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 231 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 232 *  before giving packet to stack.
 233 *  RX rings only contains data buffers, not full skbs.
 234 */
 235struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 236{
 237        struct sk_buff *skb;
 238
 239        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 240        if (unlikely(!skb))
 241                return NULL;
 242
 243        memset(skb, 0, offsetof(struct sk_buff, tail));
 244        __build_skb_around(skb, data, frag_size);
 245
 246        return skb;
 247}
 248
 249/* build_skb() is wrapper over __build_skb(), that specifically
 250 * takes care of skb->head and skb->pfmemalloc
 251 * This means that if @frag_size is not zero, then @data must be backed
 252 * by a page fragment, not kmalloc() or vmalloc()
 253 */
 254struct sk_buff *build_skb(void *data, unsigned int frag_size)
 255{
 256        struct sk_buff *skb = __build_skb(data, frag_size);
 257
 258        if (skb && frag_size) {
 259                skb->head_frag = 1;
 260                if (page_is_pfmemalloc(virt_to_head_page(data)))
 261                        skb->pfmemalloc = 1;
 262        }
 263        return skb;
 264}
 265EXPORT_SYMBOL(build_skb);
 266
 267/**
 268 * build_skb_around - build a network buffer around provided skb
 269 * @skb: sk_buff provide by caller, must be memset cleared
 270 * @data: data buffer provided by caller
 271 * @frag_size: size of data, or 0 if head was kmalloced
 272 */
 273struct sk_buff *build_skb_around(struct sk_buff *skb,
 274                                 void *data, unsigned int frag_size)
 275{
 276        if (unlikely(!skb))
 277                return NULL;
 278
 279        __build_skb_around(skb, data, frag_size);
 280
 281        if (frag_size) {
 282                skb->head_frag = 1;
 283                if (page_is_pfmemalloc(virt_to_head_page(data)))
 284                        skb->pfmemalloc = 1;
 285        }
 286        return skb;
 287}
 288EXPORT_SYMBOL(build_skb_around);
 289
 290/**
 291 * __napi_build_skb - build a network buffer
 292 * @data: data buffer provided by caller
 293 * @frag_size: size of data, or 0 if head was kmalloced
 294 *
 295 * Version of __build_skb() that uses NAPI percpu caches to obtain
 296 * skbuff_head instead of inplace allocation.
 297 *
 298 * Returns a new &sk_buff on success, %NULL on allocation failure.
 299 */
 300static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
 301{
 302        struct sk_buff *skb;
 303
 304        skb = napi_skb_cache_get();
 305        if (unlikely(!skb))
 306                return NULL;
 307
 308        memset(skb, 0, offsetof(struct sk_buff, tail));
 309        __build_skb_around(skb, data, frag_size);
 310
 311        return skb;
 312}
 313
 314/**
 315 * napi_build_skb - build a network buffer
 316 * @data: data buffer provided by caller
 317 * @frag_size: size of data, or 0 if head was kmalloced
 318 *
 319 * Version of __napi_build_skb() that takes care of skb->head_frag
 320 * and skb->pfmemalloc when the data is a page or page fragment.
 321 *
 322 * Returns a new &sk_buff on success, %NULL on allocation failure.
 323 */
 324struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
 325{
 326        struct sk_buff *skb = __napi_build_skb(data, frag_size);
 327
 328        if (likely(skb) && frag_size) {
 329                skb->head_frag = 1;
 330                skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
 331        }
 332
 333        return skb;
 334}
 335EXPORT_SYMBOL(napi_build_skb);
 336
 337/*
 338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 339 * the caller if emergency pfmemalloc reserves are being used. If it is and
 340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 341 * may be used. Otherwise, the packet data may be discarded until enough
 342 * memory is free
 343 */
 344static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
 345                             bool *pfmemalloc)
 346{
 347        void *obj;
 348        bool ret_pfmemalloc = false;
 349
 350        /*
 351         * Try a regular allocation, when that fails and we're not entitled
 352         * to the reserves, fail.
 353         */
 354        obj = kmalloc_node_track_caller(size,
 355                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 356                                        node);
 357        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 358                goto out;
 359
 360        /* Try again but now we are using pfmemalloc reserves */
 361        ret_pfmemalloc = true;
 362        obj = kmalloc_node_track_caller(size, flags, node);
 363
 364out:
 365        if (pfmemalloc)
 366                *pfmemalloc = ret_pfmemalloc;
 367
 368        return obj;
 369}
 370
 371/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 372 *      'private' fields and also do memory statistics to find all the
 373 *      [BEEP] leaks.
 374 *
 375 */
 376
 377/**
 378 *      __alloc_skb     -       allocate a network buffer
 379 *      @size: size to allocate
 380 *      @gfp_mask: allocation mask
 381 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 382 *              instead of head cache and allocate a cloned (child) skb.
 383 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 384 *              allocations in case the data is required for writeback
 385 *      @node: numa node to allocate memory on
 386 *
 387 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 388 *      tail room of at least size bytes. The object has a reference count
 389 *      of one. The return is the buffer. On a failure the return is %NULL.
 390 *
 391 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 392 *      %GFP_ATOMIC.
 393 */
 394struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 395                            int flags, int node)
 396{
 397        struct kmem_cache *cache;
 398        struct sk_buff *skb;
 399        unsigned int osize;
 400        bool pfmemalloc;
 401        u8 *data;
 402
 403        cache = (flags & SKB_ALLOC_FCLONE)
 404                ? skbuff_fclone_cache : skbuff_head_cache;
 405
 406        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 407                gfp_mask |= __GFP_MEMALLOC;
 408
 409        /* Get the HEAD */
 410        if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
 411            likely(node == NUMA_NO_NODE || node == numa_mem_id()))
 412                skb = napi_skb_cache_get();
 413        else
 414                skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
 415        if (unlikely(!skb))
 416                return NULL;
 417        prefetchw(skb);
 418
 419        /* We do our best to align skb_shared_info on a separate cache
 420         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 421         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 422         * Both skb->head and skb_shared_info are cache line aligned.
 423         */
 424        size = SKB_DATA_ALIGN(size);
 425        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 426        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 427        if (unlikely(!data))
 428                goto nodata;
 429        /* kmalloc(size) might give us more room than requested.
 430         * Put skb_shared_info exactly at the end of allocated zone,
 431         * to allow max possible filling before reallocation.
 432         */
 433        osize = ksize(data);
 434        size = SKB_WITH_OVERHEAD(osize);
 435        prefetchw(data + size);
 436
 437        /*
 438         * Only clear those fields we need to clear, not those that we will
 439         * actually initialise below. Hence, don't put any more fields after
 440         * the tail pointer in struct sk_buff!
 441         */
 442        memset(skb, 0, offsetof(struct sk_buff, tail));
 443        __build_skb_around(skb, data, osize);
 444        skb->pfmemalloc = pfmemalloc;
 445
 446        if (flags & SKB_ALLOC_FCLONE) {
 447                struct sk_buff_fclones *fclones;
 448
 449                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 450
 451                skb->fclone = SKB_FCLONE_ORIG;
 452                refcount_set(&fclones->fclone_ref, 1);
 453
 454                fclones->skb2.fclone = SKB_FCLONE_CLONE;
 455        }
 456
 457        return skb;
 458
 459nodata:
 460        kmem_cache_free(cache, skb);
 461        return NULL;
 462}
 463EXPORT_SYMBOL(__alloc_skb);
 464
 465/**
 466 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 467 *      @dev: network device to receive on
 468 *      @len: length to allocate
 469 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 470 *
 471 *      Allocate a new &sk_buff and assign it a usage count of one. The
 472 *      buffer has NET_SKB_PAD headroom built in. Users should allocate
 473 *      the headroom they think they need without accounting for the
 474 *      built in space. The built in space is used for optimisations.
 475 *
 476 *      %NULL is returned if there is no free memory.
 477 */
 478struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 479                                   gfp_t gfp_mask)
 480{
 481        struct page_frag_cache *nc;
 482        struct sk_buff *skb;
 483        bool pfmemalloc;
 484        void *data;
 485
 486        len += NET_SKB_PAD;
 487
 488        /* If requested length is either too small or too big,
 489         * we use kmalloc() for skb->head allocation.
 490         */
 491        if (len <= SKB_WITH_OVERHEAD(1024) ||
 492            len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 493            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 494                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 495                if (!skb)
 496                        goto skb_fail;
 497                goto skb_success;
 498        }
 499
 500        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 501        len = SKB_DATA_ALIGN(len);
 502
 503        if (sk_memalloc_socks())
 504                gfp_mask |= __GFP_MEMALLOC;
 505
 506        if (in_hardirq() || irqs_disabled()) {
 507                nc = this_cpu_ptr(&netdev_alloc_cache);
 508                data = page_frag_alloc(nc, len, gfp_mask);
 509                pfmemalloc = nc->pfmemalloc;
 510        } else {
 511                local_bh_disable();
 512                nc = this_cpu_ptr(&napi_alloc_cache.page);
 513                data = page_frag_alloc(nc, len, gfp_mask);
 514                pfmemalloc = nc->pfmemalloc;
 515                local_bh_enable();
 516        }
 517
 518        if (unlikely(!data))
 519                return NULL;
 520
 521        skb = __build_skb(data, len);
 522        if (unlikely(!skb)) {
 523                skb_free_frag(data);
 524                return NULL;
 525        }
 526
 527        if (pfmemalloc)
 528                skb->pfmemalloc = 1;
 529        skb->head_frag = 1;
 530
 531skb_success:
 532        skb_reserve(skb, NET_SKB_PAD);
 533        skb->dev = dev;
 534
 535skb_fail:
 536        return skb;
 537}
 538EXPORT_SYMBOL(__netdev_alloc_skb);
 539
 540/**
 541 *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 542 *      @napi: napi instance this buffer was allocated for
 543 *      @len: length to allocate
 544 *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 545 *
 546 *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
 547 *      attempt to allocate the head from a special reserved region used
 548 *      only for NAPI Rx allocation.  By doing this we can save several
 549 *      CPU cycles by avoiding having to disable and re-enable IRQs.
 550 *
 551 *      %NULL is returned if there is no free memory.
 552 */
 553struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 554                                 gfp_t gfp_mask)
 555{
 556        struct napi_alloc_cache *nc;
 557        struct sk_buff *skb;
 558        void *data;
 559
 560        len += NET_SKB_PAD + NET_IP_ALIGN;
 561
 562        /* If requested length is either too small or too big,
 563         * we use kmalloc() for skb->head allocation.
 564         */
 565        if (len <= SKB_WITH_OVERHEAD(1024) ||
 566            len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 567            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 568                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
 569                                  NUMA_NO_NODE);
 570                if (!skb)
 571                        goto skb_fail;
 572                goto skb_success;
 573        }
 574
 575        nc = this_cpu_ptr(&napi_alloc_cache);
 576        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 577        len = SKB_DATA_ALIGN(len);
 578
 579        if (sk_memalloc_socks())
 580                gfp_mask |= __GFP_MEMALLOC;
 581
 582        data = page_frag_alloc(&nc->page, len, gfp_mask);
 583        if (unlikely(!data))
 584                return NULL;
 585
 586        skb = __napi_build_skb(data, len);
 587        if (unlikely(!skb)) {
 588                skb_free_frag(data);
 589                return NULL;
 590        }
 591
 592        if (nc->page.pfmemalloc)
 593                skb->pfmemalloc = 1;
 594        skb->head_frag = 1;
 595
 596skb_success:
 597        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 598        skb->dev = napi->dev;
 599
 600skb_fail:
 601        return skb;
 602}
 603EXPORT_SYMBOL(__napi_alloc_skb);
 604
 605void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 606                     int size, unsigned int truesize)
 607{
 608        skb_fill_page_desc(skb, i, page, off, size);
 609        skb->len += size;
 610        skb->data_len += size;
 611        skb->truesize += truesize;
 612}
 613EXPORT_SYMBOL(skb_add_rx_frag);
 614
 615void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 616                          unsigned int truesize)
 617{
 618        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 619
 620        skb_frag_size_add(frag, size);
 621        skb->len += size;
 622        skb->data_len += size;
 623        skb->truesize += truesize;
 624}
 625EXPORT_SYMBOL(skb_coalesce_rx_frag);
 626
 627static void skb_drop_list(struct sk_buff **listp)
 628{
 629        kfree_skb_list(*listp);
 630        *listp = NULL;
 631}
 632
 633static inline void skb_drop_fraglist(struct sk_buff *skb)
 634{
 635        skb_drop_list(&skb_shinfo(skb)->frag_list);
 636}
 637
 638static void skb_clone_fraglist(struct sk_buff *skb)
 639{
 640        struct sk_buff *list;
 641
 642        skb_walk_frags(skb, list)
 643                skb_get(list);
 644}
 645
 646static void skb_free_head(struct sk_buff *skb)
 647{
 648        unsigned char *head = skb->head;
 649
 650        if (skb->head_frag) {
 651                if (skb_pp_recycle(skb, head))
 652                        return;
 653                skb_free_frag(head);
 654        } else {
 655                kfree(head);
 656        }
 657}
 658
 659static void skb_release_data(struct sk_buff *skb)
 660{
 661        struct skb_shared_info *shinfo = skb_shinfo(skb);
 662        int i;
 663
 664        if (skb->cloned &&
 665            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 666                              &shinfo->dataref))
 667                goto exit;
 668
 669        skb_zcopy_clear(skb, true);
 670
 671        for (i = 0; i < shinfo->nr_frags; i++)
 672                __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
 673
 674        if (shinfo->frag_list)
 675                kfree_skb_list(shinfo->frag_list);
 676
 677        skb_free_head(skb);
 678exit:
 679        /* When we clone an SKB we copy the reycling bit. The pp_recycle
 680         * bit is only set on the head though, so in order to avoid races
 681         * while trying to recycle fragments on __skb_frag_unref() we need
 682         * to make one SKB responsible for triggering the recycle path.
 683         * So disable the recycling bit if an SKB is cloned and we have
 684         * additional references to the fragmented part of the SKB.
 685         * Eventually the last SKB will have the recycling bit set and it's
 686         * dataref set to 0, which will trigger the recycling
 687         */
 688        skb->pp_recycle = 0;
 689}
 690
 691/*
 692 *      Free an skbuff by memory without cleaning the state.
 693 */
 694static void kfree_skbmem(struct sk_buff *skb)
 695{
 696        struct sk_buff_fclones *fclones;
 697
 698        switch (skb->fclone) {
 699        case SKB_FCLONE_UNAVAILABLE:
 700                kmem_cache_free(skbuff_head_cache, skb);
 701                return;
 702
 703        case SKB_FCLONE_ORIG:
 704                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 705
 706                /* We usually free the clone (TX completion) before original skb
 707                 * This test would have no chance to be true for the clone,
 708                 * while here, branch prediction will be good.
 709                 */
 710                if (refcount_read(&fclones->fclone_ref) == 1)
 711                        goto fastpath;
 712                break;
 713
 714        default: /* SKB_FCLONE_CLONE */
 715                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 716                break;
 717        }
 718        if (!refcount_dec_and_test(&fclones->fclone_ref))
 719                return;
 720fastpath:
 721        kmem_cache_free(skbuff_fclone_cache, fclones);
 722}
 723
 724void skb_release_head_state(struct sk_buff *skb)
 725{
 726        skb_dst_drop(skb);
 727        if (skb->destructor) {
 728                WARN_ON(in_hardirq());
 729                skb->destructor(skb);
 730        }
 731#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 732        nf_conntrack_put(skb_nfct(skb));
 733#endif
 734        skb_ext_put(skb);
 735}
 736
 737/* Free everything but the sk_buff shell. */
 738static void skb_release_all(struct sk_buff *skb)
 739{
 740        skb_release_head_state(skb);
 741        if (likely(skb->head))
 742                skb_release_data(skb);
 743}
 744
 745/**
 746 *      __kfree_skb - private function
 747 *      @skb: buffer
 748 *
 749 *      Free an sk_buff. Release anything attached to the buffer.
 750 *      Clean the state. This is an internal helper function. Users should
 751 *      always call kfree_skb
 752 */
 753
 754void __kfree_skb(struct sk_buff *skb)
 755{
 756        skb_release_all(skb);
 757        kfree_skbmem(skb);
 758}
 759EXPORT_SYMBOL(__kfree_skb);
 760
 761/**
 762 *      kfree_skb_reason - free an sk_buff with special reason
 763 *      @skb: buffer to free
 764 *      @reason: reason why this skb is dropped
 765 *
 766 *      Drop a reference to the buffer and free it if the usage count has
 767 *      hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
 768 *      tracepoint.
 769 */
 770void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
 771{
 772        if (!skb_unref(skb))
 773                return;
 774
 775        DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
 776
 777        trace_kfree_skb(skb, __builtin_return_address(0), reason);
 778        __kfree_skb(skb);
 779}
 780EXPORT_SYMBOL(kfree_skb_reason);
 781
 782void kfree_skb_list_reason(struct sk_buff *segs,
 783                           enum skb_drop_reason reason)
 784{
 785        while (segs) {
 786                struct sk_buff *next = segs->next;
 787
 788                kfree_skb_reason(segs, reason);
 789                segs = next;
 790        }
 791}
 792EXPORT_SYMBOL(kfree_skb_list_reason);
 793
 794/* Dump skb information and contents.
 795 *
 796 * Must only be called from net_ratelimit()-ed paths.
 797 *
 798 * Dumps whole packets if full_pkt, only headers otherwise.
 799 */
 800void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
 801{
 802        struct skb_shared_info *sh = skb_shinfo(skb);
 803        struct net_device *dev = skb->dev;
 804        struct sock *sk = skb->sk;
 805        struct sk_buff *list_skb;
 806        bool has_mac, has_trans;
 807        int headroom, tailroom;
 808        int i, len, seg_len;
 809
 810        if (full_pkt)
 811                len = skb->len;
 812        else
 813                len = min_t(int, skb->len, MAX_HEADER + 128);
 814
 815        headroom = skb_headroom(skb);
 816        tailroom = skb_tailroom(skb);
 817
 818        has_mac = skb_mac_header_was_set(skb);
 819        has_trans = skb_transport_header_was_set(skb);
 820
 821        printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
 822               "mac=(%d,%d) net=(%d,%d) trans=%d\n"
 823               "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
 824               "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
 825               "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
 826               level, skb->len, headroom, skb_headlen(skb), tailroom,
 827               has_mac ? skb->mac_header : -1,
 828               has_mac ? skb_mac_header_len(skb) : -1,
 829               skb->network_header,
 830               has_trans ? skb_network_header_len(skb) : -1,
 831               has_trans ? skb->transport_header : -1,
 832               sh->tx_flags, sh->nr_frags,
 833               sh->gso_size, sh->gso_type, sh->gso_segs,
 834               skb->csum, skb->ip_summed, skb->csum_complete_sw,
 835               skb->csum_valid, skb->csum_level,
 836               skb->hash, skb->sw_hash, skb->l4_hash,
 837               ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
 838
 839        if (dev)
 840                printk("%sdev name=%s feat=%pNF\n",
 841                       level, dev->name, &dev->features);
 842        if (sk)
 843                printk("%ssk family=%hu type=%u proto=%u\n",
 844                       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
 845
 846        if (full_pkt && headroom)
 847                print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
 848                               16, 1, skb->head, headroom, false);
 849
 850        seg_len = min_t(int, skb_headlen(skb), len);
 851        if (seg_len)
 852                print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
 853                               16, 1, skb->data, seg_len, false);
 854        len -= seg_len;
 855
 856        if (full_pkt && tailroom)
 857                print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
 858                               16, 1, skb_tail_pointer(skb), tailroom, false);
 859
 860        for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
 861                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 862                u32 p_off, p_len, copied;
 863                struct page *p;
 864                u8 *vaddr;
 865
 866                skb_frag_foreach_page(frag, skb_frag_off(frag),
 867                                      skb_frag_size(frag), p, p_off, p_len,
 868                                      copied) {
 869                        seg_len = min_t(int, p_len, len);
 870                        vaddr = kmap_atomic(p);
 871                        print_hex_dump(level, "skb frag:     ",
 872                                       DUMP_PREFIX_OFFSET,
 873                                       16, 1, vaddr + p_off, seg_len, false);
 874                        kunmap_atomic(vaddr);
 875                        len -= seg_len;
 876                        if (!len)
 877                                break;
 878                }
 879        }
 880
 881        if (full_pkt && skb_has_frag_list(skb)) {
 882                printk("skb fraglist:\n");
 883                skb_walk_frags(skb, list_skb)
 884                        skb_dump(level, list_skb, true);
 885        }
 886}
 887EXPORT_SYMBOL(skb_dump);
 888
 889/**
 890 *      skb_tx_error - report an sk_buff xmit error
 891 *      @skb: buffer that triggered an error
 892 *
 893 *      Report xmit error if a device callback is tracking this skb.
 894 *      skb must be freed afterwards.
 895 */
 896void skb_tx_error(struct sk_buff *skb)
 897{
 898        skb_zcopy_clear(skb, true);
 899}
 900EXPORT_SYMBOL(skb_tx_error);
 901
 902#ifdef CONFIG_TRACEPOINTS
 903/**
 904 *      consume_skb - free an skbuff
 905 *      @skb: buffer to free
 906 *
 907 *      Drop a ref to the buffer and free it if the usage count has hit zero
 908 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 909 *      is being dropped after a failure and notes that
 910 */
 911void consume_skb(struct sk_buff *skb)
 912{
 913        if (!skb_unref(skb))
 914                return;
 915
 916        trace_consume_skb(skb);
 917        __kfree_skb(skb);
 918}
 919EXPORT_SYMBOL(consume_skb);
 920#endif
 921
 922/**
 923 *      __consume_stateless_skb - free an skbuff, assuming it is stateless
 924 *      @skb: buffer to free
 925 *
 926 *      Alike consume_skb(), but this variant assumes that this is the last
 927 *      skb reference and all the head states have been already dropped
 928 */
 929void __consume_stateless_skb(struct sk_buff *skb)
 930{
 931        trace_consume_skb(skb);
 932        skb_release_data(skb);
 933        kfree_skbmem(skb);
 934}
 935
 936static void napi_skb_cache_put(struct sk_buff *skb)
 937{
 938        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 939        u32 i;
 940
 941        kasan_poison_object_data(skbuff_head_cache, skb);
 942        nc->skb_cache[nc->skb_count++] = skb;
 943
 944        if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 945                for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
 946                        kasan_unpoison_object_data(skbuff_head_cache,
 947                                                   nc->skb_cache[i]);
 948
 949                kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
 950                                     nc->skb_cache + NAPI_SKB_CACHE_HALF);
 951                nc->skb_count = NAPI_SKB_CACHE_HALF;
 952        }
 953}
 954
 955void __kfree_skb_defer(struct sk_buff *skb)
 956{
 957        skb_release_all(skb);
 958        napi_skb_cache_put(skb);
 959}
 960
 961void napi_skb_free_stolen_head(struct sk_buff *skb)
 962{
 963        if (unlikely(skb->slow_gro)) {
 964                nf_reset_ct(skb);
 965                skb_dst_drop(skb);
 966                skb_ext_put(skb);
 967                skb_orphan(skb);
 968                skb->slow_gro = 0;
 969        }
 970        napi_skb_cache_put(skb);
 971}
 972
 973void napi_consume_skb(struct sk_buff *skb, int budget)
 974{
 975        /* Zero budget indicate non-NAPI context called us, like netpoll */
 976        if (unlikely(!budget)) {
 977                dev_consume_skb_any(skb);
 978                return;
 979        }
 980
 981        lockdep_assert_in_softirq();
 982
 983        if (!skb_unref(skb))
 984                return;
 985
 986        /* if reaching here SKB is ready to free */
 987        trace_consume_skb(skb);
 988
 989        /* if SKB is a clone, don't handle this case */
 990        if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 991                __kfree_skb(skb);
 992                return;
 993        }
 994
 995        skb_release_all(skb);
 996        napi_skb_cache_put(skb);
 997}
 998EXPORT_SYMBOL(napi_consume_skb);
 999
1000/* Make sure a field is contained by headers group */
1001#define CHECK_SKB_FIELD(field) \
1002        BUILD_BUG_ON(offsetof(struct sk_buff, field) !=         \
1003                     offsetof(struct sk_buff, headers.field));  \
1004
1005static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1006{
1007        new->tstamp             = old->tstamp;
1008        /* We do not copy old->sk */
1009        new->dev                = old->dev;
1010        memcpy(new->cb, old->cb, sizeof(old->cb));
1011        skb_dst_copy(new, old);
1012        __skb_ext_copy(new, old);
1013        __nf_copy(new, old, false);
1014
1015        /* Note : this field could be in the headers group.
1016         * It is not yet because we do not want to have a 16 bit hole
1017         */
1018        new->queue_mapping = old->queue_mapping;
1019
1020        memcpy(&new->headers, &old->headers, sizeof(new->headers));
1021        CHECK_SKB_FIELD(protocol);
1022        CHECK_SKB_FIELD(csum);
1023        CHECK_SKB_FIELD(hash);
1024        CHECK_SKB_FIELD(priority);
1025        CHECK_SKB_FIELD(skb_iif);
1026        CHECK_SKB_FIELD(vlan_proto);
1027        CHECK_SKB_FIELD(vlan_tci);
1028        CHECK_SKB_FIELD(transport_header);
1029        CHECK_SKB_FIELD(network_header);
1030        CHECK_SKB_FIELD(mac_header);
1031        CHECK_SKB_FIELD(inner_protocol);
1032        CHECK_SKB_FIELD(inner_transport_header);
1033        CHECK_SKB_FIELD(inner_network_header);
1034        CHECK_SKB_FIELD(inner_mac_header);
1035        CHECK_SKB_FIELD(mark);
1036#ifdef CONFIG_NETWORK_SECMARK
1037        CHECK_SKB_FIELD(secmark);
1038#endif
1039#ifdef CONFIG_NET_RX_BUSY_POLL
1040        CHECK_SKB_FIELD(napi_id);
1041#endif
1042        CHECK_SKB_FIELD(alloc_cpu);
1043#ifdef CONFIG_XPS
1044        CHECK_SKB_FIELD(sender_cpu);
1045#endif
1046#ifdef CONFIG_NET_SCHED
1047        CHECK_SKB_FIELD(tc_index);
1048#endif
1049
1050}
1051
1052/*
1053 * You should not add any new code to this function.  Add it to
1054 * __copy_skb_header above instead.
1055 */
1056static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1057{
1058#define C(x) n->x = skb->x
1059
1060        n->next = n->prev = NULL;
1061        n->sk = NULL;
1062        __copy_skb_header(n, skb);
1063
1064        C(len);
1065        C(data_len);
1066        C(mac_len);
1067        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1068        n->cloned = 1;
1069        n->nohdr = 0;
1070        n->peeked = 0;
1071        C(pfmemalloc);
1072        C(pp_recycle);
1073        n->destructor = NULL;
1074        C(tail);
1075        C(end);
1076        C(head);
1077        C(head_frag);
1078        C(data);
1079        C(truesize);
1080        refcount_set(&n->users, 1);
1081
1082        atomic_inc(&(skb_shinfo(skb)->dataref));
1083        skb->cloned = 1;
1084
1085        return n;
1086#undef C
1087}
1088
1089/**
1090 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1091 * @first: first sk_buff of the msg
1092 */
1093struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1094{
1095        struct sk_buff *n;
1096
1097        n = alloc_skb(0, GFP_ATOMIC);
1098        if (!n)
1099                return NULL;
1100
1101        n->len = first->len;
1102        n->data_len = first->len;
1103        n->truesize = first->truesize;
1104
1105        skb_shinfo(n)->frag_list = first;
1106
1107        __copy_skb_header(n, first);
1108        n->destructor = NULL;
1109
1110        return n;
1111}
1112EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1113
1114/**
1115 *      skb_morph       -       morph one skb into another
1116 *      @dst: the skb to receive the contents
1117 *      @src: the skb to supply the contents
1118 *
1119 *      This is identical to skb_clone except that the target skb is
1120 *      supplied by the user.
1121 *
1122 *      The target skb is returned upon exit.
1123 */
1124struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1125{
1126        skb_release_all(dst);
1127        return __skb_clone(dst, src);
1128}
1129EXPORT_SYMBOL_GPL(skb_morph);
1130
1131int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1132{
1133        unsigned long max_pg, num_pg, new_pg, old_pg;
1134        struct user_struct *user;
1135
1136        if (capable(CAP_IPC_LOCK) || !size)
1137                return 0;
1138
1139        num_pg = (size >> PAGE_SHIFT) + 2;      /* worst case */
1140        max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1141        user = mmp->user ? : current_user();
1142
1143        do {
1144                old_pg = atomic_long_read(&user->locked_vm);
1145                new_pg = old_pg + num_pg;
1146                if (new_pg > max_pg)
1147                        return -ENOBUFS;
1148        } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1149                 old_pg);
1150
1151        if (!mmp->user) {
1152                mmp->user = get_uid(user);
1153                mmp->num_pg = num_pg;
1154        } else {
1155                mmp->num_pg += num_pg;
1156        }
1157
1158        return 0;
1159}
1160EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1161
1162void mm_unaccount_pinned_pages(struct mmpin *mmp)
1163{
1164        if (mmp->user) {
1165                atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1166                free_uid(mmp->user);
1167        }
1168}
1169EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1170
1171static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1172{
1173        struct ubuf_info *uarg;
1174        struct sk_buff *skb;
1175
1176        WARN_ON_ONCE(!in_task());
1177
1178        skb = sock_omalloc(sk, 0, GFP_KERNEL);
1179        if (!skb)
1180                return NULL;
1181
1182        BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1183        uarg = (void *)skb->cb;
1184        uarg->mmp.user = NULL;
1185
1186        if (mm_account_pinned_pages(&uarg->mmp, size)) {
1187                kfree_skb(skb);
1188                return NULL;
1189        }
1190
1191        uarg->callback = msg_zerocopy_callback;
1192        uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1193        uarg->len = 1;
1194        uarg->bytelen = size;
1195        uarg->zerocopy = 1;
1196        uarg->flags = SKBFL_ZEROCOPY_FRAG;
1197        refcount_set(&uarg->refcnt, 1);
1198        sock_hold(sk);
1199
1200        return uarg;
1201}
1202
1203static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1204{
1205        return container_of((void *)uarg, struct sk_buff, cb);
1206}
1207
1208struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1209                                       struct ubuf_info *uarg)
1210{
1211        if (uarg) {
1212                const u32 byte_limit = 1 << 19;         /* limit to a few TSO */
1213                u32 bytelen, next;
1214
1215                /* realloc only when socket is locked (TCP, UDP cork),
1216                 * so uarg->len and sk_zckey access is serialized
1217                 */
1218                if (!sock_owned_by_user(sk)) {
1219                        WARN_ON_ONCE(1);
1220                        return NULL;
1221                }
1222
1223                bytelen = uarg->bytelen + size;
1224                if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1225                        /* TCP can create new skb to attach new uarg */
1226                        if (sk->sk_type == SOCK_STREAM)
1227                                goto new_alloc;
1228                        return NULL;
1229                }
1230
1231                next = (u32)atomic_read(&sk->sk_zckey);
1232                if ((u32)(uarg->id + uarg->len) == next) {
1233                        if (mm_account_pinned_pages(&uarg->mmp, size))
1234                                return NULL;
1235                        uarg->len++;
1236                        uarg->bytelen = bytelen;
1237                        atomic_set(&sk->sk_zckey, ++next);
1238
1239                        /* no extra ref when appending to datagram (MSG_MORE) */
1240                        if (sk->sk_type == SOCK_STREAM)
1241                                net_zcopy_get(uarg);
1242
1243                        return uarg;
1244                }
1245        }
1246
1247new_alloc:
1248        return msg_zerocopy_alloc(sk, size);
1249}
1250EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1251
1252static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1253{
1254        struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1255        u32 old_lo, old_hi;
1256        u64 sum_len;
1257
1258        old_lo = serr->ee.ee_info;
1259        old_hi = serr->ee.ee_data;
1260        sum_len = old_hi - old_lo + 1ULL + len;
1261
1262        if (sum_len >= (1ULL << 32))
1263                return false;
1264
1265        if (lo != old_hi + 1)
1266                return false;
1267
1268        serr->ee.ee_data += len;
1269        return true;
1270}
1271
1272static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1273{
1274        struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1275        struct sock_exterr_skb *serr;
1276        struct sock *sk = skb->sk;
1277        struct sk_buff_head *q;
1278        unsigned long flags;
1279        bool is_zerocopy;
1280        u32 lo, hi;
1281        u16 len;
1282
1283        mm_unaccount_pinned_pages(&uarg->mmp);
1284
1285        /* if !len, there was only 1 call, and it was aborted
1286         * so do not queue a completion notification
1287         */
1288        if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1289                goto release;
1290
1291        len = uarg->len;
1292        lo = uarg->id;
1293        hi = uarg->id + len - 1;
1294        is_zerocopy = uarg->zerocopy;
1295
1296        serr = SKB_EXT_ERR(skb);
1297        memset(serr, 0, sizeof(*serr));
1298        serr->ee.ee_errno = 0;
1299        serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1300        serr->ee.ee_data = hi;
1301        serr->ee.ee_info = lo;
1302        if (!is_zerocopy)
1303                serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1304
1305        q = &sk->sk_error_queue;
1306        spin_lock_irqsave(&q->lock, flags);
1307        tail = skb_peek_tail(q);
1308        if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1309            !skb_zerocopy_notify_extend(tail, lo, len)) {
1310                __skb_queue_tail(q, skb);
1311                skb = NULL;
1312        }
1313        spin_unlock_irqrestore(&q->lock, flags);
1314
1315        sk_error_report(sk);
1316
1317release:
1318        consume_skb(skb);
1319        sock_put(sk);
1320}
1321
1322void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1323                           bool success)
1324{
1325        uarg->zerocopy = uarg->zerocopy & success;
1326
1327        if (refcount_dec_and_test(&uarg->refcnt))
1328                __msg_zerocopy_callback(uarg);
1329}
1330EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1331
1332void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1333{
1334        struct sock *sk = skb_from_uarg(uarg)->sk;
1335
1336        atomic_dec(&sk->sk_zckey);
1337        uarg->len--;
1338
1339        if (have_uref)
1340                msg_zerocopy_callback(NULL, uarg, true);
1341}
1342EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1343
1344int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1345                             struct msghdr *msg, int len,
1346                             struct ubuf_info *uarg)
1347{
1348        struct ubuf_info *orig_uarg = skb_zcopy(skb);
1349        int err, orig_len = skb->len;
1350
1351        /* An skb can only point to one uarg. This edge case happens when
1352         * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1353         */
1354        if (orig_uarg && uarg != orig_uarg)
1355                return -EEXIST;
1356
1357        err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1358        if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1359                struct sock *save_sk = skb->sk;
1360
1361                /* Streams do not free skb on error. Reset to prev state. */
1362                iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1363                skb->sk = sk;
1364                ___pskb_trim(skb, orig_len);
1365                skb->sk = save_sk;
1366                return err;
1367        }
1368
1369        skb_zcopy_set(skb, uarg, NULL);
1370        return skb->len - orig_len;
1371}
1372EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1373
1374static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1375                              gfp_t gfp_mask)
1376{
1377        if (skb_zcopy(orig)) {
1378                if (skb_zcopy(nskb)) {
1379                        /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1380                        if (!gfp_mask) {
1381                                WARN_ON_ONCE(1);
1382                                return -ENOMEM;
1383                        }
1384                        if (skb_uarg(nskb) == skb_uarg(orig))
1385                                return 0;
1386                        if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1387                                return -EIO;
1388                }
1389                skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1390        }
1391        return 0;
1392}
1393
1394/**
1395 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
1396 *      @skb: the skb to modify
1397 *      @gfp_mask: allocation priority
1398 *
1399 *      This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1400 *      It will copy all frags into kernel and drop the reference
1401 *      to userspace pages.
1402 *
1403 *      If this function is called from an interrupt gfp_mask() must be
1404 *      %GFP_ATOMIC.
1405 *
1406 *      Returns 0 on success or a negative error code on failure
1407 *      to allocate kernel memory to copy to.
1408 */
1409int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1410{
1411        int num_frags = skb_shinfo(skb)->nr_frags;
1412        struct page *page, *head = NULL;
1413        int i, new_frags;
1414        u32 d_off;
1415
1416        if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1417                return -EINVAL;
1418
1419        if (!num_frags)
1420                goto release;
1421
1422        new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1423        for (i = 0; i < new_frags; i++) {
1424                page = alloc_page(gfp_mask);
1425                if (!page) {
1426                        while (head) {
1427                                struct page *next = (struct page *)page_private(head);
1428                                put_page(head);
1429                                head = next;
1430                        }
1431                        return -ENOMEM;
1432                }
1433                set_page_private(page, (unsigned long)head);
1434                head = page;
1435        }
1436
1437        page = head;
1438        d_off = 0;
1439        for (i = 0; i < num_frags; i++) {
1440                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1441                u32 p_off, p_len, copied;
1442                struct page *p;
1443                u8 *vaddr;
1444
1445                skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1446                                      p, p_off, p_len, copied) {
1447                        u32 copy, done = 0;
1448                        vaddr = kmap_atomic(p);
1449
1450                        while (done < p_len) {
1451                                if (d_off == PAGE_SIZE) {
1452                                        d_off = 0;
1453                                        page = (struct page *)page_private(page);
1454                                }
1455                                copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1456                                memcpy(page_address(page) + d_off,
1457                                       vaddr + p_off + done, copy);
1458                                done += copy;
1459                                d_off += copy;
1460                        }
1461                        kunmap_atomic(vaddr);
1462                }
1463        }
1464
1465        /* skb frags release userspace buffers */
1466        for (i = 0; i < num_frags; i++)
1467                skb_frag_unref(skb, i);
1468
1469        /* skb frags point to kernel buffers */
1470        for (i = 0; i < new_frags - 1; i++) {
1471                __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1472                head = (struct page *)page_private(head);
1473        }
1474        __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1475        skb_shinfo(skb)->nr_frags = new_frags;
1476
1477release:
1478        skb_zcopy_clear(skb, false);
1479        return 0;
1480}
1481EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1482
1483/**
1484 *      skb_clone       -       duplicate an sk_buff
1485 *      @skb: buffer to clone
1486 *      @gfp_mask: allocation priority
1487 *
1488 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
1489 *      copies share the same packet data but not structure. The new
1490 *      buffer has a reference count of 1. If the allocation fails the
1491 *      function returns %NULL otherwise the new buffer is returned.
1492 *
1493 *      If this function is called from an interrupt gfp_mask() must be
1494 *      %GFP_ATOMIC.
1495 */
1496
1497struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1498{
1499        struct sk_buff_fclones *fclones = container_of(skb,
1500                                                       struct sk_buff_fclones,
1501                                                       skb1);
1502        struct sk_buff *n;
1503
1504        if (skb_orphan_frags(skb, gfp_mask))
1505                return NULL;
1506
1507        if (skb->fclone == SKB_FCLONE_ORIG &&
1508            refcount_read(&fclones->fclone_ref) == 1) {
1509                n = &fclones->skb2;
1510                refcount_set(&fclones->fclone_ref, 2);
1511        } else {
1512                if (skb_pfmemalloc(skb))
1513                        gfp_mask |= __GFP_MEMALLOC;
1514
1515                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1516                if (!n)
1517                        return NULL;
1518
1519                n->fclone = SKB_FCLONE_UNAVAILABLE;
1520        }
1521
1522        return __skb_clone(n, skb);
1523}
1524EXPORT_SYMBOL(skb_clone);
1525
1526void skb_headers_offset_update(struct sk_buff *skb, int off)
1527{
1528        /* Only adjust this if it actually is csum_start rather than csum */
1529        if (skb->ip_summed == CHECKSUM_PARTIAL)
1530                skb->csum_start += off;
1531        /* {transport,network,mac}_header and tail are relative to skb->head */
1532        skb->transport_header += off;
1533        skb->network_header   += off;
1534        if (skb_mac_header_was_set(skb))
1535                skb->mac_header += off;
1536        skb->inner_transport_header += off;
1537        skb->inner_network_header += off;
1538        skb->inner_mac_header += off;
1539}
1540EXPORT_SYMBOL(skb_headers_offset_update);
1541
1542void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1543{
1544        __copy_skb_header(new, old);
1545
1546        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1547        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1548        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1549}
1550EXPORT_SYMBOL(skb_copy_header);
1551
1552static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1553{
1554        if (skb_pfmemalloc(skb))
1555                return SKB_ALLOC_RX;
1556        return 0;
1557}
1558
1559/**
1560 *      skb_copy        -       create private copy of an sk_buff
1561 *      @skb: buffer to copy
1562 *      @gfp_mask: allocation priority
1563 *
1564 *      Make a copy of both an &sk_buff and its data. This is used when the
1565 *      caller wishes to modify the data and needs a private copy of the
1566 *      data to alter. Returns %NULL on failure or the pointer to the buffer
1567 *      on success. The returned buffer has a reference count of 1.
1568 *
1569 *      As by-product this function converts non-linear &sk_buff to linear
1570 *      one, so that &sk_buff becomes completely private and caller is allowed
1571 *      to modify all the data of returned buffer. This means that this
1572 *      function is not recommended for use in circumstances when only
1573 *      header is going to be modified. Use pskb_copy() instead.
1574 */
1575
1576struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1577{
1578        int headerlen = skb_headroom(skb);
1579        unsigned int size = skb_end_offset(skb) + skb->data_len;
1580        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1581                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1582
1583        if (!n)
1584                return NULL;
1585
1586        /* Set the data pointer */
1587        skb_reserve(n, headerlen);
1588        /* Set the tail pointer and length */
1589        skb_put(n, skb->len);
1590
1591        BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1592
1593        skb_copy_header(n, skb);
1594        return n;
1595}
1596EXPORT_SYMBOL(skb_copy);
1597
1598/**
1599 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1600 *      @skb: buffer to copy
1601 *      @headroom: headroom of new skb
1602 *      @gfp_mask: allocation priority
1603 *      @fclone: if true allocate the copy of the skb from the fclone
1604 *      cache instead of the head cache; it is recommended to set this
1605 *      to true for the cases where the copy will likely be cloned
1606 *
1607 *      Make a copy of both an &sk_buff and part of its data, located
1608 *      in header. Fragmented data remain shared. This is used when
1609 *      the caller wishes to modify only header of &sk_buff and needs
1610 *      private copy of the header to alter. Returns %NULL on failure
1611 *      or the pointer to the buffer on success.
1612 *      The returned buffer has a reference count of 1.
1613 */
1614
1615struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1616                                   gfp_t gfp_mask, bool fclone)
1617{
1618        unsigned int size = skb_headlen(skb) + headroom;
1619        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1620        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1621
1622        if (!n)
1623                goto out;
1624
1625        /* Set the data pointer */
1626        skb_reserve(n, headroom);
1627        /* Set the tail pointer and length */
1628        skb_put(n, skb_headlen(skb));
1629        /* Copy the bytes */
1630        skb_copy_from_linear_data(skb, n->data, n->len);
1631
1632        n->truesize += skb->data_len;
1633        n->data_len  = skb->data_len;
1634        n->len       = skb->len;
1635
1636        if (skb_shinfo(skb)->nr_frags) {
1637                int i;
1638
1639                if (skb_orphan_frags(skb, gfp_mask) ||
1640                    skb_zerocopy_clone(n, skb, gfp_mask)) {
1641                        kfree_skb(n);
1642                        n = NULL;
1643                        goto out;
1644                }
1645                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1646                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1647                        skb_frag_ref(skb, i);
1648                }
1649                skb_shinfo(n)->nr_frags = i;
1650        }
1651
1652        if (skb_has_frag_list(skb)) {
1653                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1654                skb_clone_fraglist(n);
1655        }
1656
1657        skb_copy_header(n, skb);
1658out:
1659        return n;
1660}
1661EXPORT_SYMBOL(__pskb_copy_fclone);
1662
1663/**
1664 *      pskb_expand_head - reallocate header of &sk_buff
1665 *      @skb: buffer to reallocate
1666 *      @nhead: room to add at head
1667 *      @ntail: room to add at tail
1668 *      @gfp_mask: allocation priority
1669 *
1670 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1671 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1672 *      reference count of 1. Returns zero in the case of success or error,
1673 *      if expansion failed. In the last case, &sk_buff is not changed.
1674 *
1675 *      All the pointers pointing into skb header may change and must be
1676 *      reloaded after call to this function.
1677 */
1678
1679int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1680                     gfp_t gfp_mask)
1681{
1682        int i, osize = skb_end_offset(skb);
1683        int size = osize + nhead + ntail;
1684        long off;
1685        u8 *data;
1686
1687        BUG_ON(nhead < 0);
1688
1689        BUG_ON(skb_shared(skb));
1690
1691        size = SKB_DATA_ALIGN(size);
1692
1693        if (skb_pfmemalloc(skb))
1694                gfp_mask |= __GFP_MEMALLOC;
1695        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1696                               gfp_mask, NUMA_NO_NODE, NULL);
1697        if (!data)
1698                goto nodata;
1699        size = SKB_WITH_OVERHEAD(ksize(data));
1700
1701        /* Copy only real data... and, alas, header. This should be
1702         * optimized for the cases when header is void.
1703         */
1704        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1705
1706        memcpy((struct skb_shared_info *)(data + size),
1707               skb_shinfo(skb),
1708               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1709
1710        /*
1711         * if shinfo is shared we must drop the old head gracefully, but if it
1712         * is not we can just drop the old head and let the existing refcount
1713         * be since all we did is relocate the values
1714         */
1715        if (skb_cloned(skb)) {
1716                if (skb_orphan_frags(skb, gfp_mask))
1717                        goto nofrags;
1718                if (skb_zcopy(skb))
1719                        refcount_inc(&skb_uarg(skb)->refcnt);
1720                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1721                        skb_frag_ref(skb, i);
1722
1723                if (skb_has_frag_list(skb))
1724                        skb_clone_fraglist(skb);
1725
1726                skb_release_data(skb);
1727        } else {
1728                skb_free_head(skb);
1729        }
1730        off = (data + nhead) - skb->head;
1731
1732        skb->head     = data;
1733        skb->head_frag = 0;
1734        skb->data    += off;
1735
1736        skb_set_end_offset(skb, size);
1737#ifdef NET_SKBUFF_DATA_USES_OFFSET
1738        off           = nhead;
1739#endif
1740        skb->tail             += off;
1741        skb_headers_offset_update(skb, nhead);
1742        skb->cloned   = 0;
1743        skb->hdr_len  = 0;
1744        skb->nohdr    = 0;
1745        atomic_set(&skb_shinfo(skb)->dataref, 1);
1746
1747        skb_metadata_clear(skb);
1748
1749        /* It is not generally safe to change skb->truesize.
1750         * For the moment, we really care of rx path, or
1751         * when skb is orphaned (not attached to a socket).
1752         */
1753        if (!skb->sk || skb->destructor == sock_edemux)
1754                skb->truesize += size - osize;
1755
1756        return 0;
1757
1758nofrags:
1759        kfree(data);
1760nodata:
1761        return -ENOMEM;
1762}
1763EXPORT_SYMBOL(pskb_expand_head);
1764
1765/* Make private copy of skb with writable head and some headroom */
1766
1767struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1768{
1769        struct sk_buff *skb2;
1770        int delta = headroom - skb_headroom(skb);
1771
1772        if (delta <= 0)
1773                skb2 = pskb_copy(skb, GFP_ATOMIC);
1774        else {
1775                skb2 = skb_clone(skb, GFP_ATOMIC);
1776                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1777                                             GFP_ATOMIC)) {
1778                        kfree_skb(skb2);
1779                        skb2 = NULL;
1780                }
1781        }
1782        return skb2;
1783}
1784EXPORT_SYMBOL(skb_realloc_headroom);
1785
1786int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1787{
1788        unsigned int saved_end_offset, saved_truesize;
1789        struct skb_shared_info *shinfo;
1790        int res;
1791
1792        saved_end_offset = skb_end_offset(skb);
1793        saved_truesize = skb->truesize;
1794
1795        res = pskb_expand_head(skb, 0, 0, pri);
1796        if (res)
1797                return res;
1798
1799        skb->truesize = saved_truesize;
1800
1801        if (likely(skb_end_offset(skb) == saved_end_offset))
1802                return 0;
1803
1804        shinfo = skb_shinfo(skb);
1805
1806        /* We are about to change back skb->end,
1807         * we need to move skb_shinfo() to its new location.
1808         */
1809        memmove(skb->head + saved_end_offset,
1810                shinfo,
1811                offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1812
1813        skb_set_end_offset(skb, saved_end_offset);
1814
1815        return 0;
1816}
1817
1818/**
1819 *      skb_expand_head - reallocate header of &sk_buff
1820 *      @skb: buffer to reallocate
1821 *      @headroom: needed headroom
1822 *
1823 *      Unlike skb_realloc_headroom, this one does not allocate a new skb
1824 *      if possible; copies skb->sk to new skb as needed
1825 *      and frees original skb in case of failures.
1826 *
1827 *      It expect increased headroom and generates warning otherwise.
1828 */
1829
1830struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1831{
1832        int delta = headroom - skb_headroom(skb);
1833        int osize = skb_end_offset(skb);
1834        struct sock *sk = skb->sk;
1835
1836        if (WARN_ONCE(delta <= 0,
1837                      "%s is expecting an increase in the headroom", __func__))
1838                return skb;
1839
1840        delta = SKB_DATA_ALIGN(delta);
1841        /* pskb_expand_head() might crash, if skb is shared. */
1842        if (skb_shared(skb) || !is_skb_wmem(skb)) {
1843                struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1844
1845                if (unlikely(!nskb))
1846                        goto fail;
1847
1848                if (sk)
1849                        skb_set_owner_w(nskb, sk);
1850                consume_skb(skb);
1851                skb = nskb;
1852        }
1853        if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1854                goto fail;
1855
1856        if (sk && is_skb_wmem(skb)) {
1857                delta = skb_end_offset(skb) - osize;
1858                refcount_add(delta, &sk->sk_wmem_alloc);
1859                skb->truesize += delta;
1860        }
1861        return skb;
1862
1863fail:
1864        kfree_skb(skb);
1865        return NULL;
1866}
1867EXPORT_SYMBOL(skb_expand_head);
1868
1869/**
1870 *      skb_copy_expand -       copy and expand sk_buff
1871 *      @skb: buffer to copy
1872 *      @newheadroom: new free bytes at head
1873 *      @newtailroom: new free bytes at tail
1874 *      @gfp_mask: allocation priority
1875 *
1876 *      Make a copy of both an &sk_buff and its data and while doing so
1877 *      allocate additional space.
1878 *
1879 *      This is used when the caller wishes to modify the data and needs a
1880 *      private copy of the data to alter as well as more space for new fields.
1881 *      Returns %NULL on failure or the pointer to the buffer
1882 *      on success. The returned buffer has a reference count of 1.
1883 *
1884 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1885 *      is called from an interrupt.
1886 */
1887struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1888                                int newheadroom, int newtailroom,
1889                                gfp_t gfp_mask)
1890{
1891        /*
1892         *      Allocate the copy buffer
1893         */
1894        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1895                                        gfp_mask, skb_alloc_rx_flag(skb),
1896                                        NUMA_NO_NODE);
1897        int oldheadroom = skb_headroom(skb);
1898        int head_copy_len, head_copy_off;
1899
1900        if (!n)
1901                return NULL;
1902
1903        skb_reserve(n, newheadroom);
1904
1905        /* Set the tail pointer and length */
1906        skb_put(n, skb->len);
1907
1908        head_copy_len = oldheadroom;
1909        head_copy_off = 0;
1910        if (newheadroom <= head_copy_len)
1911                head_copy_len = newheadroom;
1912        else
1913                head_copy_off = newheadroom - head_copy_len;
1914
1915        /* Copy the linear header and data. */
1916        BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1917                             skb->len + head_copy_len));
1918
1919        skb_copy_header(n, skb);
1920
1921        skb_headers_offset_update(n, newheadroom - oldheadroom);
1922
1923        return n;
1924}
1925EXPORT_SYMBOL(skb_copy_expand);
1926
1927/**
1928 *      __skb_pad               -       zero pad the tail of an skb
1929 *      @skb: buffer to pad
1930 *      @pad: space to pad
1931 *      @free_on_error: free buffer on error
1932 *
1933 *      Ensure that a buffer is followed by a padding area that is zero
1934 *      filled. Used by network drivers which may DMA or transfer data
1935 *      beyond the buffer end onto the wire.
1936 *
1937 *      May return error in out of memory cases. The skb is freed on error
1938 *      if @free_on_error is true.
1939 */
1940
1941int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1942{
1943        int err;
1944        int ntail;
1945
1946        /* If the skbuff is non linear tailroom is always zero.. */
1947        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1948                memset(skb->data+skb->len, 0, pad);
1949                return 0;
1950        }
1951
1952        ntail = skb->data_len + pad - (skb->end - skb->tail);
1953        if (likely(skb_cloned(skb) || ntail > 0)) {
1954                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1955                if (unlikely(err))
1956                        goto free_skb;
1957        }
1958
1959        /* FIXME: The use of this function with non-linear skb's really needs
1960         * to be audited.
1961         */
1962        err = skb_linearize(skb);
1963        if (unlikely(err))
1964                goto free_skb;
1965
1966        memset(skb->data + skb->len, 0, pad);
1967        return 0;
1968
1969free_skb:
1970        if (free_on_error)
1971                kfree_skb(skb);
1972        return err;
1973}
1974EXPORT_SYMBOL(__skb_pad);
1975
1976/**
1977 *      pskb_put - add data to the tail of a potentially fragmented buffer
1978 *      @skb: start of the buffer to use
1979 *      @tail: tail fragment of the buffer to use
1980 *      @len: amount of data to add
1981 *
1982 *      This function extends the used data area of the potentially
1983 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1984 *      @skb itself. If this would exceed the total buffer size the kernel
1985 *      will panic. A pointer to the first byte of the extra data is
1986 *      returned.
1987 */
1988
1989void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1990{
1991        if (tail != skb) {
1992                skb->data_len += len;
1993                skb->len += len;
1994        }
1995        return skb_put(tail, len);
1996}
1997EXPORT_SYMBOL_GPL(pskb_put);
1998
1999/**
2000 *      skb_put - add data to a buffer
2001 *      @skb: buffer to use
2002 *      @len: amount of data to add
2003 *
2004 *      This function extends the used data area of the buffer. If this would
2005 *      exceed the total buffer size the kernel will panic. A pointer to the
2006 *      first byte of the extra data is returned.
2007 */
2008void *skb_put(struct sk_buff *skb, unsigned int len)
2009{
2010        void *tmp = skb_tail_pointer(skb);
2011        SKB_LINEAR_ASSERT(skb);
2012        skb->tail += len;
2013        skb->len  += len;
2014        if (unlikely(skb->tail > skb->end))
2015                skb_over_panic(skb, len, __builtin_return_address(0));
2016        return tmp;
2017}
2018EXPORT_SYMBOL(skb_put);
2019
2020/**
2021 *      skb_push - add data to the start of a buffer
2022 *      @skb: buffer to use
2023 *      @len: amount of data to add
2024 *
2025 *      This function extends the used data area of the buffer at the buffer
2026 *      start. If this would exceed the total buffer headroom the kernel will
2027 *      panic. A pointer to the first byte of the extra data is returned.
2028 */
2029void *skb_push(struct sk_buff *skb, unsigned int len)
2030{
2031        skb->data -= len;
2032        skb->len  += len;
2033        if (unlikely(skb->data < skb->head))
2034                skb_under_panic(skb, len, __builtin_return_address(0));
2035        return skb->data;
2036}
2037EXPORT_SYMBOL(skb_push);
2038
2039/**
2040 *      skb_pull - remove data from the start of a buffer
2041 *      @skb: buffer to use
2042 *      @len: amount of data to remove
2043 *
2044 *      This function removes data from the start of a buffer, returning
2045 *      the memory to the headroom. A pointer to the next data in the buffer
2046 *      is returned. Once the data has been pulled future pushes will overwrite
2047 *      the old data.
2048 */
2049void *skb_pull(struct sk_buff *skb, unsigned int len)
2050{
2051        return skb_pull_inline(skb, len);
2052}
2053EXPORT_SYMBOL(skb_pull);
2054
2055/**
2056 *      skb_pull_data - remove data from the start of a buffer returning its
2057 *      original position.
2058 *      @skb: buffer to use
2059 *      @len: amount of data to remove
2060 *
2061 *      This function removes data from the start of a buffer, returning
2062 *      the memory to the headroom. A pointer to the original data in the buffer
2063 *      is returned after checking if there is enough data to pull. Once the
2064 *      data has been pulled future pushes will overwrite the old data.
2065 */
2066void *skb_pull_data(struct sk_buff *skb, size_t len)
2067{
2068        void *data = skb->data;
2069
2070        if (skb->len < len)
2071                return NULL;
2072
2073        skb_pull(skb, len);
2074
2075        return data;
2076}
2077EXPORT_SYMBOL(skb_pull_data);
2078
2079/**
2080 *      skb_trim - remove end from a buffer
2081 *      @skb: buffer to alter
2082 *      @len: new length
2083 *
2084 *      Cut the length of a buffer down by removing data from the tail. If
2085 *      the buffer is already under the length specified it is not modified.
2086 *      The skb must be linear.
2087 */
2088void skb_trim(struct sk_buff *skb, unsigned int len)
2089{
2090        if (skb->len > len)
2091                __skb_trim(skb, len);
2092}
2093EXPORT_SYMBOL(skb_trim);
2094
2095/* Trims skb to length len. It can change skb pointers.
2096 */
2097
2098int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2099{
2100        struct sk_buff **fragp;
2101        struct sk_buff *frag;
2102        int offset = skb_headlen(skb);
2103        int nfrags = skb_shinfo(skb)->nr_frags;
2104        int i;
2105        int err;
2106
2107        if (skb_cloned(skb) &&
2108            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2109                return err;
2110
2111        i = 0;
2112        if (offset >= len)
2113                goto drop_pages;
2114
2115        for (; i < nfrags; i++) {
2116                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2117
2118                if (end < len) {
2119                        offset = end;
2120                        continue;
2121                }
2122
2123                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2124
2125drop_pages:
2126                skb_shinfo(skb)->nr_frags = i;
2127
2128                for (; i < nfrags; i++)
2129                        skb_frag_unref(skb, i);
2130
2131                if (skb_has_frag_list(skb))
2132                        skb_drop_fraglist(skb);
2133                goto done;
2134        }
2135
2136        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2137             fragp = &frag->next) {
2138                int end = offset + frag->len;
2139
2140                if (skb_shared(frag)) {
2141                        struct sk_buff *nfrag;
2142
2143                        nfrag = skb_clone(frag, GFP_ATOMIC);
2144                        if (unlikely(!nfrag))
2145                                return -ENOMEM;
2146
2147                        nfrag->next = frag->next;
2148                        consume_skb(frag);
2149                        frag = nfrag;
2150                        *fragp = frag;
2151                }
2152
2153                if (end < len) {
2154                        offset = end;
2155                        continue;
2156                }
2157
2158                if (end > len &&
2159                    unlikely((err = pskb_trim(frag, len - offset))))
2160                        return err;
2161
2162                if (frag->next)
2163                        skb_drop_list(&frag->next);
2164                break;
2165        }
2166
2167done:
2168        if (len > skb_headlen(skb)) {
2169                skb->data_len -= skb->len - len;
2170                skb->len       = len;
2171        } else {
2172                skb->len       = len;
2173                skb->data_len  = 0;
2174                skb_set_tail_pointer(skb, len);
2175        }
2176
2177        if (!skb->sk || skb->destructor == sock_edemux)
2178                skb_condense(skb);
2179        return 0;
2180}
2181EXPORT_SYMBOL(___pskb_trim);
2182
2183/* Note : use pskb_trim_rcsum() instead of calling this directly
2184 */
2185int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2186{
2187        if (skb->ip_summed == CHECKSUM_COMPLETE) {
2188                int delta = skb->len - len;
2189
2190                skb->csum = csum_block_sub(skb->csum,
2191                                           skb_checksum(skb, len, delta, 0),
2192                                           len);
2193        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2194                int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2195                int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2196
2197                if (offset + sizeof(__sum16) > hdlen)
2198                        return -EINVAL;
2199        }
2200        return __pskb_trim(skb, len);
2201}
2202EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2203
2204/**
2205 *      __pskb_pull_tail - advance tail of skb header
2206 *      @skb: buffer to reallocate
2207 *      @delta: number of bytes to advance tail
2208 *
2209 *      The function makes a sense only on a fragmented &sk_buff,
2210 *      it expands header moving its tail forward and copying necessary
2211 *      data from fragmented part.
2212 *
2213 *      &sk_buff MUST have reference count of 1.
2214 *
2215 *      Returns %NULL (and &sk_buff does not change) if pull failed
2216 *      or value of new tail of skb in the case of success.
2217 *
2218 *      All the pointers pointing into skb header may change and must be
2219 *      reloaded after call to this function.
2220 */
2221
2222/* Moves tail of skb head forward, copying data from fragmented part,
2223 * when it is necessary.
2224 * 1. It may fail due to malloc failure.
2225 * 2. It may change skb pointers.
2226 *
2227 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2228 */
2229void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2230{
2231        /* If skb has not enough free space at tail, get new one
2232         * plus 128 bytes for future expansions. If we have enough
2233         * room at tail, reallocate without expansion only if skb is cloned.
2234         */
2235        int i, k, eat = (skb->tail + delta) - skb->end;
2236
2237        if (eat > 0 || skb_cloned(skb)) {
2238                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2239                                     GFP_ATOMIC))
2240                        return NULL;
2241        }
2242
2243        BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2244                             skb_tail_pointer(skb), delta));
2245
2246        /* Optimization: no fragments, no reasons to preestimate
2247         * size of pulled pages. Superb.
2248         */
2249        if (!skb_has_frag_list(skb))
2250                goto pull_pages;
2251
2252        /* Estimate size of pulled pages. */
2253        eat = delta;
2254        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2255                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2256
2257                if (size >= eat)
2258                        goto pull_pages;
2259                eat -= size;
2260        }
2261
2262        /* If we need update frag list, we are in troubles.
2263         * Certainly, it is possible to add an offset to skb data,
2264         * but taking into account that pulling is expected to
2265         * be very rare operation, it is worth to fight against
2266         * further bloating skb head and crucify ourselves here instead.
2267         * Pure masohism, indeed. 8)8)
2268         */
2269        if (eat) {
2270                struct sk_buff *list = skb_shinfo(skb)->frag_list;
2271                struct sk_buff *clone = NULL;
2272                struct sk_buff *insp = NULL;
2273
2274                do {
2275                        if (list->len <= eat) {
2276                                /* Eaten as whole. */
2277                                eat -= list->len;
2278                                list = list->next;
2279                                insp = list;
2280                        } else {
2281                                /* Eaten partially. */
2282
2283                                if (skb_shared(list)) {
2284                                        /* Sucks! We need to fork list. :-( */
2285                                        clone = skb_clone(list, GFP_ATOMIC);
2286                                        if (!clone)
2287                                                return NULL;
2288                                        insp = list->next;
2289                                        list = clone;
2290                                } else {
2291                                        /* This may be pulled without
2292                                         * problems. */
2293                                        insp = list;
2294                                }
2295                                if (!pskb_pull(list, eat)) {
2296                                        kfree_skb(clone);
2297                                        return NULL;
2298                                }
2299                                break;
2300                        }
2301                } while (eat);
2302
2303                /* Free pulled out fragments. */
2304                while ((list = skb_shinfo(skb)->frag_list) != insp) {
2305                        skb_shinfo(skb)->frag_list = list->next;
2306                        consume_skb(list);
2307                }
2308                /* And insert new clone at head. */
2309                if (clone) {
2310                        clone->next = list;
2311                        skb_shinfo(skb)->frag_list = clone;
2312                }
2313        }
2314        /* Success! Now we may commit changes to skb data. */
2315
2316pull_pages:
2317        eat = delta;
2318        k = 0;
2319        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2320                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2321
2322                if (size <= eat) {
2323                        skb_frag_unref(skb, i);
2324                        eat -= size;
2325                } else {
2326                        skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2327
2328                        *frag = skb_shinfo(skb)->frags[i];
2329                        if (eat) {
2330                                skb_frag_off_add(frag, eat);
2331                                skb_frag_size_sub(frag, eat);
2332                                if (!i)
2333                                        goto end;
2334                                eat = 0;
2335                        }
2336                        k++;
2337                }
2338        }
2339        skb_shinfo(skb)->nr_frags = k;
2340
2341end:
2342        skb->tail     += delta;
2343        skb->data_len -= delta;
2344
2345        if (!skb->data_len)
2346                skb_zcopy_clear(skb, false);
2347
2348        return skb_tail_pointer(skb);
2349}
2350EXPORT_SYMBOL(__pskb_pull_tail);
2351
2352/**
2353 *      skb_copy_bits - copy bits from skb to kernel buffer
2354 *      @skb: source skb
2355 *      @offset: offset in source
2356 *      @to: destination buffer
2357 *      @len: number of bytes to copy
2358 *
2359 *      Copy the specified number of bytes from the source skb to the
2360 *      destination buffer.
2361 *
2362 *      CAUTION ! :
2363 *              If its prototype is ever changed,
2364 *              check arch/{*}/net/{*}.S files,
2365 *              since it is called from BPF assembly code.
2366 */
2367int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2368{
2369        int start = skb_headlen(skb);
2370        struct sk_buff *frag_iter;
2371        int i, copy;
2372
2373        if (offset > (int)skb->len - len)
2374                goto fault;
2375
2376        /* Copy header. */
2377        if ((copy = start - offset) > 0) {
2378                if (copy > len)
2379                        copy = len;
2380                skb_copy_from_linear_data_offset(skb, offset, to, copy);
2381                if ((len -= copy) == 0)
2382                        return 0;
2383                offset += copy;
2384                to     += copy;
2385        }
2386
2387        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2388                int end;
2389                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2390
2391                WARN_ON(start > offset + len);
2392
2393                end = start + skb_frag_size(f);
2394                if ((copy = end - offset) > 0) {
2395                        u32 p_off, p_len, copied;
2396                        struct page *p;
2397                        u8 *vaddr;
2398
2399                        if (copy > len)
2400                                copy = len;
2401
2402                        skb_frag_foreach_page(f,
2403                                              skb_frag_off(f) + offset - start,
2404                                              copy, p, p_off, p_len, copied) {
2405                                vaddr = kmap_atomic(p);
2406                                memcpy(to + copied, vaddr + p_off, p_len);
2407                                kunmap_atomic(vaddr);
2408                        }
2409
2410                        if ((len -= copy) == 0)
2411                                return 0;
2412                        offset += copy;
2413                        to     += copy;
2414                }
2415                start = end;
2416        }
2417
2418        skb_walk_frags(skb, frag_iter) {
2419                int end;
2420
2421                WARN_ON(start > offset + len);
2422
2423                end = start + frag_iter->len;
2424                if ((copy = end - offset) > 0) {
2425                        if (copy > len)
2426                                copy = len;
2427                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
2428                                goto fault;
2429                        if ((len -= copy) == 0)
2430                                return 0;
2431                        offset += copy;
2432                        to     += copy;
2433                }
2434                start = end;
2435        }
2436
2437        if (!len)
2438                return 0;
2439
2440fault:
2441        return -EFAULT;
2442}
2443EXPORT_SYMBOL(skb_copy_bits);
2444
2445/*
2446 * Callback from splice_to_pipe(), if we need to release some pages
2447 * at the end of the spd in case we error'ed out in filling the pipe.
2448 */
2449static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2450{
2451        put_page(spd->pages[i]);
2452}
2453
2454static struct page *linear_to_page(struct page *page, unsigned int *len,
2455                                   unsigned int *offset,
2456                                   struct sock *sk)
2457{
2458        struct page_frag *pfrag = sk_page_frag(sk);
2459
2460        if (!sk_page_frag_refill(sk, pfrag))
2461                return NULL;
2462
2463        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2464
2465        memcpy(page_address(pfrag->page) + pfrag->offset,
2466               page_address(page) + *offset, *len);
2467        *offset = pfrag->offset;
2468        pfrag->offset += *len;
2469
2470        return pfrag->page;
2471}
2472
2473static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2474                             struct page *page,
2475                             unsigned int offset)
2476{
2477        return  spd->nr_pages &&
2478                spd->pages[spd->nr_pages - 1] == page &&
2479                (spd->partial[spd->nr_pages - 1].offset +
2480                 spd->partial[spd->nr_pages - 1].len == offset);
2481}
2482
2483/*
2484 * Fill page/offset/length into spd, if it can hold more pages.
2485 */
2486static bool spd_fill_page(struct splice_pipe_desc *spd,
2487                          struct pipe_inode_info *pipe, struct page *page,
2488                          unsigned int *len, unsigned int offset,
2489                          bool linear,
2490                          struct sock *sk)
2491{
2492        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2493                return true;
2494
2495        if (linear) {
2496                page = linear_to_page(page, len, &offset, sk);
2497                if (!page)
2498                        return true;
2499        }
2500        if (spd_can_coalesce(spd, page, offset)) {
2501                spd->partial[spd->nr_pages - 1].len += *len;
2502                return false;
2503        }
2504        get_page(page);
2505        spd->pages[spd->nr_pages] = page;
2506        spd->partial[spd->nr_pages].len = *len;
2507        spd->partial[spd->nr_pages].offset = offset;
2508        spd->nr_pages++;
2509
2510        return false;
2511}
2512
2513static bool __splice_segment(struct page *page, unsigned int poff,
2514                             unsigned int plen, unsigned int *off,
2515                             unsigned int *len,
2516                             struct splice_pipe_desc *spd, bool linear,
2517                             struct sock *sk,
2518                             struct pipe_inode_info *pipe)
2519{
2520        if (!*len)
2521                return true;
2522
2523        /* skip this segment if already processed */
2524        if (*off >= plen) {
2525                *off -= plen;
2526                return false;
2527        }
2528
2529        /* ignore any bits we already processed */
2530        poff += *off;
2531        plen -= *off;
2532        *off = 0;
2533
2534        do {
2535                unsigned int flen = min(*len, plen);
2536
2537                if (spd_fill_page(spd, pipe, page, &flen, poff,
2538                                  linear, sk))
2539                        return true;
2540                poff += flen;
2541                plen -= flen;
2542                *len -= flen;
2543        } while (*len && plen);
2544
2545        return false;
2546}
2547
2548/*
2549 * Map linear and fragment data from the skb to spd. It reports true if the
2550 * pipe is full or if we already spliced the requested length.
2551 */
2552static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2553                              unsigned int *offset, unsigned int *len,
2554                              struct splice_pipe_desc *spd, struct sock *sk)
2555{
2556        int seg;
2557        struct sk_buff *iter;
2558
2559        /* map the linear part :
2560         * If skb->head_frag is set, this 'linear' part is backed by a
2561         * fragment, and if the head is not shared with any clones then
2562         * we can avoid a copy since we own the head portion of this page.
2563         */
2564        if (__splice_segment(virt_to_page(skb->data),
2565                             (unsigned long) skb->data & (PAGE_SIZE - 1),
2566                             skb_headlen(skb),
2567                             offset, len, spd,
2568                             skb_head_is_locked(skb),
2569                             sk, pipe))
2570                return true;
2571
2572        /*
2573         * then map the fragments
2574         */
2575        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2576                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2577
2578                if (__splice_segment(skb_frag_page(f),
2579                                     skb_frag_off(f), skb_frag_size(f),
2580                                     offset, len, spd, false, sk, pipe))
2581                        return true;
2582        }
2583
2584        skb_walk_frags(skb, iter) {
2585                if (*offset >= iter->len) {
2586                        *offset -= iter->len;
2587                        continue;
2588                }
2589                /* __skb_splice_bits() only fails if the output has no room
2590                 * left, so no point in going over the frag_list for the error
2591                 * case.
2592                 */
2593                if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2594                        return true;
2595        }
2596
2597        return false;
2598}
2599
2600/*
2601 * Map data from the skb to a pipe. Should handle both the linear part,
2602 * the fragments, and the frag list.
2603 */
2604int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2605                    struct pipe_inode_info *pipe, unsigned int tlen,
2606                    unsigned int flags)
2607{
2608        struct partial_page partial[MAX_SKB_FRAGS];
2609        struct page *pages[MAX_SKB_FRAGS];
2610        struct splice_pipe_desc spd = {
2611                .pages = pages,
2612                .partial = partial,
2613                .nr_pages_max = MAX_SKB_FRAGS,
2614                .ops = &nosteal_pipe_buf_ops,
2615                .spd_release = sock_spd_release,
2616        };
2617        int ret = 0;
2618
2619        __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2620
2621        if (spd.nr_pages)
2622                ret = splice_to_pipe(pipe, &spd);
2623
2624        return ret;
2625}
2626EXPORT_SYMBOL_GPL(skb_splice_bits);
2627
2628static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2629                            struct kvec *vec, size_t num, size_t size)
2630{
2631        struct socket *sock = sk->sk_socket;
2632
2633        if (!sock)
2634                return -EINVAL;
2635        return kernel_sendmsg(sock, msg, vec, num, size);
2636}
2637
2638static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2639                             size_t size, int flags)
2640{
2641        struct socket *sock = sk->sk_socket;
2642
2643        if (!sock)
2644                return -EINVAL;
2645        return kernel_sendpage(sock, page, offset, size, flags);
2646}
2647
2648typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2649                            struct kvec *vec, size_t num, size_t size);
2650typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2651                             size_t size, int flags);
2652static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2653                           int len, sendmsg_func sendmsg, sendpage_func sendpage)
2654{
2655        unsigned int orig_len = len;
2656        struct sk_buff *head = skb;
2657        unsigned short fragidx;
2658        int slen, ret;
2659
2660do_frag_list:
2661
2662        /* Deal with head data */
2663        while (offset < skb_headlen(skb) && len) {
2664                struct kvec kv;
2665                struct msghdr msg;
2666
2667                slen = min_t(int, len, skb_headlen(skb) - offset);
2668                kv.iov_base = skb->data + offset;
2669                kv.iov_len = slen;
2670                memset(&msg, 0, sizeof(msg));
2671                msg.msg_flags = MSG_DONTWAIT;
2672
2673                ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2674                                      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2675                if (ret <= 0)
2676                        goto error;
2677
2678                offset += ret;
2679                len -= ret;
2680        }
2681
2682        /* All the data was skb head? */
2683        if (!len)
2684                goto out;
2685
2686        /* Make offset relative to start of frags */
2687        offset -= skb_headlen(skb);
2688
2689        /* Find where we are in frag list */
2690        for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2691                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2692
2693                if (offset < skb_frag_size(frag))
2694                        break;
2695
2696                offset -= skb_frag_size(frag);
2697        }
2698
2699        for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2700                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2701
2702                slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2703
2704                while (slen) {
2705                        ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2706                                              sendpage_unlocked, sk,
2707                                              skb_frag_page(frag),
2708                                              skb_frag_off(frag) + offset,
2709                                              slen, MSG_DONTWAIT);
2710                        if (ret <= 0)
2711                                goto error;
2712
2713                        len -= ret;
2714                        offset += ret;
2715                        slen -= ret;
2716                }
2717
2718                offset = 0;
2719        }
2720
2721        if (len) {
2722                /* Process any frag lists */
2723
2724                if (skb == head) {
2725                        if (skb_has_frag_list(skb)) {
2726                                skb = skb_shinfo(skb)->frag_list;
2727                                goto do_frag_list;
2728                        }
2729                } else if (skb->next) {
2730                        skb = skb->next;
2731                        goto do_frag_list;
2732                }
2733        }
2734
2735out:
2736        return orig_len - len;
2737
2738error:
2739        return orig_len == len ? ret : orig_len - len;
2740}
2741
2742/* Send skb data on a socket. Socket must be locked. */
2743int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2744                         int len)
2745{
2746        return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2747                               kernel_sendpage_locked);
2748}
2749EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2750
2751/* Send skb data on a socket. Socket must be unlocked. */
2752int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2753{
2754        return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2755                               sendpage_unlocked);
2756}
2757
2758/**
2759 *      skb_store_bits - store bits from kernel buffer to skb
2760 *      @skb: destination buffer
2761 *      @offset: offset in destination
2762 *      @from: source buffer
2763 *      @len: number of bytes to copy
2764 *
2765 *      Copy the specified number of bytes from the source buffer to the
2766 *      destination skb.  This function handles all the messy bits of
2767 *      traversing fragment lists and such.
2768 */
2769
2770int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2771{
2772        int start = skb_headlen(skb);
2773        struct sk_buff *frag_iter;
2774        int i, copy;
2775
2776        if (offset > (int)skb->len - len)
2777                goto fault;
2778
2779        if ((copy = start - offset) > 0) {
2780                if (copy > len)
2781                        copy = len;
2782                skb_copy_to_linear_data_offset(skb, offset, from, copy);
2783                if ((len -= copy) == 0)
2784                        return 0;
2785                offset += copy;
2786                from += copy;
2787        }
2788
2789        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2790                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2791                int end;
2792
2793                WARN_ON(start > offset + len);
2794
2795                end = start + skb_frag_size(frag);
2796                if ((copy = end - offset) > 0) {
2797                        u32 p_off, p_len, copied;
2798                        struct page *p;
2799                        u8 *vaddr;
2800
2801                        if (copy > len)
2802                                copy = len;
2803
2804                        skb_frag_foreach_page(frag,
2805                                              skb_frag_off(frag) + offset - start,
2806                                              copy, p, p_off, p_len, copied) {
2807                                vaddr = kmap_atomic(p);
2808                                memcpy(vaddr + p_off, from + copied, p_len);
2809                                kunmap_atomic(vaddr);
2810                        }
2811
2812                        if ((len -= copy) == 0)
2813                                return 0;
2814                        offset += copy;
2815                        from += copy;
2816                }
2817                start = end;
2818        }
2819
2820        skb_walk_frags(skb, frag_iter) {
2821                int end;
2822
2823                WARN_ON(start > offset + len);
2824
2825                end = start + frag_iter->len;
2826                if ((copy = end - offset) > 0) {
2827                        if (copy > len)
2828                                copy = len;
2829                        if (skb_store_bits(frag_iter, offset - start,
2830                                           from, copy))
2831                                goto fault;
2832                        if ((len -= copy) == 0)
2833                                return 0;
2834                        offset += copy;
2835                        from += copy;
2836                }
2837                start = end;
2838        }
2839        if (!len)
2840                return 0;
2841
2842fault:
2843        return -EFAULT;
2844}
2845EXPORT_SYMBOL(skb_store_bits);
2846
2847/* Checksum skb data. */
2848__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2849                      __wsum csum, const struct skb_checksum_ops *ops)
2850{
2851        int start = skb_headlen(skb);
2852        int i, copy = start - offset;
2853        struct sk_buff *frag_iter;
2854        int pos = 0;
2855
2856        /* Checksum header. */
2857        if (copy > 0) {
2858                if (copy > len)
2859                        copy = len;
2860                csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2861                                       skb->data + offset, copy, csum);
2862                if ((len -= copy) == 0)
2863                        return csum;
2864                offset += copy;
2865                pos     = copy;
2866        }
2867
2868        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2869                int end;
2870                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2871
2872                WARN_ON(start > offset + len);
2873
2874                end = start + skb_frag_size(frag);
2875                if ((copy = end - offset) > 0) {
2876                        u32 p_off, p_len, copied;
2877                        struct page *p;
2878                        __wsum csum2;
2879                        u8 *vaddr;
2880
2881                        if (copy > len)
2882                                copy = len;
2883
2884                        skb_frag_foreach_page(frag,
2885                                              skb_frag_off(frag) + offset - start,
2886                                              copy, p, p_off, p_len, copied) {
2887                                vaddr = kmap_atomic(p);
2888                                csum2 = INDIRECT_CALL_1(ops->update,
2889                                                        csum_partial_ext,
2890                                                        vaddr + p_off, p_len, 0);
2891                                kunmap_atomic(vaddr);
2892                                csum = INDIRECT_CALL_1(ops->combine,
2893                                                       csum_block_add_ext, csum,
2894                                                       csum2, pos, p_len);
2895                                pos += p_len;
2896                        }
2897
2898                        if (!(len -= copy))
2899                                return csum;
2900                        offset += copy;
2901                }
2902                start = end;
2903        }
2904
2905        skb_walk_frags(skb, frag_iter) {
2906                int end;
2907
2908                WARN_ON(start > offset + len);
2909
2910                end = start + frag_iter->len;
2911                if ((copy = end - offset) > 0) {
2912                        __wsum csum2;
2913                        if (copy > len)
2914                                copy = len;
2915                        csum2 = __skb_checksum(frag_iter, offset - start,
2916                                               copy, 0, ops);
2917                        csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2918                                               csum, csum2, pos, copy);
2919                        if ((len -= copy) == 0)
2920                                return csum;
2921                        offset += copy;
2922                        pos    += copy;
2923                }
2924                start = end;
2925        }
2926        BUG_ON(len);
2927
2928        return csum;
2929}
2930EXPORT_SYMBOL(__skb_checksum);
2931
2932__wsum skb_checksum(const struct sk_buff *skb, int offset,
2933                    int len, __wsum csum)
2934{
2935        const struct skb_checksum_ops ops = {
2936                .update  = csum_partial_ext,
2937                .combine = csum_block_add_ext,
2938        };
2939
2940        return __skb_checksum(skb, offset, len, csum, &ops);
2941}
2942EXPORT_SYMBOL(skb_checksum);
2943
2944/* Both of above in one bottle. */
2945
2946__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2947                                    u8 *to, int len)
2948{
2949        int start = skb_headlen(skb);
2950        int i, copy = start - offset;
2951        struct sk_buff *frag_iter;
2952        int pos = 0;
2953        __wsum csum = 0;
2954
2955        /* Copy header. */
2956        if (copy > 0) {
2957                if (copy > len)
2958                        copy = len;
2959                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2960                                                 copy);
2961                if ((len -= copy) == 0)
2962                        return csum;
2963                offset += copy;
2964                to     += copy;
2965                pos     = copy;
2966        }
2967
2968        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2969                int end;
2970
2971                WARN_ON(start > offset + len);
2972
2973                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2974                if ((copy = end - offset) > 0) {
2975                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2976                        u32 p_off, p_len, copied;
2977                        struct page *p;
2978                        __wsum csum2;
2979                        u8 *vaddr;
2980
2981                        if (copy > len)
2982                                copy = len;
2983
2984                        skb_frag_foreach_page(frag,
2985                                              skb_frag_off(frag) + offset - start,
2986                                              copy, p, p_off, p_len, copied) {
2987                                vaddr = kmap_atomic(p);
2988                                csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2989                                                                  to + copied,
2990                                                                  p_len);
2991                                kunmap_atomic(vaddr);
2992                                csum = csum_block_add(csum, csum2, pos);
2993                                pos += p_len;
2994                        }
2995
2996                        if (!(len -= copy))
2997                                return csum;
2998                        offset += copy;
2999                        to     += copy;
3000                }
3001                start = end;
3002        }
3003
3004        skb_walk_frags(skb, frag_iter) {
3005                __wsum csum2;
3006                int end;
3007
3008                WARN_ON(start > offset + len);
3009
3010                end = start + frag_iter->len;
3011                if ((copy = end - offset) > 0) {
3012                        if (copy > len)
3013                                copy = len;
3014                        csum2 = skb_copy_and_csum_bits(frag_iter,
3015                                                       offset - start,
3016                                                       to, copy);
3017                        csum = csum_block_add(csum, csum2, pos);
3018                        if ((len -= copy) == 0)
3019                                return csum;
3020                        offset += copy;
3021                        to     += copy;
3022                        pos    += copy;
3023                }
3024                start = end;
3025        }
3026        BUG_ON(len);
3027        return csum;
3028}
3029EXPORT_SYMBOL(skb_copy_and_csum_bits);
3030
3031__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3032{
3033        __sum16 sum;
3034
3035        sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3036        /* See comments in __skb_checksum_complete(). */
3037        if (likely(!sum)) {
3038                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3039                    !skb->csum_complete_sw)
3040                        netdev_rx_csum_fault(skb->dev, skb);
3041        }
3042        if (!skb_shared(skb))
3043                skb->csum_valid = !sum;
3044        return sum;
3045}
3046EXPORT_SYMBOL(__skb_checksum_complete_head);
3047
3048/* This function assumes skb->csum already holds pseudo header's checksum,
3049 * which has been changed from the hardware checksum, for example, by
3050 * __skb_checksum_validate_complete(). And, the original skb->csum must
3051 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3052 *
3053 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3054 * zero. The new checksum is stored back into skb->csum unless the skb is
3055 * shared.
3056 */
3057__sum16 __skb_checksum_complete(struct sk_buff *skb)
3058{
3059        __wsum csum;
3060        __sum16 sum;
3061
3062        csum = skb_checksum(skb, 0, skb->len, 0);
3063
3064        sum = csum_fold(csum_add(skb->csum, csum));
3065        /* This check is inverted, because we already knew the hardware
3066         * checksum is invalid before calling this function. So, if the
3067         * re-computed checksum is valid instead, then we have a mismatch
3068         * between the original skb->csum and skb_checksum(). This means either
3069         * the original hardware checksum is incorrect or we screw up skb->csum
3070         * when moving skb->data around.
3071         */
3072        if (likely(!sum)) {
3073                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3074                    !skb->csum_complete_sw)
3075                        netdev_rx_csum_fault(skb->dev, skb);
3076        }
3077
3078        if (!skb_shared(skb)) {
3079                /* Save full packet checksum */
3080                skb->csum = csum;
3081                skb->ip_summed = CHECKSUM_COMPLETE;
3082                skb->csum_complete_sw = 1;
3083                skb->csum_valid = !sum;
3084        }
3085
3086        return sum;
3087}
3088EXPORT_SYMBOL(__skb_checksum_complete);
3089
3090static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3091{
3092        net_warn_ratelimited(
3093                "%s: attempt to compute crc32c without libcrc32c.ko\n",
3094                __func__);
3095        return 0;
3096}
3097
3098static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3099                                       int offset, int len)
3100{
3101        net_warn_ratelimited(
3102                "%s: attempt to compute crc32c without libcrc32c.ko\n",
3103                __func__);
3104        return 0;
3105}
3106
3107static const struct skb_checksum_ops default_crc32c_ops = {
3108        .update  = warn_crc32c_csum_update,
3109        .combine = warn_crc32c_csum_combine,
3110};
3111
3112const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3113        &default_crc32c_ops;
3114EXPORT_SYMBOL(crc32c_csum_stub);
3115
3116 /**
3117 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3118 *      @from: source buffer
3119 *
3120 *      Calculates the amount of linear headroom needed in the 'to' skb passed
3121 *      into skb_zerocopy().
3122 */
3123unsigned int
3124skb_zerocopy_headlen(const struct sk_buff *from)
3125{
3126        unsigned int hlen = 0;
3127
3128        if (!from->head_frag ||
3129            skb_headlen(from) < L1_CACHE_BYTES ||
3130            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3131                hlen = skb_headlen(from);
3132                if (!hlen)
3133                        hlen = from->len;
3134        }
3135
3136        if (skb_has_frag_list(from))
3137                hlen = from->len;
3138
3139        return hlen;
3140}
3141EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3142
3143/**
3144 *      skb_zerocopy - Zero copy skb to skb
3145 *      @to: destination buffer
3146 *      @from: source buffer
3147 *      @len: number of bytes to copy from source buffer
3148 *      @hlen: size of linear headroom in destination buffer
3149 *
3150 *      Copies up to `len` bytes from `from` to `to` by creating references
3151 *      to the frags in the source buffer.
3152 *
3153 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3154 *      headroom in the `to` buffer.
3155 *
3156 *      Return value:
3157 *      0: everything is OK
3158 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
3159 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
3160 */
3161int
3162skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3163{
3164        int i, j = 0;
3165        int plen = 0; /* length of skb->head fragment */
3166        int ret;
3167        struct page *page;
3168        unsigned int offset;
3169
3170        BUG_ON(!from->head_frag && !hlen);
3171
3172        /* dont bother with small payloads */
3173        if (len <= skb_tailroom(to))
3174                return skb_copy_bits(from, 0, skb_put(to, len), len);
3175
3176        if (hlen) {
3177                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3178                if (unlikely(ret))
3179                        return ret;
3180                len -= hlen;
3181        } else {
3182                plen = min_t(int, skb_headlen(from), len);
3183                if (plen) {
3184                        page = virt_to_head_page(from->head);
3185                        offset = from->data - (unsigned char *)page_address(page);
3186                        __skb_fill_page_desc(to, 0, page, offset, plen);
3187                        get_page(page);
3188                        j = 1;
3189                        len -= plen;
3190                }
3191        }
3192
3193        to->truesize += len + plen;
3194        to->len += len + plen;
3195        to->data_len += len + plen;
3196
3197        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3198                skb_tx_error(from);
3199                return -ENOMEM;
3200        }
3201        skb_zerocopy_clone(to, from, GFP_ATOMIC);
3202
3203        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3204                int size;
3205
3206                if (!len)
3207                        break;
3208                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3209                size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3210                                        len);
3211                skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3212                len -= size;
3213                skb_frag_ref(to, j);
3214                j++;
3215        }
3216        skb_shinfo(to)->nr_frags = j;
3217
3218        return 0;
3219}
3220EXPORT_SYMBOL_GPL(skb_zerocopy);
3221
3222void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3223{
3224        __wsum csum;
3225        long csstart;
3226
3227        if (skb->ip_summed == CHECKSUM_PARTIAL)
3228                csstart = skb_checksum_start_offset(skb);
3229        else
3230                csstart = skb_headlen(skb);
3231
3232        BUG_ON(csstart > skb_headlen(skb));
3233
3234        skb_copy_from_linear_data(skb, to, csstart);
3235
3236        csum = 0;
3237        if (csstart != skb->len)
3238                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3239                                              skb->len - csstart);
3240
3241        if (skb->ip_summed == CHECKSUM_PARTIAL) {
3242                long csstuff = csstart + skb->csum_offset;
3243
3244                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3245        }
3246}
3247EXPORT_SYMBOL(skb_copy_and_csum_dev);
3248
3249/**
3250 *      skb_dequeue - remove from the head of the queue
3251 *      @list: list to dequeue from
3252 *
3253 *      Remove the head of the list. The list lock is taken so the function
3254 *      may be used safely with other locking list functions. The head item is
3255 *      returned or %NULL if the list is empty.
3256 */
3257
3258struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3259{
3260        unsigned long flags;
3261        struct sk_buff *result;
3262
3263        spin_lock_irqsave(&list->lock, flags);
3264        result = __skb_dequeue(list);
3265        spin_unlock_irqrestore(&list->lock, flags);
3266        return result;
3267}
3268EXPORT_SYMBOL(skb_dequeue);
3269
3270/**
3271 *      skb_dequeue_tail - remove from the tail of the queue
3272 *      @list: list to dequeue from
3273 *
3274 *      Remove the tail of the list. The list lock is taken so the function
3275 *      may be used safely with other locking list functions. The tail item is
3276 *      returned or %NULL if the list is empty.
3277 */
3278struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3279{
3280        unsigned long flags;
3281        struct sk_buff *result;
3282
3283        spin_lock_irqsave(&list->lock, flags);
3284        result = __skb_dequeue_tail(list);
3285        spin_unlock_irqrestore(&list->lock, flags);
3286        return result;
3287}
3288EXPORT_SYMBOL(skb_dequeue_tail);
3289
3290/**
3291 *      skb_queue_purge - empty a list
3292 *      @list: list to empty
3293 *
3294 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
3295 *      the list and one reference dropped. This function takes the list
3296 *      lock and is atomic with respect to other list locking functions.
3297 */
3298void skb_queue_purge(struct sk_buff_head *list)
3299{
3300        struct sk_buff *skb;
3301        while ((skb = skb_dequeue(list)) != NULL)
3302                kfree_skb(skb);
3303}
3304EXPORT_SYMBOL(skb_queue_purge);
3305
3306/**
3307 *      skb_rbtree_purge - empty a skb rbtree
3308 *      @root: root of the rbtree to empty
3309 *      Return value: the sum of truesizes of all purged skbs.
3310 *
3311 *      Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3312 *      the list and one reference dropped. This function does not take
3313 *      any lock. Synchronization should be handled by the caller (e.g., TCP
3314 *      out-of-order queue is protected by the socket lock).
3315 */
3316unsigned int skb_rbtree_purge(struct rb_root *root)
3317{
3318        struct rb_node *p = rb_first(root);
3319        unsigned int sum = 0;
3320
3321        while (p) {
3322                struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3323
3324                p = rb_next(p);
3325                rb_erase(&skb->rbnode, root);
3326                sum += skb->truesize;
3327                kfree_skb(skb);
3328        }
3329        return sum;
3330}
3331
3332/**
3333 *      skb_queue_head - queue a buffer at the list head
3334 *      @list: list to use
3335 *      @newsk: buffer to queue
3336 *
3337 *      Queue a buffer at the start of the list. This function takes the
3338 *      list lock and can be used safely with other locking &sk_buff functions
3339 *      safely.
3340 *
3341 *      A buffer cannot be placed on two lists at the same time.
3342 */
3343void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3344{
3345        unsigned long flags;
3346
3347        spin_lock_irqsave(&list->lock, flags);
3348        __skb_queue_head(list, newsk);
3349        spin_unlock_irqrestore(&list->lock, flags);
3350}
3351EXPORT_SYMBOL(skb_queue_head);
3352
3353/**
3354 *      skb_queue_tail - queue a buffer at the list tail
3355 *      @list: list to use
3356 *      @newsk: buffer to queue
3357 *
3358 *      Queue a buffer at the tail of the list. This function takes the
3359 *      list lock and can be used safely with other locking &sk_buff functions
3360 *      safely.
3361 *
3362 *      A buffer cannot be placed on two lists at the same time.
3363 */
3364void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3365{
3366        unsigned long flags;
3367
3368        spin_lock_irqsave(&list->lock, flags);
3369        __skb_queue_tail(list, newsk);
3370        spin_unlock_irqrestore(&list->lock, flags);
3371}
3372EXPORT_SYMBOL(skb_queue_tail);
3373
3374/**
3375 *      skb_unlink      -       remove a buffer from a list
3376 *      @skb: buffer to remove
3377 *      @list: list to use
3378 *
3379 *      Remove a packet from a list. The list locks are taken and this
3380 *      function is atomic with respect to other list locked calls
3381 *
3382 *      You must know what list the SKB is on.
3383 */
3384void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3385{
3386        unsigned long flags;
3387
3388        spin_lock_irqsave(&list->lock, flags);
3389        __skb_unlink(skb, list);
3390        spin_unlock_irqrestore(&list->lock, flags);
3391}
3392EXPORT_SYMBOL(skb_unlink);
3393
3394/**
3395 *      skb_append      -       append a buffer
3396 *      @old: buffer to insert after
3397 *      @newsk: buffer to insert
3398 *      @list: list to use
3399 *
3400 *      Place a packet after a given packet in a list. The list locks are taken
3401 *      and this function is atomic with respect to other list locked calls.
3402 *      A buffer cannot be placed on two lists at the same time.
3403 */
3404void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3405{
3406        unsigned long flags;
3407
3408        spin_lock_irqsave(&list->lock, flags);
3409        __skb_queue_after(list, old, newsk);
3410        spin_unlock_irqrestore(&list->lock, flags);
3411}
3412EXPORT_SYMBOL(skb_append);
3413
3414static inline void skb_split_inside_header(struct sk_buff *skb,
3415                                           struct sk_buff* skb1,
3416                                           const u32 len, const int pos)
3417{
3418        int i;
3419
3420        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3421                                         pos - len);
3422        /* And move data appendix as is. */
3423        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3424                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3425
3426        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3427        skb_shinfo(skb)->nr_frags  = 0;
3428        skb1->data_len             = skb->data_len;
3429        skb1->len                  += skb1->data_len;
3430        skb->data_len              = 0;
3431        skb->len                   = len;
3432        skb_set_tail_pointer(skb, len);
3433}
3434
3435static inline void skb_split_no_header(struct sk_buff *skb,
3436                                       struct sk_buff* skb1,
3437                                       const u32 len, int pos)
3438{
3439        int i, k = 0;
3440        const int nfrags = skb_shinfo(skb)->nr_frags;
3441
3442        skb_shinfo(skb)->nr_frags = 0;
3443        skb1->len                 = skb1->data_len = skb->len - len;
3444        skb->len                  = len;
3445        skb->data_len             = len - pos;
3446
3447        for (i = 0; i < nfrags; i++) {
3448                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3449
3450                if (pos + size > len) {
3451                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3452
3453                        if (pos < len) {
3454                                /* Split frag.
3455                                 * We have two variants in this case:
3456                                 * 1. Move all the frag to the second
3457                                 *    part, if it is possible. F.e.
3458                                 *    this approach is mandatory for TUX,
3459                                 *    where splitting is expensive.
3460                                 * 2. Split is accurately. We make this.
3461                                 */
3462                                skb_frag_ref(skb, i);
3463                                skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3464                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3465                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3466                                skb_shinfo(skb)->nr_frags++;
3467                        }
3468                        k++;
3469                } else
3470                        skb_shinfo(skb)->nr_frags++;
3471                pos += size;
3472        }
3473        skb_shinfo(skb1)->nr_frags = k;
3474}
3475
3476/**
3477 * skb_split - Split fragmented skb to two parts at length len.
3478 * @skb: the buffer to split
3479 * @skb1: the buffer to receive the second part
3480 * @len: new length for skb
3481 */
3482void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3483{
3484        int pos = skb_headlen(skb);
3485        const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3486
3487        skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3488        skb_zerocopy_clone(skb1, skb, 0);
3489        if (len < pos)  /* Split line is inside header. */
3490                skb_split_inside_header(skb, skb1, len, pos);
3491        else            /* Second chunk has no header, nothing to copy. */
3492                skb_split_no_header(skb, skb1, len, pos);
3493}
3494EXPORT_SYMBOL(skb_split);
3495
3496/* Shifting from/to a cloned skb is a no-go.
3497 *
3498 * Caller cannot keep skb_shinfo related pointers past calling here!
3499 */
3500static int skb_prepare_for_shift(struct sk_buff *skb)
3501{
3502        return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3503}
3504
3505/**
3506 * skb_shift - Shifts paged data partially from skb to another
3507 * @tgt: buffer into which tail data gets added
3508 * @skb: buffer from which the paged data comes from
3509 * @shiftlen: shift up to this many bytes
3510 *
3511 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3512 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3513 * It's up to caller to free skb if everything was shifted.
3514 *
3515 * If @tgt runs out of frags, the whole operation is aborted.
3516 *
3517 * Skb cannot include anything else but paged data while tgt is allowed
3518 * to have non-paged data as well.
3519 *
3520 * TODO: full sized shift could be optimized but that would need
3521 * specialized skb free'er to handle frags without up-to-date nr_frags.
3522 */
3523int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3524{
3525        int from, to, merge, todo;
3526        skb_frag_t *fragfrom, *fragto;
3527
3528        BUG_ON(shiftlen > skb->len);
3529
3530        if (skb_headlen(skb))
3531                return 0;
3532        if (skb_zcopy(tgt) || skb_zcopy(skb))
3533                return 0;
3534
3535        todo = shiftlen;
3536        from = 0;
3537        to = skb_shinfo(tgt)->nr_frags;
3538        fragfrom = &skb_shinfo(skb)->frags[from];
3539
3540        /* Actual merge is delayed until the point when we know we can
3541         * commit all, so that we don't have to undo partial changes
3542         */
3543        if (!to ||
3544            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3545                              skb_frag_off(fragfrom))) {
3546                merge = -1;
3547        } else {
3548                merge = to - 1;
3549
3550                todo -= skb_frag_size(fragfrom);
3551                if (todo < 0) {
3552                        if (skb_prepare_for_shift(skb) ||
3553                            skb_prepare_for_shift(tgt))
3554                                return 0;
3555
3556                        /* All previous frag pointers might be stale! */
3557                        fragfrom = &skb_shinfo(skb)->frags[from];
3558                        fragto = &skb_shinfo(tgt)->frags[merge];
3559
3560                        skb_frag_size_add(fragto, shiftlen);
3561                        skb_frag_size_sub(fragfrom, shiftlen);
3562                        skb_frag_off_add(fragfrom, shiftlen);
3563
3564                        goto onlymerged;
3565                }
3566
3567                from++;
3568        }
3569
3570        /* Skip full, not-fitting skb to avoid expensive operations */
3571        if ((shiftlen == skb->len) &&
3572            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3573                return 0;
3574
3575        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3576                return 0;
3577
3578        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3579                if (to == MAX_SKB_FRAGS)
3580                        return 0;
3581
3582                fragfrom = &skb_shinfo(skb)->frags[from];
3583                fragto = &skb_shinfo(tgt)->frags[to];
3584
3585                if (todo >= skb_frag_size(fragfrom)) {
3586                        *fragto = *fragfrom;
3587                        todo -= skb_frag_size(fragfrom);
3588                        from++;
3589                        to++;
3590
3591                } else {
3592                        __skb_frag_ref(fragfrom);
3593                        skb_frag_page_copy(fragto, fragfrom);
3594                        skb_frag_off_copy(fragto, fragfrom);
3595                        skb_frag_size_set(fragto, todo);
3596
3597                        skb_frag_off_add(fragfrom, todo);
3598                        skb_frag_size_sub(fragfrom, todo);
3599                        todo = 0;
3600
3601                        to++;
3602                        break;
3603                }
3604        }
3605
3606        /* Ready to "commit" this state change to tgt */
3607        skb_shinfo(tgt)->nr_frags = to;
3608
3609        if (merge >= 0) {
3610                fragfrom = &skb_shinfo(skb)->frags[0];
3611                fragto = &skb_shinfo(tgt)->frags[merge];
3612
3613                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3614                __skb_frag_unref(fragfrom, skb->pp_recycle);
3615        }
3616
3617        /* Reposition in the original skb */
3618        to = 0;
3619        while (from < skb_shinfo(skb)->nr_frags)
3620                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3621        skb_shinfo(skb)->nr_frags = to;
3622
3623        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3624
3625onlymerged:
3626        /* Most likely the tgt won't ever need its checksum anymore, skb on
3627         * the other hand might need it if it needs to be resent
3628         */
3629        tgt->ip_summed = CHECKSUM_PARTIAL;
3630        skb->ip_summed = CHECKSUM_PARTIAL;
3631
3632        /* Yak, is it really working this way? Some helper please? */
3633        skb->len -= shiftlen;
3634        skb->data_len -= shiftlen;
3635        skb->truesize -= shiftlen;
3636        tgt->len += shiftlen;
3637        tgt->data_len += shiftlen;
3638        tgt->truesize += shiftlen;
3639
3640        return shiftlen;
3641}
3642
3643/**
3644 * skb_prepare_seq_read - Prepare a sequential read of skb data
3645 * @skb: the buffer to read
3646 * @from: lower offset of data to be read
3647 * @to: upper offset of data to be read
3648 * @st: state variable
3649 *
3650 * Initializes the specified state variable. Must be called before
3651 * invoking skb_seq_read() for the first time.
3652 */
3653void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3654                          unsigned int to, struct skb_seq_state *st)
3655{
3656        st->lower_offset = from;
3657        st->upper_offset = to;
3658        st->root_skb = st->cur_skb = skb;
3659        st->frag_idx = st->stepped_offset = 0;
3660        st->frag_data = NULL;
3661        st->frag_off = 0;
3662}
3663EXPORT_SYMBOL(skb_prepare_seq_read);
3664
3665/**
3666 * skb_seq_read - Sequentially read skb data
3667 * @consumed: number of bytes consumed by the caller so far
3668 * @data: destination pointer for data to be returned
3669 * @st: state variable
3670 *
3671 * Reads a block of skb data at @consumed relative to the
3672 * lower offset specified to skb_prepare_seq_read(). Assigns
3673 * the head of the data block to @data and returns the length
3674 * of the block or 0 if the end of the skb data or the upper
3675 * offset has been reached.
3676 *
3677 * The caller is not required to consume all of the data
3678 * returned, i.e. @consumed is typically set to the number
3679 * of bytes already consumed and the next call to
3680 * skb_seq_read() will return the remaining part of the block.
3681 *
3682 * Note 1: The size of each block of data returned can be arbitrary,
3683 *       this limitation is the cost for zerocopy sequential
3684 *       reads of potentially non linear data.
3685 *
3686 * Note 2: Fragment lists within fragments are not implemented
3687 *       at the moment, state->root_skb could be replaced with
3688 *       a stack for this purpose.
3689 */
3690unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3691                          struct skb_seq_state *st)
3692{
3693        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3694        skb_frag_t *frag;
3695
3696        if (unlikely(abs_offset >= st->upper_offset)) {
3697                if (st->frag_data) {
3698                        kunmap_atomic(st->frag_data);
3699                        st->frag_data = NULL;
3700                }
3701                return 0;
3702        }
3703
3704next_skb:
3705        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3706
3707        if (abs_offset < block_limit && !st->frag_data) {
3708                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3709                return block_limit - abs_offset;
3710        }
3711
3712        if (st->frag_idx == 0 && !st->frag_data)
3713                st->stepped_offset += skb_headlen(st->cur_skb);
3714
3715        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3716                unsigned int pg_idx, pg_off, pg_sz;
3717
3718                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3719
3720                pg_idx = 0;
3721                pg_off = skb_frag_off(frag);
3722                pg_sz = skb_frag_size(frag);
3723
3724                if (skb_frag_must_loop(skb_frag_page(frag))) {
3725                        pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3726                        pg_off = offset_in_page(pg_off + st->frag_off);
3727                        pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3728                                                    PAGE_SIZE - pg_off);
3729                }
3730
3731                block_limit = pg_sz + st->stepped_offset;
3732                if (abs_offset < block_limit) {
3733                        if (!st->frag_data)
3734                                st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3735
3736                        *data = (u8 *)st->frag_data + pg_off +
3737                                (abs_offset - st->stepped_offset);
3738
3739                        return block_limit - abs_offset;
3740                }
3741
3742                if (st->frag_data) {
3743                        kunmap_atomic(st->frag_data);
3744                        st->frag_data = NULL;
3745                }
3746
3747                st->stepped_offset += pg_sz;
3748                st->frag_off += pg_sz;
3749                if (st->frag_off == skb_frag_size(frag)) {
3750                        st->frag_off = 0;
3751                        st->frag_idx++;
3752                }
3753        }
3754
3755        if (st->frag_data) {
3756                kunmap_atomic(st->frag_data);
3757                st->frag_data = NULL;
3758        }
3759
3760        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3761                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3762                st->frag_idx = 0;
3763                goto next_skb;
3764        } else if (st->cur_skb->next) {
3765                st->cur_skb = st->cur_skb->next;
3766                st->frag_idx = 0;
3767                goto next_skb;
3768        }
3769
3770        return 0;
3771}
3772EXPORT_SYMBOL(skb_seq_read);
3773
3774/**
3775 * skb_abort_seq_read - Abort a sequential read of skb data
3776 * @st: state variable
3777 *
3778 * Must be called if skb_seq_read() was not called until it
3779 * returned 0.
3780 */
3781void skb_abort_seq_read(struct skb_seq_state *st)
3782{
3783        if (st->frag_data)
3784                kunmap_atomic(st->frag_data);
3785}
3786EXPORT_SYMBOL(skb_abort_seq_read);
3787
3788#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
3789
3790static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3791                                          struct ts_config *conf,
3792                                          struct ts_state *state)
3793{
3794        return skb_seq_read(offset, text, TS_SKB_CB(state));
3795}
3796
3797static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3798{
3799        skb_abort_seq_read(TS_SKB_CB(state));
3800}
3801
3802/**
3803 * skb_find_text - Find a text pattern in skb data
3804 * @skb: the buffer to look in
3805 * @from: search offset
3806 * @to: search limit
3807 * @config: textsearch configuration
3808 *
3809 * Finds a pattern in the skb data according to the specified
3810 * textsearch configuration. Use textsearch_next() to retrieve
3811 * subsequent occurrences of the pattern. Returns the offset
3812 * to the first occurrence or UINT_MAX if no match was found.
3813 */
3814unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3815                           unsigned int to, struct ts_config *config)
3816{
3817        struct ts_state state;
3818        unsigned int ret;
3819
3820        BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3821
3822        config->get_next_block = skb_ts_get_next_block;
3823        config->finish = skb_ts_finish;
3824
3825        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3826
3827        ret = textsearch_find(config, &state);
3828        return (ret <= to - from ? ret : UINT_MAX);
3829}
3830EXPORT_SYMBOL(skb_find_text);
3831
3832int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3833                         int offset, size_t size)
3834{
3835        int i = skb_shinfo(skb)->nr_frags;
3836
3837        if (skb_can_coalesce(skb, i, page, offset)) {
3838                skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3839        } else if (i < MAX_SKB_FRAGS) {
3840                get_page(page);
3841                skb_fill_page_desc(skb, i, page, offset, size);
3842        } else {
3843                return -EMSGSIZE;
3844        }
3845
3846        return 0;
3847}
3848EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3849
3850/**
3851 *      skb_pull_rcsum - pull skb and update receive checksum
3852 *      @skb: buffer to update
3853 *      @len: length of data pulled
3854 *
3855 *      This function performs an skb_pull on the packet and updates
3856 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3857 *      receive path processing instead of skb_pull unless you know
3858 *      that the checksum difference is zero (e.g., a valid IP header)
3859 *      or you are setting ip_summed to CHECKSUM_NONE.
3860 */
3861void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3862{
3863        unsigned char *data = skb->data;
3864
3865        BUG_ON(len > skb->len);
3866        __skb_pull(skb, len);
3867        skb_postpull_rcsum(skb, data, len);
3868        return skb->data;
3869}
3870EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3871
3872static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3873{
3874        skb_frag_t head_frag;
3875        struct page *page;
3876
3877        page = virt_to_head_page(frag_skb->head);
3878        __skb_frag_set_page(&head_frag, page);
3879        skb_frag_off_set(&head_frag, frag_skb->data -
3880                         (unsigned char *)page_address(page));
3881        skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3882        return head_frag;
3883}
3884
3885struct sk_buff *skb_segment_list(struct sk_buff *skb,
3886                                 netdev_features_t features,
3887                                 unsigned int offset)
3888{
3889        struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3890        unsigned int tnl_hlen = skb_tnl_header_len(skb);
3891        unsigned int delta_truesize = 0;
3892        unsigned int delta_len = 0;
3893        struct sk_buff *tail = NULL;
3894        struct sk_buff *nskb, *tmp;
3895        int len_diff, err;
3896
3897        skb_push(skb, -skb_network_offset(skb) + offset);
3898
3899        skb_shinfo(skb)->frag_list = NULL;
3900
3901        do {
3902                nskb = list_skb;
3903                list_skb = list_skb->next;
3904
3905                err = 0;
3906                delta_truesize += nskb->truesize;
3907                if (skb_shared(nskb)) {
3908                        tmp = skb_clone(nskb, GFP_ATOMIC);
3909                        if (tmp) {
3910                                consume_skb(nskb);
3911                                nskb = tmp;
3912                                err = skb_unclone(nskb, GFP_ATOMIC);
3913                        } else {
3914                                err = -ENOMEM;
3915                        }
3916                }
3917
3918                if (!tail)
3919                        skb->next = nskb;
3920                else
3921                        tail->next = nskb;
3922
3923                if (unlikely(err)) {
3924                        nskb->next = list_skb;
3925                        goto err_linearize;
3926                }
3927
3928                tail = nskb;
3929
3930                delta_len += nskb->len;
3931
3932                skb_push(nskb, -skb_network_offset(nskb) + offset);
3933
3934                skb_release_head_state(nskb);
3935                len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3936                __copy_skb_header(nskb, skb);
3937
3938                skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3939                nskb->transport_header += len_diff;
3940                skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3941                                                 nskb->data - tnl_hlen,
3942                                                 offset + tnl_hlen);
3943
3944                if (skb_needs_linearize(nskb, features) &&
3945                    __skb_linearize(nskb))
3946                        goto err_linearize;
3947
3948        } while (list_skb);
3949
3950        skb->truesize = skb->truesize - delta_truesize;
3951        skb->data_len = skb->data_len - delta_len;
3952        skb->len = skb->len - delta_len;
3953
3954        skb_gso_reset(skb);
3955
3956        skb->prev = tail;
3957
3958        if (skb_needs_linearize(skb, features) &&
3959            __skb_linearize(skb))
3960                goto err_linearize;
3961
3962        skb_get(skb);
3963
3964        return skb;
3965
3966err_linearize:
3967        kfree_skb_list(skb->next);
3968        skb->next = NULL;
3969        return ERR_PTR(-ENOMEM);
3970}
3971EXPORT_SYMBOL_GPL(skb_segment_list);
3972
3973/**
3974 *      skb_segment - Perform protocol segmentation on skb.
3975 *      @head_skb: buffer to segment
3976 *      @features: features for the output path (see dev->features)
3977 *
3978 *      This function performs segmentation on the given skb.  It returns
3979 *      a pointer to the first in a list of new skbs for the segments.
3980 *      In case of error it returns ERR_PTR(err).
3981 */
3982struct sk_buff *skb_segment(struct sk_buff *head_skb,
3983                            netdev_features_t features)
3984{
3985        struct sk_buff *segs = NULL;
3986        struct sk_buff *tail = NULL;
3987        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3988        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3989        unsigned int mss = skb_shinfo(head_skb)->gso_size;
3990        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3991        struct sk_buff *frag_skb = head_skb;
3992        unsigned int offset = doffset;
3993        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3994        unsigned int partial_segs = 0;
3995        unsigned int headroom;
3996        unsigned int len = head_skb->len;
3997        __be16 proto;
3998        bool csum, sg;
3999        int nfrags = skb_shinfo(head_skb)->nr_frags;
4000        int err = -ENOMEM;
4001        int i = 0;
4002        int pos;
4003
4004        if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4005            (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4006                /* gso_size is untrusted, and we have a frag_list with a linear
4007                 * non head_frag head.
4008                 *
4009                 * (we assume checking the first list_skb member suffices;
4010                 * i.e if either of the list_skb members have non head_frag
4011                 * head, then the first one has too).
4012                 *
4013                 * If head_skb's headlen does not fit requested gso_size, it
4014                 * means that the frag_list members do NOT terminate on exact
4015                 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4016                 * sharing. Therefore we must fallback to copying the frag_list
4017                 * skbs; we do so by disabling SG.
4018                 */
4019                if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4020                        features &= ~NETIF_F_SG;
4021        }
4022
4023        __skb_push(head_skb, doffset);
4024        proto = skb_network_protocol(head_skb, NULL);
4025        if (unlikely(!proto))
4026                return ERR_PTR(-EINVAL);
4027
4028        sg = !!(features & NETIF_F_SG);
4029        csum = !!can_checksum_protocol(features, proto);
4030
4031        if (sg && csum && (mss != GSO_BY_FRAGS))  {
4032                if (!(features & NETIF_F_GSO_PARTIAL)) {
4033                        struct sk_buff *iter;
4034                        unsigned int frag_len;
4035
4036                        if (!list_skb ||
4037                            !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4038                                goto normal;
4039
4040                        /* If we get here then all the required
4041                         * GSO features except frag_list are supported.
4042                         * Try to split the SKB to multiple GSO SKBs
4043                         * with no frag_list.
4044                         * Currently we can do that only when the buffers don't
4045                         * have a linear part and all the buffers except
4046                         * the last are of the same length.
4047                         */
4048                        frag_len = list_skb->len;
4049                        skb_walk_frags(head_skb, iter) {
4050                                if (frag_len != iter->len && iter->next)
4051                                        goto normal;
4052                                if (skb_headlen(iter) && !iter->head_frag)
4053                                        goto normal;
4054
4055                                len -= iter->len;
4056                        }
4057
4058                        if (len != frag_len)
4059                                goto normal;
4060                }
4061
4062                /* GSO partial only requires that we trim off any excess that
4063                 * doesn't fit into an MSS sized block, so take care of that
4064                 * now.
4065                 */
4066                partial_segs = len / mss;
4067                if (partial_segs > 1)
4068                        mss *= partial_segs;
4069                else
4070                        partial_segs = 0;
4071        }
4072
4073normal:
4074        headroom = skb_headroom(head_skb);
4075        pos = skb_headlen(head_skb);
4076
4077        do {
4078                struct sk_buff *nskb;
4079                skb_frag_t *nskb_frag;
4080                int hsize;
4081                int size;
4082
4083                if (unlikely(mss == GSO_BY_FRAGS)) {
4084                        len = list_skb->len;
4085                } else {
4086                        len = head_skb->len - offset;
4087                        if (len > mss)
4088                                len = mss;
4089                }
4090
4091                hsize = skb_headlen(head_skb) - offset;
4092
4093                if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4094                    (skb_headlen(list_skb) == len || sg)) {
4095                        BUG_ON(skb_headlen(list_skb) > len);
4096
4097                        i = 0;
4098                        nfrags = skb_shinfo(list_skb)->nr_frags;
4099                        frag = skb_shinfo(list_skb)->frags;
4100                        frag_skb = list_skb;
4101                        pos += skb_headlen(list_skb);
4102
4103                        while (pos < offset + len) {
4104                                BUG_ON(i >= nfrags);
4105
4106                                size = skb_frag_size(frag);
4107                                if (pos + size > offset + len)
4108                                        break;
4109
4110                                i++;
4111                                pos += size;
4112                                frag++;
4113                        }
4114
4115                        nskb = skb_clone(list_skb, GFP_ATOMIC);
4116                        list_skb = list_skb->next;
4117
4118                        if (unlikely(!nskb))
4119                                goto err;
4120
4121                        if (unlikely(pskb_trim(nskb, len))) {
4122                                kfree_skb(nskb);
4123                                goto err;
4124                        }
4125
4126                        hsize = skb_end_offset(nskb);
4127                        if (skb_cow_head(nskb, doffset + headroom)) {
4128                                kfree_skb(nskb);
4129                                goto err;
4130                        }
4131
4132                        nskb->truesize += skb_end_offset(nskb) - hsize;
4133                        skb_release_head_state(nskb);
4134                        __skb_push(nskb, doffset);
4135                } else {
4136                        if (hsize < 0)
4137                                hsize = 0;
4138                        if (hsize > len || !sg)
4139                                hsize = len;
4140
4141                        nskb = __alloc_skb(hsize + doffset + headroom,
4142                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4143                                           NUMA_NO_NODE);
4144
4145                        if (unlikely(!nskb))
4146                                goto err;
4147
4148                        skb_reserve(nskb, headroom);
4149                        __skb_put(nskb, doffset);
4150                }
4151
4152                if (segs)
4153                        tail->next = nskb;
4154                else
4155                        segs = nskb;
4156                tail = nskb;
4157
4158                __copy_skb_header(nskb, head_skb);
4159
4160                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4161                skb_reset_mac_len(nskb);
4162
4163                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4164                                                 nskb->data - tnl_hlen,
4165                                                 doffset + tnl_hlen);
4166
4167                if (nskb->len == len + doffset)
4168                        goto perform_csum_check;
4169
4170                if (!sg) {
4171                        if (!csum) {
4172                                if (!nskb->remcsum_offload)
4173                                        nskb->ip_summed = CHECKSUM_NONE;
4174                                SKB_GSO_CB(nskb)->csum =
4175                                        skb_copy_and_csum_bits(head_skb, offset,
4176                                                               skb_put(nskb,
4177                                                                       len),
4178                                                               len);
4179                                SKB_GSO_CB(nskb)->csum_start =
4180                                        skb_headroom(nskb) + doffset;
4181                        } else {
4182                                skb_copy_bits(head_skb, offset,
4183                                              skb_put(nskb, len),
4184                                              len);
4185                        }
4186                        continue;
4187                }
4188
4189                nskb_frag = skb_shinfo(nskb)->frags;
4190
4191                skb_copy_from_linear_data_offset(head_skb, offset,
4192                                                 skb_put(nskb, hsize), hsize);
4193
4194                skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4195                                           SKBFL_SHARED_FRAG;
4196
4197                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4198                    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4199                        goto err;
4200
4201                while (pos < offset + len) {
4202                        if (i >= nfrags) {
4203                                i = 0;
4204                                nfrags = skb_shinfo(list_skb)->nr_frags;
4205                                frag = skb_shinfo(list_skb)->frags;
4206                                frag_skb = list_skb;
4207                                if (!skb_headlen(list_skb)) {
4208                                        BUG_ON(!nfrags);
4209                                } else {
4210                                        BUG_ON(!list_skb->head_frag);
4211
4212                                        /* to make room for head_frag. */
4213                                        i--;
4214                                        frag--;
4215                                }
4216                                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4217                                    skb_zerocopy_clone(nskb, frag_skb,
4218                                                       GFP_ATOMIC))
4219                                        goto err;
4220
4221                                list_skb = list_skb->next;
4222                        }
4223
4224                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
4225                                     MAX_SKB_FRAGS)) {
4226                                net_warn_ratelimited(
4227                                        "skb_segment: too many frags: %u %u\n",
4228                                        pos, mss);
4229                                err = -EINVAL;
4230                                goto err;
4231                        }
4232
4233                        *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4234                        __skb_frag_ref(nskb_frag);
4235                        size = skb_frag_size(nskb_frag);
4236
4237                        if (pos < offset) {
4238                                skb_frag_off_add(nskb_frag, offset - pos);
4239                                skb_frag_size_sub(nskb_frag, offset - pos);
4240                        }
4241
4242                        skb_shinfo(nskb)->nr_frags++;
4243
4244                        if (pos + size <= offset + len) {
4245                                i++;
4246                                frag++;
4247                                pos += size;
4248                        } else {
4249                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4250                                goto skip_fraglist;
4251                        }
4252
4253                        nskb_frag++;
4254                }
4255
4256skip_fraglist:
4257                nskb->data_len = len - hsize;
4258                nskb->len += nskb->data_len;
4259                nskb->truesize += nskb->data_len;
4260
4261perform_csum_check:
4262                if (!csum) {
4263                        if (skb_has_shared_frag(nskb) &&
4264                            __skb_linearize(nskb))
4265                                goto err;
4266
4267                        if (!nskb->remcsum_offload)
4268                                nskb->ip_summed = CHECKSUM_NONE;
4269                        SKB_GSO_CB(nskb)->csum =
4270                                skb_checksum(nskb, doffset,
4271                                             nskb->len - doffset, 0);
4272                        SKB_GSO_CB(nskb)->csum_start =
4273                                skb_headroom(nskb) + doffset;
4274                }
4275        } while ((offset += len) < head_skb->len);
4276
4277        /* Some callers want to get the end of the list.
4278         * Put it in segs->prev to avoid walking the list.
4279         * (see validate_xmit_skb_list() for example)
4280         */
4281        segs->prev = tail;
4282
4283        if (partial_segs) {
4284                struct sk_buff *iter;
4285                int type = skb_shinfo(head_skb)->gso_type;
4286                unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4287
4288                /* Update type to add partial and then remove dodgy if set */
4289                type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4290                type &= ~SKB_GSO_DODGY;
4291
4292                /* Update GSO info and prepare to start updating headers on
4293                 * our way back down the stack of protocols.
4294                 */
4295                for (iter = segs; iter; iter = iter->next) {
4296                        skb_shinfo(iter)->gso_size = gso_size;
4297                        skb_shinfo(iter)->gso_segs = partial_segs;
4298                        skb_shinfo(iter)->gso_type = type;
4299                        SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4300                }
4301
4302                if (tail->len - doffset <= gso_size)
4303                        skb_shinfo(tail)->gso_size = 0;
4304                else if (tail != segs)
4305                        skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4306        }
4307
4308        /* Following permits correct backpressure, for protocols
4309         * using skb_set_owner_w().
4310         * Idea is to tranfert ownership from head_skb to last segment.
4311         */
4312        if (head_skb->destructor == sock_wfree) {
4313                swap(tail->truesize, head_skb->truesize);
4314                swap(tail->destructor, head_skb->destructor);
4315                swap(tail->sk, head_skb->sk);
4316        }
4317        return segs;
4318
4319err:
4320        kfree_skb_list(segs);
4321        return ERR_PTR(err);
4322}
4323EXPORT_SYMBOL_GPL(skb_segment);
4324
4325#ifdef CONFIG_SKB_EXTENSIONS
4326#define SKB_EXT_ALIGN_VALUE     8
4327#define SKB_EXT_CHUNKSIZEOF(x)  (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4328
4329static const u8 skb_ext_type_len[] = {
4330#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4331        [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4332#endif
4333#ifdef CONFIG_XFRM
4334        [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4335#endif
4336#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4337        [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4338#endif
4339#if IS_ENABLED(CONFIG_MPTCP)
4340        [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4341#endif
4342#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4343        [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4344#endif
4345};
4346
4347static __always_inline unsigned int skb_ext_total_length(void)
4348{
4349        return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4350#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4351                skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4352#endif
4353#ifdef CONFIG_XFRM
4354                skb_ext_type_len[SKB_EXT_SEC_PATH] +
4355#endif
4356#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4357                skb_ext_type_len[TC_SKB_EXT] +
4358#endif
4359#if IS_ENABLED(CONFIG_MPTCP)
4360                skb_ext_type_len[SKB_EXT_MPTCP] +
4361#endif
4362#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4363                skb_ext_type_len[SKB_EXT_MCTP] +
4364#endif
4365                0;
4366}
4367
4368static void skb_extensions_init(void)
4369{
4370        BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4371        BUILD_BUG_ON(skb_ext_total_length() > 255);
4372
4373        skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4374                                             SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4375                                             0,
4376                                             SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4377                                             NULL);
4378}
4379#else
4380static void skb_extensions_init(void) {}
4381#endif
4382
4383void __init skb_init(void)
4384{
4385        skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4386                                              sizeof(struct sk_buff),
4387                                              0,
4388                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4389                                              offsetof(struct sk_buff, cb),
4390                                              sizeof_field(struct sk_buff, cb),
4391                                              NULL);
4392        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4393                                                sizeof(struct sk_buff_fclones),
4394                                                0,
4395                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4396                                                NULL);
4397        skb_extensions_init();
4398}
4399
4400static int
4401__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4402               unsigned int recursion_level)
4403{
4404        int start = skb_headlen(skb);
4405        int i, copy = start - offset;
4406        struct sk_buff *frag_iter;
4407        int elt = 0;
4408
4409        if (unlikely(recursion_level >= 24))
4410                return -EMSGSIZE;
4411
4412        if (copy > 0) {
4413                if (copy > len)
4414                        copy = len;
4415                sg_set_buf(sg, skb->data + offset, copy);
4416                elt++;
4417                if ((len -= copy) == 0)
4418                        return elt;
4419                offset += copy;
4420        }
4421
4422        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4423                int end;
4424
4425                WARN_ON(start > offset + len);
4426
4427                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4428                if ((copy = end - offset) > 0) {
4429                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4430                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4431                                return -EMSGSIZE;
4432
4433                        if (copy > len)
4434                                copy = len;
4435                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4436                                    skb_frag_off(frag) + offset - start);
4437                        elt++;
4438                        if (!(len -= copy))
4439                                return elt;
4440                        offset += copy;
4441                }
4442                start = end;
4443        }
4444
4445        skb_walk_frags(skb, frag_iter) {
4446                int end, ret;
4447
4448                WARN_ON(start > offset + len);
4449
4450                end = start + frag_iter->len;
4451                if ((copy = end - offset) > 0) {
4452                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4453                                return -EMSGSIZE;
4454
4455                        if (copy > len)
4456                                copy = len;
4457                        ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4458                                              copy, recursion_level + 1);
4459                        if (unlikely(ret < 0))
4460                                return ret;
4461                        elt += ret;
4462                        if ((len -= copy) == 0)
4463                                return elt;
4464                        offset += copy;
4465                }
4466                start = end;
4467        }
4468        BUG_ON(len);
4469        return elt;
4470}
4471
4472/**
4473 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4474 *      @skb: Socket buffer containing the buffers to be mapped
4475 *      @sg: The scatter-gather list to map into
4476 *      @offset: The offset into the buffer's contents to start mapping
4477 *      @len: Length of buffer space to be mapped
4478 *
4479 *      Fill the specified scatter-gather list with mappings/pointers into a
4480 *      region of the buffer space attached to a socket buffer. Returns either
4481 *      the number of scatterlist items used, or -EMSGSIZE if the contents
4482 *      could not fit.
4483 */
4484int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4485{
4486        int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4487
4488        if (nsg <= 0)
4489                return nsg;
4490
4491        sg_mark_end(&sg[nsg - 1]);
4492
4493        return nsg;
4494}
4495EXPORT_SYMBOL_GPL(skb_to_sgvec);
4496
4497/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4498 * sglist without mark the sg which contain last skb data as the end.
4499 * So the caller can mannipulate sg list as will when padding new data after
4500 * the first call without calling sg_unmark_end to expend sg list.
4501 *
4502 * Scenario to use skb_to_sgvec_nomark:
4503 * 1. sg_init_table
4504 * 2. skb_to_sgvec_nomark(payload1)
4505 * 3. skb_to_sgvec_nomark(payload2)
4506 *
4507 * This is equivalent to:
4508 * 1. sg_init_table
4509 * 2. skb_to_sgvec(payload1)
4510 * 3. sg_unmark_end
4511 * 4. skb_to_sgvec(payload2)
4512 *
4513 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4514 * is more preferable.
4515 */
4516int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4517                        int offset, int len)
4518{
4519        return __skb_to_sgvec(skb, sg, offset, len, 0);
4520}
4521EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4522
4523
4524
4525/**
4526 *      skb_cow_data - Check that a socket buffer's data buffers are writable
4527 *      @skb: The socket buffer to check.
4528 *      @tailbits: Amount of trailing space to be added
4529 *      @trailer: Returned pointer to the skb where the @tailbits space begins
4530 *
4531 *      Make sure that the data buffers attached to a socket buffer are
4532 *      writable. If they are not, private copies are made of the data buffers
4533 *      and the socket buffer is set to use these instead.
4534 *
4535 *      If @tailbits is given, make sure that there is space to write @tailbits
4536 *      bytes of data beyond current end of socket buffer.  @trailer will be
4537 *      set to point to the skb in which this space begins.
4538 *
4539 *      The number of scatterlist elements required to completely map the
4540 *      COW'd and extended socket buffer will be returned.
4541 */
4542int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4543{
4544        int copyflag;
4545        int elt;
4546        struct sk_buff *skb1, **skb_p;
4547
4548        /* If skb is cloned or its head is paged, reallocate
4549         * head pulling out all the pages (pages are considered not writable
4550         * at the moment even if they are anonymous).
4551         */
4552        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4553            !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4554                return -ENOMEM;
4555
4556        /* Easy case. Most of packets will go this way. */
4557        if (!skb_has_frag_list(skb)) {
4558                /* A little of trouble, not enough of space for trailer.
4559                 * This should not happen, when stack is tuned to generate
4560                 * good frames. OK, on miss we reallocate and reserve even more
4561                 * space, 128 bytes is fair. */
4562
4563                if (skb_tailroom(skb) < tailbits &&
4564                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4565                        return -ENOMEM;
4566
4567                /* Voila! */
4568                *trailer = skb;
4569                return 1;
4570        }
4571
4572        /* Misery. We are in troubles, going to mincer fragments... */
4573
4574        elt = 1;
4575        skb_p = &skb_shinfo(skb)->frag_list;
4576        copyflag = 0;
4577
4578        while ((skb1 = *skb_p) != NULL) {
4579                int ntail = 0;
4580
4581                /* The fragment is partially pulled by someone,
4582                 * this can happen on input. Copy it and everything
4583                 * after it. */
4584
4585                if (skb_shared(skb1))
4586                        copyflag = 1;
4587
4588                /* If the skb is the last, worry about trailer. */
4589
4590                if (skb1->next == NULL && tailbits) {
4591                        if (skb_shinfo(skb1)->nr_frags ||
4592                            skb_has_frag_list(skb1) ||
4593                            skb_tailroom(skb1) < tailbits)
4594                                ntail = tailbits + 128;
4595                }
4596
4597                if (copyflag ||
4598                    skb_cloned(skb1) ||
4599                    ntail ||
4600                    skb_shinfo(skb1)->nr_frags ||
4601                    skb_has_frag_list(skb1)) {
4602                        struct sk_buff *skb2;
4603
4604                        /* Fuck, we are miserable poor guys... */
4605                        if (ntail == 0)
4606                                skb2 = skb_copy(skb1, GFP_ATOMIC);
4607                        else
4608                                skb2 = skb_copy_expand(skb1,
4609                                                       skb_headroom(skb1),
4610                                                       ntail,
4611                                                       GFP_ATOMIC);
4612                        if (unlikely(skb2 == NULL))
4613                                return -ENOMEM;
4614
4615                        if (skb1->sk)
4616                                skb_set_owner_w(skb2, skb1->sk);
4617
4618                        /* Looking around. Are we still alive?
4619                         * OK, link new skb, drop old one */
4620
4621                        skb2->next = skb1->next;
4622                        *skb_p = skb2;
4623                        kfree_skb(skb1);
4624                        skb1 = skb2;
4625                }
4626                elt++;
4627                *trailer = skb1;
4628                skb_p = &skb1->next;
4629        }
4630
4631        return elt;
4632}
4633EXPORT_SYMBOL_GPL(skb_cow_data);
4634
4635static void sock_rmem_free(struct sk_buff *skb)
4636{
4637        struct sock *sk = skb->sk;
4638
4639        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4640}
4641
4642static void skb_set_err_queue(struct sk_buff *skb)
4643{
4644        /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4645         * So, it is safe to (mis)use it to mark skbs on the error queue.
4646         */
4647        skb->pkt_type = PACKET_OUTGOING;
4648        BUILD_BUG_ON(PACKET_OUTGOING == 0);
4649}
4650
4651/*
4652 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4653 */
4654int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4655{
4656        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4657            (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4658                return -ENOMEM;
4659
4660        skb_orphan(skb);
4661        skb->sk = sk;
4662        skb->destructor = sock_rmem_free;
4663        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4664        skb_set_err_queue(skb);
4665
4666        /* before exiting rcu section, make sure dst is refcounted */
4667        skb_dst_force(skb);
4668
4669        skb_queue_tail(&sk->sk_error_queue, skb);
4670        if (!sock_flag(sk, SOCK_DEAD))
4671                sk_error_report(sk);
4672        return 0;
4673}
4674EXPORT_SYMBOL(sock_queue_err_skb);
4675
4676static bool is_icmp_err_skb(const struct sk_buff *skb)
4677{
4678        return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4679                       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4680}
4681
4682struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4683{
4684        struct sk_buff_head *q = &sk->sk_error_queue;
4685        struct sk_buff *skb, *skb_next = NULL;
4686        bool icmp_next = false;
4687        unsigned long flags;
4688
4689        spin_lock_irqsave(&q->lock, flags);
4690        skb = __skb_dequeue(q);
4691        if (skb && (skb_next = skb_peek(q))) {
4692                icmp_next = is_icmp_err_skb(skb_next);
4693                if (icmp_next)
4694                        sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4695        }
4696        spin_unlock_irqrestore(&q->lock, flags);
4697
4698        if (is_icmp_err_skb(skb) && !icmp_next)
4699                sk->sk_err = 0;
4700
4701        if (skb_next)
4702                sk_error_report(sk);
4703
4704        return skb;
4705}
4706EXPORT_SYMBOL(sock_dequeue_err_skb);
4707
4708/**
4709 * skb_clone_sk - create clone of skb, and take reference to socket
4710 * @skb: the skb to clone
4711 *
4712 * This function creates a clone of a buffer that holds a reference on
4713 * sk_refcnt.  Buffers created via this function are meant to be
4714 * returned using sock_queue_err_skb, or free via kfree_skb.
4715 *
4716 * When passing buffers allocated with this function to sock_queue_err_skb
4717 * it is necessary to wrap the call with sock_hold/sock_put in order to
4718 * prevent the socket from being released prior to being enqueued on
4719 * the sk_error_queue.
4720 */
4721struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4722{
4723        struct sock *sk = skb->sk;
4724        struct sk_buff *clone;
4725
4726        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4727                return NULL;
4728
4729        clone = skb_clone(skb, GFP_ATOMIC);
4730        if (!clone) {
4731                sock_put(sk);
4732                return NULL;
4733        }
4734
4735        clone->sk = sk;
4736        clone->destructor = sock_efree;
4737
4738        return clone;
4739}
4740EXPORT_SYMBOL(skb_clone_sk);
4741
4742static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4743                                        struct sock *sk,
4744                                        int tstype,
4745                                        bool opt_stats)
4746{
4747        struct sock_exterr_skb *serr;
4748        int err;
4749
4750        BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4751
4752        serr = SKB_EXT_ERR(skb);
4753        memset(serr, 0, sizeof(*serr));
4754        serr->ee.ee_errno = ENOMSG;
4755        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4756        serr->ee.ee_info = tstype;
4757        serr->opt_stats = opt_stats;
4758        serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4759        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4760                serr->ee.ee_data = skb_shinfo(skb)->tskey;
4761                if (sk_is_tcp(sk))
4762                        serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4763        }
4764
4765        err = sock_queue_err_skb(sk, skb);
4766
4767        if (err)
4768                kfree_skb(skb);
4769}
4770
4771static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4772{
4773        bool ret;
4774
4775        if (likely(sysctl_tstamp_allow_data || tsonly))
4776                return true;
4777
4778        read_lock_bh(&sk->sk_callback_lock);
4779        ret = sk->sk_socket && sk->sk_socket->file &&
4780              file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4781        read_unlock_bh(&sk->sk_callback_lock);
4782        return ret;
4783}
4784
4785void skb_complete_tx_timestamp(struct sk_buff *skb,
4786                               struct skb_shared_hwtstamps *hwtstamps)
4787{
4788        struct sock *sk = skb->sk;
4789
4790        if (!skb_may_tx_timestamp(sk, false))
4791                goto err;
4792
4793        /* Take a reference to prevent skb_orphan() from freeing the socket,
4794         * but only if the socket refcount is not zero.
4795         */
4796        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4797                *skb_hwtstamps(skb) = *hwtstamps;
4798                __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4799                sock_put(sk);
4800                return;
4801        }
4802
4803err:
4804        kfree_skb(skb);
4805}
4806EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4807
4808void __skb_tstamp_tx(struct sk_buff *orig_skb,
4809                     const struct sk_buff *ack_skb,
4810                     struct skb_shared_hwtstamps *hwtstamps,
4811                     struct sock *sk, int tstype)
4812{
4813        struct sk_buff *skb;
4814        bool tsonly, opt_stats = false;
4815
4816        if (!sk)
4817                return;
4818
4819        if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4820            skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4821                return;
4822
4823        tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4824        if (!skb_may_tx_timestamp(sk, tsonly))
4825                return;
4826
4827        if (tsonly) {
4828#ifdef CONFIG_INET
4829                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4830                    sk_is_tcp(sk)) {
4831                        skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4832                                                             ack_skb);
4833                        opt_stats = true;
4834                } else
4835#endif
4836                        skb = alloc_skb(0, GFP_ATOMIC);
4837        } else {
4838                skb = skb_clone(orig_skb, GFP_ATOMIC);
4839        }
4840        if (!skb)
4841                return;
4842
4843        if (tsonly) {
4844                skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4845                                             SKBTX_ANY_TSTAMP;
4846                skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4847        }
4848
4849        if (hwtstamps)
4850                *skb_hwtstamps(skb) = *hwtstamps;
4851        else
4852                __net_timestamp(skb);
4853
4854        __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4855}
4856EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4857
4858void skb_tstamp_tx(struct sk_buff *orig_skb,
4859                   struct skb_shared_hwtstamps *hwtstamps)
4860{
4861        return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4862                               SCM_TSTAMP_SND);
4863}
4864EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4865
4866void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4867{
4868        struct sock *sk = skb->sk;
4869        struct sock_exterr_skb *serr;
4870        int err = 1;
4871
4872        skb->wifi_acked_valid = 1;
4873        skb->wifi_acked = acked;
4874
4875        serr = SKB_EXT_ERR(skb);
4876        memset(serr, 0, sizeof(*serr));
4877        serr->ee.ee_errno = ENOMSG;
4878        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4879
4880        /* Take a reference to prevent skb_orphan() from freeing the socket,
4881         * but only if the socket refcount is not zero.
4882         */
4883        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4884                err = sock_queue_err_skb(sk, skb);
4885                sock_put(sk);
4886        }
4887        if (err)
4888                kfree_skb(skb);
4889}
4890EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4891
4892/**
4893 * skb_partial_csum_set - set up and verify partial csum values for packet
4894 * @skb: the skb to set
4895 * @start: the number of bytes after skb->data to start checksumming.
4896 * @off: the offset from start to place the checksum.
4897 *
4898 * For untrusted partially-checksummed packets, we need to make sure the values
4899 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4900 *
4901 * This function checks and sets those values and skb->ip_summed: if this
4902 * returns false you should drop the packet.
4903 */
4904bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4905{
4906        u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4907        u32 csum_start = skb_headroom(skb) + (u32)start;
4908
4909        if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4910                net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4911                                     start, off, skb_headroom(skb), skb_headlen(skb));
4912                return false;
4913        }
4914        skb->ip_summed = CHECKSUM_PARTIAL;
4915        skb->csum_start = csum_start;
4916        skb->csum_offset = off;
4917        skb_set_transport_header(skb, start);
4918        return true;
4919}
4920EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4921
4922static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4923                               unsigned int max)
4924{
4925        if (skb_headlen(skb) >= len)
4926                return 0;
4927
4928        /* If we need to pullup then pullup to the max, so we
4929         * won't need to do it again.
4930         */
4931        if (max > skb->len)
4932                max = skb->len;
4933
4934        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4935                return -ENOMEM;
4936
4937        if (skb_headlen(skb) < len)
4938                return -EPROTO;
4939
4940        return 0;
4941}
4942
4943#define MAX_TCP_HDR_LEN (15 * 4)
4944
4945static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4946                                      typeof(IPPROTO_IP) proto,
4947                                      unsigned int off)
4948{
4949        int err;
4950
4951        switch (proto) {
4952        case IPPROTO_TCP:
4953                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4954                                          off + MAX_TCP_HDR_LEN);
4955                if (!err && !skb_partial_csum_set(skb, off,
4956                                                  offsetof(struct tcphdr,
4957                                                           check)))
4958                        err = -EPROTO;
4959                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4960
4961        case IPPROTO_UDP:
4962                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4963                                          off + sizeof(struct udphdr));
4964                if (!err && !skb_partial_csum_set(skb, off,
4965                                                  offsetof(struct udphdr,
4966                                                           check)))
4967                        err = -EPROTO;
4968                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4969        }
4970
4971        return ERR_PTR(-EPROTO);
4972}
4973
4974/* This value should be large enough to cover a tagged ethernet header plus
4975 * maximally sized IP and TCP or UDP headers.
4976 */
4977#define MAX_IP_HDR_LEN 128
4978
4979static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4980{
4981        unsigned int off;
4982        bool fragment;
4983        __sum16 *csum;
4984        int err;
4985
4986        fragment = false;
4987
4988        err = skb_maybe_pull_tail(skb,
4989                                  sizeof(struct iphdr),
4990                                  MAX_IP_HDR_LEN);
4991        if (err < 0)
4992                goto out;
4993
4994        if (ip_is_fragment(ip_hdr(skb)))
4995                fragment = true;
4996
4997        off = ip_hdrlen(skb);
4998
4999        err = -EPROTO;
5000
5001        if (fragment)
5002                goto out;
5003
5004        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5005        if (IS_ERR(csum))
5006                return PTR_ERR(csum);
5007
5008        if (recalculate)
5009                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5010                                           ip_hdr(skb)->daddr,
5011                                           skb->len - off,
5012                                           ip_hdr(skb)->protocol, 0);
5013        err = 0;
5014
5015out:
5016        return err;
5017}
5018
5019/* This value should be large enough to cover a tagged ethernet header plus
5020 * an IPv6 header, all options, and a maximal TCP or UDP header.
5021 */
5022#define MAX_IPV6_HDR_LEN 256
5023
5024#define OPT_HDR(type, skb, off) \
5025        (type *)(skb_network_header(skb) + (off))
5026
5027static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5028{
5029        int err;
5030        u8 nexthdr;
5031        unsigned int off;
5032        unsigned int len;
5033        bool fragment;
5034        bool done;
5035        __sum16 *csum;
5036
5037        fragment = false;
5038        done = false;
5039
5040        off = sizeof(struct ipv6hdr);
5041
5042        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5043        if (err < 0)
5044                goto out;
5045
5046        nexthdr = ipv6_hdr(skb)->nexthdr;
5047
5048        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5049        while (off <= len && !done) {
5050                switch (nexthdr) {
5051                case IPPROTO_DSTOPTS:
5052                case IPPROTO_HOPOPTS:
5053                case IPPROTO_ROUTING: {
5054                        struct ipv6_opt_hdr *hp;
5055
5056                        err = skb_maybe_pull_tail(skb,
5057                                                  off +
5058                                                  sizeof(struct ipv6_opt_hdr),
5059                                                  MAX_IPV6_HDR_LEN);
5060                        if (err < 0)
5061                                goto out;
5062
5063                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5064                        nexthdr = hp->nexthdr;
5065                        off += ipv6_optlen(hp);
5066                        break;
5067                }
5068                case IPPROTO_AH: {
5069                        struct ip_auth_hdr *hp;
5070
5071                        err = skb_maybe_pull_tail(skb,
5072                                                  off +
5073                                                  sizeof(struct ip_auth_hdr),
5074                                                  MAX_IPV6_HDR_LEN);
5075                        if (err < 0)
5076                                goto out;
5077
5078                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5079                        nexthdr = hp->nexthdr;
5080                        off += ipv6_authlen(hp);
5081                        break;
5082                }
5083                case IPPROTO_FRAGMENT: {
5084                        struct frag_hdr *hp;
5085
5086                        err = skb_maybe_pull_tail(skb,
5087                                                  off +
5088                                                  sizeof(struct frag_hdr),
5089                                                  MAX_IPV6_HDR_LEN);
5090                        if (err < 0)
5091                                goto out;
5092
5093                        hp = OPT_HDR(struct frag_hdr, skb, off);
5094
5095                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5096                                fragment = true;
5097
5098                        nexthdr = hp->nexthdr;
5099                        off += sizeof(struct frag_hdr);
5100                        break;
5101                }
5102                default:
5103                        done = true;
5104                        break;
5105                }
5106        }
5107
5108        err = -EPROTO;
5109
5110        if (!done || fragment)
5111                goto out;
5112
5113        csum = skb_checksum_setup_ip(skb, nexthdr, off);
5114        if (IS_ERR(csum))
5115                return PTR_ERR(csum);
5116
5117        if (recalculate)
5118                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5119                                         &ipv6_hdr(skb)->daddr,
5120                                         skb->len - off, nexthdr, 0);
5121        err = 0;
5122
5123out:
5124        return err;
5125}
5126
5127/**
5128 * skb_checksum_setup - set up partial checksum offset
5129 * @skb: the skb to set up
5130 * @recalculate: if true the pseudo-header checksum will be recalculated
5131 */
5132int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5133{
5134        int err;
5135
5136        switch (skb->protocol) {
5137        case htons(ETH_P_IP):
5138                err = skb_checksum_setup_ipv4(skb, recalculate);
5139                break;
5140
5141        case htons(ETH_P_IPV6):
5142                err = skb_checksum_setup_ipv6(skb, recalculate);
5143                break;
5144
5145        default:
5146                err = -EPROTO;
5147                break;
5148        }
5149
5150        return err;
5151}
5152EXPORT_SYMBOL(skb_checksum_setup);
5153
5154/**
5155 * skb_checksum_maybe_trim - maybe trims the given skb
5156 * @skb: the skb to check
5157 * @transport_len: the data length beyond the network header
5158 *
5159 * Checks whether the given skb has data beyond the given transport length.
5160 * If so, returns a cloned skb trimmed to this transport length.
5161 * Otherwise returns the provided skb. Returns NULL in error cases
5162 * (e.g. transport_len exceeds skb length or out-of-memory).
5163 *
5164 * Caller needs to set the skb transport header and free any returned skb if it
5165 * differs from the provided skb.
5166 */
5167static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5168                                               unsigned int transport_len)
5169{
5170        struct sk_buff *skb_chk;
5171        unsigned int len = skb_transport_offset(skb) + transport_len;
5172        int ret;
5173
5174        if (skb->len < len)
5175                return NULL;
5176        else if (skb->len == len)
5177                return skb;
5178
5179        skb_chk = skb_clone(skb, GFP_ATOMIC);
5180        if (!skb_chk)
5181                return NULL;
5182
5183        ret = pskb_trim_rcsum(skb_chk, len);
5184        if (ret) {
5185                kfree_skb(skb_chk);
5186                return NULL;
5187        }
5188
5189        return skb_chk;
5190}
5191
5192/**
5193 * skb_checksum_trimmed - validate checksum of an skb
5194 * @skb: the skb to check
5195 * @transport_len: the data length beyond the network header
5196 * @skb_chkf: checksum function to use
5197 *
5198 * Applies the given checksum function skb_chkf to the provided skb.
5199 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5200 *
5201 * If the skb has data beyond the given transport length, then a
5202 * trimmed & cloned skb is checked and returned.
5203 *
5204 * Caller needs to set the skb transport header and free any returned skb if it
5205 * differs from the provided skb.
5206 */
5207struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5208                                     unsigned int transport_len,
5209                                     __sum16(*skb_chkf)(struct sk_buff *skb))
5210{
5211        struct sk_buff *skb_chk;
5212        unsigned int offset = skb_transport_offset(skb);
5213        __sum16 ret;
5214
5215        skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5216        if (!skb_chk)
5217                goto err;
5218
5219        if (!pskb_may_pull(skb_chk, offset))
5220                goto err;
5221
5222        skb_pull_rcsum(skb_chk, offset);
5223        ret = skb_chkf(skb_chk);
5224        skb_push_rcsum(skb_chk, offset);
5225
5226        if (ret)
5227                goto err;
5228
5229        return skb_chk;
5230
5231err:
5232        if (skb_chk && skb_chk != skb)
5233                kfree_skb(skb_chk);
5234
5235        return NULL;
5236
5237}
5238EXPORT_SYMBOL(skb_checksum_trimmed);
5239
5240void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5241{
5242        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5243                             skb->dev->name);
5244}
5245EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5246
5247void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5248{
5249        if (head_stolen) {
5250                skb_release_head_state(skb);
5251                kmem_cache_free(skbuff_head_cache, skb);
5252        } else {
5253                __kfree_skb(skb);
5254        }
5255}
5256EXPORT_SYMBOL(kfree_skb_partial);
5257
5258/**
5259 * skb_try_coalesce - try to merge skb to prior one
5260 * @to: prior buffer
5261 * @from: buffer to add
5262 * @fragstolen: pointer to boolean
5263 * @delta_truesize: how much more was allocated than was requested
5264 */
5265bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5266                      bool *fragstolen, int *delta_truesize)
5267{
5268        struct skb_shared_info *to_shinfo, *from_shinfo;
5269        int i, delta, len = from->len;
5270
5271        *fragstolen = false;
5272
5273        if (skb_cloned(to))
5274                return false;
5275
5276        /* In general, avoid mixing slab allocated and page_pool allocated
5277         * pages within the same SKB. However when @to is not pp_recycle and
5278         * @from is cloned, we can transition frag pages from page_pool to
5279         * reference counted.
5280         *
5281         * On the other hand, don't allow coalescing two pp_recycle SKBs if
5282         * @from is cloned, in case the SKB is using page_pool fragment
5283         * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5284         * references for cloned SKBs at the moment that would result in
5285         * inconsistent reference counts.
5286         */
5287        if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5288                return false;
5289
5290        if (len <= skb_tailroom(to)) {
5291                if (len)
5292                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5293                *delta_truesize = 0;
5294                return true;
5295        }
5296
5297        to_shinfo = skb_shinfo(to);
5298        from_shinfo = skb_shinfo(from);
5299        if (to_shinfo->frag_list || from_shinfo->frag_list)
5300                return false;
5301        if (skb_zcopy(to) || skb_zcopy(from))
5302                return false;
5303
5304        if (skb_headlen(from) != 0) {
5305                struct page *page;
5306                unsigned int offset;
5307
5308                if (to_shinfo->nr_frags +
5309                    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5310                        return false;
5311
5312                if (skb_head_is_locked(from))
5313                        return false;
5314
5315                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5316
5317                page = virt_to_head_page(from->head);
5318                offset = from->data - (unsigned char *)page_address(page);
5319
5320                skb_fill_page_desc(to, to_shinfo->nr_frags,
5321                                   page, offset, skb_headlen(from));
5322                *fragstolen = true;
5323        } else {
5324                if (to_shinfo->nr_frags +
5325                    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5326                        return false;
5327
5328                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5329        }
5330
5331        WARN_ON_ONCE(delta < len);
5332
5333        memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5334               from_shinfo->frags,
5335               from_shinfo->nr_frags * sizeof(skb_frag_t));
5336        to_shinfo->nr_frags += from_shinfo->nr_frags;
5337
5338        if (!skb_cloned(from))
5339                from_shinfo->nr_frags = 0;
5340
5341        /* if the skb is not cloned this does nothing
5342         * since we set nr_frags to 0.
5343         */
5344        for (i = 0; i < from_shinfo->nr_frags; i++)
5345                __skb_frag_ref(&from_shinfo->frags[i]);
5346
5347        to->truesize += delta;
5348        to->len += len;
5349        to->data_len += len;
5350
5351        *delta_truesize = delta;
5352        return true;
5353}
5354EXPORT_SYMBOL(skb_try_coalesce);
5355
5356/**
5357 * skb_scrub_packet - scrub an skb
5358 *
5359 * @skb: buffer to clean
5360 * @xnet: packet is crossing netns
5361 *
5362 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5363 * into/from a tunnel. Some information have to be cleared during these
5364 * operations.
5365 * skb_scrub_packet can also be used to clean a skb before injecting it in
5366 * another namespace (@xnet == true). We have to clear all information in the
5367 * skb that could impact namespace isolation.
5368 */
5369void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5370{
5371        skb->pkt_type = PACKET_HOST;
5372        skb->skb_iif = 0;
5373        skb->ignore_df = 0;
5374        skb_dst_drop(skb);
5375        skb_ext_reset(skb);
5376        nf_reset_ct(skb);
5377        nf_reset_trace(skb);
5378
5379#ifdef CONFIG_NET_SWITCHDEV
5380        skb->offload_fwd_mark = 0;
5381        skb->offload_l3_fwd_mark = 0;
5382#endif
5383
5384        if (!xnet)
5385                return;
5386
5387        ipvs_reset(skb);
5388        skb->mark = 0;
5389        skb_clear_tstamp(skb);
5390}
5391EXPORT_SYMBOL_GPL(skb_scrub_packet);
5392
5393/**
5394 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5395 *
5396 * @skb: GSO skb
5397 *
5398 * skb_gso_transport_seglen is used to determine the real size of the
5399 * individual segments, including Layer4 headers (TCP/UDP).
5400 *
5401 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5402 */
5403static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5404{
5405        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5406        unsigned int thlen = 0;
5407
5408        if (skb->encapsulation) {
5409                thlen = skb_inner_transport_header(skb) -
5410                        skb_transport_header(skb);
5411
5412                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5413                        thlen += inner_tcp_hdrlen(skb);
5414        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5415                thlen = tcp_hdrlen(skb);
5416        } else if (unlikely(skb_is_gso_sctp(skb))) {
5417                thlen = sizeof(struct sctphdr);
5418        } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5419                thlen = sizeof(struct udphdr);
5420        }
5421        /* UFO sets gso_size to the size of the fragmentation
5422         * payload, i.e. the size of the L4 (UDP) header is already
5423         * accounted for.
5424         */
5425        return thlen + shinfo->gso_size;
5426}
5427
5428/**
5429 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5430 *
5431 * @skb: GSO skb
5432 *
5433 * skb_gso_network_seglen is used to determine the real size of the
5434 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5435 *
5436 * The MAC/L2 header is not accounted for.
5437 */
5438static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5439{
5440        unsigned int hdr_len = skb_transport_header(skb) -
5441                               skb_network_header(skb);
5442
5443        return hdr_len + skb_gso_transport_seglen(skb);
5444}
5445
5446/**
5447 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5448 *
5449 * @skb: GSO skb
5450 *
5451 * skb_gso_mac_seglen is used to determine the real size of the
5452 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5453 * headers (TCP/UDP).
5454 */
5455static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5456{
5457        unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5458
5459        return hdr_len + skb_gso_transport_seglen(skb);
5460}
5461
5462/**
5463 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5464 *
5465 * There are a couple of instances where we have a GSO skb, and we
5466 * want to determine what size it would be after it is segmented.
5467 *
5468 * We might want to check:
5469 * -    L3+L4+payload size (e.g. IP forwarding)
5470 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5471 *
5472 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5473 *
5474 * @skb: GSO skb
5475 *
5476 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5477 *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5478 *
5479 * @max_len: The maximum permissible length.
5480 *
5481 * Returns true if the segmented length <= max length.
5482 */
5483static inline bool skb_gso_size_check(const struct sk_buff *skb,
5484                                      unsigned int seg_len,
5485                                      unsigned int max_len) {
5486        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5487        const struct sk_buff *iter;
5488
5489        if (shinfo->gso_size != GSO_BY_FRAGS)
5490                return seg_len <= max_len;
5491
5492        /* Undo this so we can re-use header sizes */
5493        seg_len -= GSO_BY_FRAGS;
5494
5495        skb_walk_frags(skb, iter) {
5496                if (seg_len + skb_headlen(iter) > max_len)
5497                        return false;
5498        }
5499
5500        return true;
5501}
5502
5503/**
5504 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5505 *
5506 * @skb: GSO skb
5507 * @mtu: MTU to validate against
5508 *
5509 * skb_gso_validate_network_len validates if a given skb will fit a
5510 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5511 * payload.
5512 */
5513bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5514{
5515        return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5516}
5517EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5518
5519/**
5520 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5521 *
5522 * @skb: GSO skb
5523 * @len: length to validate against
5524 *
5525 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5526 * length once split, including L2, L3 and L4 headers and the payload.
5527 */
5528bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5529{
5530        return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5531}
5532EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5533
5534static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5535{
5536        int mac_len, meta_len;
5537        void *meta;
5538
5539        if (skb_cow(skb, skb_headroom(skb)) < 0) {
5540                kfree_skb(skb);
5541                return NULL;
5542        }
5543
5544        mac_len = skb->data - skb_mac_header(skb);
5545        if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5546                memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5547                        mac_len - VLAN_HLEN - ETH_TLEN);
5548        }
5549
5550        meta_len = skb_metadata_len(skb);
5551        if (meta_len) {
5552                meta = skb_metadata_end(skb) - meta_len;
5553                memmove(meta + VLAN_HLEN, meta, meta_len);
5554        }
5555
5556        skb->mac_header += VLAN_HLEN;
5557        return skb;
5558}
5559
5560struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5561{
5562        struct vlan_hdr *vhdr;
5563        u16 vlan_tci;
5564
5565        if (unlikely(skb_vlan_tag_present(skb))) {
5566                /* vlan_tci is already set-up so leave this for another time */
5567                return skb;
5568        }
5569
5570        skb = skb_share_check(skb, GFP_ATOMIC);
5571        if (unlikely(!skb))
5572                goto err_free;
5573        /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5574        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5575                goto err_free;
5576
5577        vhdr = (struct vlan_hdr *)skb->data;
5578        vlan_tci = ntohs(vhdr->h_vlan_TCI);
5579        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5580
5581        skb_pull_rcsum(skb, VLAN_HLEN);
5582        vlan_set_encap_proto(skb, vhdr);
5583
5584        skb = skb_reorder_vlan_header(skb);
5585        if (unlikely(!skb))
5586                goto err_free;
5587
5588        skb_reset_network_header(skb);
5589        if (!skb_transport_header_was_set(skb))
5590                skb_reset_transport_header(skb);
5591        skb_reset_mac_len(skb);
5592
5593        return skb;
5594
5595err_free:
5596        kfree_skb(skb);
5597        return NULL;
5598}
5599EXPORT_SYMBOL(skb_vlan_untag);
5600
5601int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5602{
5603        if (!pskb_may_pull(skb, write_len))
5604                return -ENOMEM;
5605
5606        if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5607                return 0;
5608
5609        return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5610}
5611EXPORT_SYMBOL(skb_ensure_writable);
5612
5613/* remove VLAN header from packet and update csum accordingly.
5614 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5615 */
5616int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5617{
5618        struct vlan_hdr *vhdr;
5619        int offset = skb->data - skb_mac_header(skb);
5620        int err;
5621
5622        if (WARN_ONCE(offset,
5623                      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5624                      offset)) {
5625                return -EINVAL;
5626        }
5627
5628        err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5629        if (unlikely(err))
5630                return err;
5631
5632        skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5633
5634        vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5635        *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5636
5637        memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5638        __skb_pull(skb, VLAN_HLEN);
5639
5640        vlan_set_encap_proto(skb, vhdr);
5641        skb->mac_header += VLAN_HLEN;
5642
5643        if (skb_network_offset(skb) < ETH_HLEN)
5644                skb_set_network_header(skb, ETH_HLEN);
5645
5646        skb_reset_mac_len(skb);
5647
5648        return err;
5649}
5650EXPORT_SYMBOL(__skb_vlan_pop);
5651
5652/* Pop a vlan tag either from hwaccel or from payload.
5653 * Expects skb->data at mac header.
5654 */
5655int skb_vlan_pop(struct sk_buff *skb)
5656{
5657        u16 vlan_tci;
5658        __be16 vlan_proto;
5659        int err;
5660
5661        if (likely(skb_vlan_tag_present(skb))) {
5662                __vlan_hwaccel_clear_tag(skb);
5663        } else {
5664                if (unlikely(!eth_type_vlan(skb->protocol)))
5665                        return 0;
5666
5667                err = __skb_vlan_pop(skb, &vlan_tci);
5668                if (err)
5669                        return err;
5670        }
5671        /* move next vlan tag to hw accel tag */
5672        if (likely(!eth_type_vlan(skb->protocol)))
5673                return 0;
5674
5675        vlan_proto = skb->protocol;
5676        err = __skb_vlan_pop(skb, &vlan_tci);
5677        if (unlikely(err))
5678                return err;
5679
5680        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5681        return 0;
5682}
5683EXPORT_SYMBOL(skb_vlan_pop);
5684
5685/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5686 * Expects skb->data at mac header.
5687 */
5688int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5689{
5690        if (skb_vlan_tag_present(skb)) {
5691                int offset = skb->data - skb_mac_header(skb);
5692                int err;
5693
5694                if (WARN_ONCE(offset,
5695                              "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5696                              offset)) {
5697                        return -EINVAL;
5698                }
5699
5700                err = __vlan_insert_tag(skb, skb->vlan_proto,
5701                                        skb_vlan_tag_get(skb));
5702                if (err)
5703                        return err;
5704
5705                skb->protocol = skb->vlan_proto;
5706                skb->mac_len += VLAN_HLEN;
5707
5708                skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5709        }
5710        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5711        return 0;
5712}
5713EXPORT_SYMBOL(skb_vlan_push);
5714
5715/**
5716 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5717 *
5718 * @skb: Socket buffer to modify
5719 *
5720 * Drop the Ethernet header of @skb.
5721 *
5722 * Expects that skb->data points to the mac header and that no VLAN tags are
5723 * present.
5724 *
5725 * Returns 0 on success, -errno otherwise.
5726 */
5727int skb_eth_pop(struct sk_buff *skb)
5728{
5729        if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5730            skb_network_offset(skb) < ETH_HLEN)
5731                return -EPROTO;
5732
5733        skb_pull_rcsum(skb, ETH_HLEN);
5734        skb_reset_mac_header(skb);
5735        skb_reset_mac_len(skb);
5736
5737        return 0;
5738}
5739EXPORT_SYMBOL(skb_eth_pop);
5740
5741/**
5742 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5743 *
5744 * @skb: Socket buffer to modify
5745 * @dst: Destination MAC address of the new header
5746 * @src: Source MAC address of the new header
5747 *
5748 * Prepend @skb with a new Ethernet header.
5749 *
5750 * Expects that skb->data points to the mac header, which must be empty.
5751 *
5752 * Returns 0 on success, -errno otherwise.
5753 */
5754int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5755                 const unsigned char *src)
5756{
5757        struct ethhdr *eth;
5758        int err;
5759
5760        if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5761                return -EPROTO;
5762
5763        err = skb_cow_head(skb, sizeof(*eth));
5764        if (err < 0)
5765                return err;
5766
5767        skb_push(skb, sizeof(*eth));
5768        skb_reset_mac_header(skb);
5769        skb_reset_mac_len(skb);
5770
5771        eth = eth_hdr(skb);
5772        ether_addr_copy(eth->h_dest, dst);
5773        ether_addr_copy(eth->h_source, src);
5774        eth->h_proto = skb->protocol;
5775
5776        skb_postpush_rcsum(skb, eth, sizeof(*eth));
5777
5778        return 0;
5779}
5780EXPORT_SYMBOL(skb_eth_push);
5781
5782/* Update the ethertype of hdr and the skb csum value if required. */
5783static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5784                             __be16 ethertype)
5785{
5786        if (skb->ip_summed == CHECKSUM_COMPLETE) {
5787                __be16 diff[] = { ~hdr->h_proto, ethertype };
5788
5789                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5790        }
5791
5792        hdr->h_proto = ethertype;
5793}
5794
5795/**
5796 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5797 *                   the packet
5798 *
5799 * @skb: buffer
5800 * @mpls_lse: MPLS label stack entry to push
5801 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5802 * @mac_len: length of the MAC header
5803 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5804 *            ethernet
5805 *
5806 * Expects skb->data at mac header.
5807 *
5808 * Returns 0 on success, -errno otherwise.
5809 */
5810int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5811                  int mac_len, bool ethernet)
5812{
5813        struct mpls_shim_hdr *lse;
5814        int err;
5815
5816        if (unlikely(!eth_p_mpls(mpls_proto)))
5817                return -EINVAL;
5818
5819        /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5820        if (skb->encapsulation)
5821                return -EINVAL;
5822
5823        err = skb_cow_head(skb, MPLS_HLEN);
5824        if (unlikely(err))
5825                return err;
5826
5827        if (!skb->inner_protocol) {
5828                skb_set_inner_network_header(skb, skb_network_offset(skb));
5829                skb_set_inner_protocol(skb, skb->protocol);
5830        }
5831
5832        skb_push(skb, MPLS_HLEN);
5833        memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5834                mac_len);
5835        skb_reset_mac_header(skb);
5836        skb_set_network_header(skb, mac_len);
5837        skb_reset_mac_len(skb);
5838
5839        lse = mpls_hdr(skb);
5840        lse->label_stack_entry = mpls_lse;
5841        skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5842
5843        if (ethernet && mac_len >= ETH_HLEN)
5844                skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5845        skb->protocol = mpls_proto;
5846
5847        return 0;
5848}
5849EXPORT_SYMBOL_GPL(skb_mpls_push);
5850
5851/**
5852 * skb_mpls_pop() - pop the outermost MPLS header
5853 *
5854 * @skb: buffer
5855 * @next_proto: ethertype of header after popped MPLS header
5856 * @mac_len: length of the MAC header
5857 * @ethernet: flag to indicate if the packet is ethernet
5858 *
5859 * Expects skb->data at mac header.
5860 *
5861 * Returns 0 on success, -errno otherwise.
5862 */
5863int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5864                 bool ethernet)
5865{
5866        int err;
5867
5868        if (unlikely(!eth_p_mpls(skb->protocol)))
5869                return 0;
5870
5871        err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5872        if (unlikely(err))
5873                return err;
5874
5875        skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5876        memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5877                mac_len);
5878
5879        __skb_pull(skb, MPLS_HLEN);
5880        skb_reset_mac_header(skb);
5881        skb_set_network_header(skb, mac_len);
5882
5883        if (ethernet && mac_len >= ETH_HLEN) {
5884                struct ethhdr *hdr;
5885
5886                /* use mpls_hdr() to get ethertype to account for VLANs. */
5887                hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5888                skb_mod_eth_type(skb, hdr, next_proto);
5889        }
5890        skb->protocol = next_proto;
5891
5892        return 0;
5893}
5894EXPORT_SYMBOL_GPL(skb_mpls_pop);
5895
5896/**
5897 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5898 *
5899 * @skb: buffer
5900 * @mpls_lse: new MPLS label stack entry to update to
5901 *
5902 * Expects skb->data at mac header.
5903 *
5904 * Returns 0 on success, -errno otherwise.
5905 */
5906int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5907{
5908        int err;
5909
5910        if (unlikely(!eth_p_mpls(skb->protocol)))
5911                return -EINVAL;
5912
5913        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5914        if (unlikely(err))
5915                return err;
5916
5917        if (skb->ip_summed == CHECKSUM_COMPLETE) {
5918                __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5919
5920                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5921        }
5922
5923        mpls_hdr(skb)->label_stack_entry = mpls_lse;
5924
5925        return 0;
5926}
5927EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5928
5929/**
5930 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5931 *
5932 * @skb: buffer
5933 *
5934 * Expects skb->data at mac header.
5935 *
5936 * Returns 0 on success, -errno otherwise.
5937 */
5938int skb_mpls_dec_ttl(struct sk_buff *skb)
5939{
5940        u32 lse;
5941        u8 ttl;
5942
5943        if (unlikely(!eth_p_mpls(skb->protocol)))
5944                return -EINVAL;
5945
5946        if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5947                return -ENOMEM;
5948
5949        lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5950        ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5951        if (!--ttl)
5952                return -EINVAL;
5953
5954        lse &= ~MPLS_LS_TTL_MASK;
5955        lse |= ttl << MPLS_LS_TTL_SHIFT;
5956
5957        return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5958}
5959EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5960
5961/**
5962 * alloc_skb_with_frags - allocate skb with page frags
5963 *
5964 * @header_len: size of linear part
5965 * @data_len: needed length in frags
5966 * @max_page_order: max page order desired.
5967 * @errcode: pointer to error code if any
5968 * @gfp_mask: allocation mask
5969 *
5970 * This can be used to allocate a paged skb, given a maximal order for frags.
5971 */
5972struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5973                                     unsigned long data_len,
5974                                     int max_page_order,
5975                                     int *errcode,
5976                                     gfp_t gfp_mask)
5977{
5978        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5979        unsigned long chunk;
5980        struct sk_buff *skb;
5981        struct page *page;
5982        int i;
5983
5984        *errcode = -EMSGSIZE;
5985        /* Note this test could be relaxed, if we succeed to allocate
5986         * high order pages...
5987         */
5988        if (npages > MAX_SKB_FRAGS)
5989                return NULL;
5990
5991        *errcode = -ENOBUFS;
5992        skb = alloc_skb(header_len, gfp_mask);
5993        if (!skb)
5994                return NULL;
5995
5996        skb->truesize += npages << PAGE_SHIFT;
5997
5998        for (i = 0; npages > 0; i++) {
5999                int order = max_page_order;
6000
6001                while (order) {
6002                        if (npages >= 1 << order) {
6003                                page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6004                                                   __GFP_COMP |
6005                                                   __GFP_NOWARN,
6006                                                   order);
6007                                if (page)
6008                                        goto fill_page;
6009                                /* Do not retry other high order allocations */
6010                                order = 1;
6011                                max_page_order = 0;
6012                        }
6013                        order--;
6014                }
6015                page = alloc_page(gfp_mask);
6016                if (!page)
6017                        goto failure;
6018fill_page:
6019                chunk = min_t(unsigned long, data_len,
6020                              PAGE_SIZE << order);
6021                skb_fill_page_desc(skb, i, page, 0, chunk);
6022                data_len -= chunk;
6023                npages -= 1 << order;
6024        }
6025        return skb;
6026
6027failure:
6028        kfree_skb(skb);
6029        return NULL;
6030}
6031EXPORT_SYMBOL(alloc_skb_with_frags);
6032
6033/* carve out the first off bytes from skb when off < headlen */
6034static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6035                                    const int headlen, gfp_t gfp_mask)
6036{
6037        int i;
6038        int size = skb_end_offset(skb);
6039        int new_hlen = headlen - off;
6040        u8 *data;
6041
6042        size = SKB_DATA_ALIGN(size);
6043
6044        if (skb_pfmemalloc(skb))
6045                gfp_mask |= __GFP_MEMALLOC;
6046        data = kmalloc_reserve(size +
6047                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6048                               gfp_mask, NUMA_NO_NODE, NULL);
6049        if (!data)
6050                return -ENOMEM;
6051
6052        size = SKB_WITH_OVERHEAD(ksize(data));
6053
6054        /* Copy real data, and all frags */
6055        skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6056        skb->len -= off;
6057
6058        memcpy((struct skb_shared_info *)(data + size),
6059               skb_shinfo(skb),
6060               offsetof(struct skb_shared_info,
6061                        frags[skb_shinfo(skb)->nr_frags]));
6062        if (skb_cloned(skb)) {
6063                /* drop the old head gracefully */
6064                if (skb_orphan_frags(skb, gfp_mask)) {
6065                        kfree(data);
6066                        return -ENOMEM;
6067                }
6068                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6069                        skb_frag_ref(skb, i);
6070                if (skb_has_frag_list(skb))
6071                        skb_clone_fraglist(skb);
6072                skb_release_data(skb);
6073        } else {
6074                /* we can reuse existing recount- all we did was
6075                 * relocate values
6076                 */
6077                skb_free_head(skb);
6078        }
6079
6080        skb->head = data;
6081        skb->data = data;
6082        skb->head_frag = 0;
6083        skb_set_end_offset(skb, size);
6084        skb_set_tail_pointer(skb, skb_headlen(skb));
6085        skb_headers_offset_update(skb, 0);
6086        skb->cloned = 0;
6087        skb->hdr_len = 0;
6088        skb->nohdr = 0;
6089        atomic_set(&skb_shinfo(skb)->dataref, 1);
6090
6091        return 0;
6092}
6093
6094static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6095
6096/* carve out the first eat bytes from skb's frag_list. May recurse into
6097 * pskb_carve()
6098 */
6099static int pskb_carve_frag_list(struct sk_buff *skb,
6100                                struct skb_shared_info *shinfo, int eat,
6101                                gfp_t gfp_mask)
6102{
6103        struct sk_buff *list = shinfo->frag_list;
6104        struct sk_buff *clone = NULL;
6105        struct sk_buff *insp = NULL;
6106
6107        do {
6108                if (!list) {
6109                        pr_err("Not enough bytes to eat. Want %d\n", eat);
6110                        return -EFAULT;
6111                }
6112                if (list->len <= eat) {
6113                        /* Eaten as whole. */
6114                        eat -= list->len;
6115                        list = list->next;
6116                        insp = list;
6117                } else {
6118                        /* Eaten partially. */
6119                        if (skb_shared(list)) {
6120                                clone = skb_clone(list, gfp_mask);
6121                                if (!clone)
6122                                        return -ENOMEM;
6123                                insp = list->next;
6124                                list = clone;
6125                        } else {
6126                                /* This may be pulled without problems. */
6127                                insp = list;
6128                        }
6129                        if (pskb_carve(list, eat, gfp_mask) < 0) {
6130                                kfree_skb(clone);
6131                                return -ENOMEM;
6132                        }
6133                        break;
6134                }
6135        } while (eat);
6136
6137        /* Free pulled out fragments. */
6138        while ((list = shinfo->frag_list) != insp) {
6139                shinfo->frag_list = list->next;
6140                consume_skb(list);
6141        }
6142        /* And insert new clone at head. */
6143        if (clone) {
6144                clone->next = list;
6145                shinfo->frag_list = clone;
6146        }
6147        return 0;
6148}
6149
6150/* carve off first len bytes from skb. Split line (off) is in the
6151 * non-linear part of skb
6152 */
6153static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6154                                       int pos, gfp_t gfp_mask)
6155{
6156        int i, k = 0;
6157        int size = skb_end_offset(skb);
6158        u8 *data;
6159        const int nfrags = skb_shinfo(skb)->nr_frags;
6160        struct skb_shared_info *shinfo;
6161
6162        size = SKB_DATA_ALIGN(size);
6163
6164        if (skb_pfmemalloc(skb))
6165                gfp_mask |= __GFP_MEMALLOC;
6166        data = kmalloc_reserve(size +
6167                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6168                               gfp_mask, NUMA_NO_NODE, NULL);
6169        if (!data)
6170                return -ENOMEM;
6171
6172        size = SKB_WITH_OVERHEAD(ksize(data));
6173
6174        memcpy((struct skb_shared_info *)(data + size),
6175               skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6176        if (skb_orphan_frags(skb, gfp_mask)) {
6177                kfree(data);
6178                return -ENOMEM;
6179        }
6180        shinfo = (struct skb_shared_info *)(data + size);
6181        for (i = 0; i < nfrags; i++) {
6182                int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6183
6184                if (pos + fsize > off) {
6185                        shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6186
6187                        if (pos < off) {
6188                                /* Split frag.
6189                                 * We have two variants in this case:
6190                                 * 1. Move all the frag to the second
6191                                 *    part, if it is possible. F.e.
6192                                 *    this approach is mandatory for TUX,
6193                                 *    where splitting is expensive.
6194                                 * 2. Split is accurately. We make this.
6195                                 */
6196                                skb_frag_off_add(&shinfo->frags[0], off - pos);
6197                                skb_frag_size_sub(&shinfo->frags[0], off - pos);
6198                        }
6199                        skb_frag_ref(skb, i);
6200                        k++;
6201                }
6202                pos += fsize;
6203        }
6204        shinfo->nr_frags = k;
6205        if (skb_has_frag_list(skb))
6206                skb_clone_fraglist(skb);
6207
6208        /* split line is in frag list */
6209        if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6210                /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6211                if (skb_has_frag_list(skb))
6212                        kfree_skb_list(skb_shinfo(skb)->frag_list);
6213                kfree(data);
6214                return -ENOMEM;
6215        }
6216        skb_release_data(skb);
6217
6218        skb->head = data;
6219        skb->head_frag = 0;
6220        skb->data = data;
6221        skb_set_end_offset(skb, size);
6222        skb_reset_tail_pointer(skb);
6223        skb_headers_offset_update(skb, 0);
6224        skb->cloned   = 0;
6225        skb->hdr_len  = 0;
6226        skb->nohdr    = 0;
6227        skb->len -= off;
6228        skb->data_len = skb->len;
6229        atomic_set(&skb_shinfo(skb)->dataref, 1);
6230        return 0;
6231}
6232
6233/* remove len bytes from the beginning of the skb */
6234static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6235{
6236        int headlen = skb_headlen(skb);
6237
6238        if (len < headlen)
6239                return pskb_carve_inside_header(skb, len, headlen, gfp);
6240        else
6241                return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6242}
6243
6244/* Extract to_copy bytes starting at off from skb, and return this in
6245 * a new skb
6246 */
6247struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6248                             int to_copy, gfp_t gfp)
6249{
6250        struct sk_buff  *clone = skb_clone(skb, gfp);
6251
6252        if (!clone)
6253                return NULL;
6254
6255        if (pskb_carve(clone, off, gfp) < 0 ||
6256            pskb_trim(clone, to_copy)) {
6257                kfree_skb(clone);
6258                return NULL;
6259        }
6260        return clone;
6261}
6262EXPORT_SYMBOL(pskb_extract);
6263
6264/**
6265 * skb_condense - try to get rid of fragments/frag_list if possible
6266 * @skb: buffer
6267 *
6268 * Can be used to save memory before skb is added to a busy queue.
6269 * If packet has bytes in frags and enough tail room in skb->head,
6270 * pull all of them, so that we can free the frags right now and adjust
6271 * truesize.
6272 * Notes:
6273 *      We do not reallocate skb->head thus can not fail.
6274 *      Caller must re-evaluate skb->truesize if needed.
6275 */
6276void skb_condense(struct sk_buff *skb)
6277{
6278        if (skb->data_len) {
6279                if (skb->data_len > skb->end - skb->tail ||
6280                    skb_cloned(skb))
6281                        return;
6282
6283                /* Nice, we can free page frag(s) right now */
6284                __pskb_pull_tail(skb, skb->data_len);
6285        }
6286        /* At this point, skb->truesize might be over estimated,
6287         * because skb had a fragment, and fragments do not tell
6288         * their truesize.
6289         * When we pulled its content into skb->head, fragment
6290         * was freed, but __pskb_pull_tail() could not possibly
6291         * adjust skb->truesize, not knowing the frag truesize.
6292         */
6293        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6294}
6295
6296#ifdef CONFIG_SKB_EXTENSIONS
6297static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6298{
6299        return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6300}
6301
6302/**
6303 * __skb_ext_alloc - allocate a new skb extensions storage
6304 *
6305 * @flags: See kmalloc().
6306 *
6307 * Returns the newly allocated pointer. The pointer can later attached to a
6308 * skb via __skb_ext_set().
6309 * Note: caller must handle the skb_ext as an opaque data.
6310 */
6311struct skb_ext *__skb_ext_alloc(gfp_t flags)
6312{
6313        struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6314
6315        if (new) {
6316                memset(new->offset, 0, sizeof(new->offset));
6317                refcount_set(&new->refcnt, 1);
6318        }
6319
6320        return new;
6321}
6322
6323static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6324                                         unsigned int old_active)
6325{
6326        struct skb_ext *new;
6327
6328        if (refcount_read(&old->refcnt) == 1)
6329                return old;
6330
6331        new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6332        if (!new)
6333                return NULL;
6334
6335        memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6336        refcount_set(&new->refcnt, 1);
6337
6338#ifdef CONFIG_XFRM
6339        if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6340                struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6341                unsigned int i;
6342
6343                for (i = 0; i < sp->len; i++)
6344                        xfrm_state_hold(sp->xvec[i]);
6345        }
6346#endif
6347        __skb_ext_put(old);
6348        return new;
6349}
6350
6351/**
6352 * __skb_ext_set - attach the specified extension storage to this skb
6353 * @skb: buffer
6354 * @id: extension id
6355 * @ext: extension storage previously allocated via __skb_ext_alloc()
6356 *
6357 * Existing extensions, if any, are cleared.
6358 *
6359 * Returns the pointer to the extension.
6360 */
6361void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6362                    struct skb_ext *ext)
6363{
6364        unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6365
6366        skb_ext_put(skb);
6367        newlen = newoff + skb_ext_type_len[id];
6368        ext->chunks = newlen;
6369        ext->offset[id] = newoff;
6370        skb->extensions = ext;
6371        skb->active_extensions = 1 << id;
6372        return skb_ext_get_ptr(ext, id);
6373}
6374
6375/**
6376 * skb_ext_add - allocate space for given extension, COW if needed
6377 * @skb: buffer
6378 * @id: extension to allocate space for
6379 *
6380 * Allocates enough space for the given extension.
6381 * If the extension is already present, a pointer to that extension
6382 * is returned.
6383 *
6384 * If the skb was cloned, COW applies and the returned memory can be
6385 * modified without changing the extension space of clones buffers.
6386 *
6387 * Returns pointer to the extension or NULL on allocation failure.
6388 */
6389void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6390{
6391        struct skb_ext *new, *old = NULL;
6392        unsigned int newlen, newoff;
6393
6394        if (skb->active_extensions) {
6395                old = skb->extensions;
6396
6397                new = skb_ext_maybe_cow(old, skb->active_extensions);
6398                if (!new)
6399                        return NULL;
6400
6401                if (__skb_ext_exist(new, id))
6402                        goto set_active;
6403
6404                newoff = new->chunks;
6405        } else {
6406                newoff = SKB_EXT_CHUNKSIZEOF(*new);
6407
6408                new = __skb_ext_alloc(GFP_ATOMIC);
6409                if (!new)
6410                        return NULL;
6411        }
6412
6413        newlen = newoff + skb_ext_type_len[id];
6414        new->chunks = newlen;
6415        new->offset[id] = newoff;
6416set_active:
6417        skb->slow_gro = 1;
6418        skb->extensions = new;
6419        skb->active_extensions |= 1 << id;
6420        return skb_ext_get_ptr(new, id);
6421}
6422EXPORT_SYMBOL(skb_ext_add);
6423
6424#ifdef CONFIG_XFRM
6425static void skb_ext_put_sp(struct sec_path *sp)
6426{
6427        unsigned int i;
6428
6429        for (i = 0; i < sp->len; i++)
6430                xfrm_state_put(sp->xvec[i]);
6431}
6432#endif
6433
6434#ifdef CONFIG_MCTP_FLOWS
6435static void skb_ext_put_mctp(struct mctp_flow *flow)
6436{
6437        if (flow->key)
6438                mctp_key_unref(flow->key);
6439}
6440#endif
6441
6442void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6443{
6444        struct skb_ext *ext = skb->extensions;
6445
6446        skb->active_extensions &= ~(1 << id);
6447        if (skb->active_extensions == 0) {
6448                skb->extensions = NULL;
6449                __skb_ext_put(ext);
6450#ifdef CONFIG_XFRM
6451        } else if (id == SKB_EXT_SEC_PATH &&
6452                   refcount_read(&ext->refcnt) == 1) {
6453                struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6454
6455                skb_ext_put_sp(sp);
6456                sp->len = 0;
6457#endif
6458        }
6459}
6460EXPORT_SYMBOL(__skb_ext_del);
6461
6462void __skb_ext_put(struct skb_ext *ext)
6463{
6464        /* If this is last clone, nothing can increment
6465         * it after check passes.  Avoids one atomic op.
6466         */
6467        if (refcount_read(&ext->refcnt) == 1)
6468                goto free_now;
6469
6470        if (!refcount_dec_and_test(&ext->refcnt))
6471                return;
6472free_now:
6473#ifdef CONFIG_XFRM
6474        if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6475                skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6476#endif
6477#ifdef CONFIG_MCTP_FLOWS
6478        if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6479                skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6480#endif
6481
6482        kmem_cache_free(skbuff_ext_cache, ext);
6483}
6484EXPORT_SYMBOL(__skb_ext_put);
6485#endif /* CONFIG_SKB_EXTENSIONS */
6486
6487/**
6488 * skb_attempt_defer_free - queue skb for remote freeing
6489 * @skb: buffer
6490 *
6491 * Put @skb in a per-cpu list, using the cpu which
6492 * allocated the skb/pages to reduce false sharing
6493 * and memory zone spinlock contention.
6494 */
6495void skb_attempt_defer_free(struct sk_buff *skb)
6496{
6497        int cpu = skb->alloc_cpu;
6498        struct softnet_data *sd;
6499        unsigned long flags;
6500        unsigned int defer_max;
6501        bool kick;
6502
6503        if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6504            !cpu_online(cpu) ||
6505            cpu == raw_smp_processor_id()) {
6506nodefer:        __kfree_skb(skb);
6507                return;
6508        }
6509
6510        sd = &per_cpu(softnet_data, cpu);
6511        defer_max = READ_ONCE(sysctl_skb_defer_max);
6512        if (READ_ONCE(sd->defer_count) >= defer_max)
6513                goto nodefer;
6514
6515        spin_lock_irqsave(&sd->defer_lock, flags);
6516        /* Send an IPI every time queue reaches half capacity. */
6517        kick = sd->defer_count == (defer_max >> 1);
6518        /* Paired with the READ_ONCE() few lines above */
6519        WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6520
6521        skb->next = sd->defer_list;
6522        /* Paired with READ_ONCE() in skb_defer_free_flush() */
6523        WRITE_ONCE(sd->defer_list, skb);
6524        spin_unlock_irqrestore(&sd->defer_lock, flags);
6525
6526        /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6527         * if we are unlucky enough (this seems very unlikely).
6528         */
6529        if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6530                smp_call_function_single_async(cpu, &sd->defer_csd);
6531}
6532